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Abstract:  We address the problem of quantum test set generation using measurement from a single basis and the 
single fault model.  Experimental physicists currently test quantum circuits exhaustively, meaning that each n-bit 
permutative circuit requires ζ x 2n tests to assure functionality, and for an m stage permutative circuit proven not to 
function properly the current method requires ζ x 2n x m tests as the upper bound for fault localization, where zeta 
varies with physical implementation.  Indeed, the exhaustive methods complexity grows exponentially with the 
number of qubits, proportionally to the number of stages in a quantum circuit and directly with zeta.  This testability 
bound grows still exponentially with the attempted verification of quantum effects, such as the emission of a 
quantum source.  The exhaustive method will soon not be feasible for practical application provided the number of 
qubits increases even a small number from the current state of the art. 
 
An algorithm is presented making fault detection feasible both now and in the foreseeable future for quantum 
circuits.  The presented method attempts the quantum role of classical test generation and test set reduction methods 
known from standard binary and analog circuits.  The quantum fault table is introduced, and the test generation 
method explained, we show that all faults can be detected that impact calculations from the computational basis.  It 
is believed that this fundamental research will lead to the simplification of testing for commercial quantum 
computers.    
 

1. INTRODUCTION 
Since its inception, the microelectronics industry has progressed by shrinking circuitry [3].  
Moore’s Law [4] can be interpreted as the rate of mankind’s advancement towards making 
commercial electronic devices on the atomic scale.  Based on the current rate CMOS technology 
is progressing, it is predicted that large scale designs at the level of a single atom will be very 
possible in the next 20 years.  The reduction of circuits to the atomic scale not only brings with it 
the idea of reversibility, leading to virtually energy free computation as shown by Landauer [5], 
and Bennett [6], but that of quantum effects.  Quantum Information theory represents the known 
physical limitations our universe places on man’s ability to construct information processing 
machines.  In short, the quest for understanding physics is now intertwined with mankind’s 
ability to build exponentially faster computers [28].  
 
A major problem faced by physicists when attempting to create a practical quantum computer are 
the natural imperfections inherent in any quantum system.  Currently experimental physicists 
have only begun to experience a need to research optimized testing methods due to the small 
qubit count of current quantum circuits.  In addition, the slow rate of progress at physically 
realizing certain quantum circuits has made the idea of rapid testing less feasible.  For example 
in NMR it can sometimes take months to fine tune the sequence of pulses necessary to 
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implement a simple universal gate that functions properly.  The current approach is to compare 
all inputs with all outputs many times as means of verification for a given circuit.  This amounts 
to ζ x 2n distinct tests for permutative circuits and is known in classical logic as the exhaustive 
method [13].  When diagnostic methods of fault localization are needed, the physicist typically 
uses a property referred to as perfect observability [14] combined with the exhaustive method, 
where each stage of the circuit is probed by measurement.  As such an m stage permutative 
circuit has an upper testability bound of ζ x 2n x m distinct tests, where zeta represents iterative 
testing intended to assure functionality which varies depending on physical implementation.  
Observe, as will be shown below, that this method does not always give 100% assurance of 
circuit correctness, as a qubit can for example become coupled with that expected from 
measurement and a state of erroneous nature. This preliminary work introduces only the concept 
of quantum circuit verification, the reader interested in quantum fault diagnostics such as fault 
localization should refer to [15, 16]. 
 

2. BACKGROUND 
In classical circuit design an error in a circuit is typically referred to as a fault – in this paper we 
use the word error and fault interchangeably when referring to both classical and quantum 
circuits.  In classical circuits we represent the occurrence of faults digitally as the inversion of 
one or more bits of information at one or more locations in the circuit [14, 17, 18].  In analog 
circuits a fault is manifested by lost signal integrity at one or more stages in the circuit.  The 
detection of classical faults broadly falls in two distinct types of tests, the first being parametric 
tests, as those typically adapted by an analog test engineer, taking into account parametric 
measures [14], and the second is called Logical test [14], (known also as functional test [14, 17, 
18, 19]) in which the functional output of a system is compared with the expected output value 
for a given input [14, 17, 19].  
 
In a quantum circuit a fault is said to be observed if one or more bits have a different value from 
that anticipated as the logical output.  In this work, we concern ourselves with logical testing as 
applied to quantum circuits, where we inspect the logical data processed by the quantum circuit 
and compare this data with the expected values allowing us to make a judgment on functionality.   
 
To further narrow the category of logical testing, we now form three categories of fault 
occurrence where both classical and quantum circuits suffer.  It is common to have faults 
inherent in the circuit by manufacturing errors (system faults [14], Manufacturing faults [14], 
Physical malfunctions/defects [14, 17, 19]), faults introduced by the programmer (design errors 
[14], Conceptual Errors [14], programming errors/bugs) and random errors caused by the 
environment (transient failures [14], soft errors [18,19], random errors [2], probabilistic faults).   
 
As noted, similarity exists between the categories of classical circuit faults and quantum circuit 
faults, with several very notable exceptions.  The first is that a quantum circuit may have a fault 
always present that is never detectable when measured with a given projector, and the second is 
that a quantum circuit may always have a fault present that is only detectable in some percentage 
of measurements from any basis.  Generally this amounts to the condition of a phase shift, where 
a relative phase shift can be detected while overall phase shifts cannot. This gives rise to a new 
definition needed to represent faults with these unique properties for the classical test engineer 
adapting methods to quantum circuits.  In classical circuits the phrase “probabilistic fault” (with 
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contributions from [14, 17, 19]) and the phrase “deterministic fault” (with contributions from 
[14, 17, 19]), should be used with caution when referring to a fault in a quantum circuit, this 
terminology is misleading to those already familiar with classical testing, as they take different 
meanings in that field.  To avoid confusion the faults defined here will be coined “quantum 
faults”, as is the case for the remainder of this paper. Although a quantum fault can occur 
probabilistically, such as that introduced by environmental noise, our method deals with 
troubleshooting and detection, and is useful for verification of repeatable faults (although it can 
be adapted and used statistically), this difference is made more distinct by referring now to 
several works on error correcting codes meant to neutralize random errors [22, 23, 24, 27, 26].  A 
practical quantum computer should be equipped with an error correction mechanism and will 
need verification if correct functionality is stated; it is this verification that relies on quantum 
test, or more generally state tomography. 
 
Although it may seem as if testing quantum circuits is similar to testing reversible circuits, there 
is actually little specific similarity between the two.  An in-depth study of quantum circuits leads 
one to understand that although quantum circuits are by definition reversible, the fundamental 
differences between the inner workings of quantum gates and the gates used in other 
implementations of reversible logic have a drastic impact on testing.  For example, a study 
recently done in [2] noted that, “Each test vector covers exactly half of the possible faults, and 
each fault is covered by exactly half of the possible test vectors.”  However, we found a similar 
property of symmetry not to exist in quantum circuits.  On the other hand, the theories used in 
testing classical logic circuits, especially in [14, 17, 19, 25], form the foundation for the new 
types of theories developed and presented here. 
 

3. THE FAULTS OF EVOLUTION 
There exist three main categories of faults in a quantum computer that we consider: faults in 
preparation, faults in evolution and faults in measurement.  In this paper as means of 
simplification evolutionary faults are assumed exclusively.  In other words this preliminary work 
assumes what is referred to in binary testing as the single fault model [2, 14, 17, 19].  One can 
now judge the case where an evolutionary error is unique, such that the preparation and 
measurement operations are ideal.   
 
The Hamiltonian of the spin system that models Ising type interactions is given by, 

, ,

ˆ
i i ij iz jz

i i j
H a Jα α

α

σ σ σ= +∑ ∑ Equation 1 – The spin Hamiltonian 

Let us assume the Hamiltonian takes a form such as ˆ ˆH Hε ν= + , withν representing a small 
error.  The resulting impact in the presence of this error manifests in the form of changing the 
probability amplitudes of the possible outcomes, such that there is an altered chance for a 
particular outcome in measurement resulting from the presence of ν [21].  We state that an error 
takes one of two forms, the first being the presence of an error and the subsequent being the lack 
of an error.  The detection of an error is dependent on the choice of a measurement basis and the 
chance of detection, but the presence of an error is not, giving rise to the risk of confusion and 
that defined as a “quantum fault.”   
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Suppose we wish to examineν in further detail.  From [29] one can study a CNOT gate accurate 
to phase.   
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Figure 1- Representations of a CNOT gate accurate to Phase 

Also from [29] the alternate representation of Figure 1 is presented in a form implemented with 
the presented spin Hamiltonian 

2 2 2 2 2ij iz jx jy ij jyCNOT R R R J Rπ π π π π−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. Equation 2 – Possible sequence of operations 
needed for implementation of the CNOT gate 

In this work ν  denotes the addition of an error in terms of Equation 1, with this addition 
occurring in the time sequence needed to implement a quantum information process.  However it 
is not clear if ν  is predestined to be that of a unitary fault, as the system in question is a 
component of a larger Hilbert space.    
 
We take now an example such that the situation of an error may reside before or after any 
element of the pulse sequence in Equation 2.  Even the removal of a gate is modeled this way, 
such that arbitrary gate G has a nearest neighbor as its conjugate transpose G†, where GG† = G†G 
= I.  In practice defining the correct general fault model remains a technology specific issue, 
however the removal of a gate should actually be brought with the insertion of another since a 
machine is reasonably more likely to perform an erroneous operation than to miss it completely.   
 

4. QUANTUM FAULT MODEL 
Although unwanted interaction in a quantum system will be present all the time, the most widely 
cited error correcting codes neglect interaction among qubits focusing on single qubit rotations 
defined by the Pauli group.  This work only outlines a broad method that can be used in quantum 
test.  Although the fault model presented here may prove useful for the rapid verification of 
commercial quantum devices, specific fault models must be used to verify current technology.  
The quest for a viable general fault model is not the goal of this paper; here we restrict ourselves 
to the problem of test generation and not implementation specific fault models.  It is the intent of 
the presented method to be so general that adaptation to alternate technology is just a matter of 
defining a new fault model. 
 
Traditionally the Test Generation Problem is thought of as the generation of a sequence of tests, 
(test set) that when applied to a circuit and compared with the circuit’s output, will either verify 
that the circuit is correct or will determine that it contains one or more faults [14].  In other 
words, testing is the verification of functionality, and running the ideal test set amounts to 
complete system verification.  For the single fault model, it is the typical case that certain single 
tests can verify the existence of a fault at multiple locations in a circuit at the same time, thus it is 
the goal to choose the fewest tests possible needed to determine all possible errors.   
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Based on the ideal model of a quantum computer adapted from [29] and that aforementioned for 
classical binary circuits we can now make certain assumptions about the nature of faults present 
in a quantum circuit.  For our work we will restrict ourselves to the quantum fault model of 
inserting any gate from the single qubit operations defined by the Pauli group (which is the fault 
model assumed in error correcting codes), with the addition to the removal of any gate that is 
represented in the quantum circuit schematic.  As can be seen in Figure 2 we have defined the 
locations that errors are thought to reside for the preparation (P1, P2), evolution (E1-E8) and 
measurement (M1, M2) stages of the circuit.   

 
Figure 2 - CNOT with perpetration, evolution and measurement  error locations shown 

Formally we define our fault model as follows: The Pauli group on n-qubits is a subgroup of 
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with the addition of gate removal this defines our quantum fault model.  In the future perhaps a 
new fault model outside of the Pauli group may be a faulty interaction gate arising in 
implementation as a result of faults in the interaction of qubits. This will be an area of the 
authors’ further study.  
 

5. THE EXISTENCE OF COMPLETE TEST SETS 
A goal of quantum test is to find the optimum test set that detects all possible faults that can be 
present in the system with the least number of test vectors; this is known as high defect coverage 
for both classical and quantum circuits [14].  In general when we perform a given test, we are 
attempting to determine to a certain degree of assurance whether or not a fault is present.  For 
example, let us assume that we have defined a location in a theoretical quantum circuit as 
location X.  
 
If we insert a fault at location X and perform a calculation telling us that the fault we inserted 
amounts to a bit flip when measured, then if we measured an actual circuit and find the binary 
output has been inverted (based on our model), we can say that we have determined that the fault 
exists at X (we have detected and in this case localized X). However, even in this simple case 
one can make no statements as to the probability that a fault is present at location X in the circuit 
prior to running a given test.  It is only running a single test that allows us to make one of the 
following statements: (1) the fault is definitely not present at location X, or (2) the fault is 
definitely present at location X. 
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Now if we perform the same calculations for a fault at location X, and this time determine that 
the fault we inserted only occurs with a given probability denoted by P(x), prior to running any 
single test we can make no statement related to the occurrence of P(x).  However, after running 
any number of tests we can say one of two things: (1) the fault is definitely present at location X, 
or (2) we are able to judge the probability of the assumption of the occurrence of the fault at 
location X based on accepted experimental result.  In other words, we are only able to judge our 
assumption to a given proportion, and this postulation never answers the question of whether or 
not a fault is strictly present based on a given fault model for many quantum circuits.  We base 
these results on the formulation of the quantum covering problem presented in this work.      
 

6. PREVIOUS WORK ON TESTING BINARY CIRCUITS 
In order to illustrate our method of fault detection for quantum circuits we will illustrate the 
method used in [2] which uses a direct approach to generate a test set that will detect all faults in 
a binary reversible logic circuit by decomposing larger circuits into smaller sub-circuits (block 
partitioning). The problem of finding a minimal test set is solved using Integer Linear 
Programming (ILP).  The authors of [2] use the single stuck-at fault model [14, 25, 17, 36] to 
detect faults in internal lines and primary input and output lines of the circuit. Their main 
contributions are the following observations regarding reversible circuits: (1) Any test set that is 
complete for the single stuck-at fault model is also complete for the multiple stuck-at fault 
model.  (2) Each test vector covers exactly half of the faults, and each fault is covered by exactly 
half of the possible test vectors.   
 
However, the best way to illustrate the approach of simply verifying a circuit’s functionality is 
by introducing the circuit in Figure 3 whose corresponding truth table is shown in Table 1. 
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Figure 3 - CNOT gate  Equation 3 - Matrix representation, CNOT 
gate  Table 1 - Truth table 

 
The preparatory steps in fault detection is to examine the circuit in question and label all 
locations of which a fault is thought to possibly reside, as done in Figure 4.  When this is done a 
fault model must be selected, for this example we use the following,  
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Figure 4 - CNOT with test points 1-4 shown 
 

For each location depicted as one that could possibly be that containing a fault, each fault model 
is inserted and the circuits truth table is again recalculated, as shown for a particular case in 
Figure 5.   
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Figure 5 – Fault at location 1 from figure 2, corresponding matrix, and truth table, respectively 

After each iteration another column of a fault table is created.  For our purposes we define a fault 
table as that having all tests as rows and all faults as columns, with the first column representing 
that of a good circuit. Typically it is the case that a “1” at the intersection of row Ri and column 
Cj determines that test Ri detects fault Cj for the case of fault detection, but in Table 2 we show 
this intersection to mean the output of the circuit, with that of a detectable fault depicted in bold 
faced type (we named this a reversible fault table).  In Table 3 we proceed to introduce what will 
be called a classical fault table.  In this table, rows with entries of 1 mean that a probability of 1 
exists in covering columns for a test depicted by a given row. 

a b GC Sa0@1 Sa0@2 Sa0@3 Sa0@4 Sa1@1 Sa1@2 Sa1@3 Sa1@4 
00 00 00 00 00 00 11 10 01 01 
01 01 01 01 00 00 10 11 01 01 
10 11 00 00 11 10 11 11 10 11 
11 10 01 00 11 10 10 10 10 11 

Table 2 - Fault table for CNOT gate 

 
a b GC Sa0@1 Sa0@2 Sa0@3 Sa0@4 Sa1@1 Sa1@2 Sa1@3 Sa1@4 
00 00 0 0 0 0 1 1 1 1 
01 01 0 0 1 1 1 1 0 0 
10 11 1 1 0 1 0 0 1 0 
11 10 1 1 1 0 0 0 0 1 

Table 3 - 1's represent detectable faults 

 
We will use the greedy approach of picking the row with the highest depict coverage, and as 
noted in [2], it makes little difference in this case, as we chose our first test vector to be |00>.  
We now repeat this for Table 4, and Table 5.   

a b GC Sa0@1 Sa0@2 Sa0@3 Sa0@4 
01 01 0 0 1 1 
10 11 1 1 0 1 
11 10 1 1 1 0 

Table 4 – From Table 3,  removal of  the row ‘00’, after running test vector |00> 

 
a b GC Sa0@4 
01 01 1 
10 11 1 

Table 5 – From Table 4, removal of the row ‘11’, after running test vector |11> 

It is now clear that the test set: {00, 11, 10} is complete for our fault model, as shown in Figure 
6.  In other words, this test set will detect all possible faults in the circuit provided all faults are 
of the type specified by the fault model.   

Sa0 a 

b b’

a
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Figure 6  - Graphical depiction of the testing process using the stuck at 

model and the coverage formulated in this sections example. 

 

7. THE QUANTUM COVERING PROBLEM 
In [37] the notion of probabilistic set-covering is described as the generation of a random binary 
vector and the covering constraint has to be satisfied with some prearranged probability.  
Traditionally we represent η  as an element in the set to be covered where η  is constrained such 

that { }0,1 nη∈ .  A distinction is in order defining an entry in the quantum fault table depicted 
byη , where η  is constrained such that 0 1η≤ ≤ , as such it is clear that the traditional covering 
problem is a special case where η  takes the extreme values and that defined is a more general 
formalism.  With this mentioned the notion of probabilistic set-covering as defined in [37] does 
not apply.  Furthermore, the problem defined herein is only solvable if a constraint is defined for 
columns that contain no elements of additive identity and multiplicative unity.  In other words, 
our problem is now formulated differing from the classical case with the addition of positive 
fractional entries, arising from for example the interaction of qubits.  This addition makes the 
concept of full cover one that is not achievable for testing some quantum circuits.  Let us assume 
the existence of only a single fault, given the table 
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if we sample over arbitrary space{ }1, , ,a a nT T T+ L , taking into account the disjoint cover of 
arbitrary af , we can formally denote  
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illustrating a particular point in sampling over arbitrary space aT  with the number of samples 
meaning n times for arbitrary af  the cover is given by 
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( ) ( ) ( ) ( ) ( )1 2 3
1 1 1 1 1

1

n
n n

n
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=

Γ = + + + + =∑L  

( ) ( ) ( ) ( ) 1111111111 ≤∩∩∩∩+∩∩+∩+= naaaaPaaaPaaPaP L . 
Thus we define the cover of the quantum fault table for arbitrary test order{ }1, , ,a a nT T T+ L as 
Γ for arbitrary column af .  Formally we state that the quantum covering problem reduces to full 
cover to only a margin of assuredness except in the case of infinite iterative testing, given that 
each entry in the column of a fault table is less than one with an entry greater than zero.   
 
Let us further illustrate this point by examining the following example.  For the contrived fault 
table,  

7.9.2.
18.6.
6.1.9.

3

2

1

321

T
T
T

fff

 

let us assume we sample over the space{ }321 ,, TTT .  The cover is now calculated for each of the 
columns,  

)2)(.6.1)(9.1()6)(.9.1(9.1 −−+−+=C  
)9)(.8.1)(1.1()8)(.1.1(1.2 −−+−+=C  

)7)(.11)(6.1()1)(6.1(6.3 −−+−+=C  
 

8. QUANTUM FAULT DETECTION EXAMPLE 
The pulse sequence presented in Equation 2 is of interest here.  As explanation the circuit 
schematic from Figure 2 is again redrawn with the addition of several new labels that will 
become apparently necessary in the explanation of the presented algorithm.  The first labels are 
that of the first and second qubits in the system denoted as Q1, and Q2 respectively.  The circuit 
is again broken up into smaller portions such that a stage is defined to mean each individual 
pulse labeled here as S1-S5.  Each pulse has the dual presence of a nearest neighbor referred to 
here as a division and labeled D1 through D6.  It is important to note that errors in the circuit 
model occur in time, as time passes from left to right in our quantum circuit schematic.  It is 
worthwhile for some readers if we mention that multiple stages in this circuit could have been 
done in one pulse, and the circuit may not be minimal, however, this is implementation specific, 
and are problem is formulated around the Hamiltonian from Equation 1.  It is hoped that the 
reader will immediately make adaptations to the presented algorithm, as the goal of this work is 
to present an idea in the clearest possible manor, and many simplifications were made, such as 
the use of a single fault model and measurement from a single basis. 
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Figure 7 – Pulse sequence of CNOT gate with stated labels shown to aid in the description of the algorithm presented in this work. 

Under the assumption of the single fault model we can clearly define the faults used in this work 
as any of the first three Pauli (X, Y, or Z) rotations acting on a single qubit or the addition of any 
single pulse (S1-S5) removed.  Although we are concerned with the type of fault acting on a 
single qubit, qubits interact with each other by means of the tensor product such that the dual 
qubit representation for faults acting on Q1 follows,  
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And for the faults acting on the second qubit (Q2) we have,  
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The basic steps of the presented algorithm start with the calculation of the expected linear 
operator that represents how this sequence of gates will transform the state of a qubit.  From 
Equation 2 we have shown that this pulse sequence is a CNOT gate relative to phase,  
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Figure 8 – Phase relative linear operator representing the CNOT gate, 
 and its corresponding truth table.  

As the first case we will consider the Pauli-X fault in a location on the first qubit (Q1).  For the 
circuit under observation this is meant to reside in a total of six possible locations.  The Pauli-X 
fault is inserted independently into those locations and the linear transformation performed by 
the erroneous circuit is again recalculated using QuIDDPro [1] and placed in the following table,  
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X – Q1@D4 X – Q1@D5 X – Q1@D6 

from these results the reversible fault table immediately follows, 
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Inputs 
a b GC X – Q1@D1 X – Q1@D2 X – Q1@D3 X – Q1@D4 X – Q1@D5 X – Q1@D6 

0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 
0 1 1 1 0 1 0 1 0 1 0 1 1 1 0 1 
1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 
1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 
(Reversible truth table from the insertion of Pauli-X at locations D1-D6 on the first qubit from Figure 6) 

We note that for the Pauli-X fault impacting Q1 that all test inputs are equivalent for this case 
except the apparent lack of measured error with Pauli-X impacting Q1 at D5, we will not address 
this.  It is the typical case for certain technologies such as NMR that one can measure the circuit 
before or after the expected fault to gain insight into its presence, we do not address this method 
as we deal here only with detecting faults in the logical outputs of permutative circuits, from the 
computational basis.  In a similar manor to that already done for the single Pauli-X fault on the 
first qubit we repeat the process for the Pauli-Y and Pauli-Z rotations respectively, 
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Y – Q1@D1 Y – Q1@D2 Y – Q1@D3 
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Y – Q1@D4 Y – Q1@D5 Y – Q1@D6 
(Transformations of the circuit from Figure 7 with the addition of the Pauli-Y fault in the labeled locations) 

 
Inputs 

a b GC Y – Q1@D1 Y – Q1@D2 Y – Q1@D3 Y – Q1@D4 Y – Q1@D5 Y – Q1@D6 

0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 
0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 
1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 

(The reversible fault table created by analyzing the possible outcomes of measurement of the Pauli-Y fault acting on Q1) 

We note the equivalence of inputs and tests for a Pauli-Y fault impacting the first Qubit at 
locations D1, D2, D5, and D6.  However, a similar fault at location D4 or D5 remains 
undetectable if only logical output is compared from our current measurement basis.   
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Z – Q1@D4 Z – Q1@D5 Z – Q1@D6 
(Transformations of the circuit shown with the addition of the Pauli-Z fault in the labeled locations all acting on Q1) 

As can be seen from Table 6 the impact of the Pauli-Z fault at locations D1, D2, and D6 are not 
detectable from the current basis.  For the same type of fault at locations D3, D4, and D5 the 
fault is both detectable and all input tests are equivalent, greatly simplifying the testing process 
for those cases.   
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Inputs: a b GC Z – Q1@D1 Z – Q1@D2 Z – Q1@D3 Z – Q1@D4 Z – Q1@D5 Z – Q1@D6 
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 
0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 
1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 
1 1 0 1 0 1 0 1 1 1 1 1 1 1 0 1 

Table 6 – Pauli-Z reversible Fault Table 

We now show the results of repeating this entire process of finding the linear operator 
representing faults acting on Q1 for Q2, starting with the Pauli-X on Q2,  
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X – Q2@D4 X – Q2@D5 X – Q2@D6 
Resulting linear operators from insertion of the Pauli-X fault at the labeled locations in Figure 7 

 
Inputs 

a b GC X – Q2@D1 X – Q2@D2 X – Q2@D3 X – Q2@D4 X – Q2@D5 X – Q2@D6 

0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 
0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 
1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 
1 1 0 1 0 0 00 00 00 1 0 1 0 

(The reversible truth table from the Pauli-X fault acting on Q2) 

We note that for the Pauli-X fault impacting Q2 that all test inputs are equivalent in detection of 
error.  And next we calculate the erroneous linear transformation resulting from the Pauli-Y fault 
acting on Q2, from this we have,      
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Y – Q2@D4 Y – Q2@D5 Y – Q2@D6 
(Resulting linear operators from insertion of the Pauli-Y fault at the labeled locations in Figure 7) 

 
Inputs 

a b GC Y – Q2@D1 Y – Q2@D2 Y – Q2@D3 Y – Q2@D4 Y – Q2@D5 Y – Q2@D6 

0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 
0 1 1 1 1 0 1 0 1 0 1 0 0 0 0 0 
1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 
1 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0 

(The reversible truth table from the Pauli-Y fault acting on Q2) 

We note that in the case of the Pauli-Y fault impacting Q2 that all test vectors are equivalent.    
And for Pauli-Z acting on the second Qubit (Q2) we have,  
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Z – Q2@D1 Z – Q2@D2 Z – Q2@D3 
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Z – Q2@D4 Z – Q2@D5 Z – Q2@D6 
(Resulting linear operators from insertion of the Pauli-Y fault at the labeled locations in Figure 7) 

As shown in the following table the Pauli-Z fault does not appear to impact the outcome of 
measurement if acting on Q2 from the computational basis as provided in the table below. 

Inputs 
a b GC Z – Q2@D1 Z – Q2@D2 Z – Q2@D3 Z – Q2@D4 Z – Q2@D5 Z – Q2@D6 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

(The reversible truth table from the Pauli-Z fault acting on Q2) 

Now we will replace each gate in the sequence with that of the corresponding identity (pulses 
S1-S5),  
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S4 – removed S5 – removed 
(Resulting linear operators from removal of stages S1-S5 from Figure 7) 

The removal of stages S1-S5 leads one to create that defined here as a quantum fault table.  As 
mentioned we distinguish a classical fault table and a quantum fault table with the later having 
the addition of positive fractions and the former restrained to the binary set.  In the table below 
the prescribed expected measurement predicted occurrence rate is noted as a percentage for those 
non 1 to the right of the binary outcome.   

Section Removed Inputs 
a b GC S1 S2 S3 S4 S5 

0 0 0 0 0 0 0(50%) 
1(50%) 0 0 0 0 0 0(50%) 

1(50%) 0 

0 1 1 1 1 1 0(50%) 
1(50%) 1 1 1 0 1 0(50%) 

1(50%) 1 

1 0 1 0 1 0 0(50%) 
1(50%) 0 1 0 1 0 0(50%) 

1(50%) 0 

1 1 0 1 0 1 0(50%) 
1(50%) 1 0 1 1 1 0(50%) 

1(50%) 1 

(The reversible truth table from individually removing stages S1 
through S5 from Figure 7) 

As an example we will now construct a non reversible quantum fault table,  
Section Removed Inputs 

a b S1 S2 S3 S4 S5 
0 0 0 .5 0 0 .5 
0 1 0 .5 0 1 .5 
1 0 0 .5 0 0 .5 
1 1 0 .5 0 1 .5 

 
Section Removed Inputs 

a b S2, S5 S4 
0 0 .5 0 
0 1 .5 1 
1 0 .5 0 
1 1 .5 1 

(The simplification of the reversible  truth table built  
 from individually removing stages S1 through S5 from Figure 7) 
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Test 

Vector 

Pauli-X acting 
on Q1 (D1, D2, 

D3, D4, D6) 

Pauli-Y acting 
on Q1 (D1, D2, 

D5, D6) 

Pauli-Z acting 
on Q1 (D3, D4, 

D5, D6) 

Pauli-X acting on 
Q2 (D1, D2, D3, 

D4, D5, D6) 

Pauli-Y acting on 
Q2 (D1, D2, D3, 

D4, D5, D6) 

Removal of 
section: S2, 

S5 

Removal of 
section: S4 

T1(00) 1 1 1 1 1 .5 0 
T2(01) 1 1 1 1 1 .5 1 
T3(10) 1 1 1 1 1 .5 0 
T4(11) 1 1 1 1 1 .5 1 

Table 7 – Quantum Fault Table built from Figure 7 

It is worth pointing out that this table is built by superimposing entries that are the same for each 
of the fault tables for each respective fault for both bits, and removing entries representing faults 
that had no impact on the circuit from Figure 7.  In this example the problem of quantum testing 
reduces to only partial cover for the detection of the removal of S2 and S5.  It is the goal of 
future work to analyze the behavior of many different circuits of varying sizes [38], in doing 
such one is made to encounter tables that are much more complicated than the example just 
presented.  In general, a Quantum Fault Tables solution requires a solution to the fractional 
covering problem. This formulation will allow testing for any fault model inserted, given the 
restraints of our problem scope.  From Table 7 we will select T4 as the first test to execute 
leaving only S2 and S5 possibly undetected, from the computational basis.  S2 and S5 can be still 
be covered to a certain value using iterative testing.   
 

9. CONCLUSIONS AND FUTURE WORK 
We showed a method to minimize the number of tests needed to verify the correct operation of a 
quantum circuit. The method based on the Quantum Fault Table is general and does not depend 
on any particular fault model, it assumes however the existence of a single fault in the quantum 
circuit. If more faults exist, the method should still detect them with high probability, but this 
probability may be lower than that evaluated by this method. This work has opened the door to 
what is sure to be an extremely useful area of research, as the experimental physicist will soon 
need verification methods better than the current testing methods that take exponentially more 
time with circuit size.  Further studies of fault models and test generation designed for fault 
diagnostics are the authors’ current research topic.   
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