
Evolved Reversible Cascades Realized on the CAM-Brain Machine
(CBM)

Andrzej Buller

ATR Human Information Science Labs
2-2-2 Hikaridai, Keihanna Science City

Kyoto 619-0288 Japan
tel. +81 774 95 1009, buller@atr.co.jp

Marek Perkowski

Department of Electrical Engineering and
Computer Science, KAIST, 373-1 Guseong-
dong, Yuseong-gu, Daejeon 305-701, Korea

mperkows@ee.kaist.ac.kr

Abstract

This paper presents a new approach to reversible
cascade evolution based on a 3D cellular automaton.
As a research platform we used the ATR’s CAM-
Brain Machine (CBM). Reversible circuits are
investigated because they are expected to dissipate
much less energy than their irreversible
counterparts. One day they will be implemented as
nano-scale 3-dimensional chips. A circuit is
reversible if the number of its inputs equals the
number of its outputs and there is a one-to-one
mapping between spaces of input vectors and output
vectors. This paper provides (1) a brief introduction
to reversible logic concentrating on definitions and
properties of the Feynman, Toffoli, Fredkin gates, (2)
an introduction to the 3D Cellular Logic Machine
(CLM) that is a cellular automaton with frozen and
pulsing state variables, (3) a collection of reversible
structures evolved using a dedicated GA and located
in the CBM using the NeuroMaze 3.0 Pro, a software
tool for computer-aided design of CBM-style
structures.

1 Introduction

1.1 Importance of reversibility for future
computers.

Reversible circuits appear to be a promising
solution for most future nanotechnologies, because
they are expected to dissipate much less energy than
their irreversible counterparts exploited nowadays
[1,18,20]. Reversibility is a necessary condition to
generate no power at all during computing, and if the
Moore Law continues to hold, the design of reversible
circuits will become a necessity around year 2020
(conservatively estimating). The heat dissipation has
two components, one related to circuit’s technology
that decreases every year and another one related to
the information loss that is constant for irreversible
technologies. When the first one will become smaller
than the latter one, reversible design will become
necessary to save power. It is speculated that three-

dimensional Reversible Cellular Automata (3D CA)
are the most efficient system architecture for future
technologies [7] and it is believed that one day
reversible architectures will be implemented as nano-
scale 3-dimensional chips that nowadays are
impossible because of, among others, the still
unsolved problem of heat produced in traditional
(irreversible) logic gates. Consult [7,20] for excellent
modern overviews of reversible logic and related
current and future circuit implementation
technologies. Interestingly, as pointed out in [20],
several existing computer architectures also require
the design of reversible circuits [15,21]. A circuit is
reversible if the number of its inputs equals the
number of its outputs and there is a one-to-one
mapping between spaces of input vectors and output
vectors [18,22]. The qualification ‘reversible’ comes
from the fact that every reversible gate or circuit
provides unique deduction of the input vector based
on the given gate definition and the output vector.
During the development of Reversible Logic various
basic sets of reversible gates were introduced. One of
the sets, called the CNTS Library [20], includes the
NOT gate that for 0 returns 1, while for 1 it returns 0,
as well as the Feynman, Toffoli and SWAP gates that
will be introduced in Section 2 together with the more
complex Fredkin gate. In the present mainstream of
the Reversible Logic-related research the circuits are
being synthesized as cascades that can be drawn as
arrays of separate horizontal lines representing wires
with vertical symbols representing basic gates
influencing locally the signals passing along the
wires. Hence, fan-outs are not allowed. This
restriction is followed in this paper. Cellular
Automaton (CA) is defined as a computing device
based on three elements: a set of connected sites
(cells), a set of states that are allowed on the sites
(cells), and a set of rules for how the states are
updated ([8]: p. 102). For implementation of the
reversible cascades we used CA adjusted based of the
following assumptions [3]: (1) the state of every cell
is defined using one binary variable called the pulsing

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE

state variable, as well as six binary variables called
the frozen state variables, and (2) there is only one
cell transition rule, that is the Boolean function S1 that
returns 1 when exactly one of its inputs is equal to
one and returns zero otherwise. Thus, we are
implementing arbitrary Boolean functions in
reversible cascades which are next mapped to 3D CA.
It has been speculated by several authors that future
architectures, especially for brain building, will be
evolved rather than designed and thus several
evolutionary algorithms such as Genetic Algorithm
and Genetic Programming have been already used to
synthesize reversible and quantum logic circuits. In
the frame of the presented research, a logic and layout
of the desired cascade is generated by a specialized
genetic algorithm (GA) developed in the Portland
Quantum Logic Group [11-14] and then converted to
certain states of the cells constituting the cellular
automaton [3]. Our research is not related to
“Morita’s reversible CA” [16,17] because the
employed CA itself is not reversible. This approach is
being developed not to directly obtain reversible
devices, but to obtain a platform for modeling large-
scale reversible structures, mainly those used in brain
building, but not only. The research will also serve
the development of a future reversible CBM concept.

1.2 Toward reversible brain building.

The ATR’s CAM-Brain Machine (CBM) is a
dedicated FPGA-based hardware for experiments
with 3-D CA designed to evolve and emulate large-
scale para-neural networks [9]. Since the genetic
algorithm located in the CBM proved to be too weak
to be used for synthesis of useful structures, the
ATR’s Brain Building Group developed the
NeuroMaze 3.0 ProTM, software for computer aided
designing and testing of neural modules to be run on
the CBM [10]. Thus the massive FPGA-based
parallelism of CBM can be used not only for brain
building but also for logic circuits emulation,
especially for models presented in regular three-
dimensional CAs. Because future generations of
CBMs will have a massive computation power in
small space, they should dissipate as little power as
possible – using reversible logic can produce a
dissipation-free brain (during calculation). Before the
future Reversible 3D Cellular Automata - based
CBMs will be built, one has to develop new methods
for designing and simulating (emulating) their
component subcircuits. This can be done in software,
but the existence of NeuroMaze encourages us to use
it also as a convenient tool for rapid modeling and
testing of reversible cascades and 3D CA circuits.
Hence, a number of reversible structures evolved
using a dedicated GA developed in the Portland
Quantum Logic Group [11-14] have been successfully

converted into cellular-automatic structures and run
on the CBM.

Summarizing, in order to have a desired reversible
circuit run on a dedicated FPGA-based hardware
(CBM), we (1) evolve the circuit using a special GA,
(2) simplify the circuit using peephole optimizing
transforms based on rules of EXOR algebra and tree
search, (3) convert a code produced by the GA into
cellular-automatic structure, (4) execute the structure
in the CBM. Note that in our approach the evolution is
only on the level of logic synthesis of complex logic
gates and not on the low level cellular cells which
approach would make the GA responsible for logic,
timing, placement and routing. The approach proposed
here combines evolutionary algorithm (EA) software,
standard Computer Aided Design (CAD) and some
human intervention, which seems to be a more
realistic way to create complex circuits in the CBM
than the entirely evolutionary approaches proposed
earlier [5]. Reversible circuits with up to 20 gates have
already been evolved [11-14]. Although the ATR
CAM-Brain Machine [9] was used as the research
platform, the methods of automated synthesis of
reversible cascades in a cellular automaton presented
here are general. This research is being conducted as a
part of the Quantrix Project, launched as one of four
themes explored in the framework of the Artificial
Brain Project conducted at the ATR Human
Information Science Laboratories, Kyoto [4]. It
contains first results obtained in search for scientific
grounds for a new evolvable hardware for on-board
brains of intelligent robots. We want to reiterate that
in no way we claim that our current approach saves
power, on the contrary, reversible circuit emulated in
FPGA is usually larger than an equivalent irreversible
circuit and consumes more power. The sole goal of
our approach is to emulate reversible 3D CA circuits
that will be able to save power in future technologies
used for brain building. Also, this paper is not related
to simulating intelligent behaviors on CBM [2-5] since
it is restricted only to the reversible CA aspect.

1.3 Nomenclature and lemmas

x′ - Boolean negation (0′ = 1, 1′ = 0)
xy – Boolean product (00 = 0, 01=0, 10 = 0, 11 = 1)
x + y – Boolean sum (0 + 0 = 0, 0+1 = 1+0 = 1, 1 + 1 = 1)
x ⊕ y - Exor (exclusive OR)
(0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0, x ⊕ 1 = x′,
x ⊕ 0 = x, x ⊕ x ′ = 1)
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z), x (y ⊕ z) = x y ⊕ x z,
x ⊕ y = y ⊕ x, x ⊕ x = 0

2 Reversible Logic

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE

This section introduces the basic reversible gates
and provides examples of using them for synthesis of
reversible cascades.

2.1 CNOT (Feynman Gate)

The CNOT (Controlled NOT) gate, called also
Feynman gate, is represented using a compound of
three symbols: ⊕, •, and | that represent an inverter, a
control and a connection, respectively (Fig. 1a). It
concerns two and only two wires. The logical value in
the wire to which the control • is attached is the same
both immediately before and immediately after the
control. As for the wire on which the inverter ⊕ is
attached, the CNOT’s behavior depends on the value
detected by the control. When the value detected by
the control is 1, the gate affects the wire the same way
as NOT. When the value detected by the control is 0,
the logical value in the wire to which the inverter is
attached is the same, both immediately before and
immediately after the inverter (Fig. 1b). Since 0 ⊕ y =
y for any Boolean value of y, for x = 0 the Feynman
gate behaves as a fan-out element.

2.2 Toffoli and Swap Gates

The Toffoli gate is represented as a composed of
one inverter ⊕, two controls, and the vertical
connection | (Fig. 2a). It concerns three and only three
wires. The logical values in the wires to which the
controls • are attached are the same both immediately
before and immediately after a given control. As for
the wire on which the inverter ⊕ is attached, the
Toffoli’s performance depends on the values detected
by the controls. When the product of the values
detected by the controls is 1, the gate affects the wire
the same way as the NOT gate. When the product of
values detected by the controls is 0, the logical value
in the wire to which the inverter is attached is the
same, both immediately before and immediately after
the inverter. (Fig. 2b). The SWAP gate is represented
as a compound of two copies of the symbol × and the
vertical connection (Fig. .3). It swaps its input values.

2.3 CNTS Library and Reversible Cascades

The CNTS Library takes its name from the first
letters of the names of gates: CNOT, NOT, Toffoli
and SWAP [20]. It is an intellectual challenge to
synthesize desired Boolean functions using
exclusively the gates taken from the Library. A lot of
effort in the field is devoted to the search of an
efficient automation of Reversible Logic Synthesis
(RLS). Genetic Algorithms and other heuristics are
employed and some promising results are being
reported [11-14]. The dominating trend in RLS is to
arrange gates into cascades, i.e. arrays of horizontal
wires interconnected using consecutive gates.

2.4 Constant inputs and garbage outputs

In the realm of Reversible Logic it is seldom
possible to use as many inputs and outputs as in classic
logic synthesis. There are three reasons. First, we may
want to synthesize a function that by definition has a
different numbers of inputs and outputs, usually real

Figure 1. CNOT (Feynman) gate (a) symbol, (b) behavior.

(a)

(b)

y y

x ⊕ y x

00
0 0

1 1

0 0

10
1 1

1 0
1 1

Figure 3. SWAP gate

y x

x y

x ⊕ yz x

y y

z z

Figure 2. Toffoli gate (a) symbol, (b) behavior

0
0

0
0

1 1

1
0

1
0

1 1

0 0
0 0

0 0

1 1
0 0
0 0

0

1

0
1

1
1

1 1

1
1 1
1

0 0
1 1
0 0

1 1
1 1
0 0

(a)

(b)

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE

life functions have more inputs than outputs. While the
basic requirement for reversible circuit is that a
number of inputs is equal to the number of outputs.
Second, even if the desired function has itself as many
inputs as outputs, it may be not a reversible function
and has thus to be converted to a reversible functions
by adding the input signals (set to constant values) and
the output signals (not used). The procedure for this
conversion has been shown in [18]. The basic
reversible gates used in such a new reversible circuit
may produce some useful and some useless ouput
values. These useless values are called garbage. It is
one of the goals of reversible logic synthesis research
to create systematic algorithms that will produce
equivalent reversible circuits with as small garbage as
possible. Sometimes the garbage of the entire circuit
can be reduced via creating the so-called mirror circuit
[18] but at the price of adding more intermediate
wires. However, such an increase to the width of the
circuit is often undesirable, for example when the
reversible logic is implemented as a “quantum circuit”
for which the width is nowadays restricted to seven in
NMR technology. Therefore, a smart design is when
the designer manages to make use of all outputs
produced by the components of his circuit, thus
introducing no input signals. The smaller the number
of employed wires the better the design of a defined
initial function in a reversible cascade. This task is
quite difficult and different from standard logic
synthesis. At present, no good methods exist for
reversible synthesis of functions of many variables and
high quality algorithms have been created only for few
variable functions. Evolutionary algorithms are some
of the most successful methods for reversible design so
far, which is in contrast to the classical logic design,
where evolutionary methods are not yet competitive to
general purpose two- and many-level design tools that
are capable of producing better-than-human designs
for functions with hundreds of inputs and outputs and
where they totally eliminate human logic minimization
from modern industrial design processes. Thus,
creating efficient reversible logic circuit synthesis
approaches is a more practical challenge for evolvable
hardware community than creating such approaches
for standard irreversible circuits where these
algorithms have little chance to compete with existing
commercial CAD tools.

2.5 Fredkin Gate

The Fredkin gate is a 3-wire reversible device that
can return various functions of selected input variables,
including AND, OR, controlled SWAP and
implication. Formally, it converts x, y and z into x, xz
⊕ x′y, xy ⊕ x′z, respectively (Fig. 4). Nevertheless, in
order to note its useful properties, let us consider three
cases when a given input is constant. The cases are
shown in Figs. 5 and 6.

Let x be set as a constant value. For x= 0, the
Fredkin gate will return 0, 0z ⊕ 1y and 0y ⊕ 1z, that
equal to 0, y and z, respectively. The calculations
leading to this result are in Fig. 5. For x= 1, the
Fredkin gate will return 1, 1z ⊕ 0y and 1y ⊕ 0z,
respectively, that equal to 1, z and y, respectively. This
way the Fredkin gate operates as a controlled SWAP
gate (Fig. 5). Now let y has a constant value. For y= 0,
the Fredkin gate will return x, xz ⊕ x′0 and x0 ⊕ x′z,
that equal to x, xz and x′z, respectively. The
calculations leading to this result are shown in Fig. 6.
For y= 1, the Fredkin gate will return x, xz ⊕ x′1 and
x1 ⊕ x′z, respectively. Observe that:

xz ⊕ x′1 = xz ⊕ x′ = xz ⊕ (x ⊕ 1) =
= (xz ⊕ x) ⊕ 1 = (xz ⊕ x)′ = (xz ⊕ x1)′ =
= (x(z ⊕ 1))′ = (xz′)′ = x′ + z = x z

while

x1 ⊕ x′z = x ⊕ x′z = (x′ ⊕ 1) ⊕ x′z =
 = (x′1 ⊕ 1) ⊕ x′z = (x′1 ⊕ x′z) ⊕ 1 =
= (x′1 ⊕ x′z)′ = ((x′(1 ⊕ z))′ = (x′z′)′ = x + z.

This way the Fredkin gate appears to be a device that
can return a Boolean product, a Boolean sum, as well
as an implication. Although the Fredkin gate was
invented as a primitive to be used in quantum
computing, it can be built of primitives taken from the
CNTS Library. Fig. 6 shows one of the solutions.
Fedkin gates, as well as other shown here have been
experimentally built in several future technologies,
including nano, DNA and quantum. The solution from
Fig..6, as well as many other useful reversible gate
and circuit designs have been obtained using
evolutionary programming system developed in the
Portland Quantum Logic Group [11-14].

Figure 4. Fredkin Gate

Fredkin
Gate

x

y

z

 x

 xz ⊕ x′y

 xy ⊕ x′z

Figure 5. Fredkin Gate as a controlled SWAP

y

1

z

Fredkin
Gate

1

1z ⊕ 0y = z ⊕ 0 = z
 1y ⊕ 0z = y ⊕ 0 = y

y

0

z

Fredkin
Gate

0
 0z ⊕ 1y = 0 ⊕ y = y

 0y ⊕ 1z = 0 ⊕ z = z

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE

3 CLM – a special cellular automaton
for reversible modeling

As a medium for the modeled reversible
computing we employed a special cellular
automaton called Cellular Logic Machine (CLM)
emulated on ATR’s CAM-Brain Machine (CBM)
[3]. CLM is 3-dimensional and works according to
one simple rule. It can be imagined as a set of cubic
cells arranged in such a way that each of the cubes
has up to six neighbors. Every cell has a door in
each of its 6 walls. The set of open doors and the set
of closed doors must be determined in the
framework of the automaton’s initial state and kept
unchanged for entire calculation process. Hence, the
doors are called frozen state variables. Every cell
can be either activated or not activated. Hence, the
variable representing activation of a given cell is
called the activation or pulsing state variable. A
given cell gets activated in time t if and only if the
number of its doors opened toward the neighbors
activated in time t-1 is equal to 1. In order to
describe the idea more precisely, let us employ the
elementary symmetric function S1 that returns 1 if
and only if one of its six inputs is equal to one ([19],
p. 99). Let us assume that binary sequence a1, a2, …,
a6 represents activations of six neighbors of a given
cell, while binary variables d1, d2, …, d6 are values
at doors toward the neighbors. Let a0 be activation
of the cell itself. CLM has been adjusted to work in
such a way that for every cell a0,t+1 = S1(d1a1,t, d2a2,t,
…, d6a6,t).

3.1 Graphical representation of cell’s state

A convenient way to show the state of a given
cell uses a graphic planar representation. We
propose the “arrow metaphor” where ω, ϖ, σ, ρ, ∈
and represent open doors to Western, Eastern,
Northern, Southern, Upper and Lower neighbor,
respectively, all located in a square representing
cell activation (pulsing state variable) (Fig. 7).

3.2 Channel, Exor and Eeckhaut gate

A channel is an elementary structure of CLM. It
employs only those cells that have only one gate
open. Fig. 8 shows pulse propagation in a sample
channel.

If a cell has two and only two gates opened, it can
serve as an Exor gate (Fig. 9).

The Eeckhaut gate [6] serves as an AND gate
(Figs. 10 and 11).

Case 1
x = 1
y = 0

Case 2
x = 0
y = 1

Case 3
x = 1
y = 1

Figure 11. Behavior of the Eeckhaut gate

xt

yt

E

Figure 10. Eeckhaut gate works as delayed AND,
i.e. Et+3 = xt yt.

Figure 6. Fredkin Gate as a cascade
of two Feynmans and one Toffoli.

x

y

z

x

 xz ⊕ x′y

 xy ⊕ x′z

Figure 7. Planar representation of
such state of CLM that all doors are
open, while pulsing state variable
(activation) is 0. ω, ϖ, σ, ρ, ∈ and
represent frozen state variables equal
to 1, which can be interpreted as open
doors to Western, Eastern, Northern,
Southern, Upper and Lower neighbor,
respectively [3]. Color of the square
represents pulsing state variable
(blank for activation 0, grey for
activation 1).

t=0

x
y
e

t=1

t=0 t=1

t=0 t=1

Figure 9. CLM-based Exor. et+1 = x ⊕ y. The trivial
case x = 0, y = 0 is not shown since all cells would
always be blank.

Case 1

Case 2

Case 3

t = 3t = 1t = 0

Figure 8. Pulse propagation in CA channel.

Upper layer

Lower layer

t = 2

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE

3.3 Reversible gates

Fig. 12a. shows a CA-based model of the
Feynman gate (CNOT). Fig. 12b shows a model of
the Tofoli gate using the Eeckhaut gate. Based on
one Tofoli, two Feynman gates and two 4-cell
channels, one can easily compose a cellular-
automaton model of the Fredkin gate (Fig. 12c). The
presented structures have been built under the
NeuroMaze 3.0 Pro, a software tool for computer
aided designing of 3-D β-PPNNs (Pulsed Para-
Neural Networks) executable on the ATR’s CAM-
Brain Machine (CBM) [2]. Since the employed
cellular automaton does not use all functions offered
by the CBM, one of successor designs of the current
CBM could be a reversible-logic-specific machine. It
can be implemented in any technology in which the
elementary reversible gates shown here can be built.

4 Concluding remarks

It was shown, that reversible cascades could be
modeled in a special 3-dimensional cellular automaton
with cells having a pulsing state variable, as well as a
set of frozen state variables. For development and

testing purposes, this automaton is executable on the
ATR’s CAM-Brain Machine (CBM). Since successful
genetic algorithms for reversible logic synthesis have
been built [11-14], the ATR’s NeuroMaze 3.0 Pro, a
software for computer aided designing of pulsed
neural networks could be enhanced to facilitate fully
automated creation of large-scale models of reversible
cascades. Indeed, owing to regular input-output
layouts of the presented reversible gates, they can be
attached one to another by a simple program. Future
work includes designing a universal reversible three-
dimensional cellular architecture for brain building.
With their cells implemented in (yet non-existent)
nano-technologies, they will allow to create mobile
robot’s “computer brains” with extremely low power
consumption.

Acknowledgements A. Buller’s research is being conducted
as a part of the Research on Human Communication
supported by the Telecommunications Advancement
Organization of Japan (TAO). M. Perkowski’s research is
supported by KAIST.

References

[1] C. Bennett, “Logical reversibility of computation,
“IBM J. Res. and Development, 17, pp. 525-532, 1973.
[2] A. Buller, “CAM-Brain Machine and Pulsed Para-
Neural Networks (PPNN): Toward a hardware for future
robotic on-board brains,” Proc. 8th Int. Symp. on AROB,,
Jan. 24-26, 2003, Beppu, Oita, Japan, pp. 490-493.
[3] A. Buller, “Reversible Cascades and 3D Cellular
Logic Machine,” Technical Report TR-0012, ATR
Human Information Science Laboratories, Kyoto, 2003.
[4] A. Buller, and K. Shimohara, “Artificial Mind.
Theoretical Background and Research Directions,“ Proc.
8th AROB, pp. 506-509, 2003.
[5] H. de Garis, A. Buller, M. Korkin, F. Gers, N.E.
Nawa, and M. Hough, “ATR's Artificial Brain ("CAM-
Brain") Project : A Sample of What Individual "CoDi-
1Bit" Model Evolved Neural Net Modules Can Do with
Digital and Analog I/O,” Proc. 1st EHW, July 19-21,
Pasadena, California, pp. 102-110, 1999.
[6] H. Eeckhaut, and J. Van Campenhout,
“Handcrafting Pulsed Neural Networks for the CAM-
Brain Machine, “ Proc. 8th AROB, pp. 494-501, 2003.
[7] M. Frank, http://www.cise.ufl.edu/~mpf and many
pages linked there. This is the best resource for reversible
logic, permanently updated.
[8] N. Gershenfeld, The nature of mathematical
modeling, Cambridge: Cambridge Univ. Press, 1999.
[9] M. Korkin, G. Fehr, and G. Jeffrey, “Evolving
hadware on a large scale,” Proc. 2nd NASA/DoD EHW,
July 2000, Pasadena, USA, pp. 173-181, 2000.
[10] J. Liu, NeuroMaze User’s Guide, Version 3.0,
ATR HIS, Kyoto, 2002.
[11] M. Lukac, and M. Perkowski, “Evolving Quantum
Circuits Using Genetic Algorithms,” Proc. 4th
NASA/DoD EHW, Wash. DC, USA, pp. 173-181, 2002.
[12] M. Lukac, M. Pivtoraiko, A. Mishchenko, and M.
Perkowski, “Automated Synthesis of Generalized
Reversible Cascades using Genetic Algorithms,” Proc.
5th Int. Wk Boolean Pblms, Freiberg, pp. 33-45, 2002.

x

y

Upper layer Lower layer a.

Upper layer Lower layer

z

y

x

b.

Figure 12. Reversible gates composed in CLM.
(a) Feynman, (b) Toffoli, (c) Fredkin.

Upper layer Lower layerc.

z

y

x

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE

[13] M. Lukac, M. Perkowski, and M. Pivtoraiko,
“Evolutionary Approach to Quantum and Reversible
Logic Synthesis,” Subm to Art Intel Rev J., 2003.
[14] M. Perkowski, M. Lukac. M. Pivtoraiko, P.
Kerntopf, M. Folgheraiter, H. Lee, W. Kim, W.
Hwangbo, J-W. Kim, and Y-W Choi, “A Hierarchical
Approach to Computer-Aided Design of Quantum
Circuits,” Proc. 6th Intern. Symp. on Representations
and Methodology of Future Computing Technologies,
Trier, Germany, March 10 -11, 2003.
[15] J.P. McGregor, and R.B. Lee, “Architectural
Enhancements for Fast Subword Permutations with
Repetitions in Cryptographic Applications,” Proc.
ICCD, pp. 453-461, 2001.
[16] K. Morita, and M. Harao, “Computation
universality of one-dimensional reversible (injective)
cellular automata,” Trans. IEICE, E-72, pp. 758-762,
1989.
[17] K. Morita, and S. Ueno, “Computation-universal
models of two-dimensional 16-state reversible cellular
automata,” IEICE Trans. Inf. & Systems, E75-D, pp.
141-147, 1992.
[18] M. Perkowski, A. Al-Rabadi, P. Kerntopf, A. Buller,
M. Chrzanowska-Jeske, A. Mishchenko, M. Azad Khan,
A. Coppola, S. Yanushkevich, V. Shmerko, and L.
Jozwiak, “A General Decomposition for Reversible
Logic,” Proc. RM'2001, Starkville, pp. 119-138, 2001.
[19] T. Sasao, Switching Theory for Logic Synthesis,
Boston: Kluwer Academic Publishers, 1999.
[20] V.V. Shende, A.K. Prasad, I. Markov, and J.P.
Hayes, “Reversible Logic Circuit Synthesis, “Proc. 11th
Intern. Workshop on Logic Synthesis, pp. 125-130. 2002.
[21] Z. Shi, and R. Lee, “Bit Permutation Instructions
for Accelerating Software Cryptography,” Proc. IEEE
Intl. Conf. on App. Specific Systems, Architectures and
Processors, pp. 138 – 148, 2000.
[22] T. Toffoli, Reversible Computing, MIT/LCS/TM-
151, MIT Lab for Comp. Science. 1980.

Proceedings of The 2003 NASA/Dod Conference on Evolvable Hardware
ISBN 0-7695-1977-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

