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ABSTRACT 
In this paper a synthesis algorithm for reversible 

ternary logic cascades is presented.  The algorithm can 
find a solution for any reversible ternary function with n 
inputs and n outputs utilizing ternary inverter gates and 
the new (quantum realizable) UCTG gates which are a 
powerful generalization of ternary Toffoli gates and 
Generalized Ternary Gates [4]. The algorithm is an 
extension of the algorithm presented by Dueck, Maslov, 
and Miller in [3].  A unique feature of this algorithm is 
that it utilizes no extra wires to generate the outputs.  A 
basic compaction algorithm is defined to improve the 
results of the basic algorithm.  This paper also provides 
the groundwork for transforming any n*n Toffoli based 
binary synthesis algorithm into a ternary synthesis 
algorithm using the new UCTG gates. 

1.  INTRODUCTION 
Binary reversible circuits are beneficial in many 

ways.  It was shown in [2] that it is only possible to 
dissipate zero power using reversible logic.  All 
contemporary quantum computers use binary reversible 
logic [6], thus development of CAD tools for such logic 
will be a necessary part of making quantum computers 
practical. Recently, practical ion trap multiple-valued 
quantum gates have been shown to be experimentally 
feasible [11] and various ternary quantum gates have been 
experimentally built [19-22]. This stimulates the research 
in ternary reversible logic [1, 4, 7, 10, 12, 14, 16, 17, 18] 
with gates that are realizable in one of quantum 
computing technologies, such as ion trap, optical, or 
Nuclear Magnetic Resonance.   

 The presented algorithm is based on the 
transformation-based algorithm of Dueck, Maslov, and 
Miller [3], which first finds a solution and next improves 
it by local equivalence-based transformations. We follow 
this general approach. Their algorithm has been extended 
here by converting the rules already present in their basic 
algorithm to ternary rules; as well as adding additional 
rules specific to the use of ternary logic.    

The paper is organized as follows. The required 
background and definitions are presented in section 2.  
The basic algorithm and extensions are explained in 
section 3.  Section 3 also contains a basic explanation of 
the algorithm.  The compaction algorithm is described in 
section 4.  Some results are given in section 5. Finally, a 

description of future work is in section 6 and the 
conclusion in section 7. 

2.  BACKGROUND 
Definition 1: An m-input, m-output totally specified 
Ternary function f(X), X={x0, x1, …, xn} where n = 
3m-1 is reversible if it is a  one-to-one mapping, i.e. 
each output assignment is a mapping of a unique 
input assignment. 

A reversible ternary function can be written as a 
vector of integers in the range 0 to 3m-1, where each input 
and output vector is considered a base 3 integer value.  
The input vector of the function is listed in numerical 
order, so one can represent the function as a permutation, 
with the output vector being just a permutation of the 
input vector.  In the example shown in Table 3, the output 
vector is (5,6,1,7,2,3,8,0,4). 
 
Definition 2: A generalized ternary inverter is a 
gate with a single input and a single output.  The 
gate is always reversible.  There are 6 generalized 
inverters that implement all possible mappings of {0, 
1, 2} 

There are two possible mappings in binary logic 
{0,1} and {1,0}, implemented by a wire and an inverter,  
respectively. There   are a total of six possible mappings 
for a 1-qubit ternary function, with the special case of a 
wire.  Table 1 also shows the names chosen for each type 
of inverter [4]. In [9] the concepts of the generalized 

Feynman, Toffoli, Fredkin and Kerntopf gates (gates 
controlled with arbitrary function of input variables) were 
introduced for the first time. They we next generalized in 
binary logic for multi-output control functions and more 
bits in data-path (controlled) parts into what was next 
called Perkowski’s gate [5]. In ternary logic, a universal 
set of two 1-qubit and two 2-qubit reversible gates has 

In --- +1 +2 01 02 12
0 0 1 2 1 2 0
1 1 2 0 0 1 2
2 2 0 1 2 0 1

Table 1 Generalized Inverters



been created by De Vos et al. [10]. Other universal gates 
were proposed for full quantum (not only for its 
permutative subset that corresponds to multiple-valued 
reversible logic) by Muthukrishnan and Stroud in [11]. 
Some subset of their gates specialized to ternary logic, 
together with the De Vos gates were next generalized to 
what was called the Generalized Ternary Gates [4]. These 
gates have been shown to be reducible to sequences of 
quantum realizable Muthukrishnan/Stroud gates [12]. 
Now, in an attempt to create powerful ternary gates we 
further generalize the Generalized Ternary Gates and the 
binary Perkowski’s gates to Universally Controlled 
Ternary Gates (UCTG). 
 
Definition 3: The Universally Controlled Ternary 
Gate (UCTG) is a n*n gate where the first n-1 wires 
are unchanged and wire n is transformed by one of 
the 6 generalized inverters based on an arbitrary 
function f of wires 1, 2, …, n-1. 

 
The UCTG is a very powerful ternary 

generalization of  the n*n Toffoli gate in binary logic.  
The ‘n’ wire has a choice of three paths corresponding to 
ƒ=0, ƒ=1, and ƒ=2.  Observe that in GTG gates the 
control was always a single wire, and now function ƒ is 
generalized to any function (not required to be reversible) 
of wires 1, 2, …, n-1. This generalizes both Perkowski’s 
gates and GTGs. Observe that although UCTGs 
generalize Toffoli gate to ternary logic, it is a much more 
powerful generalization than in [4] where Galois addition 
replaces EXOR and Galois multiplication replaces 
Boolean AND in standard binary Toffoli gates. Now we 
have arbitrary controlling function and one of 215 
controlled (data path) functions, so the number of all 
UCTGs is very high. 

UCTGs can be extended to any radix, but in this 
paper we are concerned only with ternary logic. Such 
gates can be built from quantum realizable ternary gates, 
as shown in [12]. We believe, as expanded in [7, 13], that 
it is reasonable to synthesize quantum circuits from more 
complex gates because of the synthesis efficiency, rather 
than from the least granularity quantum operators.  After 
course-grain initial design, the circuit is next improved by 
a sequence of template matching transformations [3, 14, 
17]. However, further experimental results are needed and 
comparisons among different methods [8, 12, 14, 15, 16, 
17, 18] and the methods proposed here should be done to 
understand the merits of each approach. It can be shown 
that the gates discussed here are reducible to sequences of 
quantum-realizable gates, so in the worst case (that they 
are not directly realizable) they can be treated as macros 
useful in the synthesis process that are next mapped to 
quantum realizable gate sequences. 

3.  THE ALGORITHM 
An intrinsic property of any reversible gate is 

that a reversible gate composed with a reversible function 
creates a reversible function. The goal of the synthesis 
algorithm is to take a ternary reversible function and 
apply a series of reversible gates from output, creating a 
series of intermediate n-qubit functions until the output 
function has been transformed into the input function by 
creating a function which is an n-qubit identity. The 
concepts of performing synthesis forward, backward, 
bidirectionally and on inverse functions were first 
formulated in [23]. The basic and the bidirectional 
algorithm are ternary extensions to the algorithms 
presented by Dueck, Maslov, and Miller in [3]. 

3.1 The Basic Algorithm 
The basic algorithm is a greedy one-pass over 

the entire function that transforms the output vector to the 
input vector one bit at a time, until the identity function is 
found.  The algorithm consists of a special case loop for 
vector 0 and a general case loop for all other vectors in 
the function.  See figure 1 for the listing of the pseudo-
code of the basic algorithm.  

The special case loop for ƒ(0) is executed first.  
In this case, there aren’t any control lines associated with 
the transforms.  If ƒ(0) = 0, then vector 0 is in the correct 
location and no transformation is needed; therefore, the 
algorithm continues on to step 2.  In the case where ƒ(0) ≠ 
0, the algorithm then loops over every bit x in vector 0.  
Wherever x is equal to 1, an uncontrolled transform ‘+1’ 
is applied to bit x in every vector.  Wherever x is equal to 
2, an uncontrolled transform ‘+2’ is applied to bit x in 
every vector.  At the end of step 1, ƒ(0) = 0.  At no time 
should this vector change from 0 to another value, now 
that this value has been locked in. 

In the second step, the algorithm looks at every 
value i, where 1 ≤ i ≤ 3m – 1, and every value j, where 0 ≤ 
j ≤ m in a nested loop.  A ternary vector p is created 
where p is the ternary representation of i.  For each i and 
j, if the bit, x, of the current function ƒ+(i,j) is not equal to 
the expected bit p[j], then apply the proper transform to 
all bits in position j, with respect to a set of control 
vectors c1 and c2.  The control vectors c1 and c2 are used 
to keep the algorithm from transforming the previously 
locked bits.  The control vectors are created by putting 
every bit equal to 2 in ƒ+(i) except bit ƒ+(i,j) into c2, and 
every bit equal to 1 in ƒ+(i) except bit ƒ+(i,j) into c1.  
Table 2 shows the logic table for transform selection. 

0 1 2
0 NA 01 02
1 +1 NA 12
2 +2 12 NA

Expected p[j]Input 
x

Table 2 : Transform Table 



The transforms in the second step are not always 
‘+1’ and ‘+2’.  The transforms ‘+1’ and ‘+2’ transform all 
three variables; therefore, once a 0 bit has been locked in, 
the other transforms (‘01’, ‘02’, and ’12’) must be used 
instead.  The rule is that a ‘+1’ or ‘+2’ transform can only 
be used when the expected bit, p[j], equals 0.  In the 
pseudo-code, function find_transform implements the 
function to create the proper transform based on the above 
rule, the current bit, and the expected bit. 

Figure 2 shows a ternary cascade synthesized by 
the basic algorithm. In Table 3 we show steps of 
transforming the output function (column 0) to the 
identity function (column F). Its left-most columns are 
input variables A and B. Observe that to help the reader, 
the output of function is on the left and the inputs on the 
right, so analyzing the algorithm steps the reader can go 
from left to right in both Figure 2 and Table 3 (recall that 
the gates are created from outputs to inputs).  Step 1 in the 
algorithm applies a ‘+2’ to wire B and then a ‘+1’ to wire 
A.  At this point, vector 0 is in the proper location, as is 
shown in column 2 of Table 2.  The next transform 
happens at wire A of vector 01, where ‘+1’ is applied 
when function in current wire B is 1.  The transform is 
still a ‘+1’ because the expected value at wire A is 0.  
Next transform is when the current value of wire B is 2 
(column 3). Columns 3 and 4 follow the same template as 
the transform in column 2.  Column 5 is a transform 
where the expected value is 1, therefore according to 
Table 3 the selected transform is ‘12’.  Column 5 shows 
that the controlling wire is value 0, therefore the 
transform is uncontrolled.  The circuit found by the basic 
algorithm from outputs to inputs is shown in figure 2.  
The controlled transforms in this case are shown as 
generalized inverters with control wires attached to them 
and denoted by symbols of controlling values. A detailed 
analysis of Figure 2 together with Table 2 should help the 
reader not only to understand our algorithm but its 
strengths and disadvantages and finally improvement 
ideas. Section 4 presents how these controlled transforms 
are converted into UCTGs. 

 

Basic Algorithm 
Step 1: 
Let m = # of inputs 
If ƒ(0) ≠ 0, then  
For j in  {0..m-1} { 
   if(ƒ(0,j) = 1 ) apply transform ‘+1’. 
   if(ƒ(0,j) = 2 ) apply transform ‘+2’. 
} 
 
Step 2: 
Let ƒ+ be the current function; ƒ++ is next 
function. 
For i in {0..3m-1} { 
  let p be a ternary vector of i 
  For j in {0..m-1} { 
     if(ƒ+(i,j) != p[j] ) {  
        let c2 be a list of all bits in p = 2 except j 
        let c1 be a list of all bits in p = 1 except j 
        t = find_transform(ƒ+(i,j), p[j]) 
        Transform( j, t, c1, c2) 
         } 
   } 
} 
function Transform( position, transform, c1, c2) 
{ 
  for i in {0 .. 3m-1} { 
     if( meets_constraints( f +(i), c1, c2 ) ) { 
        f ++( i, position) = apply( transform,  f 
+(i,position) ) 
      } 
   } 
   f+ = f++  
} 

A B
0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0
0 1 2 0 2 1 1 1 0 1 0 1 0 1 0 1
0 2 0 1 0 2 2 2 2 2 0 2 0 2 0 2
1 0 2 1 2 2 1 2 1 2 2 2 2 0 1 0
1 1 0 2 0 0 2 0 2 0 2 0 2 1 1 1
1 2 1 0 1 1 0 1 2 1 2 1 2 2 1 2
2 0 2 2 2 0 1 0 1 0 1 0 1 0 2 0
2 1 0 0 0 1 2 1 1 1 1 1 1 1 2 1
2 2 1 1 1 2 0 2 0 2 1 2 1 2 2 2

0 1 2 3 4 5 F

Figure 2 : Basic Algorithm 

Table 3 : Input and intermediate functions for 
Basic Algorithm execution 
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Figure 1 : Basic Algorithm Output 



3.2 The Bidirectional Algorithm 
 Reversible functions can be transformed on both 
inputs and outputs of the function, which means 
reversible cascade can be build from outputs to inputs 
(backward direction) or from inputs to outputs (forward 
direction).  The choice of which transform to apply is 
determined on a vector basis and is kept the same through 
all bits in that vector [15]. An input transform is used on a 
vector if the number of bits needed to convert that vector 
from the current input to the input value that is paired 
with the output value we want in the current input is less 
than the number of bits needed to convert the current 
output vector to the current input vector.  The 
bidirectional algorithm produces the minimal number of 
transforms in the current vector (local optimization); it 
will not guarantee to produce the minimal number of 
overall transforms. 
 

  4.  COMPACTION 
The result of the basic generation algorithm is a 

list of transforms that may or may not have a list of 
control lines associated with them (see Figure 2).  This 
translates into the gate shown in figure 3a, which is very 
inefficient due to the fact that we are only using two of 
the three available paths through the gate (the transformed 
path, and one of the non-transformed path).  The 
uncontrolled transforms can be converted directly into 
reversible ternary inverters which are already efficient. In 
addition, for simplification, two subsequent inverters can 
always be merged into a single inverter.  Further, an 
inverter can be merged into the three inverters on the 
input of a UCTG. Therefore, our goal is to create as many 
as possible UCTG gates with three transforming paths (as 
shown in figure 3b).  The optimization algorithm for 
compaction is given in figure 4. 

A way to improve the results is to combine two 
controlled transforms into a single UCTG whenever 
possible.  This is possible when the two controlled 

transforms are adjacent, transform the same wire, and 
have only 3 possible paths through them.  In general, 
there are 4 possible paths through any controlled 
transform where each transform can be either taken or not 
taken.  In certain cases 2 of the 4 possible paths are 
identical and can be collapsed. 

The first of the two cases is when the transforms 
are compatible.  Compatible transforms are transforms 
that are the same or that combine to form a transform that 
is one of the already seen transforms (the case of ‘+1’ and 
‘+2’ yields no transform, which is the case of neither 
transform taken, therefore it meets this requirement).  
Table 4 shows the compatibility table for the 5 inverter 
types.  In this case, the UCTG is formed by placing one of 
the transforms on input 2 and the other transform or the 
merged transform on input 1 while input 0 has no 
transform. 

The second case is when the control lines are 
exclusive.  Exclusive control lines mean that there can 
never be the case that both transforms are taken; therefore 
one of the four possible paths is removed.  In this case, 
the UCTG is formed by placing one of the transforms on 
input 2, the second transform on input 1, and no transform 
on input 0. 

Uncontrolled transforms next to controlled 
transforms on the same wire can be merged together.  The 

Compression Algorithm 
 
Step 1: For every uncontrolled gate, find the closest 
controlled gate on the same wire.  Move the 
uncontrolled gate next to the controlled gate.  Every gate 
that the uncontrolled gate passes over that contains a 
control line attached to the same wire as the 
uncontrolled gate, has that control transformed by the 
uncontrolled gates transform, taking into account the 
direction of movement of the uncontrolled gate. 
 
Step 2: Find controlled gates that are on the same wire 
and are next to each other.  If the transforms of these 
gates are compatible, then the gates can be merged by 
merging the control lines and converting the transforms 
into the new merged transforms. 
 
Step 3: Find control gates that are on the same wire and 
are next to each other.  If the control lines of these gates 
are exclusive, then the gates can be merged by setting 
one control line set to be output 1 and the other control 
line set to be output 2. 
 
Step 4: Merge the uncontrolled gates.  Find the 
uncontrolled gates and merge them into the control gates 
they are next to, if it is possible. 

Figure 3 : Compression Algorithm

x
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Figure 4 : UCTG realization of basic algorithm. (a) 
gate with two controlled paths and simple control. 
(b) equivalent gate with complex control and three 
paths. 



uncontrolled transform inverter is simply placed on all 
inputs of the UCTG and merged with other inverters on 
the same input.  Unlike controlled transforms, the 
uncontrolled transforms do not have to start out next to a 
transform on the same wire.  The uncontrolled transforms 
can be pushed next to the nearest controlled transform on 
the same wire.  If the uncontrolled transform slides past 
another transform with a control line on the same wire as 
the uncontrolled transform, then the control line should be 
modified according to the value of the uncontrolled 
transform. 

The final algorithm is shown in figure 4.  The 
example function shown in figure 2 can be compressed 
into 2 transforms, as shown in figure 5. In general, 
compression can work on any controlled gates, controlled 
with arbitrary functions. 

The improvements presented in this paper take 
into account only single wires.  Multiple wire 
compactions would be yield a much better result, but are 
more difficult to find algorithms for.  In the case where a 
controlled transform is bounded on both sides by 
controlled transforms on other wires, no compaction is 
done.  In testing this yields a modest reduction in size, 
with benefits remaining largely static as the wire count 
increases.  
 

5.  RESULTS 
There are no standardized benchmarks for 

ternary functions, therefore we created our own 
benchmark functions.  These benchmark functions can be 
found at the first author’s website [8]. Table 5 shows the 
results of synthesis of functions with 2, 3, 5, 6, and 7 
variables [8].  The first circuit, bench2-1, is the same 
circuit that is used in the explanation of the algorithm in 
section 3.  All bold fields in the table are the best raw 
score, and all red fields are the best merged score for each 
benchmark. 

From the benchmark it is easy to tell that the 
method of choosing the best transform does not always 
generate the best results.  Remember that the best 
transform is only locally best for that particular vector, 
not for the design overall.  In the large benchmarks 
(vector length 5, 6, and 7) the best transform method 
produces the best results.  In bench7-1, the reversible 
method saves almost 1500 gates over the input or output 
transform methods.  For the smaller test cases, it is most 

likely an artifact of the specific benchmark that defines 
one method to be much better than the other one. 

The merging algorithm doesn’t compress the 
results very well.  This is most likely due to the restriction 
that in order to merge, there must be two transforms on 
the same line next to each other.  This is not likely to 
happen on larger and larger test cases because the vector 
length increases.  Note that for a function with only one 
“care” output wire (where the other output wires are 
chosen to satisfy the requirements of the reversibility, but 
aren’t used internally), the results can be much better if 
the dummy outputs have been chosen wisely. 

More advanced merging algorithms that can 
selectively slide controlled gates back and forth will be 
able to shrink the transform results to a greater extent. 
Such algorithms are feasible since they generalize to 
ternary an approach found very useful for binary 
reversible logic. They may be, however, more difficult to 
apply. 

The runtime of this algorithm has been not 
shown, because the test program is not optimized for 
speed, and it was run on a heavily loaded machine.  In a 
sample run, testcase bench5-3 took approximately 10s 
wall clock, and testcase bench8-2 took approximately 1s 
wall clock.  Using a program tuned for speed should 
decrease these numbers significantly; however the trend 
upwards is a matter of the complexity of the benchmark.  
The main loop must loop over m4 (m3 vectors, m bits per 
vector) vectors for a function of length m.  The merging 
loop runs in linear time over the size of the raw transform 
list, but the transform list grows at a greater than linear 
rate versus m.   

 

Figure 5 : Compressed result 
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6.  FUTURE WORK 
There are several ideas for future work to 

improve this algorithm.  This is a work in progress. 

6.1 Controlled Transform Sliding 
In section 4, the idea was introduced of shuffling 

the order of uncontrolled transforms in order to allow 
them to be compressed.  This can be applied on a limited 
scale to controlled transforms as well.  A controlled 
transform cannot be shuffled past another transform that 
has a control attached to the same wire as the transform in 
question.  In large wire counts, there is a good possibility 
that only a subset of the entire wire set is used for 
controlling any transform.  If two transforms on the same 
wire can be brought together given this constraint, then 
more of the controlled transforms could be merged.  This 
improvement would be greatly enhanced by an algorithm 
that could minimize the number of selected control lines 
(see section 6.3). 

6.2 Direction Selection 
The bidirectional algorithm was discussed in 

section 3.2. The direction was chosen to minimize the 
number of transforms per vector.  It is easy to observe in 
the benchmarks that this doesn’t always provide an 
optimal solution.  An alternative solution is to try out both 
the forward and reverse transform for every bit that needs 
to be transformed and determine which transform yields 
the smaller complexity.  Complexity in this case is 
defined similar to Dueck, Maslov, and Miller’s definition 
in [3], where it is used to determine the best combination 
of control lines.  Complexity is the sum total of all bits  

 

that are not equal to their expected bit in the current 
function.  Choosing the transform that minimizes the 
complexity should require a smaller total number of 
transforms.  This is not an absolute minimization 
criterion, since subsequent transforms may increase the 
complexity further and it may yield a poorer compression 
results. Additional heuristics should be also developed 
and tested. 

6.3 Control Line Selection 
The concept of Control Line Selection is an 

improvement to the algorithm described by Dueck, 
Maslov, and Miller in [3].  In their algorithm, the idea is 
to pick the allowed subset of control lines that maximally 
reduce the complexity of the circuit.  This doesn’t 
necessarily yield the smallest number of control lines, but 
instead attempts to minimize the number of Toffoli gates 
needed, similar to the reasoning in section 6.2. 

We predict that choosing the minimum number 
of control lines is even more important for the presented 
algorithm. A smaller number of control lines will yield a 
smaller control function to implement.  A smaller subset 
also can yield a greater chance of being able to merge 
controlled gates if the improvement in section 6.1 has also 
been implemented. 

The control line selection problem is not as 
simple as in [3] due to the fact that there are a set of 
control lines that must be 1 and a set that must be 2.  In 
this case we may be able to generalize a control line to a 
generalized don’t care (i.e. 0 or 1, 1 or 2, 0 or 2), but not 
remove it completely.  The benefits to generalizing the 
control lines haven’t been fully investigated, so it is not 
sure what combination would yield the best results.  The 
exciting part of this optimization is that the chances to 
improve the compression through the combination of this 
and the method from section 6.1 increase with the size of 

Raw Merged Raw Merged Raw Merged
bench2-1 2 9 4 10 7 9 8
bench3-1 3 43 36 46 40 41 35
bench3-2 3 48 42 42 35 43 37
bench3-3 3 44 36 50 45 41 36
bench5-1 5 741 724 727 719 627 602
bench5-2 5 774 761 719 701 634 616
bench5-3 5 740 718 753 739 618 599
bench6-1 6 2787 2768 2700 2684 2296 2269
bench7-1 7 9664 9638 9652 9629 8193 8153

Best TransformsOutput Transforms# of 
Vars

Test 
Name

Input Transforms

Table 3 : Benchmark Results 



the vector, unlike the current compression algorithm 
which seems to be fairly linear with respect to the 
transform size. 

6.4 Transform Selection 
The algorithm currently always chooses a ‘+1’ or 

‘+2’ when the expected bit value is zero.  This is not 
always the best transform selection.  In some cases it may 
be better to apply a transform that only operates on two of 
the values (‘01’, ‘02’, or ‘12’).  Similar to section 6.2, 
choosing the transform that yields the smallest complexity 
is a good optimization.  This optimization may backfire 
given that the ‘+1’ and ‘+2’ transforms are more 
compatible (see Table 4), and cause the results to be 
worse after compression. 
 

7.  CONCLUSION 
New reversible gates and cascades motivated by 

their realizability in ion trap technology [11] have been 
proposed and respective algorithm designed.  The new 
algorithm to synthesize ternary logic into reversible 
ternary gates has been presented.  This algorithm can 
solve a ternary function of arbitrary size as long as the 
function itself is a reversible function. 

In contrast to the algorithm from [12] this 
algorithm cannot transform a non-reversible function to a 
reversible one during the synthesis, but its asset is that in 
contrast to the algorithm from [12], it does not require any 
additional wires (called also ancillae bits). The presented 
algorithm can be used to solve a non-reversible function 
by adding dummy lines to the input and output to make 
the entire function reversible.  The algorithm can be used 
to create good solutions for these problems if proper 
assignments are made to the dummy lines, however 
finding the proper assignment is not a trivial exercise. 

The future work outlined above should improve 
the final results of the algorithm.  It is difficult to guess 
their benefits without implementing the circuits, but a 
cursory look at the combination of control line selection 
(for minimum control lines) and controlled transform 
sliding has the potential to save hundreds of gates on the 
larger benchmarks.  Improved control line selection also 
should save many gates in the creation of the controlling 
function. The comparison of the final version of this 
algorithm and other ternary reversible algorithms from the 
literature [4, 12, 14] should use realistic cost functions 
(fitness functions) that would take into account the 
numbers of electromagnetic pulses or other quantum 
technology-specific parameters. 
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