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Abstract

Galois Field Sum of Products (GFSOP) leads to

efficient multi-valued reversible circuit synthesis using
quantum gates. In this paper, we propose a new

generalization of ternary Toffoli gate and another new

generalized reversible ternary gate with discussion of their
quantum realizations. Algorithms for synthesizing ternary

GFSOP using quantum cascades of these gates are

proposed. In both the synthesis methods, 5 ternary shift
operators and ternary swap gate are used. We also propose

quantum realizations of 5 ternary shift operators and

ternary swap gate. In the cascades of the new ternary gates,
local mirrors, variable ordering, and product ordering

techniques are used to reduce the circuit cost. Experimental

results show that the cascade of the new ternary gates is
more efficient than the cascade of ternary Toffoli gates.

1. Introduction

Multi-valued quantum logic synthesis methods are still
very immature, though a number of works have been done
[3-6, 34]. From these works, however, it is more or less
evident that Galois Field Sum of Products (GFSOP) is a
good choice for multi-valued reversible logic synthesis. In
this paper, we focus only on ternary GFSOP synthesis with
cascades of quantum gates.

The unit of memory (information) for binary quantum
computation is a qubit, the simplest quantum system that
exists in a linear superposition of two basic states labeled

0  and 1 . In 1996, Mattle et al [29] used the term trit for

a ternary equivalent of qubit (however, qutrit is appropriate).
In 1997, Chau [11] introduced the concept of a qudit, a d-
dimensional quantum system that generalizes a qubit and has

basis states 1,,2,1,0 −d . Subsequently, limited

work was done in multi-valued quantum logic. The work of
Chau [11], Rains [37] and Ashikhmin and Knill [7],
extended quantum error-correcting codes to multi-valued

logic for correcting codes in single and multiple qudits.
Gottesman [19] and Aharonov and Ben-Or [2] developed
fault-tolerant procedures for implementing two-qudit and
three-qudit analogs of universal binary gates. Burlakov [10]
proposed to use correlated photon pair to represent qutrit.
Since 2000 the works have got momentum. Muthukrishnan
and Stroud [32] developed multi-valued logic for multi-level
quantum computing systems and showed their realizability
in linear ion trap devices. However, this approach produces
circuits of too large dimensions. Universality of n-qudit
gates was discussed in [9, 32] but no design algorithms were
given.  Picton [35] presented an approach called Universal
Architecture for multi-valued reversible logic but this
approach produces circuits that are far from minimum and
have no relation to quantum realization. Since 2001 Al-
Rabadi et al proposed Galois Field approach to quantum
logic synthesis  (see [3-6, 34]). In this work Galois quantum
matrices were proposed for swap and Toffoli gates, but
without the proof that they can be built from only 1*1 and
2*2 gates. Several regular structures for multi-valued
quantum logic were also proposed, including cascades, but
these cascades do not allow realization of powers of GFSOP
and are thus non-universal. This work was based on previous
works on GFSOPs and similar forms of Galois and similar
logic [1, 8, 12, 14-18, 20-25, 27, 31, 33, 36, 38-41], in which
canonical expansions of Post literals and arbitrary functions
were shown. However, no constructive methods for GFSOP
and cascade minimization were given, nor programs were
written for them. Factorized reversible cascades and
complex gates (which usually yield better result) were not
proposed. De Vos proposed two ternary 1*1 gates and two
ternary 2*2 gates [13], but no synthesis method was
proposed. New efficient reversible multi-valued gates were
proposed in [26] and quantum realizations of multi-valued
Toffoli gate in [33]. However, very little has been published
on synthesis algorithms for multi-output multi-valued
quantum circuits. Therefore, it is very important to look for
efficient methods to synthesize multi-output GFSOP

functions using quantum cascades. In this paper, we
concentrate on quantum cascaded realization of only ternary
GFSOP functions.
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The rest of the paper is organized as follows. Section 2
provides brief introduction to ternary Galois Field logic.
Multi-valued quantum logic is briefly discussed in Section 3.
In Section 4, a new generalization of ternary Toffoli gate is
proposed. A new generalized reversible ternary gate is
proposed in Section 5. In Section 6, synthesis of multi-
output ternary GFSOP with quantum cascade of new Toffoli
gates is proposed. Synthesis of multi-output ternary GFSOP
with quantum cascade of new ternary gates is proposed in
Section 7. In Section 8, experimental results are presented.
Conclusions about the paper and future research ideas are
presented in Section 9. Sections 10 and 11 provide
acknowledgement and references, respectively.

2. Ternary Galois field logic

In Galois Field Sum of Products (GFSOP) the product
terms are GF products and the sums are GF sum operations.
In this paper we concentrate only on ternary GFSOPs.
Ternary Galois Field (GF3) consists of the set of elements

}2,1,0{=T  and two basic binary operations – addition

(denoted by +) and multiplication (denoted by ⋅ or absence

of any operator) as defined in Table 1. GF3 addition and
multiplication are closed, i. e., for TBA ∈, , TBA ∈+  and

TAB ∈ . GF3 addition and multiplication are also
commutative and associative, i. e., ABBA +=+  and

BAAB =  (commutative), and

CBACBACBA ++=++=++ )()(  and

ABCCABBCA == )()(  (associative). GF3 multiplication is

distributive over addition, i. e., ACABCBA +=+ )( .

Table 1. Ternary Galois Field (GF3) operations.
+ 0 1 2 • 0 1 2

0 0 1 2 0 0 0 0

1 1 2 0 1 0 1 2

2 2 0 1 2 0 2 1

There are six reversible ternary unary operations
corresponding to six possible permutations of 0, 1, and 2.
These unary operations are called reversible ternary shift

operations. We propose names of these six shift operations,
their operator symbols and equations, and gate symbols in
Table 2. Among these six shift operations only single-shift,
dual-shift (both also called Post cycles [28] and cyclic
negations in [30]), and self-dual-shift (also called inverse

[16]) were previously used in the context of quantum
computation. All these six shift operators can be built as
reversible ternary gates. We propose quantum realization of
the ternary shift gates (except the buffer, which is quantum
wire) in Figure 1. These realizations require two to three
quantum wires. However, we hope that physicists will be
able to construct these gates as 1*1 gates. A ternary signal
can be converted to one of the six forms using one of the

reversible ternary shift gates as shown in Table 3. We have
used this technique in our cascades to change signal form.

Table 2. Reversible ternary shift operations.
Operator Names, Symbols, and Equations

Input

A

B

A

SS

1+
=′

A

A

DS

2+
=′′

A

A

SlS

A

A

2

=′′′
SlSS

12

#

+
=

A

A

SlDS

22

^

+
=

A

A

0 0 1 2 0 1 2

1 1 2 0 2 0 1

2 2 0 1 1 2 0

B: Buffer, SS: Single-Shift, DS: Dual-Shift, SlS: Self-Shift,
SlSS: Self-Single-Sift, SlDS: Self-Dual-Shift

Gate Symbols

Figure 1. Quantum realization of ternary shift
gates.

Table 3. Conversion of one shift form to another
shift form using ternary shift gates.

Output

Input A A′ A ′′ A ′′′ #A ^A

A SS DS SlS SlSS SlDS

A′ DS SS SlSS SlDS SlS

A ′′ SS DS SlDS SlS SlSS

A ′′′ SlS SlSS SlDS SS DS
#A SlSS SlDS SlS DS SS
^A SlDS SlS SlSS SS DS

The GF3 basic literal of a variable A  is an element of

the set },,,,,,,2,1{ 2^# AAAAAAA ′′′′′′ . It should be noted

that all ternary literals, except 2A , are reversible. A
reversible ternary literal multiplied by 2 yields another
reversible ternary literal as follows: 212 =⋅ , 122 =⋅ ,

AA ′′′=2 , ^2 AA =′ , #2 AA =′′ , AA =′′′2 , AA ′′=#2 , and

AA ′=^2 . Again, a ternary literal may have a power of only

2, since AA =3  (can be verified from Table 1),
234 AAAA == , and so on. A product term is a GF3 product

of some literals. For example, BA ′′  is a product term.
Ternary GFSOP is GF3 sum of some product terms. For

example, CACBBA ′′′+′+′′+ 22  is a ternary GFSOP.

' " #'" ^

B SS DS SlS SlSS SlDS

A A A

A A

1 1

1+=′ AA

2

2+=′′ AA

2 2

1

2

1

AA 2=′′′

1

2

1

2

12# += AA
2 2

1 1

22^ += AA

(a) Single-Shift (b) Dual-Shift

(c) Self-Shift

(d) Self-Single-Shift (e) Self-Dual-Shift

Proceedings of the 33rd International Symposium on Multiple-Valued Logic (ISMVL’03) 
0195-623X/03 $17.00 © 2003 IEEE 



3. Multi-valued quantum logic

In multi-valued (MV) Quantum Computing  (QC), the
unit of memory (information) is qudit. MV quantum logic
operations manipulate qudits, which are microscopic entities
such as a photon or atomic spin.  Ternary logic values of 0,
1, and 2 are represented by a set of distinguishable different
states of a qutrit.  These states can be a photon’s
polarizations or an elementary particle’s spins. After
encoding these distinguishable quantities into multiple-
valued constants, qutrit states are represented by the

notations 0 , 1 , and 2 .

Qudits exist in a linear superposition of states, and are
characterized by a wavefunction .  As an example

( 2=d ), it is possible to have light polarizations other than

purely horizontal or vertical, such as slant 45° corresponding

to the linear superposition of [ ]1202
2

1 += . In

ternary logic, the notation for the superposition is

210 ++ . These intermediate states cannot be

distinguished, rather a measurement will yield that the qutrit

is in one of the basis states, 0 , 1 , or 2 .  The

probability that a measurement of a qutrit yields state 0  is

2

, state 1  is 
2

, and state 2  is 
2

.  The sum of these

probabilities is one. The absolute values are required since,
in general, α, β and  are complex quantities.

Pairs of qutrits are capable of representing nine distinct

states, 00 , 01 , 02 , 10 , 11 , 12 , 20 , 21 , and

22 , as well as all possible superpositions of the states.

This property is known as “entanglement”, and may be
mathematically described using the Kronecker product
(tensor product) operation ⊗. As an example, consider two

qutrits with 210
1111

++=  and

210
2222

++= . When the two qutrits are

considered to represent a state, that state 
12

is the

superposition of all possible combinations of the original
qutrits, where

220100
2121212112

+++=⊗= .

Superposition property allows qubit states to grow much
faster in dimension than classical bits, and qudits faster than

qubits [32].  In a classical system, n bits represent n2
distinct states, whereas n qutrits correspond to a

superposition of n3  states. In the above formula some

coefficient can be equal to zero, so there exist a constraint
bounding the possible states in which the system can exist.
As observed in [32] – “Allowing d to be arbitrary enables

a tradeoff between the number of qudits making up the
quantum computer and the number of levels in each qudit”.

These all contribute to difficulty in understanding the
concepts of quantum computing and creating efficient

analysis, simulation, verification and synthesis algorithms
for QC. Generally, however, we believe that much can be
learned from the history of Electronic Computer Aided
Design as well as from MV logic theory and design, and the
lessons learned should be used to design efficient CAD tools
for MV quantum computing.

In terms of logic operations, anything that changes a
vector of qudit states can be considered as an operator.
These phenomena can be modeled using the analogy of a
“quantum circuit”. In a quantum circuit, wires do not carry
ternary constants but correspond to 3-tuples of complex
values, α, β, and . Quantum logic gates of the circuit map

the complex values on their inputs to complex values on
their outputs.  Operation of quantum gates is described by
matrix operations. Any quantum circuit is a composition of
parallel and serial connections of blocks, from small to large.
Serial connection of blocks corresponds to multiplication of
their (unitary) matrices. Parallel connection corresponds to
Kronecker multiplication of their matrices. So, theoretically,
the analysis, simulation and verification are easy and can be
based on matrix methods. Practically they are tough because
the dimensions of the matrices grow exponentially.

4. A new generalization of ternary Toffoli gate

We propose a ternary generalization of Toffoli gate in

Figure 2(a), where 
k

f  is an arbitrary ternary function of the

input variables 
k

AAA ,,,
21

. By inspection of the truth

table it can be shown that the gate is a ternary reversible

gate. Depending on 
k

f  and the value of n many possible

gates can be constructed.
The method of implementing arbitrary non-reversible

functions is shown in Figure 2(b). In this method an arbitrary
non-reversible one-output function controls an arbitrary

reversible operator. 1G −  is an inverse gate of gate G. H is a

reversible gate that includes arbitrary controlled ternary
function. Several garbage signals can be internally created

between G and 1G − . But, as 1G −  gate uses these garbage

signals to restore the constants, they do not contribute
dramatically to the increase of the scratchpad register width.
The original inputs are restored at the output terminals, thus
allowing the inputs to be used in the next gates in the
cascade. Of course, this approach is restricted to some types
of cascades like those of sum-of-products type which reuse
inputs. Using this method, the ternary Toffoli gate can be
realized as shown in Figure 2(c).

5. A new generalized reversible ternary gate

We propose a new generalized reversible ternary gate in

Figure 3(a), where 
k

f  is an arbitrary ternary function of the

input variables 
k

AAA ,,,
21

, { }
kkk

fff ′′′∈ ,* , and

},{*

iii
AAA ′′′∈ . By inspection of the truth tables it can be

shown that all gates of the proposed family are ternary
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reversible gates. Depending on 
k

f  and the choice of the

shift, many possible gates can be constructed. A special
subset of gates of our present interest is shown in Figure
3(b). Realization of the gate of Figure 3(b) using the
principle of Figure 2(b) is shown in Figure 3(c). In Figure
3(d), we propose quantum realization of ternary swap gate.

Input lines 
1+k

A  and 
2+k

A  of the new ternary gate are

used as controlled inputs. Depending on the values of these
input signals, the gate can be used in cascades in 16 different
modes of operations as shown in Table 4.

Figure 2. Generalized ternary Toffoli gate.

6. Synthesis of multi-output GFSOP using

quantum cascade of ternary Toffoli gates

For synthesizing GFSOP using cascade of ternary

Toffoli gates, we assume that 
kk

AAAf
21

= .  The general

pattern of a cascade to implement ternary GFSOP functions
using ternary Toffoli gates is shown in Figure 4. It is
obvious that to make it quantum realizable, swap gates have
to be added. It should be observed that variables are
replicated to allow realization of powers of variables and
ternary functions that need them. Moreover, constant 2 is
used to realize ternary functions that need it.

Theorem. Any ternary GFSOP function can be realized
in a cascade of reversible ternary Toffoli, ternary Swap, and

5 ternary shift gates using at most mn ++ 22 (optimistically

mn ++12 ) quantum wires, where n is the number of input

variables and m is the number of outputs.

Figure 3. Generalized reversible ternary gate.

Proof. To realize a ternary GFSOP function, product
terms can be implemented and added with other product
terms using ternary Toffoli gates (see Figure 4). As wire
crossing is not permitted in quantum circuits, ternary swap
gates must be used. Ternary reversible literals can be
implemented using ternary shift gates along the quantum

wire. However, to realize literals of the form 2A , two copies
of the variables will be needed. Moreover, a product term of

the form AA ′′′  can not be realized without a second copy of
the variable. Therefore, n2  quantum wires will be required

for n input variables. Such a variable copying can be done
using a ternary Feynman gate as copying gate. It should be
noted that Feynman gate is a special case of Toffoli gate. A
reversible ternary literal multiplied by 2 yields another
reversible ternary literal and that can be realized by using
shift gates along the quantum wire. However, to realize a

single variable function, literal of the form 22A  must be

realized, since 12 20 += AA , AAA 22 21 += , and

AAA += 22 2 . The product term of the form 22A  can be
realized by multiplication of 2, A, and A. For this purpose, a
quantum wire for constant 2 will be required. Moreover,
realization of shift gates requires quantum wires for
constants 1 and 2 (see Figure 1). So, 2 quantum wires will be
needed for input constants 1 and 2. Finally, m quantum wires
will be needed for outputs. Therefore, a total of

mn ++ 22 quantum wires will be needed for realizing any

ternary GFSOP function. However, for a particular function,
copies of all input variables may not be required and,
therefore, mn ++ 22 is the maximum number of quantum

1
A

k
A

1+k
A

k
f

11
AP =

kk
AP =

11 ++ +=
kkk

AfP

nk
A +

nkknk
AfP ++ +=

(a) Generalized ternary

Toffoli gate.       is an

arbitrary function
k

f

Arbitrary

controlled

ternary

function

Inputs

Constants

G G-1

Repeated inputs, intermediate signals, and garbages

Repeated inputs

Repeated constants

Controlling signal

Controlled input
Output

H

(b) Principle of creating arbitrary reversible gates

Arbitrary non-

reversible ternary

function

Arbitrary controlled

ternary function

1
A

k
A

1+k
A

1
P

k
P

1+k
P

(c) Creating generalized ternary

Toffoli gate using principle of (b)

A

B

(d) Ternary Swap Gate

1
A

k
A

1+k
A

2+k
A

11
AP =

kk
AP =

211 +++ +=
kkkk

AAfP

kkk

kkkk

fAP

AAfP

+′′′+=
′+′′′=

++

+++

11

212

(b) Special case of the gate

of Figure (a)

1
A

k
A

1+k
A

2+k
A

11
AP =

kk
AP =

211 +++ +=
kkkk

AAfP

*

2

*

1

*

2 +++ +=
kkkk

AAfP

(a) Generalized reversible

ternary gate

B

A

'"

1
A

k
A

1+k
A

2+k
A

1

2 F 1−F

1+kk
Af

2

1

2

1

1+′′′kA

k
f

G

211 +++ +=
kkkk

AAfP
kk

fA +′′′+1

1−G

112 +++ ++′′′=
kkkk

PfAP

2

1

1+k
P

2+k
P

garbage

(c) Quantum realization of the gate of Figure (b)
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wires needed to realize a ternary GFSOP function. Anyway,
we hope that physicists will be able to create all 5 ternary
shift gates as 1*1 gates. In that situation, 2 quantum wires
for input constants 1 and 2 to realize ternary shift gates will
not be required; only 1 quantum wire for input constant 2

will be sufficient to realize the product terms like 22A . In
this optimistic situation, a maximum of mn ++12 quantum

wires will be needed to realize any ternary GFSOP function.
(End of proof)

Table 4. Different modes of operation of the new
reversible ternary gate family in cascades.

Mode
21 ++ kk

AA
1+k

P
2+k

P

A 00 0
k

f

B 01 1
k

f ′
C 02 2

k
f ′′

D 10
k

f ^

k
f

E 11
k

f ′
k

f ′′′
F 12

k
f ′′ #

k
f

G 20
k

f ′′′ 1

H 21 #

k
f 2

I 22 ^

k
f 0

J 0G G
k

fG +
K 1G Gf

k
+ Gf

k
+^

L 2G Gf
k

+′′′ G ′
M G0 Gf

k
GGf

k
′′+′′

N G1 1+Gf
k

GGf
k

+′′
O G2 2+Gf

k
Gf

k
′′′

P GF FGf
k

+
kk

fGFGf +′′′++

The proposed realization method automatically
accomplishes the conversion of non-reversible ternary
function to reversible ternary function, which is not a trivial
problem by itself and has been not presented in the literature.
Realization of multi-output GFSOPs

BACBF ′′′+′+= 22

1
21 , CCBABF ′′′+′′′+′+= 2

2
1 , and

CBABBACBF ′′′+′+′′′+′+= 222

3
222  using quantum

cascades of ternary Toffoli gates is shown in Figure 5.

7. Synthesis of multi-output GFSOP using

quantum cascades of new ternary gates

For synthesizing GFSOP using quantum cascades of

new ternary gates, we assume that 
221 −=

kk
AAAf . In this

synthesis method we have used a graph based data structure
called implementation graph as shown in Figure 6(a). In
this graph a node represents a new ternary gate. The left

incoming edge represents 
1+k

A  input line and the right

incoming edge represents 
2+k

A input line. The left outgoing

edge represents 
1+k

P  output line and the right outgoing edge

represents 
2+k

P  output line. The product inside the node

represents the function 
k

f . A constant output is converted

into another constant, if required, using shift gate (see Table
3) represented in the implementation graph by a box with S
inside. A garbage output is converted into 0 by using local
mirror represented in the implementation graph by a box
with M inside. In the local mirror, a garbage output of the
form G2  is added with G  using Toffoli gate to produce 0.

A garbage output of the form G  is first multiplied by 2

using self-shift gate to produce G2  and then added with G

using Toffoli gate to produce 0. The resulting 0 is then
converted into another constant, if required, using shift gate.

Figure 4. General pattern of a cascade to
implement ternary functions using ternary Toffoli

gates.

Figure 5. Synthesis of multi-output GFSOP using
quantum cascade of ternary Toffoli gates.

The algorithm for synthesizing multi-output GFSOP
using quantum cascades of new ternary gates is given below:
1.1 Factorize the given GFSOPs to satisfy the structure of

operating mode P.

A

0

0

0

B

C

2

2

1

A

B

C

'

'"

'"

^

2CAA ′′′′ 22CB B ′′′ 22C BA#

1
F

2
F

'"

^

'"

BACBCAAF #222

1
1 ++′′′′+= 222

2
22 CBCBF +′′′++=

Toffoli gates = 8, Swap gates = 15, Shift gates = 5

BACBF ′′′+′+= 22

1
21 CCBABF ′′′+′′′+′+= 2

2
1

CBABBACBF ′′′+′+′′′+′+= 222

3
222

#

A

0

0

2

2

1

1
B

C

3
F

2
F

1
F

' '" '" '"
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1.2 If not possible, factorize the given GFSOPs to satisfy the
structure of any of the operating modes of J, K, L, M, N,

and O.

1.3 If not possible, factorize the given GFSOPs to satisfy the
structure of any of the operating modes of D, E, and F.

1.4 If not possible, factorize the given GFSOPs to satisfy the

structure of any of the operating modes of A, B, C, G, H,
and I.

2. Create a node of the implementation graph for the

selected mode of operation. Determine the input of that
node.

3. Repeat steps 1 and 2 recursively for the inputs of the
created node until all inputs become constant.

4. If any output of a node is garbage, use local mirror to

convert it into constant. Convert output constants into
other constants, if needed for one of the next gates,

using shift gates.

5. From the implementation graph, realize the quantum
cascade. Use variable and product ordering to reduce

the number of swap gates.

The method is illustrated using the GFSOPs

BACBF ′′′+′+= 22

1
21 , CCBABF ′′′+′′′+′+= 2

2
1 , and

CBABBACBF ′′′+′+′′′+′+= 222

3
222 . 

2
F  and 

3
F can be

factorized to satisfy the structure of mode N as

1)22(1 222

2
+++′=′′′+′′′+′+= BACBCCCBABF and

)22()122)(1(

222
2222

222

3

++′++++′+=

′′′+′+′′′+′+=
BACBBACBC

CBABBACBF
,

where the function Cf
k

=  and the corresponding inputs are

22 22 ++′ BACB  and 1. This selection is represented by the

bottom node of Figure 6(a). 
1

F  can be factorized as

)22()22(21 2222

1
+++′=′′′+′+= BACBBACBF . The

input 22 22 ++′ BACB  of the bottom node and the function

1
F  can be generated using the operating mode K with

2CBf
k

′=  and inputs 1 and 22 2 +BA . This selection is

represented by the middle node of Figure 6(a). Finally, the

input 22 2 +BA  can be realized using operating mode D

with BAf
k

2=  and inputs 1 and 0. This selection is

represented by the top node of Figure 6(a). The garbage

output BA 2  of the top node is converted into 1 using local
mirror. The local mirror is denoted by a box with symbol M
in the graph of Figure 6(a). Realization of the
implementation graph is shown in Figure 6(b).

8. Experimental results

We have developed a heuristic method of GFSOP
synthesis using both types of cascades. There are no known
ternary GFSOP benchmark functions. For doing our
experiments, we considered some small ternary GFSOP
functions and gave them arbitrary names as shown in Table
5. These functions are realized using quantum cascade of
Toffoli gates as well as quantum cascade of new ternary

gates. Experimental results for these functions are given in
Table 6. From the table, it can be seen that for multi-output
GFSOP the quantum cascades of new ternary gates are more
efficient than the quantum cascades of ternary Toffoli gates.
However, for single-output GFSOP the quantum cascades of
ternary Toffoli gates are more efficient than the quantum
cascades of new ternary gates.

Figure 6. Synthesis of multi-output GFSOP using
quantum cascade of new ternary gate.

9. Conclusion

In this paper, we used five (except buffer) reversible

ternary unary operators (only three were previously used),
which can be built as quantum 1*1 ternary gates. A new

ternary generalization of Toffoli gate and a new

generalized reversible ternary gate are proposed. Quantum

realizations of these gates are also discussed. Two GFSOP-

based reversible logic synthesis methods – one using
quantum cascade of ternary Toffoli gates and another using
quantum cascade of new ternary gates are proposed. We
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have chosen cascaded realization, since cascades have the
same number of internal signals at every level with small
garbage or no garbage at all. Cascades can also be easily
represented using standard quantum notation introduced by
Feynman. For synthesizing quantum cascade of new ternary
gates, a graph-based data structure called implementation
graph is introduced. In this cascade local mirror is used to
convert garbage output into constant and then the resulting
constant is used as input to the next gate to reduce the
scratchpad register width. Wire crossing is not allowed in
some quantum technologies. In this case using a ternary
swap gate is useful in logic synthesis of ternary reversible
circuits. We propose quantum realization of a ternary swap

gate for the first time. In both the cascades, variable
ordering and product ordering are used to reduce the number
of ternary swap gates, even then the cascades require a large
number of ternary swap gates, which needs to be reduced in
the future research. There are no known ternary GFSOP
benchmark functions, so we performed experiments with
some small GFSOPs and experimental results are reported.
From the experimental results, it can be said that for multi-
output GFSOP the quantum cascade of new gates is more
efficient than the quantum cascade of Toffoli gates.
However, quantum cascade of Toffoli gates yield better
result for single-output GFSOP. Using smarter factorization
techniques would also improve the quality of quantum
cascades of new family of ternary gates.

Table 5. Experimental functions.
Name GFSOP Expression

kpk01 BABCBAF ′+′+′′′′=
1

,

CABACBAF ′′′+′+′′′′=
2

kpk02 EDEDBAEDCBF ′+′′+′′=
1

,

2
2

+′′′′+′′′′+′′′′+′′+′′= BACBEDEDBAEDCBF

kpk03 BAF ′=
1

, CBBAF ′+′=
2

, CABAF ′′+′=
3

,

DACABAF ′+′′+′=
4

kpk04 CDBADBCBDAACF +′′′+′′′+′+′′+=
kpk05 DBCAF ′′+= 1

1
, DBCADBCAF ′′′′+′+′′+= 1

2
,

CADBCBF ′′+′+′′′=
3

, CADBF ′′+′+= 1
4

kpk06 222#

1
BACBAF +′= , 222

2
2 BACBAF +′′′+=

kpk07 BACBF ′′′+′+= 22

1
21 ,

CCBABF ′′′+′′′+′+= 2

2
1 ,

CBABBACBF ′′′+′+′′′+′+= 222

3
222

The quantum realizations of binary gates are called
pseudo-binary, so by analogy we will call our circuits
introduced here – pseudo-ternary. They will be both called
“permutation circuits” because their unitary matrices are
permutation matrices.

The proposed multi-output GFSOP synthesis methods
are applicable to all kinds of polynomial expansions
presented so far in literature as well as new expansions that

have operations of powers, multiplications, sums and
reversible one-argument functions.

Table 6. Experimental results.
Cascade of Toffoli

Gates
Cascade of New Gates

Func.
Name

Toff.
Gates

Swap
Gates

Shift
Gates

New
Gates

Toff.
Gates

Swap
Gates

Shift
Gates

kpk01 4 3 6 3 0 2 5

kpk02 6 12 12 3 2 10 9

kpk03 4 9 7 4 0 15 6

kpk04 6 14 7 6 10 25 20

kpk05 6 13 8 4 0 12 5

kpk06 6 6 5 2 3 5 5

kpk07 8 15 5 3 3 6 4

The future research includes: (i) investigating more
efficient algorithm for reducing the number of swap gates in
the cascades, (ii) developing smarter factorization technique
for the cascade of new gates, (iii) developing method for
multi-output GFSOP minimization, and (iv) creating a good
library of ternary GFSOP benchmark functions.
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