
Ternary Galois Field Expansions for Reversible Logic and Kronecker 

Decision Diagrams for Ternary GFSOP Minimization

Mozammel H. A. Khan$, Marek A. Perkowski*, and Mujibur R. Khan$

$
Department of Computer Science and Engineering, East West University, 43 Mohakhali, 

Dhaka 1212, BANGLADESH. mhakhan@ewubd.edu and mrkhan@ewubd.edu
*
Department of Electrical and Computer Engineering, Portland State University, 1900 SW 4

th

Avenue, Portland, OR 97201, USA. mperkows@ee.pdx.edu

Abstract

Ternary Galois Field Sum of Products 

(TGFSOP) expressions are found to be good choice 

for ternary reversible, and especially quantum, logic 
design. In this paper, we propose 16 Ternary Galois 

Field Expansions (TGFE) and introduce three 

Ternary Galois Field Decision Diagrams (TGFDD) 
using the proposed TGFEs, which are useful for 

reversible and quantum logic design. We also 

propose a heuristic for creating TGFDDs and a 
method for flattening the TGFDDs for determining 

TGFSOP expressions. We provide experimental 

results to show the effectiveness of the developed 
methods. 

1. Introduction 

It has been shown that Galois Field Sum of 
Products (GFSOP) expressions are a good choice for 
multiple-valued reversible logic synthesis [1-4]. It 
has been also shown in [4] that Ternary Galois Field 
Sum of Products (TGFSOP) expressions are a natural 
choice for multiple-valued quantum logic synthesis. 
Such expressions can be either realized directly in 
quantum cascades or become a starting point of 
factorization processes leading to factorized cascades 
[3,4]. Therefore, efficient methods for representing 
and minimizing TGFSOP expressions are very 
important. 

Multiple-Valued Decision Diagrams (MDD) for 
many functions over multiple-valued domains are 
presented in the literature [5-29]. Many of these 
decision diagrams are based on Reed-Muller like 
multiple-valued expressions and their related forms. 
Many others are based on algebraic and finite field 
structures such as Galois Field. However, because of 

the requirement of reversible realization of literals, 
the TGFSOP expressions introduced in [4] require a 
special form of multiple-valued decision diagrams. 
To achieve a useful way of determining TGFSOP 
expressions for a given ternary function, in this 
paper, we introduce three types of Ternary Galois 
Field Decision Diagrams (TGFDD), flattening of 
which directly gives TGFSOP expressions. These 
diagrams are adaptations of known diagrams for 
quantum and reversible computing, in which only 
some literals are physically realizable.  For 
constructing such TGFDDs we propose, in this paper, 
16 Ternary Galois Field Expansions (TGFE) that use 
the reversible literals of the intended TGFSOP 
expressions. Experimental results show that the 
TGFDDs produce good quality TGFSOP expressions 
for many ternary functions. 

Constructing a cascade of reversible 
“permutative” gates from some initial specification is 
one of the most fundamental problems in binary 
quantum circuit design. Recently, multiple-valued 
quantum gates and circuits have been presented [30] 
and ternary quantum gates have been built [31]. The 
concept of binary quantum circuit synthesis has been 
generalized to multiple-valued quantum circuits 
synthesis [3]. Among the multiple-valued quantum 
circuits the GFSOP cascades are the most 
fundamental ones [3,4]. The three types of Ternary 
Galois Field Decision Diagrams using the proposed 
expansions are the starting point to create such 
cascades in our software system [3,4]. They can be 
used also to create other types of quantum cascades. 
They are thus of a basic importance in multiple-
valued quantum logic synthesis.  

The remaining of the paper is organized as 
follows. In Section 2, Ternary Galois Field Sum of 
Products (TGFSOP) expression is introduced. In 
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Section 3, 16 Ternary Galois Field Expansions that 
use the reversible ternary literals are proposed. In 
Section 4, three types of Ternary Galois Field 
Decision Diagrams (TGFDDs) are introduced that 
use the expansions of Section 3. In Section 5, a 
heuristic for creating one of the TGFDDs introduced 
in Section 4 (named the Kronecker Ternary Galois 
Field Decision Diagram, KTGFDD) is presented. In 
Section 6, a method for flattening the TGFDDs 
introduced in Section 4 is discussed. In Section 7, 
experimental results are presented to show the 
complexity of KTGFDD and the resulting TGFSOP. 
In Section 8, conclusion about the paper and the 
future research guidelines are presented. In Section 9, 
references are given. Finally, in Section 10, some 
ternary benchmark functions are given as an 
appendix.  

2. Ternary Galois Field Sum of Products 

expression

In this section we introduce Ternary Galois Field 
Sum of Products (TGFSOP) expressions that are 
found to be the natural choice for ternary quantum 
logic synthesis, especially for synthesis of ternary 
quantum cascades. 

Ternary Galois Field (TGF) consists of the set of 

elements }2,1,0{=T  and two basic binary 

operations – addition (denoted by +) and 

multiplication (denoted by ⋅ or absence of any 
operator) as defined in Table 1. Readers should note 
that TGF is also known as GF3 and the addition and 
multiplication operations shown in Table 1 are 
modulo 3 addition and multiplication. 

Table 1. Ternary Galois Field (TGF) operations.

+ 0 1 2  • 0 1 2 

0 0 1 2  0 0 0 0 

1 1 2 0  1 0 1 2 

2 2 0 1  2 0 2 1 

Literals of a ternary variable )012(=x  can be 

defined as follows: 
Constant literals: Ternary constants 1 = (111) 

and 2 = (222) may be used as literals of a ternary 

variable )012(=x .

Basic literals: There are six basic literals of a 

ternary variable )012(=x  corresponding to six 

possible permutations of the elements 0, 1, and 2, 
which are reversible in nature: 

)012(=x   Normal literal 

)120(1 =+=′ xx   Single-Shift literal 

)201(2 =+=′′ xx   Dual-Shift literal 

)021(2 ==′′′ xx    Self-Shift literal 

)102(12# =+= xx   Self-Single-Shift literal 

)210(22^ =+= xx   Self-Dual-Shift literal 

These are the only literals that can be realized by 
1-qubit reversible gates [4], so they have a special 
place in the diagrams and cascades developed by us. 
Other literals are created as Galois products of these 
basic literals, so their design cost is higher, which is 
taken into account in the synthesis methods.  

Self-Shift of a basic ternary literal yields another 
basic ternary literal as follows (can be verified from 
Table 1): 

xx ′′′=2 ^2 xx =′ #2 xx =′′
xx =′′′2 xx ′′=#2 xx ′=^2

Composite literals: There are some other 
literals, which are Galois products of two basic 
literals each, as below: 

)011()( 22 =′′′==′′′′′′= xxxxxx

)020(^ =′′′=′ xxxx

)002(# =′′′=′′ xxxx

)022(=′′′xx

)001(2# ==′′′′′= xxxxx

)010(1^ ==′′′′= xxxxx

)110()()( 2^2^^ ==′==′′ xxxxxx

)200(#^ ==′′′ xxxx

)100(0^# ==′′=′ xxxxx

)220(^ =′xx

)101()()( 2#2## ==′′==′′′′ xxxxxx

)202(# =′′xx

1-Reduced Post literals (RPLs): 1-RPLs of a 
variable )012(=x  are defined as 

=
=

otherwise

ixiff
xi

0

1

For ternary Galois field the 1-RPLs of a variable 

)012(=x  are )100(0 =x , )010(1 =x , and 

)001(2 =x . These 1-RPLs are related with the basic 
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and composite literals as follows (can be verified 
from Table 1): 

^2^#2#2

2220

)(22)(21)(2

)(22)(212

xxxxx

xxxxxx

+=+=+′′′=
′′+′′=′+′=+=

         (1) 

^2^2#2

2221

2)(21)(2)(2

1)(2)(222

xxxxx

xxxxxx

+=+=′′′+′′′=
+′′=′+′=+=

         (2) 

1)(2)(22)(2

2)(21)(22
2^#2#2

2222

+=+=′′′+′′′=
′′+′′=+′=+=

xxxxx

xxxxxx
        (3) 

A product term is a TGF product of a constant, 
basic literals, and composite literals of ternary 

variables. For example, yxx ′′′′2  is a product term. 

Ternary Galois Field Sum of Products (TGFSOP) 
expression is TGF sum of some product terms. For 

example, zxzyyyx ′′′+′′′′+′′+2  is a TGFSOP. 

3. Ternary Galois Field Expansions 

Binary Kronecker Functional Decision Diagrams 
(KFDDs) [32] are created using the following well-
known expansions: 

10
xffxf ⊕′=   Shannon Expansion 

20
xfff ⊕=   Positive Davio Expansion 

21
fxff ′⊕=   Negative Davio Expansion 

where, 

0
f  = cofactor of f with respect to 0=x ,

1
f  = cofactor of f with respect to 1=x ,

102
fff ⊕= , and 

⊕  is EXOR (GF2 addition) operation. 

In this section we extend the concept of binary 
Shannon and Davio expansion to the Ternary Galois 
Field and propose 16 Ternary Galois Field 
Expansions (TGFE) that use the reversible ternary 
literals and their composite forms. Among these 16 
TGFEs we call 9 expansions the Pseudo-Davio 
expansions, because these expansions have sum of 
cofactors like binary Davio expansions but do not 
have a cofactor with no literal multiplied with it. 
These 16 TGFEs can be used to create Ternary 
Kronecker Decision Diagrams. 

For the purpose of defining the TGFEs, we begin 
with the concept of cofactors of ternary functions. A 
ternary function f has the following cofactors: 

=
0

f  cofactor of f with respect to 0=x

=
1

f  cofactor of f with respect to 1=x

=
2

f  cofactor of f with respect to 2=x

To derive expressions for the TGFEs we first define 
sums of two (possible weighted by a factor of 2) or 
three cofactors, as shown below: 

1001
fff +=

2002
fff +=

2112
fff +=

210012
ffff ++=

10011
2 fff +=

20022
2 fff +=

10001
2 fff +=

21122
2 fff +=

20002
2 fff +=

21112
2 fff +=

All these expressions generalize the concept of 
binary Boolean Difference used in (binary) Davio 
Expansions.  

The proposed TGFEs are defined below as 
theorems: 

Theorem 1 (Shannon Ternary Galois Field 

Expansion): A ternary function f can be expanded 
with respect to the variable x as follows:  

2

2

1

1

0

0 xfxfxff ++=    (TGFE 1)          (4) 

Proof. If 0=x , then 10 =x , 01 =x , 02 =x , and 

0210
001 fffff =⋅+⋅+⋅= . If 1=x , then 00 =x ,

11 =x , 02 =x , and 
1210

010 fffff =⋅+⋅+⋅= . If 

2=x , then 00 =x , 01 =x , 12 =x , and 

2210
100 fffff =⋅+⋅+⋅= . Thus, we have (4). 

QED

Theorem 2 (Pseudo-Davio Ternary Galois 

Field Expansions): A ternary function f can be 
expanded with respect to the variable x as follows: 

2

#

1

^

01

# fxxfxfxxf ++′=           (TGFE 2)          (5) 

2

#

01

^

0
fxxfxxfxf ++′=             (TGFE 3)          (6) 

21

^

02

# fxfxxfxxf ′′++′=              (TGFE 4)          (7) 

02

#

1

^

0

# fxxfxxfxf ++=              (TGFE 5)          (8) 

212

^

0

# fxfxxfxxf ′′′++′=             (TGFE 6)          (9) 

12

#

10

# fxxxffxxf ++′=                (TGFE 7)        (10) 

012

#

10

# fxxxffxf ++=                 (TGFE 8)        (11) 

2012

^

0
fxfxxfxf ′′′++′=                (TGFE 9)        (12) 

21

^

012

# fxfxfxxf ′′++′=               (TGFE 10)       (13) 

Proof. By substituting the first part of (1), (2), and 
(3) in (4), we have 

2

#

1

^

01

#

2

2

110

2

2

2

1

2

0

2

2

2

1

2

0

2

)2()22())(12(

)2()2212()12(

)2()22()12(

fxxfxfxx

fxxfxffx

fxxfxxfx

fxxfxxfxf

++′=
++++++=

+++++++=
+++++=

Thus we have (5). Similarly, we can prove (6) to 
(13). QED
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Theorem 3 (Davio Ternary Galois Field 

Expansions): A ternary function f can be expanded 
with respect to the variable x as follows: 

0121120
fxxxfff ′′′++=              (TGFE 11)        (14) 

0121220
fxxfxff ′′′+′′′+=            (TGFE 12)        (15) 

012

#

0221
fxxfxff ′′+′′+=          (TGFE 13)        (16) 

012

#

002

#

1
fxxfxff ′′++=         (TGFE 14)        (17) 

012

^

0012
fxxfxff ′+′+=       (TGFE 15)        (18) 

012

^

011

^

2
fxxfxff ′++=       (TGFE 16)        (19) 

Proof. By substituting the first part of (1), (2), and 
(3) in (4), we have 

0121120

210

2

210

2

2

1

2

0

2

)(2)2(

)2()22()12(

fxxxff

fffxffxf

fxxfxxfxf

′′′++=
+++++=

+++++=

Thus we have (14). By substituting the other parts of 
(1), (2), and (3) in (4) and after some manipulation, 
we can prove (15) to (19). QED

Some of the features of these expansions are 
explained using the pure decision tree (all levels 
having the same expansion with a fixed variable 
ordering) for the ternary function 

Tyxf ]2,2,1,2,2,1,1,1,0[),( =  using all 16 TGFEs 

for the variable ordering x, y as shown in Figure 1. 
From Figure 1 we observe that Davio expansions, 
that is, TGFEs 11 to 16 produce relatively more 
constant 0-leaves for function having less than one-
third 0s in the truth vector. Among the six basic 
literals only three (normal, single-shift, and dual-
shift) were previously used in the context of ternary 
reversible logic design. If we consider only the 
normal, single-shift, and dual-shift literals, then we 
will have only three Davio TGFEs (namely TGFEs 
11, 13, and 15). From Figure 1 we also observe that 
TGFEs 12, 14, and 16 produce the same order of 
constant 0-leaves as TGFEs 11, 13, and 15. 
Therefore, we can see that the three new literals (self-
shift, self-single-shift, and self-dual-shift) are equally 
useful as the previously used literals for the purpose 
of minimizing non-zero paths in the Ternary Galois 
Field Decision Diagrams and consequently for 
minimizing TGFSOP expression. 

4. Ternary Galois Field Decision 

Diagrams

Among the different BDD types, Kronecker DDs 
use all three types of binary expansions [32]. In this 

section we extend the concept of binary Kronecker 
DDs to Ternary Galois Field. 

Figure 1. 16 types of pure ternary decision trees 

for the function 
Tyxf ]2,2,1,2,2,1,1,1,0[),( = .

For the purpose of deriving minimized TGFSOP 
expression of a given ternary function we use three 
types of Ternary Galois Field Decision Diagrams 
(TGFDDs) based on the proposed TGFEs that are 
useful for reversible logic design as described below: 

Kronecker Ternary Galois Field Decision 

Diagram (KTGFDD): In KTGFDD the nodes of the 
same level have the same variable and the same 
TGFE. For example, in the KTGFDD of Figure 2.a, 
the first level variable is z and the expansion is 
TGFE16. In the second level the variable is x and the 
expansion for both the nodes is TGFE12. In the third 
level the variable is y and the expansion for both the 
nodes is TGFE15. 

0 1 1 1 2 2 1 2 2

A1

B1B1B1

f

0
1

2

0 0 0
1 1 1

2 2 2

(a) TGFE 1
1 0 0 0 2 2 0 2 2

A1

B1B1B1

f

01
1

2

01 01 01
1 1 1

2 2 2

(b) TGFE 2
0 1 1 1 1 0 1 0 2

A1

B1B1B1

f

0
01

2

0 0 0
01 01 01

2 2 2

(c) TGFE 3

1 0 0 0 2 2 0 2 2

A1

B1B1B1

f

02
1

2

02 02 02
1 1 1

2 2 2

(d) TGFE 4
0 1 1 1 2 0 1 0 1

A1

B1B1B1

f

0
1

02

0 0 0
1 1 1

02 02 02

(e) TGFE 5
0 2 1 2 2 1 1 1 2

A1

B1B1B1

f

0
12

2

0 0 0
12 12 12

2 2 2

(f) TGFE 6

0 1 2 1 2 1 2 1 2

A1

B1B1B1

f

0
1

12

0 0 0
1 1 1

12 12 12

(g) TGFE 7
0 1 2 1 2 2 2 2 0

A1

B1B1B1

f

0
1

012

0 0 0
1 1 1
012 012 012

(h) TGFE 8
0 2 1 2 0 2 1 2 2

A1

B1B1B1

f

0
012

2

0 0 0
012 012 012

2 2 2

(i) TGFE 9

0 2 2 2 2 2 2 2 2

A1

B1B1B1

f

012
1

2

012 012 012
1 1 1

2 2 2

(j) TGFE 10
0 0 2 0 0 0 2 0 0

A1

B1B1B1

f

0
112

012

0 0 0
112 112 112

012 012 012

(k) TGFE 11
0 0 2 0 0 0 2 0 0

A1

B1B1B1

f

0
122

012

0 0 0
122 122 122

012 012 012

(l) TGFE 12

2 2 2 2 0 0 2 0 0

A1

B1B1B1

f

1
022

012

1 1 1
022 022 022

012 012 012

(m) TGFE 13
2 1 2 1 0 0 2 0 0

A1

B1B1B1

f

1
002

012

1 1 1
002 002 002

012 012 012

(n) TGFE 14
2 1 2 1 0 0 2 0 0

A1

B1B1B1

f

2
001

012

2 2 2
001 001 001

012 012 012

(o) TGFE 15

2 2 2 2 0 0 2 0 0

A1

B1B1B1

f

2
011

012

2 2 2
011 011 011

012 012 012

(p) TGFE 16

Within the nodes

the ordered pair is

varaible and TGFE
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Pseudo-Kronecker Ternary Galois Field 

Decision Diagram (PKTGFDD): In PKTGFDD the 
nodes of the same level have the same variable, but 
each of the nodes may have one of the 16 TGFEs. 
For example, in the PKTGFDD of Figure 2.b, the 
first level variable is z and the expansion is TGFE16. 
In the second level the variable is x and the 
expansions for the left and the right nodes are 
TGFE14 and TGFE12, respectively. In the third 
level, the variable is y and the expansions for the left 
and the right nodes are TGFE14 and TGFE15, 
respectively.

Free Kronecker Ternary Galois Field 

Decision Diagram (FKTGFDD): In FKTGFDD 
each of the paths may have a different variable 
ordering and each of the nodes may have one of the 
16 TGFEs. For example, in the FKTGFDD of Figure 
2.c, the first level variable is z and the expansion is 
TGFE16. In the second level, the left node has 
variable y with expansion TGFE14, but the right node 
has variable x with expansion TGFE12. In the third 
level, the only node has variable y with expansion 
TGFE15. It can be seen that each of the paths of this 
diagram has different ordering of the variables and in 
the same level the expansions are also different. 

For these three decision diagrams, in general, the 
following relationship holds: number of nodes of 

KTGFDD ≥ number of nodes of PKTGFDD ≥
number of nodes of FKTGFDD.

Observe that KTGFDDs, PKTGFDDs and 
FKTGFDDs are adaptations of known concepts to 
reversible logic, and it is thanks to the realizability of 
multiple-valued quantum logic that these concepts 
may become more practical than their non-reversible 
counterparts. 

5. Creating Kronecker Ternary Galois 

Field Decision Diagram 

In this section we propose a heuristic for creating 
a KTGFDD in which the number of nodes as well as 
the number of paths terminating at constant 1-leaf 
and 2-leaf is minimized so that after flattening of the 
decision diagram the number of product terms in the 
resultant TGFSOP is also minimized. For this 
purpose we maximize the number of 0s in the truth 
vectors of each sub-function at every level of the 
KTGFDD with the hope that local optimization will 
lead to global optimization. For discussing the 
heuristic the following weight functions are useful. 

Figure 2. Three types of Ternary Galois Field 

Decision Diagrams for the function =),,( zyxf

T]0,0,2,0,1,1,0,0,2,0,1,0,0,2,2,0,1,0,0,2,1,0,0,0,0,2,1[ .

Definition 1: Given an n-variable ternary 
function f represented as a truth vector, where the 

locations are designated from 0 to 13 −n . The 

number of occurrences of a group of in−3  consecutive 

0s, 1s, and 2s starting from inj −3  location for 

ni ,,2,1=  and )13(,,1,0 −= ij  are denoted by 

i
Z ,

i
O , and 

i
T , respectively. 

In the weight functions, i determines the length 
of a group of consecutive 0s or 1s or 2s and j

determines the starting location of the group. For 
example, if 3=n , then for 1=i  the group length is 

933 13 == −−in  and 2)1313(,1,0 1 =−=−= ij . So, 

the starting locations are 0, 9, and 18. Similarly, these 
weight functions define the number of occurrences of 
a group length 1 starting from locations 0, 1, 2, …, 

13 −n ; of a group length 3 starting from locations 0, 

3, 9, …, 33 −n ; of a group length 9 starting from 

locations 0, 9, 18, …, 93 −n  and so on to of a group 

length 13 −n  starting from location 0, 13 −n , and 
132 −× n . Consider the function =),,( zyxf

T]0,0,0,0,0,0,0,0,0,0,0,0,2,2,2,0,0,2,1,1,1,2,1,0,0,0,0[ .

Then 1
1

=Z , 5
2

=Z , 18
3

=Z , 0
1

=O , 1
2

=O ,

4
3

=O , 0
1

=T , 1
2

=T , and 5
3

=T .

The proposed heuristic is as follows: 

1. If 13 −≤ n

n
mZ , where m is the number of outputs, 

then use TGFEs 1 and 11 to 16, otherwise use all 
TGFEs. The reason behind this selection is that 
if the truth vector contains less than one-third 0s, 
then using TGFEs 11 to 16 is likely to produce 

more 0s because of the use cofactor sums 
112

f ,

z16

x12

y15

x12

y15

210

2

0
1
1

012

12
2,

01
2 0

2
001,

012

1
2
2

2

0,012

001,012

(a) KTGFDD

z16

x14

y14

x12

y15

210

2

0
1
1

012

00
2,

01
2

1

0
1
2 2

0,012

001,012

(b) PKTGFDD

1,002

1
2
2

z16

y14

y15

x12

210

2

0
1
1012

1,
00

2

0
1
2

2

0,0
12

(c) FKTGFDD

001,012

1
2
2

Within the nodes the ordered pair is variable and TGFE
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122
f ,

022
f ,

002
f ,

001
f ,

011
f , and 

012
f  (can be 

verified from Figure 1). 
2. For each of the n variables, find expansion for 

the TGFEs selected in step 1. For each expansion 

compute 
1

Z  to 
n

Z and
11

TO +  to 
nn

TO + .

3. Find the expansion with highest 
1

Z . The reason 

behind this selection is that one or more 
cofactors will be straight constant 0. In case of a 

tie, break it using highest values of 
2

Z  up to 
n

Z .

This selection will produce constant 0 cofactors 
in the later levels in the KTGFDD. For further 

tie, break it by using highest values of 
11

TO +  up 

to 
nn

TO + . This selection will produce a 

constant 0 or 1 or 2 cofactors in the later levels in 
the KTGFDD. For further tie, break it arbitrarily. 
The selected expansion is the expansion for the 
root of the KTGFDD. 

4. For the next level of the KTGFDD, repeat the 
steps 1 to 3 for the remaining 1−n  variables. 

5. Repeat steps 1 to 4 until all the variables are 
exhausted. 
The heuristic is illustrated using a 2-input 2-

output ternary function Tyxf ]2,2,2,2,0,1,2,1,0[),( =
and Tyxg ]0,2,1,1,1,1,2,0,1[),( = . Here 

6324
2

=×<=Z . So we used TGFEs 1 and 11 to 16 

for both the variables x and y. The weights are shown 
in Table 2. There are four ties as shown bold. We 
select variable y with TGFE 14 arbitrarily as the 
expansion for the roots. Then the resulting six sub-

functions are Txf ]2,0,1[)(
1

= , Txf ]0,1,2[)(
002

= ,
Txf ]0,0,0[)(

012
= , Txg ]2,1,0[)(

1
= ,

Txg ]2,0,1[)(
002

= , and Txg ]0,0,0[)(
012

= . Here 

61610
1

=×>=Z . So, we used TGFEs 1 to 16. The 

weights are also shown in Table 2. There are two ties 
and we break it arbitrarily by selecting TGFE 10. The 
created KTGFDD is shown in Figure 3. 

6. Flattening a Ternary Galois Field 

Decision Diagram 

Flattening of a TGFDD yields a TGFSOP 
expressions for the function represented by the 
TGFDD. Different possible types of edges for 
TGFE1 in a TGFDD are shown in Figure 4. The 
literal associated with each of the edge types is 
shown in Table 3. Similarly, different types of edges 

and their corresponding literals for TGFE2 to 
TGFE16 are determined and are shown in Table 3. 

Table 2. Weights of various expansions for the 

example function.

 Level 1 

221121
,,, TOTOZZ ++

Level 2 

111
, TOZ +

TGFE x y x 

1 0, 4, 2, 14 0, 4, 2, 14 10, 8 

2   10, 8 

3   9, 9 

4   11, 7 

5   11, 7 

6   9, 9 

7   10, 8 

8   13, 5 

9   12, 6 

10   13, 5 

11 2, 10, 0, 8 2, 9, 1, 9 11, 7 

12 2, 10, 0, 8 2, 9, 1, 9 11, 7 

13 2, 9, 1, 9 2, 10, 0, 8 12, 6 

14 2, 9, 1, 9 2, 10, 0, 8 12, 6 

15 2, 9, 1, 9 2, 9, 1, 9 11, 7 

16 2, 9, 1, 9 2, 9, 1, 9 11, 7 

A product of literals corresponding to edges 
along a path from the root to a leaf of the TGFDD 
gives the TGF product of the represented function. 
Paths ended at the constant 0-leaf do not contribute to 
the TGFSOP and the TGF product corresponding to a 
path ended at the constant 2-leaf is multiplied by 2 to 
get the required product term. Sum of all such 
products gives the TGFSOP expression for the 
function represented in the TGFDD. For example, the 
TGFSOP expressions derived from the three 
TGFDDs of Figure 2 are 

KTGFDD: ^^^^ 22 zzxzzyy ′′′′++

y14 y14

x10 x10 x10

20 1

0
12

2

1
012

0
1
2
,1

002
002

012,2 1 1
012

2

1

f g

Figure 3. KTGFDD for the 

example function.

0
1

2 0,1 2

0,2 1 0 1,2

Figure 4. 

Different types of 

edges for TGFE1.
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PKTGFDD: ^^# 2 zzxzyy ′′′′+′′

FKTGFDD: ^^# 2 zzxzyy ′′′′+′′
In general, the following relation holds: number 

of products from KTGFDD ≥ number of products 

from PKTGFDD ≥ number of products from 

FKTGFDD.

Table 3. Different types of edges and their literals. 

Edge Literal Edge Literal 

TGFE1 TGFE2

0 #)100( xx′= 01 #)100( xx′=
1 ^)010( xx= 1 ^)210( x=
2 #)001( xx= 2 #)001( xx=

0,1 xx ′′=)110( 01,1 ^)010( xx=
0,2 xx ′′′′=)101( 01,2 xx ′′′′=)101(

1,2 xx=)011( 1,2 #^)211( xxx +=
TGFE3 TGFE4 

0 x′=)120( 02 #)100( xx′=
01 ^)010( xx= 1 ^)010( xx=
2 #)001( xx= 2 x ′′=)201(

0,01 #)100( xx′= 02,1 xx ′′=)110(

0,2 #)121( xxx +′= 02,2 #)001( xx′=
01,2 xx=)011( 1,2 ^)211( xxx +′′=

TGFE5 TGFE6 

0 #)102( x= 0 #)100( xx′=
1 ^)010( xx= 12 ^)010( xx=

02 #)001( xx= 2 x ′′′=)021(

0,1 ^#)112( xxx += 0,12 xx ′′=)110(

0,02 #)100( xx′= 0,2 #)121( xxx ′+′′′=
1,02 xx=)011( 12,2 #)001( xx′=

TGFE7 TGFE8 

0 #)100( xx′= 0 #)102( x=
1 x=)012( 1 x=)012(

12 #)001( xx= 012 #)001( xx=
0,1 #)112( xxx ′+= 0,1 1)111( =

0,12 xx ′′′′=)101( 0,012 #)100( xx′=
1,12 ^)010( xx= 1,012 ^)010( xx=

Table 3. Continued. 

Edge Literal Edge Literal 

TGFE9 TGFE10 

0 x′=)120( 012 #)100( xx′=
012 ^)010( xx= 1 ^)210( x=
2 x ′′′=)021( 2 x ′′=)201(

0,012 #)100( xx′= 012,1 ^)010( xx=
0,2 1)111( = 012,2 #)001( xx=

012,2 #)001( xx= 1,2 1)111( =
TGFE11 TGFE12 

0 1)111( = 0 1)111( =
112 x=)012( 122 x ′′′=)021(

012 xx ′′′=)022( 012 xx ′′′=)022(

0,112 x′=)120( 0,122 #)102( x=
0,012 #)100( xx′= 0,012 #)100( xx′=

112,012 #)001( xx= 122,012 ^)010( xx=
TGFE13 TGFE14 

1 1)111( = 1 1)111( =
022 x ′′=)201( 002 #)102( x=
012 #)202( xx ′′= 012 #)202( xx ′′=

1,022 x=)012( 1,002 ^)210( x=
1,012 ^)010( xx= 1,012 ^)010( xx=

022,012 #)100( xx′= 002,012 #)001( xx=
TGFE15 TGFE16 

2 1)111( = 2 1)111( =
001 x′=)120( 011 ^)210( x=
012 ^)220( xx′= 012 ^)220( xx′=

2,001 x ′′=)201( 2,011 x ′′′=)021(

2,012 #)001( xx= 2,012 #)001( xx=
001,012 ^)010( xx= 011,012 ^)010( xx=

7. Experimental results 

We have written C++ programs for creating 
KTGFDDs for multiple-output ternary functions and 
for flattening the KTGFDD for deriving the resultant 
TGFSOP expression. We have created some ternary 
benchmark functions as given in the Appendix of 
Section 10 and performed experimentation with 
them. Besides, we experimented with two benchmark 
functions (mm3 and pal3) from [33]. The results of 
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the experimentation are given in Table 4. The fourth 
column of the table shows the number of nodes in the 
KTGFDD and the fifth column shows the number of 
product terms in the resultant TGFSOP expression.  

For prodn functions, the number of nodes is 
exactly equal to the number of inputs for up to 8 
input functions. The number of products is 1 for up to 
8 input functions, which is the exact minimum 
solution for prodn functions. For sumn functions, 
the number of products is exactly equal to the number 
of inputs for up to 5 input functions, which is the 
exact minimum solution for sumn functions. For 
3cy2, 4cy2, 4cy3, 5cy2, 5cy4, and 6cy5 functions, the 
number of products is exactly equal to the number of 
inputs, which is the exact minimum solution. For 
sqsumn functions, the number of products is exactly 
equal to the number of inputs for up to 5 input 
functions, which is the exact minimum solution for 
sqsumn functions. For a2bcc and mul2 functions, 
the number of products is 2, which is the exact 
minimum solution for these functions. For other 
functions, we have no theoretical results to make any 
comment. However, the results seem to be adequately 
moderate. 

Table 4. Number of nodes in KTGFDD and 

number of resulting products in TGFSOP for 

some ternary benchmark functions. 

Function Input Output Nodes Products 

prod3 3 1 3 1 

prod4 4 1 4 1 

prod5 5 1 5 1 

prod6 6 1 6 1 

prod7 7 1 7 1 

prod8 8 1 8 1 

prod9 9 1 15 3 

prod10 10 1 38 15 

sum3 3 1 5 3 

sum4 4 1 7 4 

sum5 5 1 9 5 

sum6 6 1 21 9 

sum7 7 1 53 74 

sum8 8 1 168 252 

sum9 9 1 437 1117 

sum10 10 1 905 2759 

3cy2 3 1 5 3 

4cy2 4 1 9 4 

4cy3 4 1 9 4 

5cy2 5 1 12 5 

5cy3 5 1 15 7 

Table 4. Continued.

Function Input Output Nodes Products 

5cy4 5 1 11 5 

6cy2 6 1 24 9 

6cy3 6 1 34 24 

6cy4 6 1 24 9 

6cy5 6 1 15 6 

sqsum3 3 1 5 3 

sqsum4 4 1 7 4 

sqsum5 5 1 9 5 

sqsum6 6 1 20 18 

sqsum7 7 1 58 63 

sqsum8 8 1 203 295 

sqsum9 9 1 428 855 

sqsum10 10 1 1019 2506 

avg3 3 1 10 7 

avg4 4 1 20 27 

avg5 5 1 34 69 

avg6 6 1 54 183 

avg7 7 1 75 516 

avg8 8 1 175 1438 

avg9 9 1 423 4396 

avg10 10 1 1029 11802 

a2bcc 3 1 5 2 

thadd 2 2 5 4 

tfadd 3 2 10 10 

mul2 2 2 4 2 

mul3 3 2 8 5 

mami4 4 2 14 7 

mm3 5 1 18 18 

pal3 6 1 12 27 

8. Conclusions 

In this paper we proposed 16 Ternary Galois 
Field Expansions (TGFEs) which generalize to 
ternary and adapt to reversible logic the concepts of 
(binary) Shannon and Davio expansions used in 
Kronecker Decision Diagrams. We also introduced 
three types of Ternary Galois Field Decisions 
Diagrams (TGFDDs) suitable for reversible ternary 
logic synthesis. They are the Kronecker Ternary 
Galois Field Decision Diagram (KTGFDD), the 
Pseudo-Kronecker Galois Field Decision Diagram 
(PKTGFDD), and the Free-Kronecker Ternary Galois 
Field Decision Diagram (FKTGFDD). We proposed 
an efficient heuristic for creating KTGFDD with the 
reduced node counts and also reduced path counts 
that terminate at constant 1-leaf and 2-leaf. This 
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method is applicable not only to KTGFDD but also to 
PKTGFDD and FKTGFDD. We also proposed a 
method of flattening the TGFDDs for determining 
Ternary Galois Field Sum of Products (TGFSOP) 
expression for ternary functions. As our KTGFDD 
reduces the paths terminating at constant 1-leaf and 
2-leaf, the number of product terms in the resulting 
TGFSOP will also be reduced. The experimental 
results show that for many functions the resultant 
GFSOPs are exact minimum solutions. 

Designing a cascade of reversible “permutative” 
gates is one of few fundamental problems in quantum 
computing. Among the multiple-valued quantum 
circuits the GFSOP cascades are the most 
fundamental ones. Various Ternary Galois Field 
Decision Diagrams are a starting point to create such 
cascades and can be used also to create other types of 
quantum cascades. They are thus of a basic 
importance in multi-valued quantum logic synthesis. 

Further research includes implementing ternary 
counterparts of binary operations on these decision 
diagrams, such as cofactor, minimum, Galois sum, 
etc. Other research is on determining heuristics for 
creating optimal PKTGFDDs and FKTGFDDs that 
can potentially lead to more simpler TGFSOP 
expressions and their corresponding quantum 
cascades, as well as other types of quantum circuits. 
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10. Appendix: Ternary benchmark 

functions created 

prodn: input 
110 −n

xxx ; output 

3mod)(
110 −=

n
xxxy . [Output is the GF3 product of n

input variables.] 

sumn: input 
110 −n

xxx ; output 

3mod)(
20 n

xxxy +++= . [Output is the GF3 sum 

of n input variables.] 

ncyr: input 
110 −n

xxx ; output 

3mod
1

0
mod)(

1

0

∏+=
−

=
+

−

=

r

j
nji

n

i

xy . [A ternary GFSOP 

function of n input variables, where the products consist of 
r input variables in cyclic order. Example: For 3cy2, 

cabcabcbay ++=),,( .] 

sqsumn: input 
110 −n

xxx ; output 

( ) 3mod2

1

2

1

2

0 −+++=
n

xxxy . [Output is the GF3 sum 

of squares of n input variables] 

avgn: input 
110 −n

xxx ; output 

[ ] 3mod/)(int
110

nxxxy
n−+++= . [Output is the 

integer part of the average of n input variables expressed as 
mod 3 value.] 

a2bcc: input cba ,, ; output 3mod)( 2 cbcay ++= .

[An arbitrary function] 

thadd: input a b; output [ ]3/)(int bac +=
, 3mod)( bas += . [Ternary half-adder] 

tfadd: input a b c; output [ ]3/)(int cbay ++= ,

3mod)( cbas ++= . [Ternary full-adder] 

mul2: input a b; output [ ]3/int abc = , 3modabm = .

[2-trit ternary multiplier] 

mul3: input a b c; output [ ]3/int abcc = ,

3modabcm = . [3-trit ternary multiplier] 

mami4: input a b c d; output ),max( bay = ,

),min( dcz = . [The output y is the maximum of the 

inputs a and b; the output z is the minimum of the inputs c
and d.] 
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