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Abstract: In this paper we focus on a general
approach of using genetic algorithm (GA) to
evolve Quantum circuits (QC). We propose a
generic GA to evolve arbitrary quantum
circuit specified by a (target) unitary matrix
as well as a specific encoding that reduces the
time of calculating the resultant unitary
matrices of chromosomes. We demonstrate
that, in contrast to previous approaches, our
encoding allows synthesis of small quantum
circuits of arbitrary type, using standard
genetic operators.

1. Introduction

While quantum mechanics and quantum
computing are quite established research areas,
automated quantum circuit synthesis is still
only at the beginning of its exploration
[2,4,6,7,8]. In quantum computation we use
quantum bits (g-bits) instead of classical
binary bits to represent information. This gives
the advantage of being able to perform
massively parallel computations in one time
step. The design of quantum circuits of
practical size is still technologically
impossible, but the progress is fast and there
are no arguments based on physics against the
possibility of building powerful quantum
computers in future. Therefore quantum
computing area of research is recently
flourishing. Finding an effective and efficient
method of designing QC can be used for two
applications: (1) modeling quantum computers
in FPGA-based reconfigurable hardware for
speeding-up computations that are very
inefficient on standard computers [9], and (2)
designing new optimized gates and circuits for
theoretical investigations and for use in future
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quantum computers.

The major difference between quantum logic
and binary logic is the concept of the
information itself. While the classical (binary
or multi-valued) representations of
information are precise and deterministic, in
Quantum Computing the concept of bit is
replaced by the g-bit. Unlike classical bits that
are realized as electrical voltages or currents
present on a wire, quantum logic operations
manipulate g-bits [7]. Qubits are microscopic
entities such as a photon or atomic spin.
Boolean quantities of 0 and 1 are represented
by a pair of distinguishable different states of a
qubit.  These states can be a photon’s
horizontal or vertical polarization denoted by
B or |B, or an elementary partice’s spin
denoted by |B or |B for spin up and spin down,
respectively. After encoding these
distinguishable  quantities into Boolean
constants, a common notation for qubit states
is |0> and [1>.

Qubits exist in a linear superposition
of states, and are characterized by a
wavefunction . As an example, it is possible
to have light polarizations other than purely
horizontal or vertical, such as slant 45°
corresponding to the linear superposition of
y=Y5[2|0>+V2|1>]. In general, the notation
for this superposition is of0>+B|1>. These
intermediate states cannot be distinguished,
rather a measurement will yield that the qubit
is in one of the basis states, |0> or |[1>. The
probability that a measurement of a qubit
yields state |0> is |o’, and the probability is
|B]> for state |1>.
required since, in general, o and [ are
complex quantities.

Pairs of qubits are capable of
representing four distinct Boolean states, [00>,
[01>, [10> and [11>, as well as all possible
superpositions of the states. This property is

The absolute values are

YF]',F.

COMPUTER
SOCIETY



known as “entanglement”, and may be
mathematically described using the Kronecker
product (tensor product) operation ® [7]. As
an example, consider two qubits with
Yi=0u|0>+B4|1> and y=0]0>+fB|1>. When
the two qubits are considered to represent a
state, that state ), is the superposition of all
possible combinations of the original qubit,
where

Y= Y@, = 0,05]00> + 04 3,]01> + 0] 10>
+ BiBa|11>. (1)

Superposition property allows qubit
states to grow much faster in dimension than
classical bits. In a classical system, n bits
represents 2" distinct states, whereas n qubits
corresponds to a superposition of 2" states.

In terms of logic operations,
anything that changes a vector of qubit states
can be considered as an operator. These
phenomena can be modeled using the analogy
of a “quantum circuit”’. In a quantum circuit
wires do not carry Boolean constants, but
correspond to pairs of complex values, o and
B. Quantum logic gates of this circuit map the
complex values on their inputs to complex
values on their outputs. Operation of quantum
gates is described by matrix operations.
Probabilistic  calculations based on this
representation are used in only very small
quantum computers so far, but it was verified
that information can be represented as a
superposition of states of single g-bits, and
that in one time step operations can be
performed on several g-bits. Beside this useful
effect of quantum computing, various other
effects resulting from g-bit encoding emerge,
such as g-bit entanglement. Moreover it was
shown [7] that any QC has to be reversible. In
this paper we focus only on the synthesis of
arbitrary quantum circuits (and quantum gates
in particular) of small size. We propose a
generalized approach to the problem of QC
synthesis by using a simple encoding and a
generic GA without any problem-specific
operators. Our results show that, in contrast to
published work [4,6], any kind of genetic
operators can be used by using the proposed
encoding.

This paper is divided into seven sections.
Section 2 gives a brief overview of genetic
algorithm and quantum gates used in our
experiments. Section 3 explains the new
problem encoding that we devised, and section
4 the fitness function. Section 5 discusses our
selection method and section 6 the
experimental results. Finally section 7
concludes the paper.
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1.GA for QC synthesis

This section presents a brief description of the
GA as the generator of QC. GA is one of a
widely used search heuristics; it is based on
the principle of evolutionary computation. For
each problem we define a population (a set of
solutions) that are evolved under -certain
constraints. Here, each individual in the
population will be a QC. The quality of each
solution is evaluated by a fitness function.
Here the fitness function is based on an entry-
by-entry comparison between the entries of the
individual's unitary matrix and the entries of
the matrix of the target gate or circuit. Each
individual in the population represents a
chromosome. It encodes a particular QC. To
evolve the initial population to a set of
individuals with better properties, GA uses
three types of genetic operators on
chromosomes: mutation, crossover and
reproduction. Each of these operators is
applied to one or more individuals in order to
increase their fitness values. In the GA
presented here only three operators have been
implemented, but we experimented with larger
sets of operators.

Mutation represents a completely random
operator that introduces noise in the current
population by randomly modifying a part of a
chromosome. This operator is very important
while searching the problem space in order to
avoid being trapped in local minima of the
fitness function F. In a standard bit-wise
encoding of the solution candidate as a
chromosome, the mutation operator acts by
inverting values of individual bits. Here units
of the chromosome are the (elementary)
quantum gates (QG) such as Hadamard Gate
or Swap Gate. The mutation can change gates.
With the encoding used here, possible results
of this operator are the following: changing
one QC to another one, adding a new QG,
removing an existing QG, changing the
placement of an existing QC in the QC, and
changing one QG to another one.

Crossover operator is a tool that directly
recombines existing QCs in order to explore a
larger problem space. It cuts two
chromosomes (two individuals) in one or more
locations and swaps their parts.

Selection is based on the Stochastic Universal
Sampling rule, [1]. Mutation and crossover are
executed sequentially, based on two randomly
generated numbers; mutation is applied with
the probability exceeding 0.4 and crossover
with the probability exceeding 0.7.
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2.Encoding

While encoding a QC as a string of objects
one encounters the following question: how to
encode the number of wires and the position in
the circuit of a gate in the least complex data
structure possible? The encoding of the

11

Figure 1: Transformation of a QC from the
encoded chromosome (on the left) to a final
quantum circuit notation representation of this

QC (on the right). Here S is a Swap gate, H is
a Hadamard gate, W is a wire. In the middle
there is one CCNOT (Toffoli) gate.

individual's chromosome is, in addition to the
fitness function, one of the most important
aspects of designing a well-converging GA.
For that purpose we considered various
encoding schemes [4,7], to finally come up
with a simple and effective encoding for basic
QC. This encoding is however powerful
enough to allow describing any possible
configuration of a QC. In contrast to the
previous work, we do not use any additional
specifications or parameters to specify the
chromosome-defined QC. The order of

for certain gates (control bit) [4], but the focus
is more on the global synthesis aspects of QC
and the generality of the approach. While most
of previous works use genetic programming,
ours is only the second one that uses a GA and
the first in which a standard GA is applied. An
efficient encoding of each individual that can
be then computed in parallel can consequently
lead to the decrease of the computation time,
thus making the GA more adapted to real-time
quantum circuit design tasks. This encoding
will have therefore applications in parallel
computing and  Evolvable  Hardware
accelerators for quantum circuits synthesis [9].
The conditions imposed on our encoding are
the following: preservation of equal
probabilities of presence of each type of gate,
fast encoding and decoding of an individual
gene in the chromosome and no parameters
beside basic definitions (no control bits).

An example of our encoding is shown in
Figure 1.

On the left side of Figure 1 it is shown how
the circuit on the right of the same figure is
encoded. As can be seen, there is no free space
in the proposed encoding. Each place in the
circuit is presented as a symbol of a unitary
matrix of certain elementary quantum gate. A
wire has a unitary identity matrix
representation. While evaluating the fitness
function, Kronecker products (tensor products)
are executed on matrices of parallel gates
(blocks, circuits), and standard matrix
multiplications are performed on serial
connections of gates. Each QC is parsed in
parallel blocks, evaluated separately and
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consecutive quantum gates as well as a special
parsing of the chromosome contains all
information about the represented circuit. In
this paper, there is no particular attention paid
to explore the problem of changing parameters
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Figure 2: Examples of Kronecker product &,
and of Matrix product * on a sample of a
circuit. H is Hadamard gate, W is wire and
CNOT is Feynman.
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finally multiplied together to give the final
unitary matrix representation of the QC. This
final matrix is next compared with the target
matrix to evaluate their distance as a part of
fitness function -calculation. The example
shown in Figure 1 illustrates a common
inconvenience of encoding quantum circuits
for genetic algorithms. A quantum gate
CCNOT can be placed over three different
arbitrary wires in a quantum circuit. However
with the encoding used, there is no
information indicating what gates are
connected to what wires, beside the order of
the gates. To solve this problem we insert two
Swap gates (one before and one after) the
CCNOT. This implies that outside of the Swap
gates the CCNOT seems like being on wires
2,4 and 5, but the real CCNOT gate uses wires
3,4 and 5. In order of being able to encode a
QC without any additional parameters, the
circuit is split into parallel blocks where each
block can be evolved separately.

This implies the fact, that each quantum circuit
can be parsed into parallel blocks, where each
block contains a series of ordered QC. Each
parallel block is a small QC and can be used
for mutation or crossover. No additional
evaluations of blocks other than calculations
of unitary matrices are necessary. For the
above particular individual in the population,
its chromosome representation (encoding)
will be as in Figure 3.
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Figure 3 : Representation of an individual in
the population (upper field), The chromozome
encoding (on the left and bottom) and each
parallel segement representation. W is wire, S
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swap gate, H Hadamard gate, CN Cnot
(Feynman) gate. Letters P determine the
border of each parallel segment. As QC does
not have fan out or fan in, each parallel
segment has the same number of input and
outputs.

The mutation operator is not acting upon the
gate definition itself, but can only move blocks
of  input/output  vectors inside the
chromosome. In the reported work we used
only some of the possibilities of this operator,
as presented above. Other possibilities will be
investigated in the forthcoming work.

The genetic operators defined here will have
the following properties:

* Mutation can change any gate
to arbitrary other gate, with the
same or different number of
inputs/outputs.

* Mutation can induce a removal
of a gate by changing it to a
wire, or can simply remove an
entire parallel block.

» Mutation changing a gate with
n inputs to a gate with m inputs
can add more gates or remove
more gates in order to satisfy the
number of inputs/outputs of the
whole QC.

« Mutation plays here a major
role. As the described below, the
Crossover operator is quite
constrained, the probability of
mutation is very high [0.2, 0.8].

* Crossover can act upon a
whole parallel block (from one
chromosome) by interchanging
it with another parallel block
(from another chromosome) of
the same number of inputs, i.e.
with same number of wires.
Crossover was used in this paper
with probabilities [0.2, 0,8].
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Figure 4: Example of results of a mutation on
a chromosome. The complexity of the
individual matrix of each circuit depends
directly on the length of the chromosome and
the number of wires.

3. Fitness function

Another important aspect of GA is the fitness
function. Good design of the fitness function
is crucial to the convergence of the whole
quasi stochastic search process. It assigns
fitness to each individual (chromosome)
according to the evaluated error. Example: for
a minimization of a function the individual
whose chromosome has the smallest value
error, will have the highest fitness. There is a
magnitude of possible ways how to select the
fitness function. Here we have the advantage
that we know the goal (the “target matrix” or
the matrix of the circuit to be synthesized), so
we can easily determine the maximum fitness
value. The result of this evaluation will be a
“1” if all elements of the final matrix are the
same as in a individual's chromosome, and
less than 1 otherwise, proportional to the
operator A, as described below.

The evaluation of an individual is done here
similarly to [4,6] using an entry-by-entry
comparison of the unitary matrices. However
instead of looking for the global minimum we
search for the global maximum by searching

for the maximum value of
1
=——A . The evaluation
1+error

function for error is similar to [4,6]:
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with Uy is the ij® element of
the requested unitary matrix for the searched

circuit, and S ij is the same element in the

current matrix. We add another operator A to
the fitness function, a direct factor influencing
the fitness of the current circuit.

®
/\,-:{7 if &;,<n,

14

0 else

with @ is the number of minimum parallel
segments, and n is the total number of
segments in the chromosome i. Note the
minimum number of segments is a user-
modifiable parameter to investigate trade-offs
between the components of the fitness
function F. Its function is to adjust fitness of
an individual regarding its length. With
respect to the evaluation process of any QC,
an infinite number of circuits can be found
with the same unitary matrix but with different
structures; here we want to find the minimal
circuit, that satisfies error equal zero. Value of
® here was taken from the following value
interval [1 - 5].

4. Selection Operator

With the selection operator, the GA chooses
individuals for applying replication. Each
individual selected by this operator will be
either a parent for possible offsprings (using
crossover) or will be just used in the next
generation. Roulette Wheel rule is based on
the fitness of each individual in the population,
selecting the fittest individuals. The weakness
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of this rule is that it contributes to a faster
elimination of the non-fit individuals, and thus
provides a fast convergence but with the
weakness of sometimes not exploring the
unknown part of the problem space. Stochastic
universal sampling [1] is a method similar to
the Roulette Wheel, but the selection of
individuals is less biased by the fitness of the
individuals. To select n individuals for
replication, n pointers, each spaced by 1/n, are
placed over the chromosome. The position of
the first pointer is selected randomly. Each
pointer will then point to a single individual,
which will be next selected for replication. We
compared both types of selection operations,
resulting in stochastic universal sampling
being used for most experiments.

5. Experimental results

The difficulties of applying GA for designing
correct (and hopefully minimal) quantum
circuits are the following. (1) A high time of
evaluation of QC matrix, especially due to the
calculation of Kronecker (tensor) product with
sizes of matrices growing exponentially for
larger circuits. This means that for the
computation of large matrices one needs
chromosome encoding that would allow for
parallel computation. (2) If a high number of
individuals are used for the total population,
then the result can be find out in less
generations [3] but with longer times of fitness
evaluation. (3) Using a precise encoding for
each specific configuration of a particular g-
gate is obviously a big loss of time. To avoid
extreme time consumption for calculations, the
GA was limited to a relatively small
population of individuals (50 — 100). Next we
limited our explorations to circuits with the
maximum of 4 wires, so that we can observe
the time difference between the calculation of
big (4 wires) and small (1 wire) unitary
matrices. Finally to speed up the whole
process we used OOP (object oriented
programming) language so as to homogenize
the programming and genetic operators.

We set up a set of tests, described below as the
first step of setting up a basic library of
benchmarks for automated QC design methods

- 151' if
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In all examples discussed here, a one-point
crossover approach is used. The mutation
operator can erase, add, increase or decrease
the chromosome length. To test the settings,
all results have been averaged over 20 runs

Number Gates

of inputs

Wire, Hadamard, Pauli (X, Y,Z),
Phase
Cnot, Swap, C-Z, C-phase

3 Ccnot(Toffoli), C-swap(Fredkin)

total, for each type of q-gate.

The GA was tested on two types of starting
sets. Unrestricted starting set contains all gates
Table 1: Quantum Gates used in this
experiment. (as building blocks of the
chromosome and target gate) to be publicly
available by researchers in this area. Our goal
was to test evolutionary techniques for
automated design of an arbitrary q-gate in the
minimum time.

available, even if the search gate is among
them. This was the major part of our
experiments, because we wanted to discover
similar circuits. Second approach is the
restricted set, where only a random number of
gates is selected, and the gate being searched
is not included.

Table 2 shows the result for the first
benchmark. For each GA run, one randomly
selected quantum gate was used to create its
unitary matrix, to be next used as a target
matrix for the algorithm. The goal of the GA
was to find at least the same gate, if not a
similar and smaller but of the same
functionality. The starting set of available
gates to the GA was non-restricted (Table 1)
and any number of gates was used. This test
was set to test the convergence of our
approach.

Table 2: Results of experiments. Due to the
similarity of results we grouped the results by
the number of inputs/outputs of the requested
g-gate. PM and PC are probability of mutation
and crossover.

The results are quite encouraging. In every
case the GA found the requested gate,
however in no case the automatically created
chromosome was better than the circuit for
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Real time pM<0.2 Real time
Number of | Number of | pM | pC | (average 20 | Number of | (average 20 | Population
inputs per q- | generations runs) generations runs) size
gate
1 —input <50 < 30 seconds <100 < 1 minute
04 0.6 50
2 —inputs <50 06 | 04 < 30 seconds <100 < 1 minute 50
3 - inputs 50 - 200 <1 minutes <200 <3 minutes
0.6 | 0.6 60

which the corresponding target unitary matrix
was created. Summary of results is shown in
Table 2.

All circuit evolved were exact copies or at
least had same number of wires, of the
searched circuit. For small gates the
convergence is logically faster, because of the
restricted recombination between different
gates. A gate with more inputs than the
number of wires in the circuit was not tested.
The 3 input gates test shows the same result,

shown in Figure 4. The first two are both
circuits to produce EPR as in [4], the last is the
“send” circuit originally proposed by [10] and
evolved in [6].

BH

Real time pM<0.2 Real time
Number of | Number of | pM | pC | (average 20 | Number of | (average 20 | Population
inputs per q- | generations runs) generations runs) size
gate
3 - input <150 04 06| < 1 minutes <300 < 2 minute 50
4 - inputs <350 06 | 04| < 2 minutes <900 < 3 minute 50

however with exponential time. The results are
measures of average values over 20 runs.
Depending on the circuit we were looking for,
the times are, as predicted, increasing very fast
with the increase of the number of QC inputs.
Two configurations were tested. First, high
probabilities of mutation (0.4-0.7) and
crossover (0.4-0.6) were applied. The results
are surprising because of so high mutation
probability. On the other hand the mutation
here increase the recombination of gates, and
allows searching more efficiently the problem
space. The size of the GA population was set
in range [50,100]. The very high probability of
mutation allows a fast dangerous search, while
compared to classical settings there is no proof
of convergence. However the runs were
stopped as soon as a good solution was found,
even if only by a random search. A large
random search with mutation used on a
recombination problem seems to have a
positive effect in a restricted search. The
solution was found also when the mutation
was of a small order, however the time of
search raised as well.

Next step was to test composite circuits
proposed by [4,6]. We selected three of them

Figure 4: 3 types of circuits searched with the
GA.

The results are shown in Table 3. We were
able to find all searched circuits, however in
this part of experimentation the starting set of
gates was open. Our GA found for all
benchmarks at least similar, if not better,
results compared to the published results of
the studied cases. Even if the number of
generations grows exponentially, the real time
still remains reasonable.

The 3- and 4- input circuit search was made
Table 3: Results of benchmark tests for
assembled circuits.

under similar conditions as the first part of
experiments. Results from both tables shows
that GA can be very successfully used to
synthesize circuits. The time can be reduced
by appropriate hardware and consequently
used for still larger designs.

This allows us to claim that our algorithm is
better then those previously proposed.
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6. Conclusion

We have shown that the evolutionary
computation can be used for automated QC
development in real time using standard PC
computers. Designed as shown, this algorithm
can be also easily implemented on parallel
computers or in classical binary FPGA-based
evolvable hardware. An interesting research
will be to implement evolutionary learning in
a future truly quantum hardware which will
lead to a new area of Evolutionary Quantum
Hardware (EQH). Our program found one new
circuit that was earlier came across by
Williams [7] and three circuits located by
Rubinstein [4]. In all cases that we studied the
program was faster than the results previously
published. In contrast to previous works that
concentrated on some particular types of
circuits such as teleportation [7] and
entanglement [4] our approach is fully general.
For instance the optimized version of the
“send” circuit found by Williams was created.
We will further experiment with the algorithm
trying to find various realizations for gates and
circuits from [8,9,10,12,13,14].

Our algorithm and its data structure can be
applied without any modification to reversible
circuits from “pseudo-classical” circuits [14].
Such circuits are used for instance in the
famous Grover’s Quantum Search Algorithm
[11].

Reversible gates realizing Boolean operations
can be realized not in quantum but in several
other reversible technologies such as DNA,
single-electron transistor, mechanical nano-
switches, quantum dots or CMOS.

Although all benchmarks proved the
convergence of our GA and results were better
than previous ones, the goal of our approach is
not only to benchmark a GA, but mainly to
explore various evolutionary and other
approaches [Alan,Andrey] to reversible and
quantum circuit synthesis. Next step is to
apply different Evolutionary algorithms such
as Baldwinian or Lamarckian GA, genetic
engineering or Evolutionary strategies. The
encoding used here fits well also the design of
reversible logic, where each parallel block in
the chromosome is a small sub-circuit, with
same number of wires as its neighbors.
Obtained results also show the problem of
scalability of any designing method. Here for
5 wires the time of search is small, and as
previously said hardware implementation of a
GA will speed the process up.
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