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Abstract

A set of p-valued logic gates (primitives) is called 

universal if an arbitrary p-valued logic function can be 

realized by a logic circuit built up from a finite number 

of gates belonging to this set. In the paper, we consider 

the problem of determining the number of universal 

single-gate libraries of p-valued reversible logic gates 

with two inputs and two outputs under the assumption 

that constant signals can be applied to arbitrary number 

of inputs. We have proved some properties of such gates 

and established that over 97% of ternary gates are 

universal. 

1. Introduction 

The universality (or completeness) of sets of binary 

and multiple-valued functions and related problems have 

been studied for many years and by many researchers 

(the survey [26] published in 1977 contains 464 

references). The research has been conducted in three 

areas: propositional calculus of logics, universal algebras 

and logic (switching) circuits. 

The universality of logic gates (primitives) depends 

on the technology because it has to take into account 

some additional constraints. It may differ from the 

notion of functional completeness studied by 

mathematicians and for this reason sometimes is called 

elemental universality [11]. This area has been gradually 

evolving. Initially, it dealt exclusively with delay-less 

combinational circuits [18]. Later, delays have also been 

taken into account as well as universality of sequential 

primitives was considered (including asynchronous 

behavior) [21, 11]. With technological changes new 

types of universality have been introduced, e.g. 

corresponding to double-rail circuits [12]. 

Although studies of reversible computing were 

initiated in the 1960s [17, 2] and a number of universal 

reversible logic gates have been proposed, general 

problems of universality of such gates have attracted the 

attention of researchers only very recently. Few papers 

have been devoted so far to universality of reversible 

gates and they consider almost exclusively binary gates 

[28, 7, 13]. In this paper, we are concerned entirely with 

universality of general multiple-valued reversible gates. 

Such MV gates are experimentally feasible in the 

context of the ion trap scheme for quantum computing 

[19]. 

A gate (or a circuit) is called reversible if there is a 

one-to-one correspondence between its input and output 

assignments, i.e. not only the outputs can be uniquely 

determined from the inputs, but also the inputs can be 

recovered from the outputs. In other words, a gate is 

reversible if it is information-lossless (or invertible). 

Using reversible logic circuits enables avoiding energy 

losses in digital devices [17, 10, 2, 5, 6, 9]. It is a fast 

developing area of research due to its increasing 

importance to future computer technologies, especially 

quantum ones [8] because of possibility to solve some 

exponentially hard problems in polynomial time [3]. 

During the last four years over 40 papers have been 

published on reversible computing, some of them 

proposing new multiple-valued gates [25, 23, 7, 1, 22, 24, 

14, 15]. To solve the important practical problem of 

designing circuits built from such gates we should first 

establish which multiple-valued gates are universal. 

Let us call a gate with n inputs and m outputs an n*m-

gate. Some of the binary reversible gates considered in 

the literature have different number of inputs and outputs, 

e.g. 2*3 “switch gate” and 2*4 “interaction gate” [10] 

(also considered earlier as magnetic bubble logic gates 

[16, 27]). However, usually it is assumed that a reversible 

gate has the same number of inputs and outputs. 
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The output rows of the truth table of a reversible gate 

can be obtained by permutation of the input rows. Thus, 

there are equal numbers of all values in the function 

vector (the column in the truth table of a gate) for each 

output function of a reversible gate. Functions having this 

property are called balanced [4]. 

Universality of general reversible gates differs from 

classical elemental universality because in reversible case 

(1) most gates are multi-output instead of only one-

output gates, 

(2) a constant signal may be applied to an arbitrary 

number of inputs, 

(3) fan-out of each output of reversible gates is equal 

to 1. 

Thus we have to consider 

(1) universality of sets of functions instead of single 

functions, 

(2) weak completeness instead of strong 

completeness, 

(3) gates having the property of replicating input 

signals at the gate outputs. 

Compositional properties of binary and multiple-

valued reversible gates are different. There exist single 

universal binary reversible k*k gates only for k > 3 [29]. 

It is so because the set of 2-variable balanced Boolean 

functions is equal to {EXCLUSIVE-OR, 

EQUIVALENCE} and that set is not weak complete. 

Over 97% of binary reversible 3*3 gates and almost 

100% of reversible 4*4 gates are universal [13] in spite of 

the reversibility constraint. However, in contrast to binary 

logic, there exist ternary 2*2 gates that are universal. The 

number of ternary reversible 2*2 gates is 9 times greater 

than the number of binary reversible 3*3 gates (9! in 

comparison with 8!). Thus, one could expect that the 

percentage of universal gates among all ternary 2*2 gates 

is smaller than in the binary case for 3*3 gates. For 

establishing universality of a binary reversible gate it is 

sufficient to check weak completeness of the set of the 

gate output functions. Namely, it has been proved in [13] 

that all gates with this property can duplicate input 

signals. This result does not hold for multiple-valued 

reversible gates. For this reason we have introduced a 

new property of gates called quasi-replicating. Using this 

notion it was possible to obtain results allowing 

experimental estimation of the number of universal 

ternary reversible 2*2 gates. We have established that 

over 97% of such gates are universal. 

The rest of the paper is organized as follows. In 

Section 2, basic notions of reversible gates are defined. 

Section 3 introduces the notion of universality of p-

valued reversible gates (called r-universality, in short) 

and presents results of counting the number of r-universal 

ternary reversible 2*2 gates. Finally, in Section 4, 

conclusions are made. 

2. Preliminaries 

Let P = {0,1, … , p-1}. A mapping f: Pn P will be 

called an n-variable p-valued function. If p=3, then f is 

called ternary. To represent a ternary function f(x) we 

use the vector of the function values written as a string. 

For example, a 1-variable function will be represented 

by a0 a1 a2, where ai = f(i), and the identity function f(x) 

= x by the string 012. Similarly, to represent a 2-variable 

ternary function f(x1,x2) the string a0 a1 a2 a3 a4 a5 a6 a7

a8 will be used, where f(j,k) = a3j+k. For example, the 

function  f(x1,x2) = x1+x2 (mod 3) will be represented by 

012120201.

Definition 1 A set F of p-valued functions is 

- complete (strong complete, Sheffer) if an 

arbitrary p-valued function f(x1,…,xn) can be 

realized by a loop-free combinational circuit built 

up of logic gates realizing functions from F and 

using x1, ... ,xn as primary inputs, 

- weak complete (complete with constants, pseudo-

Sheffer) if an arbitrary p-valued function 

f(x1,…,xn) can be realized by a loop-free 

combinational circuit built up of logic gates 

realizing functions from F and using 0, 1, … , p-

1, x1, ... ,xn as primary inputs. 

Definition 2 Let wi(f) denote the number of input 

assignments X for which f(X) = i. An n-variable p-valued 

function f is called balanced iff wi(f) = pn-1 for each i, i.e. 

f is equal to each value belonging to the set {0,1, … , p-1}

the same number of times.

There are six 1-variable balanced ternary functions. 

They are represented by strings 012, 021, 102, 120, 201, 

210 and corresponds to S3, the symmetric group on three 

marks. The function f(x1,x2) = x1+x2 (mod 3) is one of 

1,680 2-variable balanced ternary functions. 

Definition 3 A p-valued gate (or a circuit) is reversible iff

there is a one-to-one correspondence between the input 

and the output assignments, i.e. if in the truth table of the 

gate (or the circuit) there is a distinct output row for each 

input row. 

Note that every output function of a reversible gate is 

balanced and that the reversibility property of gates is 

preserved under permutations of inputs and/or outputs. 

We will consider only the gates with the same number of 

inputs and outputs. 

A gate with k inputs and k outputs will be called a 

k*k-gate. There exist six ternary reversible 1*1 gates 

(they have the same truth tables as 1-variable balanced 

ternary functions). As mentioned earlier, only 1,680 out 

of 39 =19,683 2-variable ternary functions are balanced. 
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The number of pairs of balanced ternary functions is 

equal to 1,6802 = 2,822,400. However, not every pair of 

balanced functions may appear in a ternary reversible 2*2 

gate (see Example 1). Namely, the number of ternary 

reversible 2*2 gates is equal to 9! = 362,880 (the number 

of permutations of  nine rows in the truth table of a 

ternary reversible 2*2 gate). 

Definition 4 Two balanced p-valued functions f, g are 

called r-compatible if for all input assignments (a1, … , 

an) the pairs of their values <f(a1,…,an), g(a1,…,an)> are 

equal the same number of times to each of the pairs <j.k>,

0 < j,k < p-1.

Example 1 Let the capital letters A, B denote inputs, and 

P, Q denote outputs of a ternary reversible 2*2 gate. 

Table 1 shows an example of a pair of balanced functions 

that are not r-compatible. Namely, in the output rows of 

Table 1 each of the pairs <0,0>, <1,2> and <2,1> appears 

twice, each of the pairs <0,1>, <1,0> and <2,2> appears 

once, while the pairs <0,2>, <1,1> and <2,0> are missing. 

Table 1. Pair of ternary balanced functions that are not 

r-compatible 

A     B P     Q 

 0     0 

 0     1 

 0     2 

 1     0 

 1     1 

 1     2 

 2     0 

 2     1 

 2     2 

   0     0 

   1     2 

   1     0 

   0     1 

   1     2 

   0     0 

   2     1 

   2     1 

   2     2 

Lemma 1 Two functions belonging to the set of output 

functions of a p-valued reversible gate are r-compatible. 

Proof. All pn output rows in the truth table of a 

reversible n*n gate are distinct. Thus for each pair of 

output functions f, g all pairs of values of these functions 

<f(a1,…,an), g(a1,…,an)> appear in the output part of the 

gate the same number of times. Hence, the pair f, g is r-

compatible. 

Lemma 2 All output functions of a p-valued reversible 

gate are distinct. 

Proof. Let us assume that there exists a p-valued 

reversible gate with two identical output functions. In 

the two identical output columns corresponding to the 

functions only the following pairs of values appear: 

<0,0>, <1,1>, ... , <p-1,p-1>. Such two functions are not 

r-compatible. By Lemma 1 we obtain a contradiction. 

Hence, Lemma 2 holds. 

3. Universality of multiple-valued reversible 

2*2 gates 

Definition 5 A p-valued reversible n*n gate (or circuit) 

has duplicating property (D-property, in short) iff there 

exists a sequence of  n-1 constants a1, … ,ai-1, ai+1, ... ,an

and two output functions of the gate (circuit) fj(x1,x2,...,xn)

and fk(x1,x2,...,xn) such that

fj(a1,…,ai-1,xi,ai+1,...,an) = fk(a1,…,ai-1,xi,ai+1,...,an) = xi.

Example 2 Table 2 shows the truth table of a ternary 

reversible 2*2 gate (circuit) having D-property. It is easy 

to notice that for A = 0 the values at both gate outputs P

and Q are equal to the value at the input B:

P = B  Q = B.

Table 2. Ternary reversible 2*2 gate having D-property 

A     B P     Q 

 0     0 

 0     1 

 0     2 

 1     0 

 1     1 

 1     2 

 2     0 

 2     1 

 2     2 

   0     0 

   1     1 

   2     2 

   0     1 

   1     2 

   0     2 

   2     1 

   1     0 

   2     0 

Definition 6 A p-valued reversible n*n gate (or circuit) 

has quasi-duplicating property (qD-property, in short) iff 

it does not have D-property and there exists a sequence of 

n-1 constants a1, ... , ai-1, ai+1, ... , an and two output 

functions of the gate fj(x1,x2,...,xn) and fk(x1,x2,...,xn) such

that each of the 1-variable functions 

fj(a1,…,ai-1,xi,ai+1,...,an)   and fk(a1,…,ai-1,xi,ai+1,...,an)

is balanced, i.e. takes all values 0,1, ... , p-1.

Example 3 Table 3 shows the truth table of a ternary 

reversible 2*2 gate (circuit) having qD-property. It is 

easy to notice that for B = 0 the output functions P and 

Q have the representations 012 and 201, respectively. 

Table 3. Ternary reversible 2*2 gate having qD-property 

A     B P     Q 

 0     0 

 0     1 

 0     2 

 1     0 

 1     1 

 1     2 

 2     0 

 2     1 

 2     2 

   0     2 

   0     0 

   0     1 

   1     0 

   1     1 

   2     0 

   2     1 

   1     2 

   2     2 
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Fig. 1 Example of a circuit with D-property built using gates G with qD-property 

Theorem 1 If G is a p-valued reversible n*n gate with 

qD-property, then a p-valued circuit with D-property can 

be built from gates G.

Proof Let p = 3. If f is a 1-variable ternary function and 

f2(x) = f(f(x)), f3(x) = f(f2(x)), then f2(x) = x for f belonging 

to A1={021, 102, 210}, and f3(x) = x for f belonging to 

A2={120, 201}. Assume that a ternary reversible n*n gate 

G has qD-property. Then there exist n-1 constants a1, … , 

ai-1, ai+1, ... , an and two output functions of the gate 

fj(x1,x2,...,xn) and fk(x1,x2,...,xn) such that each of the 

functions fj(a1,…,ai-1,xi,ai+1,...,an) and fk(a1,…,ai-

1,xi,ai+1,...,an) takes all three values 0,1,2. First, we will 

consider an example. Let the representation of fj(a1,…,ai-

1,xi,ai+1,...,an) belong to A1 and the representation of 

fk(a1,…,ai-1,xi,ai+1,...,an) belong to A2. Fig. 1 shows a 

circuit with D-property built using exclusively gates G. In 

general, if the representation of the function fm(a1,…,ai-

1,xi,ai+1,...,an), where m = j or k, belongs to A1 (A2), then 

we construct a sequence of two (three) gates in which the 

j-th output of the first gate is connected to the i-th input of 

the second gate (the k-th output of the first gate is 

connected to the i-th input of the second gate and k-th

output of the second gate is connected to i-th input of 

third gate). When the first gate is common for the two 

sequences, then the signal at the j-th output of one 

sequence and the signal at the k-th output of the other 

sequence are both equal to the i-th input of the common 

gate. Thus Theorem 1 holds in ternary case. The proof for 

p > 3 is similar (based on properties of permutation 

groups). Let the orders of fj(a1,…,ai-1,xi,ai+1,...,an) and

fk(a1,…,ai-1,xi,ai+1,...,an) be mj and mk, respectively, and let 

m be the least common multiple of mj and mk. Then 

fj
m(a1,…,ai-1,xi,ai+1,...,an) and fk

m(a1,…,ai-1,xi,ai+1,...,an) are 

both the identity on xi.

It is also possible to build up a circuit with qD-

property (and by Theorem 1 also a circuit with D-

property) using multiple-valued gates not having qD-

property as shown in the example below. 

Example 4 Table 4 shows the truth table of a ternary 

reversible 2*2 gate G not having qD-property. Fig. 2 

presents a circuit with qD-property built up using such 

gates. Thus it is also possible to build up a circuit with 

D-property using gates G.

Table 4. Ternary reversible 2*2 gate not having qD-

property 

A     B P     Q 

 0     0 

 0     1 

 0     2 

 1     0 

 1     1 

 1     2 

 2     0 

 2     1 

 2     2 

   0     2 

   0     0 

   0     1 

   1     1 

   1     0 

   2     0 

   2     1 

   1     2 

   2     2 

Definition 7 A p-valued reversible gate G is r-universal

iff an arbitrary p-valued function f(x1,…,xn) can be 

realized by a loop-free combinational circuit built up of a 

finite number of copies of the gate G using constants an 

arbitrary number of times and using each signal x1, ... ,xn

at most once as primary inputs. 

Fig. 2 Circuit with qD-property built up using gate G not having qD-property 
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Theorem 2 If the set of all output functions of a p-

valued reversible gate G is weak complete and it is 

possible to built a p-valued circuit having qD-property 

built up of gates G, then G is r-universal. 

Proof. Classical proofs of universality (e.g., see [18]) are 

based on the assumption that each signal may be used an 

arbitrary number of times as a primary input and that 

operations of a canonical form can be realized using 

primitives. It is sufficient to follow these arguments to 

prove Theorem 2. When it is possible to build up a circuit 

having qD-property from gates G, then by Theorem 1 it is 

also possible to build up a circuit with D-property from 

gates G. This is equivalent to the assumption that each 

signal may be used any number of times. When the set of 

output functions of the gate G is weak complete, then 

circuits realizing operations of a canonical form can be 

built up from gates G. Hence, Theorem 2 holds. 

4. Experimental results 

To find all ternary reversible 2*2 gates having a weak 

complete set of output functions we used the following 

result [20]. A ternary 2-variable function f is weak 

complete iff using f and the constants it is possible to 

generate: 

a) two permutations that form a basis of the 

symmetric group S3, and 

b) a 1-variable function which assumes exactly two 

values 

Let us remind that a basis of S3 consists of one of: 120, 

201; and one of: 021, 210, 102. 

Let f denote the ternary function under examination 

and let us define the following sets: 

- C0 contains the variable 012 and the three constant 

functions 000, 111, 222, 

- Cs+1 contains all functions f(g1,g2) not belonging to 

Cr, r < s, where one of the functions g1, g2 is an 

element of Cs and the other is an element of Cr, r < s.

The procedure for checking whether a ternary 2-

variable function [20] is weak complete forms sets Ci

until one of two stopping conditions is satisfied: 

(i) for some k, a basis of S3 and a 1-variable 

function which assumes exactly two values 

are included in the union of all sets Ci, i < k,

in which case the given function is weak 

complete, 

(ii) for some k, the set Ck is empty in which case 

the given function is not weak complete. 

Example 5 Let us consider the output function P of the 

gate defined in Table 2: C0 = {012, 000, 111, 222}, C1 = 

{002, 010, 202, 212}, C2 is empty. Thus the function P is 

not weak complete because it does not include a basis of 

S3.

Now let us consider the output function Q of the gate 

defined in Table 2: 

C0 = {012, 000, 111, 222} 

C1 = {011, 020, 100, 120, 122, 220} 

The function with two values (e.g., 011) and the generator 

120 of S3 are included in C1. The second generator 021 

belongs to C2 as it can be obtained by the composition 

f(g1,g2), where g1 = 011, g2 = 020. Thus Q is weak 

complete. 

We have run a program based on the above procedure 

and have established that 1605 out of all 1680 balanced 

ternary 2-variable functions (i.e., 95.5%) are weak 

complete. 

Let us note that it is easy to extend the above 

procedure for checking weak completeness of sets 

consisting of both output functions of a ternary reversible 

2*2 gate as well as for checking weak completeness of 

output functions of sets of gates. 

By exhaustive checking of all ternary reversible 2*2 

gates we have found that 132,768 of them have D-

property. Then we have checked how many of the rest of 

the gates has qD-property. From each such gate we have 

built cascade circuits (allowing wire crossing) to check 

whether the second condition of Theorem 2 has been 

fulfilled. Because the number of these cascade circuits 

grows exponentially with the number of levels we have 

limited the calculations of cascades with not more than 12 

levels. On the basis of Theorem 2 we were able to 

establish that among 362,880 ternary reversible 2*2 gates 

at least 353,214 (97.34%) are r-universal. The rest of the 

gates either have the set of output functions which is not 

weak complete or have a weak complete set of output 

functions, but we were not able to find cascade circuits 

with qD-property built up from those gates. 

5. Conclusions 

We have proved some properties of multiple-valued 

reversible gates related to their universality. By 

exhaustive calculations we have established that over 

97% of all ternary reversible 2*2 gates are r-universal. It 

is clear that for values of p greater than 3 such 

percentages will be even larger. As there are so many 

universal gates the circuit designers have a lot of 

freedom in finding gates with good physical 

implementations (e.g. minimum cost). Some multiple-

valued reversible gates have already been proposed [19, 

22, 24, 14, 15]. 

Theorem 2 gives a sufficient condition for r-

universality. However, we do not know whether it is 

also a necessary condition. It is an interesting open 

problem. 
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