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Abstract -Ternary quantum circuits have recently been 
introduced to help reduce the size of multi-valued logic for multi- 
level quantum computing systems. However, synthesizing these 
quantum circuits i s  not easy. In this paper we describe a new 
genetic algorithm bared synthesizer for temnry quantum circuits. 
Our results show same of the synthesized circuits use fewer gates 
than previously published methods. 

I. TNTRODUCTION 
Quantum computing (QC) is a very promising and flourishing 
research area [Y],[10],[16]. QC theoretically allows designers 
to build much more efficient computers than the existing 
classical ones. For example, some problems that can’t be 
solved in polynomial time using classical computers can be 
solved in polynomial time using quantum computers [Y] 
(proven already experimentally but for small data only). In 
part, this is because quantum circuits are inherently able to 
perform massive parallel computations [Y],[10],[16]. While 
most of the results are for binary quantum computers, the 
multi-valued quantum logic synthesis is a very new research 
area. Unfortunately, previous synthesis methods produced 
circuits that were unnecessarily complex. One promising 
approach for reducing the circuit size is to use gates that are 
temaly counterparts of the classical binary Feynman gates and 
new 2-qudit temary controlled gates (qudit is a multiple- 
valued counterpart of binary quantum bit or qubit). 

The success in the true realization of some temary 
permutation gates now allows us to physically build ternary 
quanhim computer using these gates. However, synthesizing 
quantum circuits is not a trivial problem and most previous 
attempts have been disappointing. Although there are several 
papers about using CA for binary quantum computers 
[13],[14],[17],[18] and quantum inspired evolutionaly 
algorithms [IY], to the best of our knowledge, no attempts 
have been made to use GAS for designing ternary quantum 
circuits. This is the first paper to introduce a practical 
synthesis approach to synthesize directly with genera/;zed 
ternary gates (GTG) gates and not only with Toffoli-like 
gates built on top of GTG gates [5],[6],[8]. This allows us to 
obtain significant reductions in terms of elementary gates that 
are directly realizable in ion trap technology. 

The paper is organized as follows. In Section I I  we describe 
some previous work in multi-valued logic. Section 111 covers 
the fundamentals of multi-valued logic along with some key 
definitions. Section IV introduces some basic temary 
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quantum circuits. The general model for synthesizing multi- 
output ternary functions is given in Section V. Section VI 
provides details on our CA. Section VI1 discusses a new 
feature of our approach - synthesis of incompletely specified 
functions and Section VI11 the expenmental results. Section 
IX concludes the paper and Section X presents future work. 

11. PREVIOUS WORK 
In 2000, Muthukrishnan and Stroud [ I ]  developed multi- 
valued logic for multi-level quantum computing systems and 
showed their realizability in linear ion trap devices. However, 
this approach produces circuits that are too large and no 
procedure was proposed to minimize them. In 2002, Brylinski 
and Blylinski [2] discussed the universality of n-qudit gates 
without giving any design algorithm Since 2001, AI-Rabadi 
and Perkowski [3],[4], and Khan et al [5],[6] proposed Galois 
Field approach to multi-valued quantum logic synthesis in 
several regular stmctures. They used gates that are temary 
counterparts of classical binary Feynman and Toffoli gates, 
but no experimental data were given. De Vos [7] proposed 
two temary 1‘1 gates and two ternary 2*2 gates, but again no 
synthesis method was proposed. In 2002, Perkowski, Al- 
Rabadi, and Kemtopf [8] proposed a 2’2 Generaliz~d Ternary 
Gate (GTG gate) based on the temary conditional gate [ I ]  and 
ternary shift gates [5],[6] and showed the realization of 
ternary Toffoli gate using GTG gates. This work introduced 
for the first time the practical realizability of Galois Field 
circuits in existing multi-valued quantum technology. 
Unfortunately, very little has been published on synthesis 
algorithms for multi-valued quantum circuits. More 
importantly, there is nothing published on synthesizing 
incompletely specified multi-output circuits, which is the 
problem dealt with in this paper. 

111. FUNDAMENTALS OF MULTI-VALUED QUANTUM 
LOGIC 

In multi-valued (MV) Quantum Computing (QC), the unit of 
memory (information) is qudit. MV quantum logic operations 
manipulate qudits, which are microscopic entities such as a 
photon’s polarization or atomic spin. Ternary logic values of 
0, I ,  and 2 are represented by a set of distinguishable different 
states of a qutrit. These states can be a photon’s polarizations 
or an elementary particle’s spins. AAer encoding these 
distinguishable quantities into multiple-valued constants, 
qutrit states are represented by 10). 11). and 12), 
respectively. 

0-7803-8515-21041520.00 02004 IEEE 2194 

http://mhakan(?ewubd.edu
http://ngerkowsC?ee.Ddx.edu


Qudits exist in a linear superposition of states, and are 
characterized by a wavefunction y . As an example (d = 2 ) ,  
it is possible to have light polarizations other than purely 
horizontal or vertical, such as slant 45’ corresponding to the 

linear superposition of y = [&IO) + fill)]. In t e m q  
2 

logic, the notation for the superposition is a10)+ p(1) + y( 2 ) ,  

where a, p, and y are complex numbers. These intermediate 
states cannot be distinguished, rather a measurement will 
yield that the qutrit is in one of the basis states, IO) , [ I ) ,  or 

12) , The probability that a measurement of a qutrit yields 

state 10) is lal’, state 11) is lpl‘, and state (2)  is IyI‘. The 
sum of these probabilities is one. The absolute values are 
required since, in general, a, p and y are complex quantities. 
Pairs of qutrits are capable of representing nine distinct 
states,100), ~ o I ) ,  102), 110). I l l ) ,  112)~ 124 ,  ]21),  

and [ 2 2 ) ,  as well as all possible superpositions of the states 
This property may be mathematically described using the 
Kronecker product (tensor product) operation 0 [9]. The 
Kronecker product of matrices is defined as follows: 

As an example, consider two qutrits with 

When the two qutrits are considered to represent a state, that 
state y,, is the superposition of all possible combinations of 
the original qutrits, where 
cvl i  = v , @ Y ,  = a , a , ) 0 0 ) + a , P , ) o l ) + a , ~ , l 0 2 ) + P , n , l l O )  

+ P , P ~ I I I ) +  P,y,ll2)+ y,a,120)+ y,P,IZI)+ Y , Y , I ~ ~ )  
Superposition property allows qubit states to grow much 
faster in dimension than classical bits, and qudits faster than 
qubits [I]. In a classical system, n bits represent 2” distinct 
states, whereas n qutrits correspond to a superposition of 3” 
states. In the above formula some coefficient can be equal to 
zero, so there exist a constraint bounding the possible states in 
which the system can exist. As observed in [ I ]  - “Allowing d 
to be arbitrary enables airadeoff between the number of 
qudits making up the quantum computer and the number of 
levels in each qudit”. An output of a gate is obtained by 
multiplying the unitary matrix of this gate by the vector of 
Hilbert space corresponding to this gate’s input state. A 
resultant unitary matrix of arbitrary quantum circuit is created 
by matrix or Kronecker multiplications of matrices of 
composed subcircuits. These all contribute to difficulty in 
understanding the concepts of quantum computing and 
creating efficient analysis, simulation, verification and 
synthesis algorithms for QC. Generally, however, we believe 
that much can be learned from the history of Electronic 
Computer Aided Design as well as from MV logic theory and 
design, and the lessons learned there should be used to design 
efficient CAD tools for MV quantum computing. 

= Y , l ~ ) +  D , ~ Q +  , , lz)and Y, =a,10)+f1211)+Yi12). 

In terms of logic operations, anything that changes a vector of 
qudit states to another qudit satisfying measurement 
probability properties can be considered as a quantum 
operator (unitary matrix). These phenomena can be modeled 
using the analogy of a “quantum circuit”. In a quantum 
circuit, wires do not carry ternary constants but correspond to 
3-tuples of complex values, a, p, and y. Quantum logic gates 
of the circuit map the complex values on their inputs to 
complex values on their outputs. As mentioned, operation of 
quantum gates is described by matrix operations. Any 
quantum circuit is a composition of parallel and serial 
connections of blocks, from small to large. Small blocks 
correspond to directly realizable quantum gates such as 
Feynman or Stroudhluthukrishnan gates. Serial connection 
of blocks corresponds to multiplication of their (unitary) 
matrices. Parallel connection corresponds to Kronecker 
multiplication of their matrices. So, theoretically, the analysis, 
simulation and verification are easy and can be based on 
matrix methods. Practically they are tough because the 
dimensions of the matrices grow exponentially. All these 
become much easier when one deals only with permutative 
matrices, which are equivalent to multi-output tmth tables of 
completely specified functions. We deal with such a special 
class in this paper. 

IV. SOME TERNARY PERMUTATION QUANTUM 
GATES 
Any unitary matrix represents a quantum gate. If a unitary 
matrix has only one I in every column and the remaining 
elements are 0, then such a matrix is called a permutation 
matrix. A quantum gate represented by a permutation matrix 
is called a permutation qunntum gate. In this paper we 
concentrate only on permutation quantum gates. 
Figure I shows a 2*2 temary Fqnman gate. Here A is the 
controlling input and B is the controlled input. The output P is 
equal to the input A and the output Q is GF3 sum of A and B. 
Observe that GF3 sum is the same as modulo 3 sum. If 
B = 0 ,  then Q = A and the temary Feynman gate acts as a 
copying gate. The temary 2-2 Feynman gate is practically 
realizable, for instance see [ I ] .  
Six l* l  ternary shiflgafes are proposed in [ 5 , 6 ] .  Operations 

B 

Figure 1.2‘2 temary F e y ”  gate. 

Self-Dual-Shifl I Z+I. = 2 x + 2  1 5 

’Addition and multiplication aye over GF3. 

Figure 2. Tema~y shifl gates. 
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and symbols of these gates are shown in Fig. 2. These gates 
are realizable using temary quantum Feynman primitive [S, 
61. 

A shift gate is said to be a mirror gale of another shiR gate if 
the mirror gate is connected with the output of the original 
shift gate, then the input signal is restored. The mirror gates 
for all the shift gates are shown in Figure 3. 

Original shift gate Mirror gate ,piq$iji 
+ + 
-D- +- 

Figure 3.  Mirror gates. 

A very useful 2.2 gate called Generalized Ternary gate 
(GTG gate) is proposed in [8] as shown in Figure 4. Here, 
input A is the controlling input and input B is the controlled 
input. The output P is equal to the input A. The controlling 
input A controls a conceptual temary multiplexer (a 
conditional gate) that can be realized using quantum 
technology such as ion traps [I]. If A = 0 ,  then the output Q 
is the x shift of the input B .  Similarly, if A = 1 ,  then the 
output Q is they shift of the input B and if A = 2 ,  then the 
output Q is the z shift of the input A.  Here shift means all 
ternary shift operations including the Buffer (simple quantum 
wire). As the Conditional gate and the Shift gates are 
realizable in quantum technology, the GTG gate is a truly 
realizable ternary quantum gate. 

x shift of Bif A = 0 
Q =  y S h i f t o f B i f A = I  :gp=i 2 shift of Bif A = 2 

wherex,y,zt{0.1,2,3.4,5) 
are ternary shin operations 

Figure 4. 2'2 Generalized Temary gate. 

For the purpose of this paper we assume that the GTG gate 
can be controlled from both top and bottom as shown in 
Figure 5 .  

B B @  Q 

A P = A  
(b) Control from bottom (a) Contml from top 

Figure 5 .  Two different farms of controlling a GTG gale. 

It should be noted that if x = y = z = 0 , then for all values 
of A, Q = B  and the GTG gate eventually becomes 
equivalent to WO parallel wires as shown in Figure 6(a). 
Again, if A = 0 and x = 0 as in Figure 6(b); if A = 1 and 
y =  0 as in Figure 6(c); and if A = 2 and z = O  as in 
Figure 6(d), then the GTG gate also becomes equivalent to 
two parallel wires. 
A very useful gate for multiple input circuit synthesis is a 3*3 
Toffoli gate as shown in Figure 7. Design of GFSOP (Galois 
Field Sum of Products) arrays and factorized arrays is based 
on these gates. These arrays are the multiple-valued 
counterparts of well-known binary ESOP (Exclusive Sum of 
Products) and factorized ESOP cascades. Here the inputs A 
and B are the controlling inputs and the input C is the 
controlled input. The output P is equal to the input A, the 
output Q is equal to the input 8, and the output R is equal to 
A * B + C ,  where and + are GF3 multiplication and 
addition, respectively. :a:::: ;$$J::: 

la-P=l (4 2 a p = 2  (b) 

B - Q = S  B Q = S  

(4 (4 

Figure 6. Same configurations afGTG gate that act BS WO parallcl 
wires. 

:z=;B+c C- 

Figure 7.3.3 Toffoli gate 

A generalized Ternary Toffoli gate is proposed in [6] as 
shown in Figure 8, where f, is an arbitrary ternarv function 

of the input variables A, ,  A,, .'. , A,. Here, there are k 
controlling inputs and n controlled inputs. 

=arbitrary function of 

Pt., = f, + 4.) 
A.." - e,. =/, +A,*. 

Figure 8. A gcneralized ternary Toffoli gate 

Any m*m (m > 2) gate is very difficult to realize in quantum 
technology, since interaction of more than two particles is 
nearly impossible to control. Therefore, these gates should be 
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j 21310 I IW12 1 2ln4n 

z-shin, y-shifl, ~~~~~i~ Kprescnlatlon or ro~umnr (conuoiied wiE ~ ~ ~ v o i i i n g  "0, 
1-shin) 

Figure IO. Realization of tcmary half-addcr function C(A, 5) = [o, 0, 0, 0, 0,1,0,1, 11' and 

S ( A ,  5) = 10, I, 2,1,2,0, 2, 0, I]' using a cascade of GTG gates. 

Table 1. Number of GTG 
gates and scratchpad register 
width (separated by commas) 
for tcmary half-addcr 
funclion generated by the CA 
far different values of 
papulation size (P), 
chromosome length (L). 
crossover probability (PC), 
and mutation probability 
(PM). An empty entry 
represents that lhe GA did no1 
find a correct Circuit within 
500,000 gencrstions. 

- 

important role.(In generalreversible logic these gates may 
have zero cost since any two wires can overlap). The 
schematic of a ternary swap gate is shown in Figure 9. realized from 1 * I  and 2'2 gates. As the ternary Feynman 

gate and GTG gate are relatively easy to realize, they are 
treated as primitive gates for realizing other gates. A 
generalized Toffoli gate is realizable from 1'1 Shift gates, 
2'2 Feynman gate, and 2.2 CTG gate as discussed in 
Section IX. Quantum technologies do not allow wire Figure 9. Temary swap gale. 

crossing. In those technologies, swap gate plays an 
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V. GENERAL MODEL OF SYNTHESIZING 
MULTI-OUTPUT TERNARY FUNCTIONS 

USNG CASCADES OF GTG GATES 
Realization of temary half-adder function 

C ( A , B )  =[O, O,O, O,O, 1,0, I ,  I]' and 

S ( A ,  E )  = [0, 1,2,1,2,0,2,0, I]' using a cascade of GTG 
gates is shown in Figure I O .  Signal values at all intermediate 
wires are shown as maps to verify the correctness of the 
circuit. In this realization we assumed the following: 

( I )  A GTG gate can be controlled either from top or from 
bottom. 

( 2 )  A limited vertical wire crossing for the controlling 
signals of GTG gates is allowed. 

(3) Constant input signals 0, I ,  or 2 are added as needed. 
(4) Output may he realized along any primary input line 

or any constant input line. 
( 5 )  Each of the GTG gate form a column where the 

remaining lines represent quantum wires. The columns 
are cascaded to realize the circuit. 

VI. PROPOSED GENETIC ALGORITHM 
A. Problem encoding 
In the proposed genetic algorithm (GA) we use the model of 
synthesizing multi-output temary function using cascaded 
GTG gates as discussed in Section IV. In this circuit model, 
for initial input to the CA, we add three constant input signals 
0,  I ,  and 2 for up to m 5 n + 3  outputs, where n is the 
number of inputs. For every increment of 3 or less outputs, we 
add additional 3 constant input signals 0, I ,  and 2. For 
example, if the function has 2 inputs and 6 outputs, then we 
add 6 constant input signals 0, 1, 2, 0, I ,  and 2. Then after 
convergence of the GA we eliminate the unused constant 
input signals from the final circuit. Initially we take 3" or 
2x3"  or 3 x 3 "  columns (chromosome length) as the input 
to the CA. After convergence of the CA we eliminate a 
column having all wires (i. e. a column having a GTG gate 
representing two parallel wires) and other redundant columns 
as described in Subsection VI. F. 
The primary input lines and the constant input lines are 
numbered starting from 0 as shown in Figure IO. Each of the 
columns of the circuit is represented by an ordered tuple of 
controlled wire no, controlling wire no, x-shift, y-shift, and z- 
shift of the associated GTG gate as shown in Figure IO. Using 
this notation the chromosome representing the circuit of 
Figure 10 is as shown in Figure 11 (these are strings of 
characters and not integers). Here each column of the circuit 
is a gene of the chromosome. In this problem encoding of the 
genotype (chromosome) ties very closely with the phenotype 
(actual circuit ). 

B. Fitness function 
In the proposed CA, we tried to reduce the cost of the resulting 
circuit by (i) reducing the number of wires in the circuit (the 
width of the scratchpad register), i. e. increasing the number of 
unused constant input lines, (ii) reducing the number of non- 

wire columns, i. e, increasing the number of wire columns, (iii) 
reducing the number of non-buffer shift gates, i. e. increasing 
the buffer gates in the non-wire columns. For this reason we 
used four components of the fitness function as discussed 
below. 
Output fitness: The output fitness is defined as follows: 
Individual output fitness, Oi = (if output i is realized along any 
wire, then 1, othenvise 0) + highest number of truth values 
realized along any wire/ 3" 

Total output fitness, 0 = 2 0, , where m is the number of 

outputs in the function. 
For testing the output fitness, we compute the resulting truth 
vector for all wires and then the best fit wire is selected for a 
given output i. 
Width fitness: The scratchpad width fitness is defined as 
follows: 
W = Number of unused constant input IinesNumber of 
constant input lines. 
Column fitness: The column fitness (or cascade length fitness) 
is defined as follows: 
C= Number of wire columns/length of the chromosome, L. 
Shift-gate fitness: The shift-gate fitness is defined as follows: 
S = Number of buffer gates in the non-wire 
columnsl3xNumher of non-wire columns. 
In the current quantum technologies the scratchpad width is a 
major limitation. Therefore, if we can reduce the width of the 
circuit, it will he more favorable. So, we give more selection 
pressure on width fitness. Reducing the number of columns 
will reduce the cost of the circuit. So, we give moderate 
selection pressure on column fitness. Finally, reducing the 
number of non-buffer shift gates also reduce the cost of the 
circuit to some extent. So, we give less selection pressure on 
shift-gate fitness. Considering all these factors, we define the 
fitness function as follows: 

From the fitness function, we can see that the value of O S W +  
0.4C + 0.1s will always be less than I .  On the other hand, 
when all them outputs are realized, then the value of 0 will be 
2m. Therefore, the threshold fitness value is 2m, that is, if the 
fitness of a chromosome is greater than 2m, then that 
chromosome is a solution for the given function. 

/=I 

F.= O +  0 . 5 W + 0 . 4 C +  0.1s 

C. Type of CA 
As the model of our circuit svnthesis (see Section V) is not 
well structured, we want to mike sure that the best solutions 
found are not lost in the successive generations. Therefore, we 
use the steady-state C A  [U]. We use gene repair, binary 
toumament selection and elimination of redundant columns 
(knowledge-based local transformation). 

D. CA operators andparometers 
We experimented with different values of population size (P). 
chromosome length (L) ,  crossover probability (Pc), and 
mutation probability (PM) for synthesizing temary half-adder 
and we have donc replicate trials for each parameter settings. 
The influences of these parameters are shown in Table 1. From 
Table I ,  we see that a wide range of population sizes yield 
good solutions. Therefore, in our other experimentation. we 
used population sizes of 100,200, 300,400, and 500. 
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In the experimentation of Table 1, we used chromosome length 
(number of columns) of 3" ,  2 x 3" ,  and 3x 3" (that is, 9,18,  
and 27). From the table, we see that chromosome length of 
2 x 3" and 3 x 3" yield good solutions. Therefore, in our other 
experimentation, we used chromosome length of 2 x 3 "  and 
3 x 3 " .  
In our GA we use binary tournament selection with 
replacement for selecting the parents. One-point crossover 
was used and, as shown in Table I ,  crossover probabilities of 
0.6, 0.7,0.8,0.9,and 1.0allyieldedgoodresults. 

We mutated each column (or gene) of the offspring with a 
given low mutation probability (P.,,). In this mutation we 
replaced the column by a randomly generated column. In our 
experimentation illustrated in Table I ,  we used mutation 
probability of 1IL and 2/L, where L is the chromosome length, 
and we see from table that both of these two mutation 
probabilities yield good results. Our GA seemed to be not 
much sensitive to crossover and mutation probabilities, so we 
concentrated on repair which had big influence on results 
quality. However, further studies need to be done on influence 
of various parameters and other genetic operators. 

E. Repair operation 
From the circuit model of Figure IO,  we see that, in the gene 
representation of a column, the wire numbers representing the 
controlled signal and the controlling signal should be different. 
But if, during random generation of the individuals of the 
initial population or after mutation of offspring, both the wire 
numbers of a gene become same, then we make that column 
representing wires by setting x = y = z = 0 . The motivation 
behind this repair operation is to reduce the number of non- 
wire columns in the final solution. As our circuit model 
initially starts with an arbitrary length, reducing the number of 
non-wire columns will improve the quality of the solution, For 
example, i fa  gene is I1012, then we make it 11000. 

F. Elimination of redundant columns 
In the solution produced by the GA, some of the columns will 
be wire-columns. We eliminate all such wire-columns from the 
solution to get the final solution. But, even afler elimination of 
these wire-columns some of the remaining columns may still 
be redundant. For example, a GA may produce (after the wire- 
columns have been eliminated) the circuit of Figure 12 for 
ternary half-adder function. The third and the sixth columns 
from the left are redundant, because they modify the garbage 
outputs [131. Therefore, we also eliminate these redundant 
columns from the solution to get the final solution. 

For a given function, we performed a number of experiments 
using different values of population size (P), chromosome 
length (L), crossover probability (Pc), and mutation probability 
(Pd as stated above. We eliminated redundant columns from 
all these solutions. Then we selected the best solution from 
these experiments as the final solution for the given function. 
The circuit of Figure 10 is thus derived for temaq half-adder 
function. 

Figure 12. Temary half-adder circuit with redundant 
columns. 

VII. SYNITHESIS OF INCOMPLETELY 
SPECIFIED MULTI-OUTPUT TERNARY 

FUNCTIONS 
For synthesizing an incompletely specified multi-output 
temary function, we used the same GA as discussed in 
Section VI, except the output fitness is calculated differently 
because don't cares are ignored. Now, the truth vectors of a 
wire and the output function are compared only for cares. 
Interestingly, this allows to simplify functions with more 
wires faster, when the percent of don't cares is high. We 
experimented with a randomly generated 2-input 3-output 
incompletely specified function 

F, (A,  5) = [I, 2,3,2,3,3,2,0,21', and 

F, ( A ,  E )  = [0, 0 ,3 ,0 ,3 ,1 ,  2, 2, Z I T ,  where a 3 represents a 
don't care output. The resulting circuit is shown in Figure 13. 
In the figure, intermediate signal values are shown as maps to 
verify the correctness of the circuit. 

F, (A,  4 = [ 3 , Z  1,3,1,3,2,0, 1IT, 

B 

2 1  2 I 

B o 1 2  8 0 1 2  B o 1 2  &" 2 2 0 2  2 2 1 2  2 2 2 2  

Figure 13. Circuit realizing an incompletely 
specified function 
F,(A, B )  = [3,2, 1,3,1,3,2,0, U', 
q(A,B)=T1,2,3,2,3,3,2,0,2]',and 
F , ( A , B ) = [ 0 , 0 , 3 , 0 , 3 , 1 , 2 , 2 , 2 ] T  

VIII. EXPERIMENTAL RESULTS 
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We have written C ‘program to implement the proposed CA. 
We performed experimentation with some multi-output 
completely and incompletely specified ternary functions and 
the results are given in Table 2 .  Using the algorithm we were 
able to find better solutions to some known circuits and the 
program “discovered” new realizations of some known gates 
such as swap which had very inefficient realizations [5],[6],[8]. 
Synthesis of gates such as Toffoli and Swap is especially 
important because of the role that they play in other methods. 

For synthesis of generalized ternary Toffoli gate, we assumed 
that the controlling function of Figure 8 is f, = A, A ,  . . . A , .  
This type of generalized temary Toffoli gates are very useful 
for realization of GFSOP cascades. For synthesizing a 
generalized ternary Toffoli gate of this type, we first realize the 
controlling function f, = A,  A,  . . . A ,  as a cascade of GTG 
gates using OUT GA and then the controlled outputs are realized 
using temary Feynman gates. To restore the primary inputs and 
the constant inputs mirror GTG gates are used. Here we use the 
same GA as discussed in Section VI, except that the controlling 
function f, = A ,  A ,  “ ‘ A ,  is realized along any constant input 
wires. We experimented with a generalized ternary Toffoli gate 
with 2 controlling inputs and 2 controlled inputs. The resulting 
circuit is shown in Figure 14. In this figure, the left four 
columns generate the controlling function AB along the 
constant input signal 2 and the right four columns are the 
mirror columns that restores the controlling inputs A and B and 
the constant input 2 .  Intermediate signal values are shown as 
maps to verify the correctness of the circuit. We synthesized 
ternary swap gate using cascade of GTG gates using our GA as 
discussed in Section 6 ,  except that no constant input is used 
and the outputs are resmcted to their corresponding wires. The 
resultant circuit is shown in Fig. 15. 

IX. CONCLUSIONS 
GTG gate was proposed in [SI without giving any synthesis 
algorithm. In this paper we prpose a GA for synthesizing both 
completely and incompletely specified ternary functions using 
cascade of GTG gates. Generalized ternary Toffoli gate and 
ternary swap gate were synthesized. The generalized temary 
Toffoli gate realization proposed in [8] requires 10 GTG gates, 
whereas the realization of this paper requires 8 GTG gates. 
Similarly, previous best design of ternary swap gate had 4 
Feynman gates and one I-qubit permutative gate. The new 
design has only 3 GTG gates and is very elegant, it has the 
same symmetry as the well-known design of Swap from 
Feynman gates in binary, so we can say that the GA has done 
certain ‘‘discovery”. Other circuits are realized using cascade of 
GTG gates for the first time and, therefore, cannot be compared 
with other results. 

X. FUTUREWORK 
Future research is further improvement of the GA to a broader 
class of evolutionary algorithms (larger tournaments, restart 
with new parameters when stacked in local minimum, new 
crossover and mutation operators, local search [13], memetic 
algorithms). We will be also developing GA for synthesizing 
both completely and incompletely specified multi-output 
ternary function using cascade of both 2’2 GTG gates and 2’2 
ternary Feynman gates. (Feynman gates are linear, although 
Feynman gate is a special case of GTG gate, it is treated in a 

special way as seen in rows 7,s of Table 2) .  Similarly 21s in 
[13], we will add powerful local transformations of circuits 
based on ternary quantum identities, to decrease the cost of the 
synthesized cascades. In binary quantum the improvements of 
costs are sometimes as dramatic as 300% [13], which 
demonstrates that it is a good idea to combine evolutionary and 
algorithmic rule-based approaches into one working program 
for quantum circuits synthesis. 
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md2: C(A,B)=intrAB/31,  M(A,B)=ABmod3 I I 1 8 4 

Table 2. Number of GTG gates, scratchpad width, and number of additional Fcynman gates required for realizing some multi-output 
temary functions. 

0 

sumz. F ( A , B ) = ( A + B ) m o d 3  2 1  2 3 0 

S U ~ :  F(A, B,  C) = ( A  + E + C) mod 3 3 1  2 3 0 

qsumt:  F ( A , B ) = ( A ’  + E 2 ) m o d 3  2 1  2 

SV@: F(A, B)  = int[(A+ B ) l 2 ] m o d 3  2 1  3 

gttgtz (gencralized temary Toffoli gate): P = A , Q = B ,  4 4 8 

gttg33 (gcneralizcd temary Toffoli) gate: P = A , Q B ,  6 6 30 
R = A B + C ,  S = A B + D  

R = C .  S = ABC + D .  T = A B C + E .  

@@@@ 0 1 1 ,  0 0 1 0  0 0 1 2  0 0 0 0  @@”#tigo# O O l O  0 0 1 2  0 1 1 , 0 2 2 2  
1 1 1 1  , 0 1 0  1 2 0 1  1 0 1 1  1 0 1 0  1 0 1 2  I I 1 1 1 2 2 2  
2 0 0 0  2 1 2 1  2 1 2 0  2 0 2 1  2 , Z l  2 0 1 2  2 0 0 0 2 2 2 2  

3 0 

3 0 

5 2 

8 3 

C 

D 

R = I B + C  

W S = ” B + D  

Fig. 14. Gcneralized Tcmary Toffoli. 

U = ABC+ F 
tsg (ternary swap gate): P = B , Q = A 
Randomly generated incompletely specified function: 

F, (A, B)  = [ 3 , L  1,3,4 3, L O ,  1 l r ,  

A B o  I 2  A-Qo 1 2  “ B O  I 2  )j$ ;?g.:yq 
2 1 0 2  2 2 2 2  2 0 1 2  

2 2  3 2 0 

2 3 5 3 0 

Fig.15. Realization afTemary Swap gatc 
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