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ABSTRACT 
 

Modified Reconstructability Analysis (MRA), a 
novel decomposition technique within the 
framework of set-theoretic (crisp possibilistic) 
Reconstructability Analysis, is applied to 3-variable 
NPN-classified Boolean functions. MRA is 
superior to conventional Reconstructability 
Analysis (CRA), i.e. it decomposes more NPN 
functions. MRA is compared to Ashenhurst-Curtis 
(AC) decomposition using two different complexity 
measures: log-functionality, a measure suitable for 
machine learning, and the count of the total number 
of two-input gates, a measure suitable for circuit 
design. MRA is superior to AC using the first of 
these measures, and is comparable to, but different 
from AC, using the second. 

 
1 INTRODUCTION 
 
    One general methodology for understanding a 
complex system is to decompose it into less 
complex sub-systems. Decomposition is used in 
many situations; for example, in logic synthesis 
(Ashenhurst 1953, Ashenhurst 1956, Ashenhurst 
1959, Curtis 1963, Curtis 1962, Files 2000, Grygiel 
2000, Jozwiak 1995, Muroga 1979) where the 
number of inputs to the gates is high and cannot be 
mapped to a standard library and in machine 
learning where data is noisy or incomplete (Files 
2000, Grygiel 2000). The primary criteria for 
evaluating the quality of the decomposition process 
are the amount of information (or loss of 
information, i.e., error) existing in the decomposed 
system and the complexity of this decomposed 
system. The objective is obvious: decompose the 
complex system (data) into the least-complex most-
informative (least-error) model. Simplicity is 
desired since, according to the Occam Razor 
principle, the simpler the model is, the more 
powerful it is for generalization. Least error is 
desired since one wants to retain as much 

information as possible in the decomposed system, 
when compared to the original data. The 
decomposition processes can be generally 
dichotomized into lossless (no error) versus lossy 
decomposition. In this paper, a comparison of three 
types of lossless decomposition are considered: the 
disjoint Ashenhurst-Curtis (AC) decomposition and 
set-theoretic conventional and Modified 
Reconstructability Analysis (CRA and MRA, 
respectively). 
 
    The remainder of this paper is organized as 
follows: section 2 presents background and related 
work on this subject. CRA, MRA, and AC 
complexity results are presented in section 3. 
Conclusions and future work are discussed in 
section 4. 
 
2 LOGIC FUNCTIONS CLASSIFICATION, 
COMPLEXITY MEASURES, AND 
DECOMPOSITIONS 

 
    This section introduces the basic background of 
the NPN-classification of three-variable 2-valued 
logic functions, Ashenhurst-Curtis (AC) and 
Reconstructability Analysis (RA) decomposition 
methods that are used in this work, and complexity 
measures that are utilized to compare the efficiency 
of such decompositions.     
  
2.1 NPN-Classification of Logic Functions 
 
    There exist many classification methods to 
cluster logic functions into families of functions 
(Muroga 1979). Two important operations that 
produce equivalence classes of logic functions are 
negation and permutation (Muroga 1979). 
Accordingly, the following classification types 
result: 
 

1. P-Equivalence class: a family of identical 
functions obtained by the operation of 
permutation of variables. 

2.  NP-Equivalence class: a family of 
identical functions obtained by the 
operations of negation or permutation of 
one or more variables.  



  

3. NPN-Equivalence class:  a family of 
identical functions obtained by the 
operations of negation or permutation of 
one or more variables, and also negation 
of function. 

 
    The NPN-Equivalence classification will be used 
in this work. Table 1 lists 3-variable Boolean 
functions, for the non-degenerate classes (i.e., the 
classes depending on all three variables). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. NPN-Equivalence classes for non-
degenerate Boolean functions of three binary 
variables (Muroga 1979). These classes contain 218 
out of the possible 256 functions. 
 

2.2 Complexity Measures 
 
    Decomposability means complexity reduction. 
Many complexity measures exist for the purpose of 
evaluating the efficiency of the decomposition of 
complex systems into simpler sub-systems. Such 
complexity measures include: the Cardinality 
complexity measure (DFC) (Abu-Mostafa 1988), 
the Log-Functionality (LF) complexity measure 
(Grygiel 2000), and the Sigma complexity measure 
(Zwick 1995). In the first two measures, complexity 
is a count of the total number of possible functions 
realizable by all of the sub-blocks; the third just 
indicates the level of decomposition in the lattice of 
possible structures. The complexity of the 
decomposed structure is always less or equal to the 
complexity of the original look-up-table (LUT) that 
represents the mapping of the non-decomposed 
structure. That is, if a “decomposed”  structure has 
higher complexity than the original structure, then 
the original structure is said to be non-
decomposable. Although the DFC measure is easier 

and more familiar, LF is a better measure because it 
more properly deals with non-disjoint systems 
(Grygiel 2000). Also, DFC does not correct for 
function repetition (redundancy). Consequently, the 
LF measure will be used in this paper. The DFC 
and LF complexity measures are illustrated using 
Figure 1, which exemplifies AC decomposition, as 
follows: 
 
 
 
 
 
     Figure 1. Generic non-disjoint decomposition. 
 
    In Figure 1, for the first block, the total number 
of possible functions for three 2-valued input 

variables is 223 = 256. Also, for the second block, 
the total number of possible functions is similarly 
256. The total possible number of functions for the 
whole structure is equal to 256⋅256 = 65,536. The 
DFC measure is defined as: 
 

DFC = O⋅ 2I                                                                                        (1) 

CDFC =  
n

nDFC                                                  (2) 

where O is the number of outputs to a block, I is the 
number of inputs to the same block, equation (1) is 
the complexity for every block, and equation (2) is 
the complexity for the total decomposed structure. 
For instance, the DFC for Figure 1 is: CDFC = 1⋅23 + 
1⋅23 = log2 (65,536) = 16, which is the same as the 
cardinality of the LUT. 
    It was shown in (Grygiel 2000) that, for Figure 1, 
the Log-Functionality complexity measure (CLF) for 
Boolean functions can be expressed as follows: 
 

)(log2 FFL CC =                                                             (3) 

where: )( 3F
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 Representative Function Number of  
Functions 

F = x1x2 + x2x3 + x1x3                              8 
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F = x1+ x2 +  x3                                            16 
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where X1 is the set of input variables to the first 
block, X2 is the set of input variables to the second 
block, X3 is the set of overlapping variables 
between sets X1 and X2, PXi is the product of 
cardinalities of the input variables in set X i, and PYi 
is the product of cardinalities of output variables in 
set Y i. For example, the LF for Figure 1 is: 
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    Note that using the DFC measure (16) we would 
not consider Figure 1 to achieve any complexity 
reduction (i.e. successful decomposition), but using 
the LF (12.92), Figure 1 does achieve complexity 
reduction. 
    Figure 1 shows a four input function, where the 
variable sets for the first and second blocks are not 
disjoint. In this paper we are concerned with 3-
input functions, and in this case an AC 
decomposition, which is successful using the LF 
measure, results in a structure shown in Figure 2. 
Note that the variable sets for the two blocks with 
outputs g and F are necessarily disjoint, because if 
the two blocks shared one input variable, F would 
have three inputs and the decomposed structure 
would be more complex than the original non-
decomposed 3-input function. 
   
Example 1.  
 
 
 
 

Figure 2. A decomposed structure. 
 
The Log-Functionality complexity measure of the 
structure in Figure 2 is obtained as follows: 
Each sub-block in Figure 2 has a total of 

162
22 = possible Boolean functions. Figure 3 

illustrates all of the possible 16 two-variable 
Boolean functions per sub-block in Figure 2. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.  Maps of all 16 possible Boolean 
functions of two variables. (The single quote means 
negation.) 
 
    By allowing g and F in Figure 2 to take on all 
possible maps from Figure 3, one obtains the 
following count of total non-repeated (irredundant) 
3-variable functions, as follows: CF = 88 �� ��  CLF = 
6.5. This answer agrees with the result of equation 
(3) (Grygiel 2000). 
 
Example 2. For 3-variable functions, RA produces 
four different types of decomposition structures, 
two of which are shown in Figure 4. (See also 
Table 3 under “Simplest Modified RA Circuit” .) 
 
 
 
 
 
 
 
                                (a)                           (b) 

Figure 4. Some RA decomposed Structures. 
 
    The Log-Functionality complexity measure for 
the structures in Figure 4, is obtained as follows. 
Figure 5 represents a tree that generates all possible 
functions for the structures 4a and 4b, respectively. 
(Superscripts of functions denote the specific edge 
between two nodes in the tree). 
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Figure 5. All possible combinations of sub-functions f1 

(i), f2 
(j), and f3 

(k) in Figures 4a and 4b, respectively. 
The log-functionality complexity measure is the count of all the irredundant functions, that is all different 
sub-functions and F(i,j) within Figure 4a, and all different sub-functions and F(i,j,k) within Figure 4b. Where 
two nodes of the tree are superposed (* ), they are counted only once. At level 2, 100 of the (16)2 possible 
nodes are irredundant, and at level 3, 152 out of (16)3 are irredundant. 
 
 
Utilizing this methodology of removing redundant 
functions, one obtains the following results for 
Log-Functionality: for Figure 4a, the total number 
of irredundant sub-functions at level 2 is CF = 100 
�  ∴ CLF = log2 (100) = 6.6, and for Figure 4b, the 
total number of irredundant sub-functions at level 3 
is CF = 152 �  ∴ CLF = log2 (152) = 7.2.  
     
2.3 Ashenhurst-Cur tis Decomposition 
 
    Ashenhurst-Curtis (AC) decomposition 
(Ashenhurst 1953, Ashenhurst 1956, Ashenhurst 
1959, Curtis 1962, Curtis 1963, Files 2000, Grygiel 
2000) is one of the major techniques for the 
decomposition of functions commonly used in the 
field of logic synthesis. The main idea of AC 
decomposition is to decompose logic functions into 
simpler logic blocks using the compression of the 
number of cofactors in the corresponding 
representation. This compression is achieved 
through exploiting the logical compatibility (i.e., 
redundancy) of cofactors (i.e., column multiplicity). 
As a result of AC decomposition, intermediate 
constructs (latent variables) are created. A general 
algorithm of the AC decomposition utilizing 
Karnaugh map (K-map) representation (Muroga 
1979), for instance, is as follows: 
 
(1) Partition the input set of variables into free set 
and bound set, and label all the different columns. 
 
(2) Decompose the bound set and create a new K-
map for the decomposed bound set (utilizing 
minimum graph coloring, maximum clique, or 

some other algorithm to combine similar columns 
into a single column). Each cell in the new K-map 
represents a labeled column in the original K-map.   
 
(3) Encode the labels in the cells of the new K-map 
using minimum number of intermediate binary 
variables. These intermediate variables are shown 
as g and h in Example 3 (Figure 6). Express the 
intermediate variables as functions of the bound set 
variables. 
 
(4) Produce the decomposed structure, i.e., a K-map 
specifying the function (F) in terms of the 
intermediate variables and the free set variables. 
 
In general, steps (1) and (3) determine the 
optimality of the AC decomposition (i.e., whether 
the resulting decomposed blocks are of minimal 
complexity or not).  
 
Example 3. For the following logic function F = 
x2x3 + x1x3 + x1x2, let the sub-set of variables { x2, 
x3}  be the Bound Set, and the sub-set of variables 
{ x1}  be the Free Set. The following is the disjoint 
AC decomposition of F (where { –}  means don’ t 
care): 
 
 
 
 
 
 
 
 

… … … …

… … … …… …

…
16 possible 2-variable Boolean functions 
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                          (1)                                  (2)                       (3)                                         (4) 
 
 
 
 
 
 

Figure 6. AC decomposition. Steps (1)-(4) are discussed in the text. 
 

 
    In Example 3, the first block of the decomposed 
structure has two outputs (intermediate variables g 
and h). The DFC measure of the decomposed 
structure is = 2⋅22 + 1⋅23 = 16, while the DFC of the 
original LUT is = 1⋅23 = 8. (This again shows the 
inadequacy of DFC as a measure of complexity 
because the decomposition produces a more 
complex structure than the non-decomposed LUT.) 
    LF for the decomposed structure in Figure 6 is 8, 
which does not exceed the complexity of the LUT. 
However, since the decomposition does not reduce 
the complexity, for the purposes of this paper, the 
decomposition is not successful and thus rejected. 
This will be true whenever the first block of the 
decomposed function has two outputs. For other 
NPN functions AC decomposition produces only 
one output in the first block. These decompositions 
are not rejected, and are listed in Table 3.  
 

2.4 Reconstructability Analysis: Conventional 
RA Versus Modified RA   
 
    Reconstructability Analysis (RA) is a 
decomposition technique for qualitative data 
(Conant 1981, Klir 1985,1996; Krippendorff 1986). 
A review with additional references is provided in 
(Zwick 2001). RA data is typically either a set 
theoretic relation or mapping or it is a probability or 
frequency distribution. The former case is the 
domain of “set-theoretic”  - or more precisely crisp 
possibilistic - RA. The latter is the domain of 
“ information-theoretic”  - or more precisely 
probabilistic - RA. The RA framework can apply to 
other types of data (e.g., fuzzy data) via generalized 
information theory (Klir and Wierman 1998).  
    RA decomposition can also be lossless or lossy. 
In this paper, we are concerned only with lossless  
decomposition, i.e., with decomposition which 
produces no error. This paper introduces an 
innovation in set-theoretic RA, which we call  

 
“modified”  RA (or MRA) (Al-Rabadi 2001) as 
opposed to the conventional set-theoretic RA (or 
CRA). While CRA decomposes for all values of 
Boolean functions, MRA decomposes for an 
arbitrarily chosen value of the Boolean functions 
(e.g., for value “1” ). The completely specified 
Boolean function can be retrieved if one knows 
the MRA decomposition for the Boolean function 
being equal either to “ 1”  or to “ 0” . MRA and 
CRA are illustrated and compared in Example 4. 
 
Example 4. For the logic function:  F = x1x2 + x1x3 

Figure 7 illustrates the simplest model using both 
CRA and MRA decompositions.  
 
CRA decomposition (Conant 1981, Zwick 1995, 
Zwick and Shu 1995) is illustrated in the upper half 
of the figure, while MRA decomposition (Al-
Rabadi 2001) is illustrated in the lower half of the 
figure. MRA decomposition yields a much simpler 
logic circuit than the corresponding CRA 
decomposition, while retaining complete 
information about the decomposed function.  
    For CRA as shown in the top middle part of the 
figure, the calculated function for the model 
x1x2f1:x1x3f2:x2x3f3 (i.e., α:β:γ) is defined as 
follows: x1x2x3Fx1x2f1:x1x3f2:x2x3f3 ≡≡≡≡ (x1x2f1 ⊗⊗⊗⊗ x3) ∩∩∩∩ 
(x1x3f2 ⊗⊗⊗⊗ x2) ∩∩∩∩ (x2x3f3 ⊗⊗⊗⊗ x1). (For lossless CRA 
decomposition, this equals the original function 
x1x2x3F that is shown at the top left of the figure;  
for lossy CRA x1x2x3Fx1x2f1:x1x3f2:x2x3f3 would not be 
equivalent to x1x2x3F). The CRA model can be 
interpreted by the circuit shown at the top right of 
the figure. 
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Figure 7. Conventional versus Modified RA decompositions for the Boolean function:  F = x1x2 + x1x3. 
 
    MRA simplifies the decomposition problem by 
focusing, in the original function F, on the tuples 
for which F=1. (One could alternatively have 
selected the tuples for which F = 0.) The procedure 
used to obtain the MRA in Figure 7 is as follows 
(Al-Rabadi 2001):  
(1) Select the relation defined by (x1,x2,x3) tuples 
with value “1”  (shaded in top left of Figure 7). 
(2) Obtain the simplest lossless CRA 
decomposition. 
(3) Assign value “1”  to tuples in the resulting 
projections. Add all tuples that are missing in the 
projections and give them function value “0” . 
(4) Perform the intersection in the output block to 
obtain the total functionality. 
    Steps (2)-(4) are as follows: 
 
 
 
 
 
 
  Step (2) gives model: (x1:x2x3)               
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
             (x1⊗1∪x1’⊗0)    (x2x3⊗1∪(x2x3)’⊗0) 
                    where (,) means set complement. 
 
                                        Step (4) 
 
                    F = f2′(x1) ∧ f3′(x2,x3) 
 
    Table 2 gives the complexities of the 
decomposition of all NPN-classes of 3-variable 
Boolean functions (Table 1) using CRA 
decomposition and MRA decomposition, 
respectively. 
 
 
 
 
 
 
 
 
 
 
 
.
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Table 2. Conventional RA (CRA) versus Modified RA (MRA) for the decomposition of all NPN-classes of 
3-variable Boolean functions. CLUT is the cardinality of the lookup table; for non-decomposable functions 
CLF = CLUT. Compare the right-most two columns. 
 
 
The table shows that in 6 NPN classes (classes 1, 2, 
3, 6, 8, 9) MRA and CRA give equivalent 
complexity decompositions, but in the remaining 

four classes (classes 4, 5, 7, 10) MRA is superior in 
complexity reduction. 
 

NPN-Representative           Simplest Modified RA model     Simplest Conventional RA model    C             CLF       CLF 
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3 COMPLEXITY OF MRA VERSUS AC 
DECOMPOSITION  
 
    Utilizing the methods described above, one 
obtains the following results in Table 3 for the 

decomposition of 3-variable NPN-classified 
Boolean functions (Table 1) using MRA and AC 
decomposition.

 
results in Tabl 4 for the decomposition of the 3-variable NPN-classified Boolean functions (in Table 1) 
using lossless modified RA (MRA) decomposition and the disjoint AC decomposition, respectively.   
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table 3. AC decomposition versus MRA decomposition for the decomposition of all NPN-classes of  
3-variable Boolean functions. CLUT is the cardinality of the lookup table; for non-decomposable functions 
CLF = CLUT. Compare the right-most two columns. (DFC(SOP) is the cardinality of the Sum-Of-Product form 
for the NPN class.) 

  

NPN-Representative   Simplest Modified RA model       Simplest AC circuit                           DFC  Cdata CLF   CLF  

Function                                                                                                                                                  (MRA)(AC)  
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0  0    1
0  1    0
1  0    0
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                                          (a)                                                                    (b)                                                               (c) 
Figure 8. Comparison of Decomposability (D) versus Non-Decomposability (ND) for AC versus MRA (a), 
CRA versus AC (b), and CRA versus MRA (c), respectively. The number of classes and the number of 
functions are listed in each cell. 
 
    Table 3 shows that in three NPN classes (4, 7, 9) 
MRA and AC give equivalent complexity 
decompositions. In three other classes (2, 3, 6), 
which encompass 42 functions, AC is superior, but 
in four classes (1, 5, 8, 10), which encompass 88 
functions, MRA is superior. We can summarize 
these results by comparing the decomposability 
versus non-decomposability for the various 
approaches. Figure 8 shows the number of classes 
and functions decomposable by one method but 
not by another (upper right and lower left cells). 
One concludes that for NPN-classified 3-variable 
Boolean functions, MRA decomposition is 
superior to AC decomposition (88 versus 42), AC 
decomposition is superior to CRA decomposition 
(66 versus 32), and MRA decomposition is 
superior to CRA decomposition (80 versus 0). 
    While the log-functionality complexity measure 
that is used in Table 3 is a good cost measure for 
machine learning, it is not a good measure for 
circuit design. An alternative cost measure for 
circuit design is the count of the total number of 
two-input gates (from Figure 3) in the final circuit 
(C#). Utilizing the resulting decompositions from 
Table 3, Table 4 presents a comparison between 
MRA and AC for 3-variable NPN classes of 
Boolean functions using the C# complexity 
measure. 
    Table 4 shows that, using the C# cost measure, 
in five NPN classes (1,2,3,6,9) which encompass 
66 logic functions AC is superior to MRA for both 
including and not including the cost of the 
inverters. For two NPN classes (4,8), which 
encompass 72 logic functions, AC is equivalent to 
MRA for both including and not including the cost 
of the inverters. For two NPN classes (5,10), which 
encompass 56 logic functions, MRA is superior to 
AC for both including and not including the cost of 
the inverters. For one NPN class (7), which 
encompasses 24 logic functions, MRA is  
 

 
superior to AC when including the cost of the 
inverters, but the same as AC when inverters are 
not included. Thus, counting inverters, MRA is 
superior to AC (80 versus 66), while not counting 
inverters AC is superior to MRA (66 versus 56). 
 

               (66)             (66)               (80)             (56) 
Table 4. Comparison of AC versus MRA using the 
C# cost measure. The number in parenthesis at the 
bottom of each table column is the sum of the 
numbers of functions in the shaded cells of that 
column. 
 
    The results of Table 4 are technology 
independent, that is, every logic function in Figure 
3 is given the same cost. However, from a 
technology dependent point of view, the costs of 

Class C# W/ 
Inver ters 
(AC) 

C# W/O 
Inver ters 
(AC) 

C# W/ 
Inver ters  
  (MRA) 

C# W/O 
Inver ters  
  (MRA) 

1  
    (8) 

4 4 5 5 

2  
    (2) 

2 2 - - 

3           
  (16) 

2 2 - - 

4   
  (48) 

2 2 2 2 

5  
    (8) 

9 6 3 3 

6    
  (24) 

2 2 - - 

7   
  (24) 

3 2 2 2 

8   
  (24) 

4 3 4 3 

9     
  (16) 

6 5 - - 

10   
  (48) 

7 5 3 3 
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(5,7,10: 80) 

 (0) 

(5,9,10: 72) 
 
 
  
  (1,8: 32) (4: 48) 

   (2,3,6,7: 66) 



  

the different logic functions of Figure 3 may not be 
the same, and the comparisons of Table 4 would 
have to be modified accordingly. 
 
4 CONCLUSION 
 
    A novel RA-based decomposition is introduced; 
Modified Reconstructability Analysis (MRA). MRA 
is compared to conventional Reconstructability 
Analysis (CRA) and disjoint Ashenhurst-Curtis 
(AC) decomposition using the log-functionality 
complexity measure which is a suitable measure for 
machine learning. It is shown that in 3 out of 7 
NPN classes while 3-variable NPN-classified 
Boolean functions are not decomposable using 
CRA, they are decomposable using MRA. Also, it is 
shown that whenever a decomposition of 3-variable 
NPN-classified Boolean functions exists in both 
MRA and CRA, MRA yields a simpler or equal 
complexity decomposition. While both the disjoint 
AC decomposition and MRA decompose some but 
not all NPN-classes, MRA decomposes more 
classes and consequently more Boolean functions 
than AC. 
    For the purpose of circuit design, complexity can 
be defined by counting the total number of two-
input gates. Using this measure, MRA is superior to 
AC when including the cost of the inverters and AC 
is superior to MRA when not including the cost of 
the inverters. Extensions of this MRA approach to 
reversible logic and quantum computing is 
presented in (Al-Rabadi and Zwick 2002); 
extensions to many-valued logic is presented in 
(Al-Rabadi and Zwick 2002). A comprehensive 
treatment of MRA with supplementary material is 
provided in (Al-Rabadi 2002). 
    Future work will include the investigation of the 
MRA decomposition of logic relations as opposed 
to functions, and multi-valued and fuzzy functions. 
The use of gates other than the logical AND gate 
(e.g., OR, XOR, NAND) at the final stage of RA-
based decompositions to reduce the complexities of 
the decomposed structures will also be investigated. 
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