

A COMPARISON OF MODIFIED RECONSTRUCTABILITY ANALYSIS AND
ASHENHURST-CURTIS DECOMPOSITION OF BOOLEAN FUNCTIONS

Anas N. Al-Rabadi(1), Martin Zwick(2), and Marek Perkowski(1)

(1) ECE Department (2) Systems Science Department @Portland State University
[alrabadi, mperkows@ece.pdx.edu] (1), [zwick@sysc.pdx.edu] (2)

KEYWORDS: Reconstructability Analysis,
Ashenhurst-Curtis Decomposition, Boolean
Functions, NPN-Classification, Log-Functionality
Complexity Measure.

ABSTRACT

Modified Reconstructability Analysis (MRA), a
novel decomposition technique within the
framework of set-theoretic (crisp possibilistic)
Reconstructability Analysis, is applied to 3-variable
NPN-classified Boolean functions. MRA is
superior to conventional Reconstructability
Analysis (CRA), i.e. it decomposes more NPN
functions. MRA is compared to Ashenhurst-Curtis
(AC) decomposition using two different complexity
measures: log-functionality, a measure suitable for
machine learning, and the count of the total number
of two-input gates, a measure suitable for circuit
design. MRA is superior to AC using the first of
these measures, and is comparable to, but different
from AC, using the second.

1 INTRODUCTION

 One general methodology for understanding a
complex system is to decompose it into less
complex sub-systems. Decomposition is used in
many situations; for example, in logic synthesis
(Ashenhurst 1953, Ashenhurst 1956, Ashenhurst
1959, Curtis 1963, Curtis 1962, Files 2000, Grygiel
2000, Jozwiak 1995, Muroga 1979) where the
number of inputs to the gates is high and cannot be
mapped to a standard library and in machine
learning where data is noisy or incomplete (Files
2000, Grygiel 2000). The primary criteria for
evaluating the quality of the decomposition process
are the amount of information (or loss of
information, i.e., error) existing in the decomposed
system and the complexity of this decomposed
system. The objective is obvious: decompose the
complex system (data) into the least-complex most-
informative (least-error) model. Simplicity is
desired since, according to the Occam Razor
principle, the simpler the model is, the more
powerful it is for generalization. Least error is
desired since one wants to retain as much

information as possible in the decomposed system,
when compared to the original data. The
decomposition processes can be generally
dichotomized into lossless (no error) versus lossy
decomposition. In this paper, a comparison of three
types of lossless decomposition are considered: the
disjoint Ashenhurst-Curtis (AC) decomposition and
set-theoretic conventional and Modified
Reconstructability Analysis (CRA and MRA,
respectively).

 The remainder of this paper is organized as
follows: section 2 presents background and related
work on this subject. CRA, MRA, and AC
complexity results are presented in section 3.
Conclusions and future work are discussed in
section 4.

2 LOGIC FUNCTIONS CLASSIFICATION,
COMPLEXITY MEASURES, AND
DECOMPOSITIONS

 This section introduces the basic background of
the NPN-classification of three-variable 2-valued
logic functions, Ashenhurst-Curtis (AC) and
Reconstructability Analysis (RA) decomposition
methods that are used in this work, and complexity
measures that are utilized to compare the efficiency
of such decompositions.

2.1 NPN-Classification of Logic Functions

 There exist many classification methods to
cluster logic functions into families of functions
(Muroga 1979). Two important operations that
produce equivalence classes of logic functions are
negation and permutation (Muroga 1979).
Accordingly, the following classification types
result:

1. P-Equivalence class: a family of identical
functions obtained by the operation of
permutation of variables.

2. NP-Equivalence class: a family of
identical functions obtained by the
operations of negation or permutation of
one or more variables.

3. NPN-Equivalence class: a family of
identical functions obtained by the
operations of negation or permutation of
one or more variables, and also negation
of function.

 The NPN-Equivalence classification will be used
in this work. Table 1 lists 3-variable Boolean
functions, for the non-degenerate classes (i.e., the
classes depending on all three variables).

Table 1. NPN-Equivalence classes for non-
degenerate Boolean functions of three binary
variables (Muroga 1979). These classes contain 218
out of the possible 256 functions.

2.2 Complexity Measures

 Decomposability means complexity reduction.
Many complexity measures exist for the purpose of
evaluating the efficiency of the decomposition of
complex systems into simpler sub-systems. Such
complexity measures include: the Cardinality
complexity measure (DFC) (Abu-Mostafa 1988),
the Log-Functionality (LF) complexity measure
(Grygiel 2000), and the Sigma complexity measure
(Zwick 1995). In the first two measures, complexity
is a count of the total number of possible functions
realizable by all of the sub-blocks; the third just
indicates the level of decomposition in the lattice of
possible structures. The complexity of the
decomposed structure is always less or equal to the
complexity of the original look-up-table (LUT) that
represents the mapping of the non-decomposed
structure. That is, if a “decomposed” structure has
higher complexity than the original structure, then
the original structure is said to be non-
decomposable. Although the DFC measure is easier

and more familiar, LF is a better measure because it
more properly deals with non-disjoint systems
(Grygiel 2000). Also, DFC does not correct for
function repetition (redundancy). Consequently, the
LF measure will be used in this paper. The DFC
and LF complexity measures are illustrated using
Figure 1, which exemplifies AC decomposition, as
follows:

 Figure 1. Generic non-disjoint decomposition.

 In Figure 1, for the first block, the total number
of possible functions for three 2-valued input

variables is 223 = 256. Also, for the second block,
the total number of possible functions is similarly
256. The total possible number of functions for the
whole structure is equal to 256⋅256 = 65,536. The
DFC measure is defined as:

DFC = O⋅ 2I (1)

CDFC =
n

nDFC (2)

where O is the number of outputs to a block, I is the
number of inputs to the same block, equation (1) is
the complexity for every block, and equation (2) is
the complexity for the total decomposed structure.
For instance, the DFC for Figure 1 is: CDFC = 1⋅23 +
1⋅23 = log2 (65,536) = 16, which is the same as the
cardinality of the LUT.
 It was shown in (Grygiel 2000) that, for Figure 1,
the Log-Functionality complexity measure (CLF) for
Boolean functions can be expressed as follows:

)(log2 FFL CC = (3)

where:)(3F
X

F C pC ′=

),(),
1

0
(1

3

1
1

1
2

3

2

ip
p

p
Sip

p

i
pPC Y

X

X
Y

Y
Y

p

p

F
X

X

−−
� −

=
=′

)!(

!
),(

kn

n
knP

−
= ,

() nik
k

i i

ki
k

knS)(
0

)1(
!

1
),(−

�
=

−= ,
)!(!

!

iki

k

i

k

−
=���

�����
,

}{} ,,{} ,,,{ 12134123211 xXXXxxXxxxX =∩===

 Representative Function Number of
Functions

F = x1x2 + x2x3 + x1x3 8
F = x1⊕⊕⊕⊕ x2 ⊕⊕⊕⊕ x3 2
F = x1+ x2 + x3 16

F = x1(x2 + x3) 48

F = x1x2 x3 + x1
’x2

 ‘x3
’

 8

F = x1
’x2 x3 + x1x2

 ‘+ x1x3
’ 24

F = x1(x2 x3 + x2
’x3

 ‘) 24

F = x1x2 + x2x3 + x1
’x3

 24

F = x1
’x2 x3 + x1x2

 ‘x3 + x1 x2x3
’ 16

F = x1x2
’
 x3

‘+ x2
 x3 48

Class

1
2
3

4

5

6

7

8

9

 10

x2

x1

x4

F

g
x3

∏=
∈ 1

||1
Xx

iX
i

xp , ∏=
∈ 2

||2
Xx

iX
i

xp , ∏=
∈ 3

||3
Xx

iX
i

xp ,

∏=
∈ 1

1 ||
Yy

iY
i

yp , ∏=
∈ 2

2 ||
Yy

iY
i

yp

where X1 is the set of input variables to the first
block, X2 is the set of input variables to the second
block, X3 is the set of overlapping variables
between sets X1 and X2, PXi is the product of
cardinalities of the input variables in set X i, and PYi
is the product of cardinalities of output variables in
set Y i. For example, the LF for Figure 1 is:

}{} ,,{} ,,,{ 12134123211 xXXXxxXxxxX =∩===

,2,2

,2,422,8222

21

321

==
==⋅==⋅⋅=∴

YY

XXX

pp

ppp

88)2,4()2,
1

0
22(=−−

�

=
=′ iSi

i
PCF

.92.12)744,7(log744,7 2 ==�=∴ LFF CC

 Note that using the DFC measure (16) we would
not consider Figure 1 to achieve any complexity
reduction (i.e. successful decomposition), but using
the LF (12.92), Figure 1 does achieve complexity
reduction.
 Figure 1 shows a four input function, where the
variable sets for the first and second blocks are not
disjoint. In this paper we are concerned with 3-
input functions, and in this case an AC
decomposition, which is successful using the LF
measure, results in a structure shown in Figure 2.
Note that the variable sets for the two blocks with
outputs g and F are necessarily disjoint, because if
the two blocks shared one input variable, F would
have three inputs and the decomposed structure
would be more complex than the original non-
decomposed 3-input function.

Example 1.

Figure 2. A decomposed structure.

The Log-Functionality complexity measure of the
structure in Figure 2 is obtained as follows:
Each sub-block in Figure 2 has a total of

162
22 = possible Boolean functions. Figure 3

illustrates all of the possible 16 two-variable
Boolean functions per sub-block in Figure 2.

Figure 3. Maps of all 16 possible Boolean
functions of two variables. (The single quote means
negation.)

 By allowing g and F in Figure 2 to take on all
possible maps from Figure 3, one obtains the
following count of total non-repeated (irredundant)
3-variable functions, as follows: CF = 88 �� �� CLF =
6.5. This answer agrees with the result of equation
(3) (Grygiel 2000).

Example 2. For 3-variable functions, RA produces
four different types of decomposition structures,
two of which are shown in Figure 4. (See also
Table 3 under “Simplest Modified RA Circuit” .)

 (a) (b)

Figure 4. Some RA decomposed Structures.

 The Log-Functionality complexity measure for
the structures in Figure 4, is obtained as follows.
Figure 5 represents a tree that generates all possible
functions for the structures 4a and 4b, respectively.
(Superscripts of functions denote the specific edge
between two nodes in the tree).

x1

x2

x3

F

 g

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

 0 1

0
1

0 0
0 0

1 1
1 1

1 1
1 0

1 1
0 1

1 0
1 1

0 1
1 1

1 1
0 0

1 0
1 0

0 0
1 1

0 1
0 1

1 0
0 1

0 1
1 0

0 0
0 1

0 0
1 0

0 1
0 0

1 0
0 0

 F =0 F=1 F=(ab)’ F=a→→→→b

 F=b→→→→a F= a+b F= a’ F= b’

 F=a F=b F=eq(a,b) F=a⊕⊕⊕⊕b

 F= ab F= (a→→→→b)’ F= (b→→→→a)’ F= (a+b)’

a a a a

a a a a

a

a

a

a

a

a

a

a

b b b b

b b b

b

b b

b b b

b

b

b

x1

x2

x3

 ∧∧∧∧ F

 f1

 f2

 f3

 ∧∧∧∧

x1

x2

x3

 f1

 f2

F

Figure 5. All possible combinations of sub-functions f1

(i), f2
(j), and f3

(k) in Figures 4a and 4b, respectively.
The log-functionality complexity measure is the count of all the irredundant functions, that is all different
sub-functions and F(i,j) within Figure 4a, and all different sub-functions and F(i,j,k) within Figure 4b. Where
two nodes of the tree are superposed (*), they are counted only once. At level 2, 100 of the (16)2 possible
nodes are irredundant, and at level 3, 152 out of (16)3 are irredundant.

Utilizing this methodology of removing redundant
functions, one obtains the following results for
Log-Functionality: for Figure 4a, the total number
of irredundant sub-functions at level 2 is CF = 100
� ∴ CLF = log2 (100) = 6.6, and for Figure 4b, the
total number of irredundant sub-functions at level 3
is CF = 152 � ∴ CLF = log2 (152) = 7.2.

2.3 Ashenhurst-Cur tis Decomposition

 Ashenhurst-Curtis (AC) decomposition
(Ashenhurst 1953, Ashenhurst 1956, Ashenhurst
1959, Curtis 1962, Curtis 1963, Files 2000, Grygiel
2000) is one of the major techniques for the
decomposition of functions commonly used in the
field of logic synthesis. The main idea of AC
decomposition is to decompose logic functions into
simpler logic blocks using the compression of the
number of cofactors in the corresponding
representation. This compression is achieved
through exploiting the logical compatibility (i.e.,
redundancy) of cofactors (i.e., column multiplicity).
As a result of AC decomposition, intermediate
constructs (latent variables) are created. A general
algorithm of the AC decomposition utilizing
Karnaugh map (K-map) representation (Muroga
1979), for instance, is as follows:

(1) Partition the input set of variables into free set
and bound set, and label all the different columns.

(2) Decompose the bound set and create a new K-
map for the decomposed bound set (utilizing
minimum graph coloring, maximum clique, or

some other algorithm to combine similar columns
into a single column). Each cell in the new K-map
represents a labeled column in the original K-map.

(3) Encode the labels in the cells of the new K-map
using minimum number of intermediate binary
variables. These intermediate variables are shown
as g and h in Example 3 (Figure 6). Express the
intermediate variables as functions of the bound set
variables.

(4) Produce the decomposed structure, i.e., a K-map
specifying the function (F) in terms of the
intermediate variables and the free set variables.

In general, steps (1) and (3) determine the
optimality of the AC decomposition (i.e., whether
the resulting decomposed blocks are of minimal
complexity or not).

Example 3. For the following logic function F =
x2x3 + x1x3 + x1x2, let the sub-set of variables { x2,
x3} be the Bound Set, and the sub-set of variables
{ x1} be the Free Set. The following is the disjoint
AC decomposition of F (where { –} means don’ t
care):

… … … …

… … … …… …

…
16 possible 2-variable Boolean functions

16 possible 2-variable Boolean functions per branch

16 possible 2-variable Boolean functions per branch

F(i,j) = f1
(i) f2

(j)

F(i,j,k) = f1
(i) f2

(j)f3
(k)

Level 1

Level 2

Level 3

 f1
(16) f1

(1) f1
(2) … f1

(15)

 f2
(1) f2

(16) f2
(1) f2

(16)

 f3
(1) f3

(16)

 f2
(16)

 f3
(16)

 f2
(1)

 f3
(1) *

*

*

 (1) (2) (3) (4)

Figure 6. AC decomposition. Steps (1)-(4) are discussed in the text.

 In Example 3, the first block of the decomposed
structure has two outputs (intermediate variables g
and h). The DFC measure of the decomposed
structure is = 2⋅22 + 1⋅23 = 16, while the DFC of the
original LUT is = 1⋅23 = 8. (This again shows the
inadequacy of DFC as a measure of complexity
because the decomposition produces a more
complex structure than the non-decomposed LUT.)
 LF for the decomposed structure in Figure 6 is 8,
which does not exceed the complexity of the LUT.
However, since the decomposition does not reduce
the complexity, for the purposes of this paper, the
decomposition is not successful and thus rejected.
This will be true whenever the first block of the
decomposed function has two outputs. For other
NPN functions AC decomposition produces only
one output in the first block. These decompositions
are not rejected, and are listed in Table 3.

2.4 Reconstructability Analysis: Conventional
RA Versus Modified RA

 Reconstructability Analysis (RA) is a
decomposition technique for qualitative data
(Conant 1981, Klir 1985,1996; Krippendorff 1986).
A review with additional references is provided in
(Zwick 2001). RA data is typically either a set
theoretic relation or mapping or it is a probability or
frequency distribution. The former case is the
domain of “set-theoretic” - or more precisely crisp
possibilistic - RA. The latter is the domain of
“ information-theoretic” - or more precisely
probabilistic - RA. The RA framework can apply to
other types of data (e.g., fuzzy data) via generalized
information theory (Klir and Wierman 1998).
 RA decomposition can also be lossless or lossy.
In this paper, we are concerned only with lossless
decomposition, i.e., with decomposition which
produces no error. This paper introduces an
innovation in set-theoretic RA, which we call

“modified” RA (or MRA) (Al-Rabadi 2001) as
opposed to the conventional set-theoretic RA (or
CRA). While CRA decomposes for all values of
Boolean functions, MRA decomposes for an
arbitrarily chosen value of the Boolean functions
(e.g., for value “1”). The completely specified
Boolean function can be retrieved if one knows
the MRA decomposition for the Boolean function
being equal either to “ 1” or to “ 0” . MRA and
CRA are illustrated and compared in Example 4.

Example 4. For the logic function: F = x1x2 + x1x3

Figure 7 illustrates the simplest model using both
CRA and MRA decompositions.

CRA decomposition (Conant 1981, Zwick 1995,
Zwick and Shu 1995) is illustrated in the upper half
of the figure, while MRA decomposition (Al-
Rabadi 2001) is illustrated in the lower half of the
figure. MRA decomposition yields a much simpler
logic circuit than the corresponding CRA
decomposition, while retaining complete
information about the decomposed function.
 For CRA as shown in the top middle part of the
figure, the calculated function for the model
x1x2f1:x1x3f2:x2x3f3 (i.e., α:β:γ) is defined as
follows: x1x2x3Fx1x2f1:x1x3f2:x2x3f3 ≡≡≡≡ (x1x2f1 ⊗⊗⊗⊗ x3) ∩∩∩∩
(x1x3f2 ⊗⊗⊗⊗ x2) ∩∩∩∩ (x2x3f3 ⊗⊗⊗⊗ x1). (For lossless CRA
decomposition, this equals the original function
x1x2x3F that is shown at the top left of the figure;
for lossy CRA x1x2x3Fx1x2f1:x1x3f2:x2x3f3 would not be
equivalent to x1x2x3F). The CRA model can be
interpreted by the circuit shown at the top right of
the figure.

x1

x2x3

 00 01 11 10
0 0 0 1 0

A B C B F

 0 1

0 A B

 1 0 1 1 1 1 B C

x2
x3

 0 1
0 0,0 0,1

1 0,1 1,0

x2
x3

 g,h
 g = x2x3
 h = x2⊕⊕⊕⊕ x3

x1

gh

 00 01 11 10
0 0 0 - 1

1 0 1 - 1

F

 F
 gx2

x1

x3

 h

 A = 0,0 B = 0,1 C = 1,0

Figure 7. Conventional versus Modified RA decompositions for the Boolean function: F = x1x2 + x1x3.

 MRA simplifies the decomposition problem by
focusing, in the original function F, on the tuples
for which F=1. (One could alternatively have
selected the tuples for which F = 0.) The procedure
used to obtain the MRA in Figure 7 is as follows
(Al-Rabadi 2001):
(1) Select the relation defined by (x1,x2,x3) tuples
with value “1” (shaded in top left of Figure 7).
(2) Obtain the simplest lossless CRA
decomposition.
(3) Assign value “1” to tuples in the resulting
projections. Add all tuples that are missing in the
projections and give them function value “0” .
(4) Perform the intersection in the output block to
obtain the total functionality.
 Steps (2)-(4) are as follows:

 Step (2) gives model: (x1:x2x3)

 (x1⊗1∪x1’⊗0) (x2x3⊗1∪(x2x3)’⊗0)
 where (,) means set complement.

 Step (4)

 F = f2′(x1) ∧ f3′(x2,x3)

 Table 2 gives the complexities of the
decomposition of all NPN-classes of 3-variable
Boolean functions (Table 1) using CRA
decomposition and MRA decomposition,
respectively.

.

 Step (3)

X1 X2 X3
1 0 1
1 1 0
1 1 1

X1 X2 X3
1 0 1
 1 0
 1 1

X1 f2′′′′ X2 X3 f3′′′′
0 0 0 0 0

1 1 0 1 1

 1 0 1

 1 1 1

Original Function Simplest CRA Model Simplest CRA Circuit Model
 x1 x2 x3 F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0

Simplest MRA Model Simplest MRA Circuit Model

 0 0 0
 0 1 0
 1 0 -
 1 1 1

 x1 x2 f1

αααα ββββ γγγγ

 0 0 0
 0 1 0
 1 0 -
 1 1 1

 x1 x3 f2

 0 0 0
 0 1 -
 1 0 -
 1 1 -

 x2 x3 f3 f1

 f2 x2

x3

x1

∧∧∧∧
αααα

ββββ

 γγγγ
 f3

F

X1X2f1:X1X3f2: X2X3f3
For F ∈∈∈∈ {0, 1}

 x1 f2′′′′

 x2 x3 f3′′′′

 0 0
 1 1

 0 0 0
 0 1 1
 1 0 1
 1 1 1

δδδδ′′′′ γγγγ ′′′′ f2′′′′

 f3′′′′

x3

 x2

 x1
 ∧∧∧∧ F δδδδ′′′′

γγγγ′′′′

x1f2′′′′:x2x3f3′′′′
For F = 1

1 0 1 1
1 1 0 1
1 1 1 1

Table 2. Conventional RA (CRA) versus Modified RA (MRA) for the decomposition of all NPN-classes of
3-variable Boolean functions. CLUT is the cardinality of the lookup table; for non-decomposable functions
CLF = CLUT. Compare the right-most two columns.

The table shows that in 6 NPN classes (classes 1, 2,
3, 6, 8, 9) MRA and CRA give equivalent
complexity decompositions, but in the remaining

four classes (classes 4, 5, 7, 10) MRA is superior in
complexity reduction.

NPN-Representative Simplest Modified RA model Simplest Conventional RA model C CLF CLF

Function (LUT)(CRA) (MRA)
 x1 x2 f1

0 0 0
0 1 1
1 0 1
1 1 1

 x2 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

 x1 x3 f3

0 0 0
0 1 1
1 0 1
1 1 1

non-decomposable

non-decomposable

 x2 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

 x1 x2 f1

0 0 1
0 1 0
1 0 0
1 1 1

 x1 x3 f2

0 0 1
0 1 0
1 0 0
1 1 1

non-decomposable

 x2 x3 f1

0 0 1
0 1 0
1 0 0
1 1 1

 x1 f2

0 0

1 1

 x1 x2 f1

0 0 1
0 1 1
1 0 0
1 1 1

 x1 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

non-decomposable

 x1 x3 f1

0 0 0
0 1 1
1 0 1
1 1 1

 x2 x3 f2

0 0 1
0 1 0
1 0 0
1 1 1

F = x1x2 + x2x3 + x1x3

 F = x1⊕⊕⊕⊕ x2 ⊕⊕⊕⊕ x3

 F = x1+ x2 + x3

 F = x1(x2 + x3)

 F = x1x2 x3 + x1
’x2

 ‘x3
’

 F = x1
’x2 x3 + x1x2

 ‘+ x1x3
’

 F = x1(x2 x3 + x2
’x3

 ‘)

 F = x1x2 + x2x3 + x1
’x3

 F = x1
’x2 x3 + x1x2

 ‘x3 + x1 x2x3
’

 F = x1x2
’
 x3

‘+ x2
 x3

 8 7.2 7.2

 8 8 6.6

 8 6.6 6.6

 8 8 8

 8 8 6.6

 8 8 8

 8 7.2 6.5

 8 8 6.5

Class 1 (8)

Class 2 (2)

Class 3 (16)

Class 4 (48)

Class 5 (8)

Class 6 (24)

Class 7 (24)

Class 8 (24)

Class 9 (16)

Class 10 (48)

 x1 x2 f1

0 0 0
0 1 -
1 0 -
1 1 1

 x2 x3 f2

0 0 0
0 1 -
1 0 -
1 1 1

 x1 x3 f3

0 0 0
0 1 -
1 0 -
1 1 1

non-decomposable

non-decomposable

non-decomposable

 x1 x2 f1

0 0 -
0 1 -
1 0 0
1 1 1

 x1 x3 f2

0 0 0
0 1 1
1 0 -
1 1 -

non-decomposable

 x1 x2 f1

0 0 0
0 1 0
1 0 -
1 1 1

 x2 x3 f2

0 0 0
0 1 0
1 0 -
1 1 1

 x1 x3 f3

0 0 0
0 1 -
1 0 -
1 1 -

non-decomposable

non-decomposable

non-decomposable

 8 8 8

 8 8 8

 x1 f1

 0 0
 1 1

3 COMPLEXITY OF MRA VERSUS AC
DECOMPOSITION

 Utilizing the methods described above, one
obtains the following results in Table 3 for the

decomposition of 3-variable NPN-classified
Boolean functions (Table 1) using MRA and AC
decomposition.

results in Tabl 4 for the decomposition of the 3-variable NPN-classified Boolean functions (in Table 1)
using lossless modified RA (MRA) decomposition and the disjoint AC decomposition, respectively.

Table 3. AC decomposition versus MRA decomposition for the decomposition of all NPN-classes of
3-variable Boolean functions. CLUT is the cardinality of the lookup table; for non-decomposable functions
CLF = CLUT. Compare the right-most two columns. (DFC(SOP) is the cardinality of the Sum-Of-Product form
for the NPN class.)

NPN-Representative Simplest Modified RA model Simplest AC circuit DFC Cdata CLF CLF

Function (MRA)(AC)
 x1 x2 f1

0 0 0
0 1 1
1 0 1
1 1 1

 x2 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

 x1 x3 f3

0 0 0
0 1 1
1 0 1
1 1 1

non-decomposable

non-decomposable

 x2 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

 x1 x2 f1

0 0 1
0 1 0
1 0 0
1 1 1

 x1 x3 f2

0 0 1
0 1 0
1 0 0
1 1 1

non-decomposable

 x2 x3 f1

0 0 1
0 1 0
1 0 0
1 1 1

 x1 f2

0 0

1 1

 x1 x2 f1

0 0 1
0 1 1
1 0 0
1 1 1

 x1 x3 f2

0 0 0
0 1 1
1 0 1
1 1 1

non-decomposable

 x1 x3 f1

0 0 0
0 1 1
1 0 1
1 1 1

 x2 x3 f2

0 0 1
0 1 0
1 0 0
1 1 1

F = x1x2 + x2x3 + x1x3

 F = x1⊕⊕⊕⊕ x2 ⊕⊕⊕⊕ x3

 F = x1+ x2 + x3

 F = x1(x2 + x3)

 F = x1x2 x3 + x1
’x2

 ‘x3
’

 F = x1
’x2 x3 + x1x2

 ‘+ x1x3
’

 F = x1(x2 x3 + x2
’x3

 ‘)

 F = x1x2 + x2x3 + x1
’x3

 F = x1
’x2 x3 + x1x2

 ‘x3 + x1 x2x3
’

 F = x1x2
’
 x3

‘+ x2
 x3

x2

x3

x1

F
g

h

g = x2x3, h= x2 ⊕⊕⊕⊕ x3, F= g+x1h

x2

x3

x1

F
g

h

 g = x2x3, h= x2 ⊕⊕⊕⊕ x3, F= x1
’g’h’+x1g

x2

x3

x1

F
g

h

 g = x2, h= x2 ⊕⊕⊕⊕ x3, F= x1g+gh’+x1
’g’h

x2

x3

x1

F
g

h

 g = x2 x3, h= x2 ⊕⊕⊕⊕ x3, F= x1h+x1
’g

x2

x3

x1

F
g

h

 g = x2 x3, h= x2 ⊕⊕⊕⊕ x3, F= g+x1g’h’

x2

x3

x1

F
g

 g = x2 ⊕⊕⊕⊕ x3, F= x1⊕⊕⊕⊕ g

x2

x3

x1

F
g

 g = x2 + x3, F= x1+ g

x2

x3

x1

F
g

 g = x2 + x3, F= x1 g

x2

x3

x1

F
g

 g = x2 x3, F= x1 ⊕⊕⊕⊕ g

x2

x3

x1

F
g

 g = x2 ⊕⊕⊕⊕ x3, F= x1g’

 20 8 7.2 8

 20 8 6.6 8

 20 8 6.6 8

 32 8 8 8

 16 8 6.6 8

 8 8 8 6.5

 8 8 8 6.5

 12 8 6.5 6.5

 24 8 8 6.5

 20 8 6.5 6.5

Simplest Modified
 RA circuit

Class 1 (8)

Class 2 (2)

Class 3 (16)

Class 4 (48)

Class 5 (8)

Class 6 (24)

Class 7 (24)

Class 8 (24)

Class 9 (16)

Class 10 (48)

x1

x2

x3

 ∧∧∧∧ F

 f1

 f2

 f3

-

-

 ∧∧∧∧

x1

 x2

x3

 f1

 f2

F

 ∧∧∧∧

x2

x1

x3

 f1

 f2

F

 ∧∧∧∧

x2

x1

x3

 f1

 f2

F

 ∧∧∧∧

x1

x3

x2

 f1

 f2

F

-

-

F ∧∧∧∧
x2

x3
 f1

x1

(SOP) (LUT)

 x1 f1

 0 0
 1 1

 (a) (b) (c)
Figure 8. Comparison of Decomposability (D) versus Non-Decomposability (ND) for AC versus MRA (a),
CRA versus AC (b), and CRA versus MRA (c), respectively. The number of classes and the number of
functions are listed in each cell.

 Table 3 shows that in three NPN classes (4, 7, 9)
MRA and AC give equivalent complexity
decompositions. In three other classes (2, 3, 6),
which encompass 42 functions, AC is superior, but
in four classes (1, 5, 8, 10), which encompass 88
functions, MRA is superior. We can summarize
these results by comparing the decomposability
versus non-decomposability for the various
approaches. Figure 8 shows the number of classes
and functions decomposable by one method but
not by another (upper right and lower left cells).
One concludes that for NPN-classified 3-variable
Boolean functions, MRA decomposition is
superior to AC decomposition (88 versus 42), AC
decomposition is superior to CRA decomposition
(66 versus 32), and MRA decomposition is
superior to CRA decomposition (80 versus 0).
 While the log-functionality complexity measure
that is used in Table 3 is a good cost measure for
machine learning, it is not a good measure for
circuit design. An alternative cost measure for
circuit design is the count of the total number of
two-input gates (from Figure 3) in the final circuit
(C#). Utilizing the resulting decompositions from
Table 3, Table 4 presents a comparison between
MRA and AC for 3-variable NPN classes of
Boolean functions using the C# complexity
measure.
 Table 4 shows that, using the C# cost measure,
in five NPN classes (1,2,3,6,9) which encompass
66 logic functions AC is superior to MRA for both
including and not including the cost of the
inverters. For two NPN classes (4,8), which
encompass 72 logic functions, AC is equivalent to
MRA for both including and not including the cost
of the inverters. For two NPN classes (5,10), which
encompass 56 logic functions, MRA is superior to
AC for both including and not including the cost of
the inverters. For one NPN class (7), which
encompasses 24 logic functions, MRA is

superior to AC when including the cost of the
inverters, but the same as AC when inverters are
not included. Thus, counting inverters, MRA is
superior to AC (80 versus 66), while not counting
inverters AC is superior to MRA (66 versus 56).

 (66) (66) (80) (56)
Table 4. Comparison of AC versus MRA using the
C# cost measure. The number in parenthesis at the
bottom of each table column is the sum of the
numbers of functions in the shaded cells of that
column.

 The results of Table 4 are technology
independent, that is, every logic function in Figure
3 is given the same cost. However, from a
technology dependent point of view, the costs of

Class C# W/
Inver ters
(AC)

C# W/O
Inver ters
(AC)

C# W/
Inver ters
 (MRA)

C# W/O
Inver ters
 (MRA)

1
 (8)

4 4 5 5

2
 (2)

2 2 - -

3
 (16)

2 2 - -

4
 (48)

2 2 2 2

5
 (8)

9 6 3 3

6
 (24)

2 2 - -

7
 (24)

3 2 2 2

8
 (24)

4 3 4 3

9
 (16)

6 5 - -

10
 (48)

7 5 3 3

ND

D

 ND D ND D ND D

ND

D

ND

D

MRA MRA

AC

AC

CRA CRA

1 4

3 2

4 3

0 3

3

1

4

2

(9: 16) (1,5,8,10: 88)

(2,3,6: 42) (4,7: 72)

(2,3,6,9: 58)

(1,4,8: 80)

(5,7,10: 80)

 (0)

(5,9,10: 72)

 (1,8: 32) (4: 48)

 (2,3,6,7: 66)

the different logic functions of Figure 3 may not be
the same, and the comparisons of Table 4 would
have to be modified accordingly.

4 CONCLUSION

 A novel RA-based decomposition is introduced;
Modified Reconstructability Analysis (MRA). MRA
is compared to conventional Reconstructability
Analysis (CRA) and disjoint Ashenhurst-Curtis
(AC) decomposition using the log-functionality
complexity measure which is a suitable measure for
machine learning. It is shown that in 3 out of 7
NPN classes while 3-variable NPN-classified
Boolean functions are not decomposable using
CRA, they are decomposable using MRA. Also, it is
shown that whenever a decomposition of 3-variable
NPN-classified Boolean functions exists in both
MRA and CRA, MRA yields a simpler or equal
complexity decomposition. While both the disjoint
AC decomposition and MRA decompose some but
not all NPN-classes, MRA decomposes more
classes and consequently more Boolean functions
than AC.
 For the purpose of circuit design, complexity can
be defined by counting the total number of two-
input gates. Using this measure, MRA is superior to
AC when including the cost of the inverters and AC
is superior to MRA when not including the cost of
the inverters. Extensions of this MRA approach to
reversible logic and quantum computing is
presented in (Al-Rabadi and Zwick 2002);
extensions to many-valued logic is presented in
(Al-Rabadi and Zwick 2002). A comprehensive
treatment of MRA with supplementary material is
provided in (Al-Rabadi 2002).
 Future work will include the investigation of the
MRA decomposition of logic relations as opposed
to functions, and multi-valued and fuzzy functions.
The use of gates other than the logical AND gate
(e.g., OR, XOR, NAND) at the final stage of RA-
based decompositions to reduce the complexities of
the decomposed structures will also be investigated.

5 REFERENCES

Abu-Mostafa, Y. 1988. Complexity in Information
Theory, Springer-Verlag, New York.

Al-Rabadi, A. N. 2001.“A Novel Reconstructability
Analysis For the Decomposition of Boolean
Functions,” Technical Report #2001/005, Electrical
and Computer Engineering Department, Portland
State University, Portland, Oregon, 1st July 2001.

Al-Rabadi, A. N. and M. Zwick, 2002. “Reversible
Modified Reconstructability Analysis of Boolean
Circuits and its Quantum Computation,” Book of
Abstracts of the WOSC-IIGSS 2002, Pittsburgh,
Pennsylvania, p. 90.

Al-Rabadi, A. N. and M. Zwick, 2002. “Modified
Reconstructability Analysis for Many-Valued
Logic Functions,” Book of Abstracts of the WOSC-
IIGSS 2002, Pittsburgh, Pennsylvania, p. 90.

Al-Rabadi, A. N. 2002. Novel Methods for
Reversible Logic Synthesis and their Application to
Quantum Computing, Ph.D. dissertation, Portland
State University, Portland, Oregon.

Ashenhurst, R. L. 1953. “The Decomposition of
Switching Functions,” Bell Laboratories’ Report,
Vol. 1, pp. II-1-II-37.

Ashenhurst, R. L. 1956. “The Decomposition of
Switching Functions,” Bell Laboratories’ Report,
Vol. 16, pp. III-1-III-72.

Ashenhurst, R. L. 1959. “The Decomposition of
Switching Functions,” In: International Symposium
on the Theory of Switching Functions, pp. 74-116.

Conant, R. 1981. “Set-Theoretic Structural
Modeling,” Int. J. General Systems, Vol. 7, pp. 93-
107.

Curtis, H. 1963. “Generalized Tree Circuit,” ACM,
pp. 484-496.

Curtis, H. 1963. “Generalized Tree Circuit-The
Basic Building Block of an Extended
Decomposition Theory,” ACM, Vol. 10, pp. 562-
581.

Curtis, H. A. 1962. A New Approach to the Design
of Switching Circuits, Princeton, Van Nostrand, NJ.

Files, C. M. 2000. A New Functional
Decomposition Method as Applied to Machine
Learning and VLSI Layout, Ph.D. dissertation,
Portland State University, Portland, Oregon.

Grygiel, S. 2000. Decomposition of Relations as a
new Approach to Constructive Induction in
Machine Learning and Data Mining. Ph.D.
dissertation, Portland State University, Portland,
Oregon.

Klir, G. 1985. Architecture of Systems Problem
Solving. Plenum Press, New York.

Klir, G., editor, 1996. “Reconstructability Analysis
Bibliography,” Int. Journal of General Systems, 24:
225-229.

Klir, G. and M. J. Wierman, 1998. Uncertainty-
Based Information: Variables of Generalized
Information Theory, Physica-Verlag, New York.

Krippendorff, K. 1986. Information Theory:
Structural Models for Qualitative Data. Sage
Publications, Inc.

Muroga, S. 1979. Logic Design and Switching
Theory, Wiley, New York.

Shannon, C. E. and W. Weaver 1949. A
Mathematical Theory of Communication,
University of Illinois Press.

Zwick, M. 1995. “Control Uniqueness in
Reconstructibility Analysis,” International Journal
of General Systems, 23(2).

Zwick, M. and H. Shu, 1995. “Set-Theoretic
Reconstructability of Elementary Cellular
Automata,” Advances in System Science and
Application, Special Issue I, pp. 31-36.

Zwick, M. 2001. Wholes and Parts in General
Systems Methodology. In: The Character Concept
in Evolutionary Biology, edited by G. Wagner,
Academic Press.

BIOGRAPHY

Anas N. Al-Rabadi is currently a Ph.D. candidate
in the Electrical and Computer Engineering
Department at Portland State University, Portland,
Oregon. He received his M.S. in Electrical and
Computer Engineering from Portland State
University in 1998 in the specialty of Power
Electronics and Control Systems Design. His
current research includes reconstructability
analysis, reversible logic, quantum logic, optical
computing, systems philosophy, and logic
synthesis.

Martin Zwick is a Professor of Systems Science at
Portland State University. Prior to taking his
current position at PSU, he was a faculty member
in the Department of Biophysics and Theoretical
Biology at the University of Chicago, where he
worked in macromolecular structure and
mathematical crystallography. In the 1970’s his
interests shifted to systems theory and
methodology. Since 1976 he has been on the

faculty of the PSU Systems Science Ph.D. Program
and during the years 1984-1989 he was the program
coordinator and then director. His research interests
are in discrete multivariate modeling
(reconstructability analysis), “artificial life” and
theoretical/computational biology, and systems
philosophy.

Marek Perkowski is a Professor in the Department
of Electrical and Computer Engineering at Portland
State University. He received Ph.D. in automatic
control from Warsaw University of Technology,
Poland. His research interests include logic
synthesis, robotics, machine vision, reversible
logic, and quantum logic. He is a member of the
IEEE Computer Society. He is an editorial board
member of the soft computing journal and an
academic advisor of the PSU student chapter of the
IEEE Robotics and Automation Society.

