
Genetic Algorithm Based Synthesis of Multi-Output
Ternary Functions Using Quantum Cascade of

Generalized Temary Gates
Mozammel H.A. Khan,

Dept. of Computer Science and Engineering,
East West University, 43 Mohakhali, Dhaka 1212,

Bangladesh, mhakan(?ewubd.edu

Abstract -Ternary quantum circuits have recently been
introduced to help reduce the size of multi-valued logic for multi-
level quantum computing systems. However, synthesizing these
quantum circuits i s not easy. In this paper we describe a new
genetic algorithm bared synthesizer for temnry quantum circuits.
Our results show same of the synthesized circuits use fewer gates
than previously published methods.

I. TNTRODUCTION
Quantum computing (QC) is a very promising and flourishing
research area [Y],[10],[16]. QC theoretically allows designers
to build much more efficient computers than the existing
classical ones. For example, some problems that can’t be
solved in polynomial time using classical computers can be
solved in polynomial time using quantum computers [Y]
(proven already experimentally but for small data only). In
part, this is because quantum circuits are inherently able to
perform massive parallel computations [Y],[10],[16]. While
most of the results are for binary quantum computers, the
multi-valued quantum logic synthesis is a very new research
area. Unfortunately, previous synthesis methods produced
circuits that were unnecessarily complex. One promising
approach for reducing the circuit size is to use gates that are
temaly counterparts of the classical binary Feynman gates and
new 2-qudit temary controlled gates (qudit is a multiple-
valued counterpart of binary quantum bit or qubit).

The success in the true realization of some temary
permutation gates now allows us to physically build ternary
quanhim computer using these gates. However, synthesizing
quantum circuits is not a trivial problem and most previous
attempts have been disappointing. Although there are several
papers about using CA for binary quantum computers
[13],[14],[17],[18] and quantum inspired evolutionaly
algorithms [IY], to the best of our knowledge, no attempts
have been made to use GAS for designing ternary quantum
circuits. This is the first paper to introduce a practical
synthesis approach to synthesize directly with genera/;zed
ternary gates (GTG) gates and not only with Toffoli-like
gates built on top of GTG gates [5],[6],[8]. This allows us to
obtain significant reductions in terms of elementary gates that
are directly realizable in ion trap technology.

The paper is organized as follows. In Section I I we describe
some previous work in multi-valued logic. Section 111 covers
the fundamentals of multi-valued logic along with some key
definitions. Section IV introduces some basic temary

Marek Perkowski
Dept. of Electrical and Computer Engineering
Portland State University, Portland, OR 97207

ngerkowsC?ee.Ddx.edu

quantum circuits. The general model for synthesizing multi-
output ternary functions is given in Section V. Section VI
provides details on our CA. Section VI1 discusses a new
feature of our approach - synthesis of incompletely specified
functions and Section VI11 the expenmental results. Section
IX concludes the paper and Section X presents future work.

11. PREVIOUS WORK
In 2000, Muthukrishnan and Stroud [I] developed multi-
valued logic for multi-level quantum computing systems and
showed their realizability in linear ion trap devices. However,
this approach produces circuits that are too large and no
procedure was proposed to minimize them. In 2002, Brylinski
and Blylinski [2] discussed the universality of n-qudit gates
without giving any design algorithm Since 2001, AI-Rabadi
and Perkowski [3],[4], and Khan et al [5],[6] proposed Galois
Field approach to multi-valued quantum logic synthesis in
several regular stmctures. They used gates that are temary
counterparts of classical binary Feynman and Toffoli gates,
but no experimental data were given. De Vos [7] proposed
two temary 1‘1 gates and two ternary 2*2 gates, but again no
synthesis method was proposed. In 2002, Perkowski, Al-
Rabadi, and Kemtopf [8] proposed a 2’2 Generaliz~d Ternary
Gate (GTG gate) based on the temary conditional gate [I] and
ternary shift gates [5],[6] and showed the realization of
ternary Toffoli gate using GTG gates. This work introduced
for the first time the practical realizability of Galois Field
circuits in existing multi-valued quantum technology.
Unfortunately, very little has been published on synthesis
algorithms for multi-valued quantum circuits. More
importantly, there is nothing published on synthesizing
incompletely specified multi-output circuits, which is the
problem dealt with in this paper.

111. FUNDAMENTALS OF MULTI-VALUED QUANTUM
LOGIC

In multi-valued (MV) Quantum Computing (QC), the unit of
memory (information) is qudit. MV quantum logic operations
manipulate qudits, which are microscopic entities such as a
photon’s polarization or atomic spin. Ternary logic values of
0, I , and 2 are represented by a set of distinguishable different
states of a qutrit. These states can be a photon’s polarizations
or an elementary particle’s spins. AAer encoding these
distinguishable quantities into multiple-valued constants,
qutrit states are represented by 10). 11). and 12),
respectively.

0-7803-8515-21041520.00 02004 IEEE 2194

http://mhakan(?ewubd.edu
http://ngerkowsC?ee.Ddx.edu

Qudits exist in a linear superposition of states, and are
characterized by a wavefunction y . As an example (d = 2) ,
it is possible to have light polarizations other than purely
horizontal or vertical, such as slant 45’ corresponding to the

linear superposition of y = [&IO) + fill)]. In t e m q
2

logic, the notation for the superposition is a10)+ p(1) + y(2) ,

where a, p, and y are complex numbers. These intermediate
states cannot be distinguished, rather a measurement will
yield that the qutrit is in one of the basis states, IO) , [I) , or

12) , The probability that a measurement of a qutrit yields

state 10) is lal’, state 11) is lpl‘, and state (2) is IyI‘. The
sum of these probabilities is one. The absolute values are
required since, in general, a, p and y are complex quantities.
Pairs of qutrits are capable of representing nine distinct
states,100), ~ o I) , 102), 110). I l l) , 112)~ 124 ,]21),

and [2 2) , as well as all possible superpositions of the states
This property may be mathematically described using the
Kronecker product (tensor product) operation 0 [9]. The
Kronecker product of matrices is defined as follows:

As an example, consider two qutrits with

When the two qutrits are considered to represent a state, that
state y,, is the superposition of all possible combinations of
the original qutrits, where
cvl i = v , @ Y , = a , a ,) 0 0) + a , P ,) o l) + a , ~ , l 0 2) + P , n , l l O)

+ P , P ~ I I I) + P,y,ll2)+ y,a,120)+ y,P,IZI)+ Y , Y , I ~ ~)
Superposition property allows qubit states to grow much
faster in dimension than classical bits, and qudits faster than
qubits [I]. In a classical system, n bits represent 2” distinct
states, whereas n qutrits correspond to a superposition of 3”
states. In the above formula some coefficient can be equal to
zero, so there exist a constraint bounding the possible states in
which the system can exist. As observed in [I] - “Allowing d
to be arbitrary enables airadeoff between the number of
qudits making up the quantum computer and the number of
levels in each qudit”. An output of a gate is obtained by
multiplying the unitary matrix of this gate by the vector of
Hilbert space corresponding to this gate’s input state. A
resultant unitary matrix of arbitrary quantum circuit is created
by matrix or Kronecker multiplications of matrices of
composed subcircuits. These all contribute to difficulty in
understanding the concepts of quantum computing and
creating efficient analysis, simulation, verification and
synthesis algorithms for QC. Generally, however, we believe
that much can be learned from the history of Electronic
Computer Aided Design as well as from MV logic theory and
design, and the lessons learned there should be used to design
efficient CAD tools for MV quantum computing.

= Y , l ~) + D , ~ Q + , , lz)and Y, =a,10)+f1211)+Yi12).

In terms of logic operations, anything that changes a vector of
qudit states to another qudit satisfying measurement
probability properties can be considered as a quantum
operator (unitary matrix). These phenomena can be modeled
using the analogy of a “quantum circuit”. In a quantum
circuit, wires do not carry ternary constants but correspond to
3-tuples of complex values, a, p, and y. Quantum logic gates
of the circuit map the complex values on their inputs to
complex values on their outputs. As mentioned, operation of
quantum gates is described by matrix operations. Any
quantum circuit is a composition of parallel and serial
connections of blocks, from small to large. Small blocks
correspond to directly realizable quantum gates such as
Feynman or Stroudhluthukrishnan gates. Serial connection
of blocks corresponds to multiplication of their (unitary)
matrices. Parallel connection corresponds to Kronecker
multiplication of their matrices. So, theoretically, the analysis,
simulation and verification are easy and can be based on
matrix methods. Practically they are tough because the
dimensions of the matrices grow exponentially. All these
become much easier when one deals only with permutative
matrices, which are equivalent to multi-output tmth tables of
completely specified functions. We deal with such a special
class in this paper.

IV. SOME TERNARY PERMUTATION QUANTUM
GATES
Any unitary matrix represents a quantum gate. If a unitary
matrix has only one I in every column and the remaining
elements are 0, then such a matrix is called a permutation
matrix. A quantum gate represented by a permutation matrix
is called a permutation qunntum gate. In this paper we
concentrate only on permutation quantum gates.
Figure I shows a 2*2 temary Fqnman gate. Here A is the
controlling input and B is the controlled input. The output P is
equal to the input A and the output Q is GF3 sum of A and B.
Observe that GF3 sum is the same as modulo 3 sum. If
B = 0 , then Q = A and the temary Feynman gate acts as a
copying gate. The temary 2-2 Feynman gate is practically
realizable, for instance see [I] .
Six l* l ternary shiflgafes are proposed in [5 , 6] . Operations

B

Figure 1.2‘2 temary F e y ” gate.

Self-Dual-Shifl I Z+I. = 2 x + 2 1 5

’Addition and multiplication aye over GF3.

Figure 2. Tema~y shifl gates.

2195

and symbols of these gates are shown in Fig. 2. These gates
are realizable using temary quantum Feynman primitive [S,
61.

A shift gate is said to be a mirror gale of another shiR gate if
the mirror gate is connected with the output of the original
shift gate, then the input signal is restored. The mirror gates
for all the shift gates are shown in Figure 3.

Original shift gate Mirror gate ,piq$iji
+ +
-D- +-

Figure 3. Mirror gates.

A very useful 2.2 gate called Generalized Ternary gate
(GTG gate) is proposed in [8] as shown in Figure 4. Here,
input A is the controlling input and input B is the controlled
input. The output P is equal to the input A. The controlling
input A controls a conceptual temary multiplexer (a
conditional gate) that can be realized using quantum
technology such as ion traps [I]. If A = 0 , then the output Q
is the x shift of the input B . Similarly, if A = 1 , then the
output Q is they shift of the input B and if A = 2 , then the
output Q is the z shift of the input A. Here shift means all
ternary shift operations including the Buffer (simple quantum
wire). As the Conditional gate and the Shift gates are
realizable in quantum technology, the GTG gate is a truly
realizable ternary quantum gate.

x shift of Bif A = 0
Q = y S h i f t o f B i f A = I :gp=i 2 shift of Bif A = 2

wherex,y,zt{0.1,2,3.4,5)
are ternary shin operations

Figure 4. 2'2 Generalized Temary gate.

For the purpose of this paper we assume that the GTG gate
can be controlled from both top and bottom as shown in
Figure 5 .

B B @ Q

A P = A
(b) Control from bottom (a) Contml from top

Figure 5 . Two different farms of controlling a GTG gale.

It should be noted that if x = y = z = 0 , then for all values
of A, Q = B and the GTG gate eventually becomes
equivalent to WO parallel wires as shown in Figure 6(a).
Again, if A = 0 and x = 0 as in Figure 6(b); if A = 1 and
y = 0 as in Figure 6(c); and if A = 2 and z = O as in
Figure 6(d), then the GTG gate also becomes equivalent to
two parallel wires.
A very useful gate for multiple input circuit synthesis is a 3*3
Toffoli gate as shown in Figure 7. Design of GFSOP (Galois
Field Sum of Products) arrays and factorized arrays is based
on these gates. These arrays are the multiple-valued
counterparts of well-known binary ESOP (Exclusive Sum of
Products) and factorized ESOP cascades. Here the inputs A
and B are the controlling inputs and the input C is the
controlled input. The output P is equal to the input A, the
output Q is equal to the input 8, and the output R is equal to
A * B + C , where and + are GF3 multiplication and
addition, respectively. :a:::: ;$$J:::

la-P=l (4 2 a p = 2 (b)

B - Q = S B Q = S

(4 (4

Figure 6. Same configurations afGTG gate that act BS WO parallcl
wires.

:z=;B+c C-

Figure 7.3.3 Toffoli gate

A generalized Ternary Toffoli gate is proposed in [6] as
shown in Figure 8, where f, is an arbitrary ternarv function

of the input variables A, , A,, .'. , A,. Here, there are k
controlling inputs and n controlled inputs.

=arbitrary function of

Pt., = f, + 4.)
A.." - e,. =/, +A,*.

Figure 8. A gcneralized ternary Toffoli gate

Any m*m (m > 2) gate is very difficult to realize in quantum
technology, since interaction of more than two particles is
nearly impossible to control. Therefore, these gates should be

2196

Wim No

n

2

S

C

I
j 21310 I IW12 1 2ln4n

z-shin, y-shifl, ~~~~~i~ Kprescnlatlon or ro~umnr (conuoiied wiE ~ ~ ~ v o i i i n g "0,
1-shin)

Figure IO. Realization of tcmary half-addcr function C(A, 5) = [o, 0, 0, 0, 0,1,0,1, 11' and

S (A , 5) = 10, I, 2,1,2,0, 2, 0, I]' using a cascade of GTG gates.

Table 1. Number of GTG
gates and scratchpad register
width (separated by commas)
for tcmary half-addcr
funclion generated by the CA
far different values of
papulation size (P),
chromosome length (L).
crossover probability (PC),
and mutation probability
(PM). An empty entry
represents that lhe GA did no1
find a correct Circuit within
500,000 gencrstions.

-

important role.(In generalreversible logic these gates may
have zero cost since any two wires can overlap). The
schematic of a ternary swap gate is shown in Figure 9. realized from 1 * I and 2'2 gates. As the ternary Feynman

gate and GTG gate are relatively easy to realize, they are
treated as primitive gates for realizing other gates. A
generalized Toffoli gate is realizable from 1'1 Shift gates,
2'2 Feynman gate, and 2.2 CTG gate as discussed in
Section IX. Quantum technologies do not allow wire Figure 9. Temary swap gale.

crossing. In those technologies, swap gate plays an

2197

V. GENERAL MODEL OF SYNTHESIZING
MULTI-OUTPUT TERNARY FUNCTIONS

USNG CASCADES OF GTG GATES
Realization of temary half-adder function

C (A , B) =[O, O,O, O,O, 1,0, I , I]' and

S (A , E) = [0, 1,2,1,2,0,2,0, I]' using a cascade of GTG
gates is shown in Figure I O . Signal values at all intermediate
wires are shown as maps to verify the correctness of the
circuit. In this realization we assumed the following:

(I) A GTG gate can be controlled either from top or from
bottom.

(2) A limited vertical wire crossing for the controlling
signals of GTG gates is allowed.

(3) Constant input signals 0, I , or 2 are added as needed.
(4) Output may he realized along any primary input line

or any constant input line.
(5) Each of the GTG gate form a column where the

remaining lines represent quantum wires. The columns
are cascaded to realize the circuit.

VI. PROPOSED GENETIC ALGORITHM
A. Problem encoding
In the proposed genetic algorithm (GA) we use the model of
synthesizing multi-output temary function using cascaded
GTG gates as discussed in Section IV. In this circuit model,
for initial input to the CA, we add three constant input signals
0, I , and 2 for up to m 5 n + 3 outputs, where n is the
number of inputs. For every increment of 3 or less outputs, we
add additional 3 constant input signals 0, I , and 2. For
example, if the function has 2 inputs and 6 outputs, then we
add 6 constant input signals 0, 1, 2, 0, I , and 2. Then after
convergence of the GA we eliminate the unused constant
input signals from the final circuit. Initially we take 3" or
2x3" or 3 x 3 " columns (chromosome length) as the input
to the CA. After convergence of the CA we eliminate a
column having all wires (i. e. a column having a GTG gate
representing two parallel wires) and other redundant columns
as described in Subsection VI. F.
The primary input lines and the constant input lines are
numbered starting from 0 as shown in Figure IO. Each of the
columns of the circuit is represented by an ordered tuple of
controlled wire no, controlling wire no, x-shift, y-shift, and z-
shift of the associated GTG gate as shown in Figure IO. Using
this notation the chromosome representing the circuit of
Figure 10 is as shown in Figure 11 (these are strings of
characters and not integers). Here each column of the circuit
is a gene of the chromosome. In this problem encoding of the
genotype (chromosome) ties very closely with the phenotype
(actual circuit).

B. Fitness function
In the proposed CA, we tried to reduce the cost of the resulting
circuit by (i) reducing the number of wires in the circuit (the
width of the scratchpad register), i. e. increasing the number of
unused constant input lines, (ii) reducing the number of non-

wire columns, i. e, increasing the number of wire columns, (iii)
reducing the number of non-buffer shift gates, i. e. increasing
the buffer gates in the non-wire columns. For this reason we
used four components of the fitness function as discussed
below.
Output fitness: The output fitness is defined as follows:
Individual output fitness, Oi = (if output i is realized along any
wire, then 1, othenvise 0) + highest number of truth values
realized along any wire/ 3"

Total output fitness, 0 = 2 0, , where m is the number of

outputs in the function.
For testing the output fitness, we compute the resulting truth
vector for all wires and then the best fit wire is selected for a
given output i.
Width fitness: The scratchpad width fitness is defined as
follows:
W = Number of unused constant input IinesNumber of
constant input lines.
Column fitness: The column fitness (or cascade length fitness)
is defined as follows:
C= Number of wire columns/length of the chromosome, L.
Shift-gate fitness: The shift-gate fitness is defined as follows:
S = Number of buffer gates in the non-wire
columnsl3xNumher of non-wire columns.
In the current quantum technologies the scratchpad width is a
major limitation. Therefore, if we can reduce the width of the
circuit, it will he more favorable. So, we give more selection
pressure on width fitness. Reducing the number of columns
will reduce the cost of the circuit. So, we give moderate
selection pressure on column fitness. Finally, reducing the
number of non-buffer shift gates also reduce the cost of the
circuit to some extent. So, we give less selection pressure on
shift-gate fitness. Considering all these factors, we define the
fitness function as follows:

From the fitness function, we can see that the value of O S W +
0.4C + 0.1s will always be less than I . On the other hand,
when all them outputs are realized, then the value of 0 will be
2m. Therefore, the threshold fitness value is 2m, that is, if the
fitness of a chromosome is greater than 2m, then that
chromosome is a solution for the given function.

/=I

F.= O + 0 . 5 W + 0 . 4 C + 0.1s

C. Type of CA
As the model of our circuit svnthesis (see Section V) is not
well structured, we want to mike sure that the best solutions
found are not lost in the successive generations. Therefore, we
use the steady-state C A [U]. We use gene repair, binary
toumament selection and elimination of redundant columns
(knowledge-based local transformation).

D. CA operators andparometers
We experimented with different values of population size (P).
chromosome length (L) , crossover probability (Pc), and
mutation probability (PM) for synthesizing temary half-adder
and we have donc replicate trials for each parameter settings.
The influences of these parameters are shown in Table 1. From
Table I , we see that a wide range of population sizes yield
good solutions. Therefore, in our other experimentation. we
used population sizes of 100,200, 300,400, and 500.

2198

In the experimentation of Table 1, we used chromosome length
(number of columns) of 3" , 2 x 3" , and 3x 3" (that is, 9,18,
and 27). From the table, we see that chromosome length of
2 x 3" and 3 x 3" yield good solutions. Therefore, in our other
experimentation, we used chromosome length of 2 x 3 " and
3 x 3 " .
In our GA we use binary tournament selection with
replacement for selecting the parents. One-point crossover
was used and, as shown in Table I , crossover probabilities of
0.6, 0.7,0.8,0.9,and 1.0allyieldedgoodresults.

We mutated each column (or gene) of the offspring with a
given low mutation probability (P.,,). In this mutation we
replaced the column by a randomly generated column. In our
experimentation illustrated in Table I , we used mutation
probability of 1IL and 2/L, where L is the chromosome length,
and we see from table that both of these two mutation
probabilities yield good results. Our GA seemed to be not
much sensitive to crossover and mutation probabilities, so we
concentrated on repair which had big influence on results
quality. However, further studies need to be done on influence
of various parameters and other genetic operators.

E. Repair operation
From the circuit model of Figure IO, we see that, in the gene
representation of a column, the wire numbers representing the
controlled signal and the controlling signal should be different.
But if, during random generation of the individuals of the
initial population or after mutation of offspring, both the wire
numbers of a gene become same, then we make that column
representing wires by setting x = y = z = 0 . The motivation
behind this repair operation is to reduce the number of non-
wire columns in the final solution. As our circuit model
initially starts with an arbitrary length, reducing the number of
non-wire columns will improve the quality of the solution, For
example, i fa gene is I1012, then we make it 11000.

F. Elimination of redundant columns
In the solution produced by the GA, some of the columns will
be wire-columns. We eliminate all such wire-columns from the
solution to get the final solution. But, even afler elimination of
these wire-columns some of the remaining columns may still
be redundant. For example, a GA may produce (after the wire-
columns have been eliminated) the circuit of Figure 12 for
ternary half-adder function. The third and the sixth columns
from the left are redundant, because they modify the garbage
outputs [131. Therefore, we also eliminate these redundant
columns from the solution to get the final solution.

For a given function, we performed a number of experiments
using different values of population size (P), chromosome
length (L), crossover probability (Pc), and mutation probability
(Pd as stated above. We eliminated redundant columns from
all these solutions. Then we selected the best solution from
these experiments as the final solution for the given function.
The circuit of Figure 10 is thus derived for temaq half-adder
function.

Figure 12. Temary half-adder circuit with redundant
columns.

VII. SYNITHESIS OF INCOMPLETELY
SPECIFIED MULTI-OUTPUT TERNARY

FUNCTIONS
For synthesizing an incompletely specified multi-output
temary function, we used the same GA as discussed in
Section VI, except the output fitness is calculated differently
because don't cares are ignored. Now, the truth vectors of a
wire and the output function are compared only for cares.
Interestingly, this allows to simplify functions with more
wires faster, when the percent of don't cares is high. We
experimented with a randomly generated 2-input 3-output
incompletely specified function

F, (A, 5) = [I, 2,3,2,3,3,2,0,21', and

F, (A , E) = [0, 0 ,3 ,0 ,3 ,1 , 2, 2, Z I T , where a 3 represents a
don't care output. The resulting circuit is shown in Figure 13.
In the figure, intermediate signal values are shown as maps to
verify the correctness of the circuit.

F, (A, 4 = [3 , Z 1,3,1,3,2,0, 1IT,

B

2 1 2 I

B o 1 2 8 0 1 2 B o 1 2 &" 2 2 0 2 2 2 1 2 2 2 2 2

Figure 13. Circuit realizing an incompletely
specified function
F,(A, B) = [3,2, 1,3,1,3,2,0, U',
q(A,B)=T1,2,3,2,3,3,2,0,2]',and
F , (A , B) = [0 , 0 , 3 , 0 , 3 , 1 , 2 , 2 , 2] T

VIII. EXPERIMENTAL RESULTS

2199

We have written C ‘program to implement the proposed CA.
We performed experimentation with some multi-output
completely and incompletely specified ternary functions and
the results are given in Table 2 . Using the algorithm we were
able to find better solutions to some known circuits and the
program “discovered” new realizations of some known gates
such as swap which had very inefficient realizations [5],[6],[8].
Synthesis of gates such as Toffoli and Swap is especially
important because of the role that they play in other methods.

For synthesis of generalized ternary Toffoli gate, we assumed
that the controlling function of Figure 8 is f, = A, A , . . . A , .
This type of generalized temary Toffoli gates are very useful
for realization of GFSOP cascades. For synthesizing a
generalized ternary Toffoli gate of this type, we first realize the
controlling function f, = A, A, . . . A , as a cascade of GTG
gates using OUT GA and then the controlled outputs are realized
using temary Feynman gates. To restore the primary inputs and
the constant inputs mirror GTG gates are used. Here we use the
same GA as discussed in Section VI, except that the controlling
function f, = A , A , “ ‘ A , is realized along any constant input
wires. We experimented with a generalized ternary Toffoli gate
with 2 controlling inputs and 2 controlled inputs. The resulting
circuit is shown in Figure 14. In this figure, the left four
columns generate the controlling function AB along the
constant input signal 2 and the right four columns are the
mirror columns that restores the controlling inputs A and B and
the constant input 2 . Intermediate signal values are shown as
maps to verify the correctness of the circuit. We synthesized
ternary swap gate using cascade of GTG gates using our GA as
discussed in Section 6 , except that no constant input is used
and the outputs are resmcted to their corresponding wires. The
resultant circuit is shown in Fig. 15.

IX. CONCLUSIONS
GTG gate was proposed in [SI without giving any synthesis
algorithm. In this paper we prpose a GA for synthesizing both
completely and incompletely specified ternary functions using
cascade of GTG gates. Generalized ternary Toffoli gate and
ternary swap gate were synthesized. The generalized temary
Toffoli gate realization proposed in [8] requires 10 GTG gates,
whereas the realization of this paper requires 8 GTG gates.
Similarly, previous best design of ternary swap gate had 4
Feynman gates and one I-qubit permutative gate. The new
design has only 3 GTG gates and is very elegant, it has the
same symmetry as the well-known design of Swap from
Feynman gates in binary, so we can say that the GA has done
certain ‘‘discovery”. Other circuits are realized using cascade of
GTG gates for the first time and, therefore, cannot be compared
with other results.

X. FUTUREWORK
Future research is further improvement of the GA to a broader
class of evolutionary algorithms (larger tournaments, restart
with new parameters when stacked in local minimum, new
crossover and mutation operators, local search [13], memetic
algorithms). We will be also developing GA for synthesizing
both completely and incompletely specified multi-output
ternary function using cascade of both 2’2 GTG gates and 2’2
ternary Feynman gates. (Feynman gates are linear, although
Feynman gate is a special case of GTG gate, it is treated in a

special way as seen in rows 7,s of Table 2) . Similarly 21s in
[13], we will add powerful local transformations of circuits
based on ternary quantum identities, to decrease the cost of the
synthesized cascades. In binary quantum the improvements of
costs are sometimes as dramatic as 300% [13], which
demonstrates that it is a good idea to combine evolutionary and
algorithmic rule-based approaches into one working program
for quantum circuits synthesis.

REFERENCES
A. Muthukrishnan, and C. R. Straud, Jr., “Multivalued
logic gates for quantum computation”, Phys. R a t . A.
Vol. 62,No. 5,Nov. 20Mf,052309/1-8.
J. L. Brylinski and R. Brylinski, “Universal Quantum
Gates”, Math. o/ Quantum Comp., CRC Press, 2002,
LANL e-print quant-phl010862.
A. AI-Rabsdi, “Novel Methods for Reversible Logic
Synthesis and Their Application to Quantum
Computing”, Ph. D. Thesis, PSU, Portland, Oregon,
USA, October 24,2002.
A. AI-Rabadi and M. Perkowski, “Multiplc-Valued
Galois Field SID Trees for GFSOP Minimization and
their Complexity”, Proc. 31sr ISMVL. Warsaw, Poland,
May22-24.2001,pp. 159-166.
M.H.A. Khan, M.A. Pcrkowski, and P. Kemtopf,
”Multi-Output Galois Field Sum of Products Synthesis
with New Quantum Cascades”, Proc. 33d ISMVL,
Tokyo, May 16-19,2003, pp. 146-153
M.H.A. Khan, M.A. Perkowski, M.R. Khan, and Y.
Kcmtopf, “Temary GFSOP Minimiation using
Kronecker Decision Diagrams and Their Synthesis with
Quanmm Cascades’: Submitted to J. Muliiple-Volued
Logic and So/? Computing
A. De VO:~, B. Raa, and L. Storme, “Generating L e
group of reversible logic gates”, J. Physics A:
Morhemarical and General, Vol. 35, 2002, pp. 7063-
7078.
M. Perkowski, A. AI-Rabadi, and P. Kemtopf,
“Multiple-Valued Quanmm Logic Synthesis”, Pmc. o/
2002 hi. Symposium on New Porodigm VLSI
Compuring. pp. 4147. Sendai, Japan, Dccembcr 12-14,
2002
Nielsen and 1. Chuang, Quantum Compuiorion and

Quantum Information, Cambridge University Press,
2000.
M. HiNensalo, “Quantum Computing,” Springer

D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Leaming, Addison Wesley,
1989.
P. Mazumder and E.M. Rudnick, Generic Algoriihmr
for VLSI Deign, Loyour & Tesi Auromniion, Pearson
Education Asia, 2002.
M. Lukac, M. Perkowski, H. Goi, M. Pivtoraika, C.H.
Yu, K. Chung, H. Jee, B-G. Kim, and Y-D. Kim,
“Evolutionary approach to Quantum and Rcversiblc
Circuits synthesis”, Artificial Intelligence Review, 20,
pp 361417,2003. Kluwer Academic Publishers.
Y. 2. Ge, L. T. Watson, and E. G. Collins, “Genetic
algorithms for optimization on a quantum computer,”
In Uneonvenrional Models of Compuroiion, pp. 218-
221. Spnngcr Verlag, London, 1998.
C.W. Williams, A.G. Giay, “Automated Design of
Quantum Circuits”, ETC Quantum Computing and
Quantum Communication, QCQC ‘98. Palm Springs,
California, February 17-20, Springer-Verlag. pp. 113-
125, 1999.

Verlog, 2001

2200

[la] C.P. Williams, and S.H. Cleanvater, “Explorations in algorithm using genetic programming. ” Proc. 1999
Quantum Computing”, Springer-Verlog. New York Congress on Evolutionnry Compulation, Vol. 3, pp.
Inc. (1998) 2239-2246, Washington DC, 6-9 July 1999, IEEE,

quanhlm circuit dcsign, evolving a simpler telepottation K-H Han, J-H Kim, Quantum-inspired evolutionary
circuit.” In Lore Breokiw Pnocrs at the 2000 Genetic aleorithm for a class of combinatorial adimizatian.

[I71 T. Yabuki and H. lba. ”Genetic algorithms and Piscataway, NJ.
1191

Function

I .
and Evolulionnry Computotion Conference, pp. 42 I -
425,ZOW.
L. Spector, H. Bamum, H.J. Bemstein, and N.Swamy,
“Finding a better-than-classical quanhlm AND/OR

[IS]

In Out No. of GTG Scratchpad No. ofadditional
gates width Feynman gates

I

IEEE Trons. Evolulionory Computotion, 6 (6): pp. 580-
593,2002.

md2: C(A,B)=intrAB/31, M(A,B)=ABmod3 I I 1 8 4

Table 2. Number of GTG gates, scratchpad width, and number of additional Fcynman gates required for realizing some multi-output
temary functions.

0

sumz. F (A , B) = (A + B) m o d 3 2 1 2 3 0

S U ~ : F(A, B, C) = (A + E + C) mod 3 3 1 2 3 0

qsumt: F (A , B) = (A ’ + E 2) m o d 3 2 1 2

SV@: F(A, B) = int[(A+ B) l 2] m o d 3 2 1 3

gttgtz (gencralized temary Toffoli gate): P = A , Q = B , 4 4 8

gttg33 (gcneralizcd temary Toffoli) gate: P = A , Q B , 6 6 30
R = A B + C , S = A B + D

R = C . S = ABC + D . T = A B C + E .

@@@@ 0 1 1 , 0 0 1 0 0 0 1 2 0 0 0 0 @@”#tigo# O O l O 0 0 1 2 0 1 1 , 0 2 2 2
1 1 1 1 , 0 1 0 1 2 0 1 1 0 1 1 1 0 1 0 1 0 1 2 I I 1 1 1 2 2 2
2 0 0 0 2 1 2 1 2 1 2 0 2 0 2 1 2 , Z l 2 0 1 2 2 0 0 0 2 2 2 2

3 0

3 0

5 2

8 3

C

D

R = I B + C

W S = ” B + D

Fig. 14. Gcneralized Tcmary Toffoli.

U = ABC+ F
tsg (ternary swap gate): P = B , Q = A
Randomly generated incompletely specified function:

F, (A, B) = [3 , L 1,3,4 3, L O , 1 l r ,

A B o I 2 A-Qo 1 2 “ B O I 2)j$;?g.:yq
2 1 0 2 2 2 2 2 2 0 1 2

2 2 3 2 0

2 3 5 3 0

Fig.15. Realization afTemary Swap gatc

220 1

