
Ternary Galois Field Expansions for Reversible Logic and Kronecker

Decision Diagrams for Ternary GFSOP Minimization

Mozammel H. A. Khan$, Marek A. Perkowski*, and Mujibur R. Khan$

$
Department of Computer Science and Engineering, East West University, 43 Mohakhali,

Dhaka 1212, BANGLADESH. mhakhan@ewubd.edu and mrkhan@ewubd.edu
*
Department of Electrical and Computer Engineering, Portland State University, 1900 SW 4

th

Avenue, Portland, OR 97201, USA. mperkows@ee.pdx.edu

Abstract

Ternary Galois Field Sum of Products

(TGFSOP) expressions are found to be good choice

for ternary reversible, and especially quantum, logic
design. In this paper, we propose 16 Ternary Galois

Field Expansions (TGFE) and introduce three

Ternary Galois Field Decision Diagrams (TGFDD)
using the proposed TGFEs, which are useful for

reversible and quantum logic design. We also

propose a heuristic for creating TGFDDs and a
method for flattening the TGFDDs for determining

TGFSOP expressions. We provide experimental

results to show the effectiveness of the developed
methods.

1. Introduction

It has been shown that Galois Field Sum of
Products (GFSOP) expressions are a good choice for
multiple-valued reversible logic synthesis [1-4]. It
has been also shown in [4] that Ternary Galois Field
Sum of Products (TGFSOP) expressions are a natural
choice for multiple-valued quantum logic synthesis.
Such expressions can be either realized directly in
quantum cascades or become a starting point of
factorization processes leading to factorized cascades
[3,4]. Therefore, efficient methods for representing
and minimizing TGFSOP expressions are very
important.

Multiple-Valued Decision Diagrams (MDD) for
many functions over multiple-valued domains are
presented in the literature [5-29]. Many of these
decision diagrams are based on Reed-Muller like
multiple-valued expressions and their related forms.
Many others are based on algebraic and finite field
structures such as Galois Field. However, because of

the requirement of reversible realization of literals,
the TGFSOP expressions introduced in [4] require a
special form of multiple-valued decision diagrams.
To achieve a useful way of determining TGFSOP
expressions for a given ternary function, in this
paper, we introduce three types of Ternary Galois
Field Decision Diagrams (TGFDD), flattening of
which directly gives TGFSOP expressions. These
diagrams are adaptations of known diagrams for
quantum and reversible computing, in which only
some literals are physically realizable. For
constructing such TGFDDs we propose, in this paper,
16 Ternary Galois Field Expansions (TGFE) that use
the reversible literals of the intended TGFSOP
expressions. Experimental results show that the
TGFDDs produce good quality TGFSOP expressions
for many ternary functions.

Constructing a cascade of reversible
“permutative” gates from some initial specification is
one of the most fundamental problems in binary
quantum circuit design. Recently, multiple-valued
quantum gates and circuits have been presented [30]
and ternary quantum gates have been built [31]. The
concept of binary quantum circuit synthesis has been
generalized to multiple-valued quantum circuits
synthesis [3]. Among the multiple-valued quantum
circuits the GFSOP cascades are the most
fundamental ones [3,4]. The three types of Ternary
Galois Field Decision Diagrams using the proposed
expansions are the starting point to create such
cascades in our software system [3,4]. They can be
used also to create other types of quantum cascades.
They are thus of a basic importance in multiple-
valued quantum logic synthesis.

The remaining of the paper is organized as
follows. In Section 2, Ternary Galois Field Sum of
Products (TGFSOP) expression is introduced. In

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

Section 3, 16 Ternary Galois Field Expansions that
use the reversible ternary literals are proposed. In
Section 4, three types of Ternary Galois Field
Decision Diagrams (TGFDDs) are introduced that
use the expansions of Section 3. In Section 5, a
heuristic for creating one of the TGFDDs introduced
in Section 4 (named the Kronecker Ternary Galois
Field Decision Diagram, KTGFDD) is presented. In
Section 6, a method for flattening the TGFDDs
introduced in Section 4 is discussed. In Section 7,
experimental results are presented to show the
complexity of KTGFDD and the resulting TGFSOP.
In Section 8, conclusion about the paper and the
future research guidelines are presented. In Section 9,
references are given. Finally, in Section 10, some
ternary benchmark functions are given as an
appendix.

2. Ternary Galois Field Sum of Products

expression

In this section we introduce Ternary Galois Field
Sum of Products (TGFSOP) expressions that are
found to be the natural choice for ternary quantum
logic synthesis, especially for synthesis of ternary
quantum cascades.

Ternary Galois Field (TGF) consists of the set of

elements }2,1,0{=T and two basic binary

operations – addition (denoted by +) and

multiplication (denoted by ⋅ or absence of any
operator) as defined in Table 1. Readers should note
that TGF is also known as GF3 and the addition and
multiplication operations shown in Table 1 are
modulo 3 addition and multiplication.

Table 1. Ternary Galois Field (TGF) operations.

+ 0 1 2 • 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2

2 2 0 1 2 0 2 1

Literals of a ternary variable)012(=x can be

defined as follows:
Constant literals: Ternary constants 1 = (111)

and 2 = (222) may be used as literals of a ternary

variable)012(=x .

Basic literals: There are six basic literals of a

ternary variable)012(=x corresponding to six

possible permutations of the elements 0, 1, and 2,
which are reversible in nature:

)012(=x Normal literal

)120(1 =+=′ xx Single-Shift literal

)201(2 =+=′′ xx Dual-Shift literal

)021(2 ==′′′ xx Self-Shift literal

)102(12# =+= xx Self-Single-Shift literal

)210(22^ =+= xx Self-Dual-Shift literal

These are the only literals that can be realized by
1-qubit reversible gates [4], so they have a special
place in the diagrams and cascades developed by us.
Other literals are created as Galois products of these
basic literals, so their design cost is higher, which is
taken into account in the synthesis methods.

Self-Shift of a basic ternary literal yields another
basic ternary literal as follows (can be verified from
Table 1):

xx ′′′=2 ^2 xx =′ #2 xx =′′
xx =′′′2 xx ′′=#2 xx ′=^2

Composite literals: There are some other
literals, which are Galois products of two basic
literals each, as below:

)011()(22 =′′′==′′′′′′= xxxxxx

)020(^ =′′′=′ xxxx

)002(# =′′′=′′ xxxx

)022(=′′′xx

)001(2# ==′′′′′= xxxxx

)010(1^ ==′′′′= xxxxx

)110()()(2^2^^ ==′==′′ xxxxxx

)200(#^ ==′′′ xxxx

)100(0^# ==′′=′ xxxxx

)220(^ =′xx

)101()()(2#2## ==′′==′′′′ xxxxxx

)202(# =′′xx

1-Reduced Post literals (RPLs): 1-RPLs of a
variable)012(=x are defined as

=
=

otherwise

ixiff
xi

0

1

For ternary Galois field the 1-RPLs of a variable

)012(=x are)100(0 =x ,)010(1 =x , and

)001(2 =x . These 1-RPLs are related with the basic

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

and composite literals as follows (can be verified
from Table 1):

^2^#2#2

2220

)(22)(21)(2

)(22)(212

xxxxx

xxxxxx

+=+=+′′′=
′′+′′=′+′=+=

 (1)

^2^2#2

2221

2)(21)(2)(2

1)(2)(222

xxxxx

xxxxxx

+=+=′′′+′′′=
+′′=′+′=+=

 (2)

1)(2)(22)(2

2)(21)(22
2^#2#2

2222

+=+=′′′+′′′=
′′+′′=+′=+=

xxxxx

xxxxxx
 (3)

A product term is a TGF product of a constant,
basic literals, and composite literals of ternary

variables. For example, yxx ′′′′2 is a product term.

Ternary Galois Field Sum of Products (TGFSOP)
expression is TGF sum of some product terms. For

example, zxzyyyx ′′′+′′′′+′′+2 is a TGFSOP.

3. Ternary Galois Field Expansions

Binary Kronecker Functional Decision Diagrams
(KFDDs) [32] are created using the following well-
known expansions:

10
xffxf ⊕′= Shannon Expansion

20
xfff ⊕= Positive Davio Expansion

21
fxff ′⊕= Negative Davio Expansion

where,

0
f = cofactor of f with respect to 0=x ,

1
f = cofactor of f with respect to 1=x ,

102
fff ⊕= , and

⊕ is EXOR (GF2 addition) operation.

In this section we extend the concept of binary
Shannon and Davio expansion to the Ternary Galois
Field and propose 16 Ternary Galois Field
Expansions (TGFE) that use the reversible ternary
literals and their composite forms. Among these 16
TGFEs we call 9 expansions the Pseudo-Davio
expansions, because these expansions have sum of
cofactors like binary Davio expansions but do not
have a cofactor with no literal multiplied with it.
These 16 TGFEs can be used to create Ternary
Kronecker Decision Diagrams.

For the purpose of defining the TGFEs, we begin
with the concept of cofactors of ternary functions. A
ternary function f has the following cofactors:

=
0

f cofactor of f with respect to 0=x

=
1

f cofactor of f with respect to 1=x

=
2

f cofactor of f with respect to 2=x

To derive expressions for the TGFEs we first define
sums of two (possible weighted by a factor of 2) or
three cofactors, as shown below:

1001
fff +=

2002
fff +=

2112
fff +=

210012
ffff ++=

10011
2 fff +=

20022
2 fff +=

10001
2 fff +=

21122
2 fff +=

20002
2 fff +=

21112
2 fff +=

All these expressions generalize the concept of
binary Boolean Difference used in (binary) Davio
Expansions.

The proposed TGFEs are defined below as
theorems:

Theorem 1 (Shannon Ternary Galois Field

Expansion): A ternary function f can be expanded
with respect to the variable x as follows:

2

2

1

1

0

0 xfxfxff ++= (TGFE 1) (4)

Proof. If 0=x , then 10 =x , 01 =x , 02 =x , and

0210
001 fffff =⋅+⋅+⋅= . If 1=x , then 00 =x ,

11 =x , 02 =x , and
1210

010 fffff =⋅+⋅+⋅= . If

2=x , then 00 =x , 01 =x , 12 =x , and

2210
100 fffff =⋅+⋅+⋅= . Thus, we have (4).

QED

Theorem 2 (Pseudo-Davio Ternary Galois

Field Expansions): A ternary function f can be
expanded with respect to the variable x as follows:

2

#

1

^

01

fxxfxfxxf ++′= (TGFE 2) (5)

2

#

01

^

0
fxxfxxfxf ++′= (TGFE 3) (6)

21

^

02

fxfxxfxxf ′′++′= (TGFE 4) (7)

02

#

1

^

0

fxxfxxfxf ++= (TGFE 5) (8)

212

^

0

fxfxxfxxf ′′′++′= (TGFE 6) (9)

12

#

10

fxxxffxxf ++′= (TGFE 7) (10)

012

#

10

fxxxffxf ++= (TGFE 8) (11)

2012

^

0
fxfxxfxf ′′′++′= (TGFE 9) (12)

21

^

012

fxfxfxxf ′′++′= (TGFE 10) (13)

Proof. By substituting the first part of (1), (2), and
(3) in (4), we have

2

#

1

^

01

#

2

2

110

2

2

2

1

2

0

2

2

2

1

2

0

2

)2()22())(12(

)2()2212()12(

)2()22()12(

fxxfxfxx

fxxfxffx

fxxfxxfx

fxxfxxfxf

++′=
++++++=

+++++++=
+++++=

Thus we have (5). Similarly, we can prove (6) to
(13). QED

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

Theorem 3 (Davio Ternary Galois Field

Expansions): A ternary function f can be expanded
with respect to the variable x as follows:

0121120
fxxxfff ′′′++= (TGFE 11) (14)

0121220
fxxfxff ′′′+′′′+= (TGFE 12) (15)

012

#

0221
fxxfxff ′′+′′+= (TGFE 13) (16)

012

#

002

#

1
fxxfxff ′′++= (TGFE 14) (17)

012

^

0012
fxxfxff ′+′+= (TGFE 15) (18)

012

^

011

^

2
fxxfxff ′++= (TGFE 16) (19)

Proof. By substituting the first part of (1), (2), and
(3) in (4), we have

0121120

210

2

210

2

2

1

2

0

2

)(2)2(

)2()22()12(

fxxxff

fffxffxf

fxxfxxfxf

′′′++=
+++++=

+++++=

Thus we have (14). By substituting the other parts of
(1), (2), and (3) in (4) and after some manipulation,
we can prove (15) to (19). QED

Some of the features of these expansions are
explained using the pure decision tree (all levels
having the same expansion with a fixed variable
ordering) for the ternary function

Tyxf]2,2,1,2,2,1,1,1,0[),(= using all 16 TGFEs

for the variable ordering x, y as shown in Figure 1.
From Figure 1 we observe that Davio expansions,
that is, TGFEs 11 to 16 produce relatively more
constant 0-leaves for function having less than one-
third 0s in the truth vector. Among the six basic
literals only three (normal, single-shift, and dual-
shift) were previously used in the context of ternary
reversible logic design. If we consider only the
normal, single-shift, and dual-shift literals, then we
will have only three Davio TGFEs (namely TGFEs
11, 13, and 15). From Figure 1 we also observe that
TGFEs 12, 14, and 16 produce the same order of
constant 0-leaves as TGFEs 11, 13, and 15.
Therefore, we can see that the three new literals (self-
shift, self-single-shift, and self-dual-shift) are equally
useful as the previously used literals for the purpose
of minimizing non-zero paths in the Ternary Galois
Field Decision Diagrams and consequently for
minimizing TGFSOP expression.

4. Ternary Galois Field Decision

Diagrams

Among the different BDD types, Kronecker DDs
use all three types of binary expansions [32]. In this

section we extend the concept of binary Kronecker
DDs to Ternary Galois Field.

Figure 1. 16 types of pure ternary decision trees

for the function
Tyxf]2,2,1,2,2,1,1,1,0[),(= .

For the purpose of deriving minimized TGFSOP
expression of a given ternary function we use three
types of Ternary Galois Field Decision Diagrams
(TGFDDs) based on the proposed TGFEs that are
useful for reversible logic design as described below:

Kronecker Ternary Galois Field Decision

Diagram (KTGFDD): In KTGFDD the nodes of the
same level have the same variable and the same
TGFE. For example, in the KTGFDD of Figure 2.a,
the first level variable is z and the expansion is
TGFE16. In the second level the variable is x and the
expansion for both the nodes is TGFE12. In the third
level the variable is y and the expansion for both the
nodes is TGFE15.

0 1 1 1 2 2 1 2 2

A1

B1B1B1

f

0
1

2

0 0 0
1 1 1

2 2 2

(a) TGFE 1
1 0 0 0 2 2 0 2 2

A1

B1B1B1

f

01
1

2

01 01 01
1 1 1

2 2 2

(b) TGFE 2
0 1 1 1 1 0 1 0 2

A1

B1B1B1

f

0
01

2

0 0 0
01 01 01

2 2 2

(c) TGFE 3

1 0 0 0 2 2 0 2 2

A1

B1B1B1

f

02
1

2

02 02 02
1 1 1

2 2 2

(d) TGFE 4
0 1 1 1 2 0 1 0 1

A1

B1B1B1

f

0
1

02

0 0 0
1 1 1

02 02 02

(e) TGFE 5
0 2 1 2 2 1 1 1 2

A1

B1B1B1

f

0
12

2

0 0 0
12 12 12

2 2 2

(f) TGFE 6

0 1 2 1 2 1 2 1 2

A1

B1B1B1

f

0
1

12

0 0 0
1 1 1

12 12 12

(g) TGFE 7
0 1 2 1 2 2 2 2 0

A1

B1B1B1

f

0
1

012

0 0 0
1 1 1
012 012 012

(h) TGFE 8
0 2 1 2 0 2 1 2 2

A1

B1B1B1

f

0
012

2

0 0 0
012 012 012

2 2 2

(i) TGFE 9

0 2 2 2 2 2 2 2 2

A1

B1B1B1

f

012
1

2

012 012 012
1 1 1

2 2 2

(j) TGFE 10
0 0 2 0 0 0 2 0 0

A1

B1B1B1

f

0
112

012

0 0 0
112 112 112

012 012 012

(k) TGFE 11
0 0 2 0 0 0 2 0 0

A1

B1B1B1

f

0
122

012

0 0 0
122 122 122

012 012 012

(l) TGFE 12

2 2 2 2 0 0 2 0 0

A1

B1B1B1

f

1
022

012

1 1 1
022 022 022

012 012 012

(m) TGFE 13
2 1 2 1 0 0 2 0 0

A1

B1B1B1

f

1
002

012

1 1 1
002 002 002

012 012 012

(n) TGFE 14
2 1 2 1 0 0 2 0 0

A1

B1B1B1

f

2
001

012

2 2 2
001 001 001

012 012 012

(o) TGFE 15

2 2 2 2 0 0 2 0 0

A1

B1B1B1

f

2
011

012

2 2 2
011 011 011

012 012 012

(p) TGFE 16

Within the nodes

the ordered pair is

varaible and TGFE

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

Pseudo-Kronecker Ternary Galois Field

Decision Diagram (PKTGFDD): In PKTGFDD the
nodes of the same level have the same variable, but
each of the nodes may have one of the 16 TGFEs.
For example, in the PKTGFDD of Figure 2.b, the
first level variable is z and the expansion is TGFE16.
In the second level the variable is x and the
expansions for the left and the right nodes are
TGFE14 and TGFE12, respectively. In the third
level, the variable is y and the expansions for the left
and the right nodes are TGFE14 and TGFE15,
respectively.

Free Kronecker Ternary Galois Field

Decision Diagram (FKTGFDD): In FKTGFDD
each of the paths may have a different variable
ordering and each of the nodes may have one of the
16 TGFEs. For example, in the FKTGFDD of Figure
2.c, the first level variable is z and the expansion is
TGFE16. In the second level, the left node has
variable y with expansion TGFE14, but the right node
has variable x with expansion TGFE12. In the third
level, the only node has variable y with expansion
TGFE15. It can be seen that each of the paths of this
diagram has different ordering of the variables and in
the same level the expansions are also different.

For these three decision diagrams, in general, the
following relationship holds: number of nodes of

KTGFDD ≥ number of nodes of PKTGFDD ≥
number of nodes of FKTGFDD.

Observe that KTGFDDs, PKTGFDDs and
FKTGFDDs are adaptations of known concepts to
reversible logic, and it is thanks to the realizability of
multiple-valued quantum logic that these concepts
may become more practical than their non-reversible
counterparts.

5. Creating Kronecker Ternary Galois

Field Decision Diagram

In this section we propose a heuristic for creating
a KTGFDD in which the number of nodes as well as
the number of paths terminating at constant 1-leaf
and 2-leaf is minimized so that after flattening of the
decision diagram the number of product terms in the
resultant TGFSOP is also minimized. For this
purpose we maximize the number of 0s in the truth
vectors of each sub-function at every level of the
KTGFDD with the hope that local optimization will
lead to global optimization. For discussing the
heuristic the following weight functions are useful.

Figure 2. Three types of Ternary Galois Field

Decision Diagrams for the function =),,(zyxf

T]0,0,2,0,1,1,0,0,2,0,1,0,0,2,2,0,1,0,0,2,1,0,0,0,0,2,1[.

Definition 1: Given an n-variable ternary
function f represented as a truth vector, where the

locations are designated from 0 to 13 −n . The

number of occurrences of a group of in−3 consecutive

0s, 1s, and 2s starting from inj −3 location for

ni ,,2,1= and)13(,,1,0 −= ij are denoted by

i
Z ,

i
O , and

i
T , respectively.

In the weight functions, i determines the length
of a group of consecutive 0s or 1s or 2s and j

determines the starting location of the group. For
example, if 3=n , then for 1=i the group length is

933 13 == −−in and 2)1313(,1,0 1 =−=−= ij . So,

the starting locations are 0, 9, and 18. Similarly, these
weight functions define the number of occurrences of
a group length 1 starting from locations 0, 1, 2, …,

13 −n ; of a group length 3 starting from locations 0,

3, 9, …, 33 −n ; of a group length 9 starting from

locations 0, 9, 18, …, 93 −n and so on to of a group

length 13 −n starting from location 0, 13 −n , and
132 −× n . Consider the function =),,(zyxf

T]0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,2,1,1,1,2,1,0,0,0,0[.

Then 1
1

=Z , 5
2

=Z , 18
3

=Z , 0
1

=O , 1
2

=O ,

4
3

=O , 0
1

=T , 1
2

=T , and 5
3

=T .

The proposed heuristic is as follows:

1. If 13 −≤ n

n
mZ , where m is the number of outputs,

then use TGFEs 1 and 11 to 16, otherwise use all
TGFEs. The reason behind this selection is that
if the truth vector contains less than one-third 0s,
then using TGFEs 11 to 16 is likely to produce

more 0s because of the use cofactor sums
112

f ,

z16

x12

y15

x12

y15

210

2

0
1
1

012

12
2,

01
2 0

2
001,

012

1
2
2

2

0,012

001,012

(a) KTGFDD

z16

x14

y14

x12

y15

210

2

0
1
1

012

00
2,

01
2

1

0
1
2 2

0,012

001,012

(b) PKTGFDD

1,002

1
2
2

z16

y14

y15

x12

210

2

0
1
1012

1,
00

2

0
1
2

2

0,0
12

(c) FKTGFDD

001,012

1
2
2

Within the nodes the ordered pair is variable and TGFE

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

122
f ,

022
f ,

002
f ,

001
f ,

011
f , and

012
f (can be

verified from Figure 1).
2. For each of the n variables, find expansion for

the TGFEs selected in step 1. For each expansion

compute
1

Z to
n

Z and
11

TO + to
nn

TO + .

3. Find the expansion with highest
1

Z . The reason

behind this selection is that one or more
cofactors will be straight constant 0. In case of a

tie, break it using highest values of
2

Z up to
n

Z .

This selection will produce constant 0 cofactors
in the later levels in the KTGFDD. For further

tie, break it by using highest values of
11

TO + up

to
nn

TO + . This selection will produce a

constant 0 or 1 or 2 cofactors in the later levels in
the KTGFDD. For further tie, break it arbitrarily.
The selected expansion is the expansion for the
root of the KTGFDD.

4. For the next level of the KTGFDD, repeat the
steps 1 to 3 for the remaining 1−n variables.

5. Repeat steps 1 to 4 until all the variables are
exhausted.
The heuristic is illustrated using a 2-input 2-

output ternary function Tyxf]2,2,2,2,0,1,2,1,0[),(=
and Tyxg]0,2,1,1,1,1,2,0,1[),(= . Here

6324
2

=×<=Z . So we used TGFEs 1 and 11 to 16

for both the variables x and y. The weights are shown
in Table 2. There are four ties as shown bold. We
select variable y with TGFE 14 arbitrarily as the
expansion for the roots. Then the resulting six sub-

functions are Txf]2,0,1[)(
1

= , Txf]0,1,2[)(
002

= ,
Txf]0,0,0[)(

012
= , Txg]2,1,0[)(

1
= ,

Txg]2,0,1[)(
002

= , and Txg]0,0,0[)(
012

= . Here

61610
1

=×>=Z . So, we used TGFEs 1 to 16. The

weights are also shown in Table 2. There are two ties
and we break it arbitrarily by selecting TGFE 10. The
created KTGFDD is shown in Figure 3.

6. Flattening a Ternary Galois Field

Decision Diagram

Flattening of a TGFDD yields a TGFSOP
expressions for the function represented by the
TGFDD. Different possible types of edges for
TGFE1 in a TGFDD are shown in Figure 4. The
literal associated with each of the edge types is
shown in Table 3. Similarly, different types of edges

and their corresponding literals for TGFE2 to
TGFE16 are determined and are shown in Table 3.

Table 2. Weights of various expansions for the

example function.

 Level 1

221121
,,, TOTOZZ ++

Level 2

111
, TOZ +

TGFE x y x

1 0, 4, 2, 14 0, 4, 2, 14 10, 8

2 10, 8

3 9, 9

4 11, 7

5 11, 7

6 9, 9

7 10, 8

8 13, 5

9 12, 6

10 13, 5

11 2, 10, 0, 8 2, 9, 1, 9 11, 7

12 2, 10, 0, 8 2, 9, 1, 9 11, 7

13 2, 9, 1, 9 2, 10, 0, 8 12, 6

14 2, 9, 1, 9 2, 10, 0, 8 12, 6

15 2, 9, 1, 9 2, 9, 1, 9 11, 7

16 2, 9, 1, 9 2, 9, 1, 9 11, 7

A product of literals corresponding to edges
along a path from the root to a leaf of the TGFDD
gives the TGF product of the represented function.
Paths ended at the constant 0-leaf do not contribute to
the TGFSOP and the TGF product corresponding to a
path ended at the constant 2-leaf is multiplied by 2 to
get the required product term. Sum of all such
products gives the TGFSOP expression for the
function represented in the TGFDD. For example, the
TGFSOP expressions derived from the three
TGFDDs of Figure 2 are

KTGFDD: ^^^^ 22 zzxzzyy ′′′′++

y14 y14

x10 x10 x10

20 1

0
12

2

1
012

0
1
2
,1

002
002

012,2 1 1
012

2

1

f g

Figure 3. KTGFDD for the

example function.

0
1

2 0,1 2

0,2 1 0 1,2

Figure 4.

Different types of

edges for TGFE1.

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

PKTGFDD: ^^# 2 zzxzyy ′′′′+′′

FKTGFDD: ^^# 2 zzxzyy ′′′′+′′
In general, the following relation holds: number

of products from KTGFDD ≥ number of products

from PKTGFDD ≥ number of products from

FKTGFDD.

Table 3. Different types of edges and their literals.

Edge Literal Edge Literal

TGFE1 TGFE2

0 #)100(xx′= 01 #)100(xx′=
1 ^)010(xx= 1 ^)210(x=
2 #)001(xx= 2 #)001(xx=

0,1 xx ′′=)110(01,1 ^)010(xx=
0,2 xx ′′′′=)101(01,2 xx ′′′′=)101(

1,2 xx=)011(1,2 #^)211(xxx +=
TGFE3 TGFE4

0 x′=)120(02 #)100(xx′=
01 ^)010(xx= 1 ^)010(xx=
2 #)001(xx= 2 x ′′=)201(

0,01 #)100(xx′= 02,1 xx ′′=)110(

0,2 #)121(xxx +′= 02,2 #)001(xx′=
01,2 xx=)011(1,2 ^)211(xxx +′′=

TGFE5 TGFE6

0 #)102(x= 0 #)100(xx′=
1 ^)010(xx= 12 ^)010(xx=

02 #)001(xx= 2 x ′′′=)021(

0,1 ^#)112(xxx += 0,12 xx ′′=)110(

0,02 #)100(xx′= 0,2 #)121(xxx ′+′′′=
1,02 xx=)011(12,2 #)001(xx′=

TGFE7 TGFE8

0 #)100(xx′= 0 #)102(x=
1 x=)012(1 x=)012(

12 #)001(xx= 012 #)001(xx=
0,1 #)112(xxx ′+= 0,1 1)111(=

0,12 xx ′′′′=)101(0,012 #)100(xx′=
1,12 ^)010(xx= 1,012 ^)010(xx=

Table 3. Continued.

Edge Literal Edge Literal

TGFE9 TGFE10

0 x′=)120(012 #)100(xx′=
012 ^)010(xx= 1 ^)210(x=
2 x ′′′=)021(2 x ′′=)201(

0,012 #)100(xx′= 012,1 ^)010(xx=
0,2 1)111(= 012,2 #)001(xx=

012,2 #)001(xx= 1,2 1)111(=
TGFE11 TGFE12

0 1)111(= 0 1)111(=
112 x=)012(122 x ′′′=)021(

012 xx ′′′=)022(012 xx ′′′=)022(

0,112 x′=)120(0,122 #)102(x=
0,012 #)100(xx′= 0,012 #)100(xx′=

112,012 #)001(xx= 122,012 ^)010(xx=
TGFE13 TGFE14

1 1)111(= 1 1)111(=
022 x ′′=)201(002 #)102(x=
012 #)202(xx ′′= 012 #)202(xx ′′=

1,022 x=)012(1,002 ^)210(x=
1,012 ^)010(xx= 1,012 ^)010(xx=

022,012 #)100(xx′= 002,012 #)001(xx=
TGFE15 TGFE16

2 1)111(= 2 1)111(=
001 x′=)120(011 ^)210(x=
012 ^)220(xx′= 012 ^)220(xx′=

2,001 x ′′=)201(2,011 x ′′′=)021(

2,012 #)001(xx= 2,012 #)001(xx=
001,012 ^)010(xx= 011,012 ^)010(xx=

7. Experimental results

We have written C++ programs for creating
KTGFDDs for multiple-output ternary functions and
for flattening the KTGFDD for deriving the resultant
TGFSOP expression. We have created some ternary
benchmark functions as given in the Appendix of
Section 10 and performed experimentation with
them. Besides, we experimented with two benchmark
functions (mm3 and pal3) from [33]. The results of

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

the experimentation are given in Table 4. The fourth
column of the table shows the number of nodes in the
KTGFDD and the fifth column shows the number of
product terms in the resultant TGFSOP expression.

For prodn functions, the number of nodes is
exactly equal to the number of inputs for up to 8
input functions. The number of products is 1 for up to
8 input functions, which is the exact minimum
solution for prodn functions. For sumn functions,
the number of products is exactly equal to the number
of inputs for up to 5 input functions, which is the
exact minimum solution for sumn functions. For
3cy2, 4cy2, 4cy3, 5cy2, 5cy4, and 6cy5 functions, the
number of products is exactly equal to the number of
inputs, which is the exact minimum solution. For
sqsumn functions, the number of products is exactly
equal to the number of inputs for up to 5 input
functions, which is the exact minimum solution for
sqsumn functions. For a2bcc and mul2 functions,
the number of products is 2, which is the exact
minimum solution for these functions. For other
functions, we have no theoretical results to make any
comment. However, the results seem to be adequately
moderate.

Table 4. Number of nodes in KTGFDD and

number of resulting products in TGFSOP for

some ternary benchmark functions.

Function Input Output Nodes Products

prod3 3 1 3 1

prod4 4 1 4 1

prod5 5 1 5 1

prod6 6 1 6 1

prod7 7 1 7 1

prod8 8 1 8 1

prod9 9 1 15 3

prod10 10 1 38 15

sum3 3 1 5 3

sum4 4 1 7 4

sum5 5 1 9 5

sum6 6 1 21 9

sum7 7 1 53 74

sum8 8 1 168 252

sum9 9 1 437 1117

sum10 10 1 905 2759

3cy2 3 1 5 3

4cy2 4 1 9 4

4cy3 4 1 9 4

5cy2 5 1 12 5

5cy3 5 1 15 7

Table 4. Continued.

Function Input Output Nodes Products

5cy4 5 1 11 5

6cy2 6 1 24 9

6cy3 6 1 34 24

6cy4 6 1 24 9

6cy5 6 1 15 6

sqsum3 3 1 5 3

sqsum4 4 1 7 4

sqsum5 5 1 9 5

sqsum6 6 1 20 18

sqsum7 7 1 58 63

sqsum8 8 1 203 295

sqsum9 9 1 428 855

sqsum10 10 1 1019 2506

avg3 3 1 10 7

avg4 4 1 20 27

avg5 5 1 34 69

avg6 6 1 54 183

avg7 7 1 75 516

avg8 8 1 175 1438

avg9 9 1 423 4396

avg10 10 1 1029 11802

a2bcc 3 1 5 2

thadd 2 2 5 4

tfadd 3 2 10 10

mul2 2 2 4 2

mul3 3 2 8 5

mami4 4 2 14 7

mm3 5 1 18 18

pal3 6 1 12 27

8. Conclusions

In this paper we proposed 16 Ternary Galois
Field Expansions (TGFEs) which generalize to
ternary and adapt to reversible logic the concepts of
(binary) Shannon and Davio expansions used in
Kronecker Decision Diagrams. We also introduced
three types of Ternary Galois Field Decisions
Diagrams (TGFDDs) suitable for reversible ternary
logic synthesis. They are the Kronecker Ternary
Galois Field Decision Diagram (KTGFDD), the
Pseudo-Kronecker Galois Field Decision Diagram
(PKTGFDD), and the Free-Kronecker Ternary Galois
Field Decision Diagram (FKTGFDD). We proposed
an efficient heuristic for creating KTGFDD with the
reduced node counts and also reduced path counts
that terminate at constant 1-leaf and 2-leaf. This

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

method is applicable not only to KTGFDD but also to
PKTGFDD and FKTGFDD. We also proposed a
method of flattening the TGFDDs for determining
Ternary Galois Field Sum of Products (TGFSOP)
expression for ternary functions. As our KTGFDD
reduces the paths terminating at constant 1-leaf and
2-leaf, the number of product terms in the resulting
TGFSOP will also be reduced. The experimental
results show that for many functions the resultant
GFSOPs are exact minimum solutions.

Designing a cascade of reversible “permutative”
gates is one of few fundamental problems in quantum
computing. Among the multiple-valued quantum
circuits the GFSOP cascades are the most
fundamental ones. Various Ternary Galois Field
Decision Diagrams are a starting point to create such
cascades and can be used also to create other types of
quantum cascades. They are thus of a basic
importance in multi-valued quantum logic synthesis.

Further research includes implementing ternary
counterparts of binary operations on these decision
diagrams, such as cofactor, minimum, Galois sum,
etc. Other research is on determining heuristics for
creating optimal PKTGFDDs and FKTGFDDs that
can potentially lead to more simpler TGFSOP
expressions and their corresponding quantum
cascades, as well as other types of quantum circuits.

9. References

[1] A. Al-Rabadi, L. W. Casperson, M. Perkowski and X.
Song, “Multiple-Valued Quantum Logic”, Booklet of

11th Workshop on Post-Binary Ultra-Large-Scale

Integration Systems (ULSI), Boston, Massachusetts,
May 15, 2002, pp. 35-45.

[2] A. Al-Rabadi and M. Perkowski, “Multiple-Valued
Galois Field S/D Trees for GFSOP Minimization and
their Complexity”, Proc. 31st IEEE Int. Symp. on

Multiple-Valued Logic, Warsaw, Poland, May 22-24,
2001, pp. 159-166.

[3] M. Perkowski, A. Al-Rabadi, and P. Kerntopf,
“Multiple-Valued Quantum Logic Synthesis”, Proc.

2002 International Symposium on New Paradigm

VLSI Computing, Sendai, Japan, December 12-14,
2002, pp. 41-47.

[4] M.H.A. Khan, M.A. Perkowski, and P. Kerntopf,
“Multi-Output Galois Field Sum of Products Synthesis
with New Quantum Cascades”, Proc. 33rd IEEE Int.

Symp. On Multiple-Valued Logic, Tokyo, May 16-19,
2003, pp. 146-153.

[5] R. Drechsler, “Evaluation of Static Variable Ordering
Heuristics for MDD Construction,” Proc. 32nd

IEEE Int. Symposium on Multiple-Valued Logic,

Boston, Massachusetts, May 15-18, 2002, pp. 254-
260.

[6] R. Drechsler, D. Jankovic, and R.S Stankovic,
“Generic Implementation of Decision Diagram
Packages in MVL”, Proc. Euromicro Conference
(EUROMICRO’99), Vol. 1, Sept. 8-10, 1999, Milan,
Italy, p.1352.

[7] R. Drechsler and D.M. Miller, “Decision Diagrams
in Multi-Valued Logic., Multiple-Valued Logic – An

International Journal, vol. 4, 1998, pp. 1-8.
[8] C. Files and M.A. Perkowski, “New Multi-valued

Functional Decomposition Algorithm Based on
MDDs”, IEEE Trans. on Computer-Aided Design, vol.
14, 2000, pp. 1081-1086.

[9] S. Hassoun, T. Sasao, and R.K. Brayton (eds.),
Logic Synthesis and Verification, Kluwer Academic
Publishers, Boston/Dordrecht/London 2002, Chapters
11 and 15.

[10] D. Jankovic, W. Günther, and R. Drechsler, “Lower
Bound Sifting for MDDs”, Proc. 30th IEEE Int.

Symposium on Multiple-Valued Logic, Portland,
Oregon, USA. May 23-25, 2000, pp. 193-198.

[11] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-
Vincentelli, “Multi-Valued Decision Diagrams:
Theory and Applications”, Multiple-Valued Logic –

An International Journal, vol. 4, 1998, pp. 9-24.
[12] D.M. Miller, “Multiple-Valued Logic Design Tools”,

Proc. 23rd IEEE Int. Symposium on Multiple-Valued

Logic, Sacramento, California, USA, May 24-27,
1993, pp. 2-11.

[13] D.M. Miller, and R. Drechsler, “Implementing a
Multiple-Valued Decision Diagram Package”, Proc.

28th IEEE Int. Symposium on Multiple-Valued Logic,
Fukuoka, Japan, 27-29 May, 1998, pp. 52-57.

[14] D.M. Miller and R. Drechsler, “On the Construction of
Multi-Valued Decision Diagrams”, Proc. 32nd IEEE

Int. Symposium on Multiple-Valued Logic, Boston,
Massachusetts, May 15-18, 2002, pp. 245-253.

[15] H. Sack, E. Dubrova, and C. Meinel, “Mod-p
Decision Diagrams: A Data Structure for Multiple-
Valued Functions”, Proc. 30th IEEE Int. Symposium

on Multiple-Valued Logic, Portland, Oregon, USA,
May 23-25, 2000, pp. 233-238.

[16] T. Sasao, “Ternary Decision Diagrams: Survey”, Proc.

27th IEEE Int. Symposium on Multiple-Valued Logic,
Antigonish, Nova Scotia, Canada, May 28-30, 1997,
pp. 241-250.

[17] T. Sasao and J.T. Butler, “Planar Multiple-Valued
Decision Diagrams”, Proc. 25th IEEE Int. Symposium

on Multiple-Valued Logic, Bloomington, Indiana,
USA, May 23 - 25, 1995, pp. 28-35.

[18] T. Sasao and J.T. Butler, “A Method to Represent
Multiple-Output Switching Functions by Using Multi-
Valued Decision Diagrams”, Proc. 26th IEEE Int.

Symposium on Multiple-Valued Logic, Santiago de
Compostela, Spain, May 19-31, 1996, pp. 248- 254.

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

[19] R.S. Stankovic, “Functional Decision Diagrams for
Multiple-Valued Functions”, Proc. 25th IEEE Int.

Symposium on Multiple-Valued Logic, Bloomington,
Indiana, USA, May 23 - 25, 1995, pp. 284-289.

[20] R.S. Stankovic and T. Sasao, “Decision Diagrams for
Discrete Functions: Classification and Unified
Interpretation”, Proc. Asia and South Pacific Design

Automation Conference, Yokohama, Japan, February
10-13, 1998, pp. 439-446.

[21] F. Schmiedle, W. Günther, and R. Drechsler,
“Dynamic Re-Encoding During MDD Minimization”,
Multiple- Valued Logic – An International Journal,
2002, pp. 625-643.

[22] P. Kerntopf, “Multiple-Valued Decision Diagrams
based on generalized Shannon expansion”, Booklet of

12th Workshop on Post-Binary Ultra-Large-Scale

Integration Systems (ULSI), Tokyo, May 16, 2003, pp.
9-16.

[23] L. Macchiarulo and P. Civera, “Ternary Decision
Diagrams with Inverted Edges and Cofactors – an
Application to Discrete Neural Networks Synthesis”,
Proc. 28th IEEE Int. Symp. on Multiple-Valued Logic,
Fukuoka, Japan, 27-29 May, 1998, pp. 58-63.

[24] E. Dubrova and J.C. Muzio, “Generalized Reed-
Muller canonical form of a multiple-valued algebra”,
Multiple-Valued Logic - An International Journal, vol.
1, 1996, pp. 104 -109.

[25] D.M. Miller and G.W. Dueck, “On the Size of
Multiple-Valued Decision Diagrams”, Proc. 33rd

IEEE Int. Symp. On Multiple-Valued Logic, Tokyo,
May 16-19, 2003, pp. 235-240.

[26] D.V. Popel and R. Drechsler, “Efficient Minimization
of Multiple-Valued Decision Diagrams for
Incompletely Specified Function”, Proc. 33rd IEEE

Int. Symp. On Multiple-Valued Logic, Tokyo, May 16-
19, 2003, pp. 241-246.

[27] S. Nagayama and T. Sasao, “Compact Representations
of Logic Functions using Heterogeneous MDDs”,
Proc. 33rd IEEE Int. Symp. On Multiple-Valued Logic,
Tokyo, May 16-19, 2003, pp. 247-252.

[28] D.M. Miller and R. Drechsler, “Augmented Sifting of
Multiple-Valued Decision Diagrams”, Proc. 33rd

IEEE Int. Symp. On Multiple-Valued Logic, Tokyo,
May 16-19, 2003, pp. 375-382.

[29] J.T. Butler and T. Sasao, “On the Average Path
Length in Decision Diagrams of Multiple-Valued
Functions”, Proc. 33rd IEEE Int. Symp. On Multiple-

Valued Logic, Tokyo, May 16-19, 2003, pp. 383-390.
[30] A. Muthukrishnan, and C.R. Stroud, Jr., “Multivalued

logic gates for quantum computation,” Phys. Rev. A.

Vol. 62, 052309, 2000.
[31] A.V. Burlakov, M.V. Chekhova, O.V. Karabutova,

D.N. Klyshko, and S.P. Kulik, “Polarization state of a
biphoton: quantum ternary.” Phys. Rev. A 60, R4209,
1999.

[32] A. Sarabi, P. F. Ho, K. Iravani, W. R. Daasch, M. A.
Perkowski, "Minimal Multi-Level Realization of
Switching Functions Based on Kronecker Functional
Decision Diagrams," Proc. of IEEE International

Workshop on Logic Synthesis, IWLS '93, Tahoe City,
CA, pp. P3a-1 - P3a-6, May 1993.

[33] http://www.ee.pdx.edu/polo/

10. Appendix: Ternary benchmark

functions created

prodn: input
110 −n

xxx ; output

3mod)(
110 −=

n
xxxy . [Output is the GF3 product of n

input variables.]

sumn: input
110 −n

xxx ; output

3mod)(
20 n

xxxy +++= . [Output is the GF3 sum

of n input variables.]

ncyr: input
110 −n

xxx ; output

3mod
1

0
mod)(

1

0

∏+=
−

=
+

−

=

r

j
nji

n

i

xy . [A ternary GFSOP

function of n input variables, where the products consist of
r input variables in cyclic order. Example: For 3cy2,

cabcabcbay ++=),,(.]

sqsumn: input
110 −n

xxx ; output

() 3mod2

1

2

1

2

0 −+++=
n

xxxy . [Output is the GF3 sum

of squares of n input variables]

avgn: input
110 −n

xxx ; output

[] 3mod/)(int
110

nxxxy
n−+++= . [Output is the

integer part of the average of n input variables expressed as
mod 3 value.]

a2bcc: input cba ,, ; output 3mod)(2 cbcay ++= .

[An arbitrary function]

thadd: input a b; output []3/)(int bac +=
, 3mod)(bas += . [Ternary half-adder]

tfadd: input a b c; output []3/)(int cbay ++= ,

3mod)(cbas ++= . [Ternary full-adder]

mul2: input a b; output []3/int abc = , 3modabm = .

[2-trit ternary multiplier]

mul3: input a b c; output []3/int abcc = ,

3modabcm = . [3-trit ternary multiplier]

mami4: input a b c d; output),max(bay = ,

),min(dcz = . [The output y is the maximum of the

inputs a and b; the output z is the minimum of the inputs c
and d.]

Proceedings of the 34th International Symposium on Multiple-Valued Logic (ISMVL’04)

0195-623X/04 $20.00 © 2004 IEEE

	footer1:

