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Abstract 
This paper discusses an approach to decomposition of multi-

valued functions and relations into networks of two-input gates 
implementing multi-valued MIN and MAX operations. The 
algorithm exploits internal flexibilities generated in the process of 
decomposition as well as of the incompleteness of the initial 
specification. Experimental results over a set of multi-valued 
benchmarks show that this approach outperforms other 
approaches [5,6] in the quality of final results and CPU time.  

Introduction 
Decomposition of multi-valued relations has important 

applications in data mining and machine learning [1]. Potentially, 
multi-valued decomposition can be also used in the design of 
multi-valued hardware devices, software compilers, and 
asynchronous logic synthesis [2]. 

Several approaches to multi-valued functional decomposition 
have been proposed [3-7]. Applicability of [3] is limited to 
relatively simple multi-valued objects due to the use of explicit 
data structures. Approaches [3,4] rely on Multi-Valued Decision 
Diagrams (MDDs), which have been shown to be less robust than 
other representations [8]. MDD-based approach used in [5,6,7] 
does not allow for variable reordering, which significantly 
improves the performance of multi-valued computation.  

Our approach to MV decomposition is based on 
•  Binary-Encoded Multi-Valued Decision Diagrams 

BEMDDs have been introduced in [8] to solve the problem 
of support minimization for multi-valued relations. This 
hybrid data structure combines the efficiency of BDDs [9] 
for implicit representation with the expressive power of 
MDDs [6] for manipulation of MV relations. 

•  Bi-Decomposition                                                          
This concept has been under development for the last 
decade [10]. Recently, it has been successfully applied to 
Boolean functions [11].  

Essentially, bi-decomposition consists in recursive splitting of 
large logic blocks into compositions of the three smaller logic 
blocks interconnected as shown in Fig. 1. Blocks A and B 
typically have reduced complexity (expressed in terms of smaller 
support or more don’t-cares) compared to the initial logic block. 
Block C always has two inputs. In the binary case, block C is an 
elementary Boolean function, while in the multi-valued case, it is 
a MAX or MIN gate.  

 
 
 
 
 
 
 

Fig. 1. Schematic representation of the two types of 
bi-decomposition: strong (left) and weak (right) 

The following sections present our approach.  
Section 1 introduces BEMDDs as a vehicle for manipulation of 

multi-valued relations. Section 2 introduces operations on MV 
relations. Section 3 lists conditions for the existence of MAX- and 
MIN-bi-decomposition and formulas to derive relations of blocks 
A and B. Section 4 outlines the main bi-decomposition algorithm. 
Section 5 gives experimental results. Section 6 concludes the 
paper.   

1 BEMDDs  
As stated in the introduction, we advocate the use of 

BEMDDs as the representation of choice for multi-valued 
relations. The motivation is that BEMDDs are efficient for large 
functions and lead to improved decomposition procedures 
compared to other representations: multi-valued cubes and cube 
partitions [3], edge-valued BDDs and classical MDDs [6,7]. 

In BEMDDs, multi-valued variables are encoded using the 
smallest sets of binary variables. A k-valued variable requires at 
least log2(k) binary variables to uniquely encode its values. 
(Here the vertical bars stand for the closest larger integer.)  

For example, a 5-valued variable A is encoded using the set of 
three binary variables {a1, a2, a3}. In the simplest case, the set of 
all possible values of variable A, {0, 1, 2, 3, 4}, is encoded using 
the set of binary cubes: 

{ 321 aaa , 321 aaa , 321 aaa , 321 aaa , 321 aaa }. 
If k is not an integer power of two, the minimum length binary 

encoding results in (2log2(k) - k) spare minterms. It is possible to 
leave them unused and account for them in the decomposition 
routines. In this case, it is necessary to remember that the domain 
of binary variables encoding the inputs is limited to only those 
minterms that provide codes for the values of multi-valued 
variables. Experimentally, we found that this approach increases 
the BEMDD size and makes traversal routines more complicated.  
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From the practical point of view, it is better to distribute the 
unused minterms between the values of the function. For example, 
consider the two encodings of ten values using sixteen minterms 
of the four binary variables shown in Fig. 2.  

 00 01 11 10   00 01 11 10      
00 0 4 8 8  00 0 2 7 4  B\A 0 1  
01 1 5 9 9  01 0 2 8 4  0 0,1,2 2  
11 3 7 10 10  11 1 3 10 6  1 1 0,1,2  
10 2 6 10 10  10 1 3 9 5  2 1,2 0,1  

         Fig. 2. Two ways to encode ten         Fig. 3. The truth table  
           values using binary variables             for relation R(A,B) 

Currently, as the default encoding of values, we use the 
encoding shown on the left of Fig. 2.  

For multi-valued relations, we use a similar encoding scheme 
to represent the outputs values. The variables used for this 
purpose are called output-value-encoding variables (or simply, 
value variables). Typically, the value variables are ordered below 
other variables in the BEMDD.  

Algorithms of this paper are reordering-independent. It means 
that, for the purpose of multi-valued bi-decomposition, the binary 
variables encoding input or output values can move freely during 
reordering, not limited even to the boundaries of variable groups 
encoding the same multi-valued variables. 

Definition. Let the domain of a multi-valued variable Ai be 
DAi. A multi-valued relation R over a set of multi-valued input 
variables {Ai}, with the multi-valued output Z having domain Dz, 
is a mapping from the Cartesian product of the input variable 
domains into the domain of subsets of the output values: 

R( A1,A2,…,An ): DA1×DA2×…×DAn → 2Dz. 
Definition. The set of minterms (vertices) of the combined 

input domain of R such that the output of R is the set of all 
possible output values, is called the don’t-care set. The set of 
other minterms of the domain of R is called the care set. 

Once the input and output multi-valued variables are encoded, 
the BEMDD representing a multi-valued relation is constructed as 
a binary relation. This relation puts in correspondence encoded 
input values with the appropriate encoded output values.  

For example, shown in Fig. 3 is a three-valued-output multi-
valued relations depending on binary variable A and ternary 
variable B. (All examples in this paper use relations depending on 
the same two variables.) This relation can be represented as a 
binary relation over five binary variables (three variables for 
inputs and two variables for the output). 

v1v2 \ ab1b2 000 001 011 010 110 111 101 100
00 1 0 0 0 1 1 1 0 
01 1 1 1 1 1 1 1 0 
11 1 0 1 1 0 0 1 1 
10 1 0 1 1 0 0 1 1 

Fig. 4. The Karnaugh map for the binary relation encoding multi-
valued relation R(A,B) in Fig. 3. 

Suppose the binary variable a encodes multi-valued variable 
A, variables b1 and b2 encode B, while variables v1 and v2 encode 
the output values of R(A,B). If ternary values { 0,1,2 } are 
encoded as { 00,01,1- }, the binary relation R(a,b1,b2,v1,v2), 
which represents R(A,B), is expressed using variables a, b1, b2, v1, 
and v2 as follows: 

R(a,b1,b2,v1,v2) = 21bba  + 2121 vvbba  + 1ba (v2+ v1) + 

121 vbba  + 21bba + 11vab . 

Each of the six terms in the above formula is obtained directly 
by encoding a cell of the multi-valued Karnaugh map in Fig. 3. 
The Karnaugh map and the BEMDD for the resulting binary 
relation R are shown in Figs. 4 and 5. 
 

 

 

 

 

 

 

 

 

 

 
Fig. 5. The BEMDD for multi-valued relation R(A,B). 

2 Operations on MV Relations 
This section introduces important theoretical concepts and 

operations used in the procedures that check the existence of 
MAX- and MIN-bi-decomposition and derive the multi-valued 
relations for the logic blocks A and B. 

Interval Relation 
The bi-decomposition algorithm discussed in this paper is 

applicable to multi-valued relations satisfying the property of a 
function interval [5]. Below this definition is restated with some 
adaptation to the terminology accepted in this paper. 

Definition. A multi-valued relation is an interval relation if in 
each vertex (minterm) of the domain, the output values form a 
contiguous range. 

For example, relation R(A,B) in Fig. 3 is an interval relation, 
but if, for example, in the vertex (0,0) instead of value set {0,1,2} 
it had value set {0,2}, it would not be an interval relation because 
values 0 and 2 do not form a contiguous range. 

From the practical point of view, limiting our attention to only 
interval relations does not seem to restrict the applicability of the 
decomposition method because the majority of multi-valued 
benchmarks satisfy this property. For those that do not satisfy, 
below we propose a simple way to convert a non-interval multi-
valued relation to an interval one, by filling in the unused values 
between the smallest and the largest values used in each vertex.  

Lower and Upper Bound Intervals 
Definition. For the given multi-valued relation R, a lower 

(upper) bound interval (denoted RLBI and RUBI) are multi-valued 
relations depending on the same input variables, having the same 
number of possible output values, and differing only in sets of the 
output values. In each vertex of the domain, the LBI takes all the 
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values starting from 0 up to (and including) the first value used in 
this vertex by the given relation, while the UBI takes all the 
values starting from (and including) the largest value used by the 
given relation up to the largest possible value of the output 
variable. 

Fig. 6 illustrates this definition. An interval relation F is shown 
on the left. Its LBI and UBI are given in the center and on the 
right. For example, consider vertex (0,2). The LBI in this vertex 
has values starting from 0 up to the first value used by F, which is 
1. The UBI in this vertex has all the values starting from the last 
value of F, which is 2, up to the largest possible value of the 
relation, which is also 2. 

 F  FLBI  FUBI  
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 0,1 2  0 0 0,1,2  0 1,2 2  
 1 1 0,1,2  1 0,1 0  1 1,2 2  
 2 1,2 0,1  2 0,1 0  2 2 1,2  

Fig. 6. Example illustrating the upper and lower bound intervals. 
If the relation R(x,v) is represented by a BEMDD over the 

input-encoding variables x and the value-encoding variables v, 
computation of its lower (upper) bound interval can be performed 
using the formulas:  

RLBI(x, v) = vwwv ][ w)(v,R&v)R(x,v →<∃ , 

RUBI(x, v) = vwwv ][ w)(v,R&v)R(x,v →>∃ , 

where ∃∃∃∃  stands for the existential quantification and Rv<w and Rv>w 
are characteristic functions of relations “more than” and “less 
than” which depend on two equal-sized interleaved sets v and w 
of value-encoding variables. 

The first formula is interpreted as follows. For each vertex of 
the domain (given by one assignment of variables x), the lower 
bound interval contains all values w (v after variable 
replacement), for which there does not exists value v belonging to 
the relation such that v is less than w.  

The interpretation of the second formula is similar. 
It is interesting to note that if the initial relation is not an 

interval relation, its LBI and UBI are the same as the LBI and UBI 
of the interval relation created by filling in the intermediate 
unused values. Therefore, if the relation is represented by the 
LBI/UBI pair, there is no need for a specialized procedure to 
convert non-interval relations into interval ones!  

In the procedures below, multi-valued relations are represented 
as LBI/UBI pairs. This simplifies processing because relations of 
blocks A and B resulting from the bi-decomposition are also 
computed as LBI/UBI pairs. In our experiments, we observed an 
additional advantage of this representation, namely that the 
BEMDDs for LBI/UBI are typically smaller than those for the 
pure lower/upper bounds as defined in [5].  

Interval Increments and Decrements 
Another operation for the manipulation of interval relations is 

the interval increment and decrement discussed in this subsection. 
Definition. For the given multi-valued interval relation R, the 

upper increment (decrement) (denoted RU+ and RU-) are multi-
valued relations depending on the same input variables, having 
the same number of possible output values, and differing only in 
sets of the output values. In each vertex of the domain, the value 

set of RU+ (RU-) is determined as the value set of the given relation 
plus (minus) one value at the upper end of the value set. 

Similarly, it is possible to define the lower increment 
(decrement) of an interval relation by adding (subtracting) one 
value at the lower end of the value set. 

Fig. 7 illustrates the definition for the upper increment and 
decrement. An interval relation R is shown on the left. RU+ and 
RU- are shown in the center and on the right. For example, 
consider vertex (1,1) with value set {0,1}. RU+ in this vertex has 
values {0,1,2} created as the same value set plus the value 
immediately following the largest value, which is 2. RU- in this 
vertex has value set {0} created as the same value set as R minus 
the largest possible value in the set, which is 1. The dashes in the 
table for RU- mean that the value set for some vertices is empty. 

 R  RU+  RU-  
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 0,1 2  0 0,1,2 2  0 0 -  
 1 0 0,1  1 0,1 0,1,2  1 - 0  
 2 0,1,2 0,1  2 0,1,2 0,1,2  2 0,1 0  

Fig. 7. Example illustrating the lower increment and decrement of 
the interval relation R(A,B). 

The upper (lower) increment (decrement) can be computed 
using the BEMDD representation as follows: 

RU-(x, v) = vwwv ][ w)(v,R&v)R(x,v →>∃ , 

RU+(x, v) = vwwv ][ w)(v,R&v)R(x,v →<∃ = 

               = vwwv ][ w)(v,Rv)R(x,v →≥+∀ . 

RL-(x, v) = vwwv ][ w)(v,R&v)R(x,v →<∃ , 

RL+(x, v) = vwwv ][ w)(v,R&v)R(x,v →>∃ = 

               = vwwv ][ w)(v,Rv)R(x,v →≤+∀ . 
If the underlying BDD package does not support the 

complement edges, the formulas with the universal quantifier are 
likely to be more efficient because they do not require 
complementation of the intermediate result. 

3 Checking and Deriving Bi-Decomposition 
This section presents the main contribution of this paper: the 

formulas for checking the existence of strong (weak) MAX- and 
MIN-bi-decomposition and deriving the resulting relations for 
blocks A and B. It is only necessary to consider the case of MAX-
bi-decomposition because the case of MIN-bi-decomposition can 
be checked (derived) using the same formulas after swapping RLBI 
and RUBI. 

Definition. Expression Rcrit(x,v) = [RLBI(x,v)]U- is called critical 
relation. For each vertex of the domain, the critical relation 
contains all the values situated below the allowed set of values of 
the relation R(x,v).  

Theorem 1. Multi-valued interval relation R(x,v) specified by 
UBI RUBI(x,v) and LBI RLBI(x,v) has strong MAX-bi-
decomposition with variable sets (xa, xb) iff 

Rcrit(x,v) & ∃∃∃∃ xa RUBI(x,v) & ∃∃∃∃ xb RUBI(x,v) = 0. 
Sketch of the proof. For each vertex of the domain, the lower 

bound interval RLBI(x,v) contains all the values below the value 
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set and the smallest value of the value set. Computing Rcrit(x,v)  = 
[RLBI(x,v)]U- removes the smallest value of the value set, so that 
remaining are only the values below the value set that do not 
belong to the relation. 

Each of the two components with the existential quantifier 
computes the projection of the upper bound interval in the 
direction of variables xa and xb. The product of projections 
denotes in each domain vertex the largest allowed value belonging 
to the value set of the relation and all the values above it. 

The formula, therefore, reiterates the theorem as follows: the 
function is MAX-bi-decomposable with the given variable sets iff 
in all vertices the largest value below the value set is less than the 
largest allowed value in the row and in the column of the 
Karnaugh map created by variable sets xa and xb. Q.E.D. 

 R  RLBI  RUBI  
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 1,2 0,1  0 0,1 0  0 2 1,2  
 1 0,1,2 0  1 0 0  1 2 0,1,2  
 2 2 1,2  2 0,1,2 0,1  2 2 2  
             
 [RLBI]U-  ∃∃∃∃ xa RUBI   ∃∃∃∃ xb RUBI  
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 0 -  0 1,2 1,2  0 2 0,1,2  
 1 - -  1 0,1,2 0,1,2  1 2 0,1,2  
 2 0,1 0  2 2 2  2 2 0,1,2  
             
 RA  RB MAX(RA, RB) 
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 2 0  0 1 1  0 2 1  
 1 2 0  1 0 0  1 2 0  
 2 2 0  2 2 2  2 2 2  

Fig. 7. Example of checking the existence of strong MAX-bi-
decomposition for relation R(A,B). 

The example in Fig. 7 illustrates Theorem 1. 
Theorem 2. Multi-valued relation R(x,v) specified by its UBI 

RUBI(x,v) and LBI RLBI(x,v) is MAX-bi-decomposable in the 
weak sense with the variable sets (xa, xb=∅ ) iff 

ψ(x) = ∃∃∃∃ vRcrit(x,v) − ∃∃∃∃ v[Rcrit(x,v) & ∃∃∃∃ xa RUBI(x,v)] ≠ 0. 
Proof. The weak MAX-bi-decomposition exists if, after 

excluding variables xa from the support of block B, the UBI of 
this block (∃∃∃∃ xaRUBI(x,v)) has no overlap with the critical relation 
in at least one vertex of the domain where the value set of the 
critical relation is not empty. Q.E.D. 

The quality of weak MAX-bi-decomposition with one variable 
in xa can be measured by the number of minterms of the Boolean 
function ∃∃∃∃ xaψ(x). 

Theorem 3. If the multi-valued relation R(x,v) specified by UBI 
RUBI(x,v) and LBI RLBI(x,v) is MAX-bi-decomposable with the 
variable sets (xa, xb), the relations of blocks A and B are:  

RA
LBI =  ∃∃∃∃ xb[(v=0) + RLBI & ∃∃∃∃ v (Rcrit & ∃∃∃∃ xaRUBI) ]. 

RA
UBI =  ∃∃∃∃ xb RUBI. 

RB
LBI =  ∃∃∃∃ xa[(v=0) + RLBI & ∃∃∃∃ v (Rcrit & RA) ]. 

RB
UBI =  ∃∃∃∃ xa RUBI. 

Proof. Deriving the UBIs for both blocks is straightforward. 
Computation of the LBI for block A is based on the observation 
that is should contain zero value (v=0) everywhere, except those 

vertices of the domain where the critical relation (Rcrit) overlaps 
with the projection of the UBI (∃∃∃∃ xaRUBI). In the latter cases, to 
prevent the violation of the initial relation, the LBI of block A 
should be set to the LBI of the initial relation. 

In the formulas for block B, the projection of the UBI is 
replaces by the completely-specified multi-valued function of the 
block A, found after bi-decomposition is performed recursively 
for its fanins. Q.E.D. 

The formulas for deriving the relations for blocks A and B are 
also true for the case of weak bi-decomposition if set xb is 
assumed to be empty (no quantification w.r.t. xb). 

The example in Fig. 8 illustrates Theorem 3. 
 R  RLBI  RUBI  
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 1,2 0,1  0 0,1 0  0 2 1,2  
 1 0,1,2 0  1 0 0  1 2 0,1,2  
 2 2 1,2  2 0,1,2 0,1  2 2 2  
             
 Rcrit=[RLBI]U-  ∃∃∃∃ xa RUBI   ∃∃∃∃ xb RUBI  
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 0 -  0 1,2 1,2  0 2 0,1,2  
 1 - -  1 0,1,2 0,1,2  1 2 0,1,2  
 2 0,1 0  2 2 2  2 2 0,1,2  
             
 Rcrit&∃∃∃∃ xaRUBI  RA

LBI RA
UBI 

 B\A 0 1  B\A 0 1  B\A 0 1  
 0 - -  0 0 0  0 2 0,1,2  
 1 - -  1 0 0  1 2 0,1,2  
 2 - -  2 0 0  2 2 0,1,2  
             
 RA  Rcrit & RA RB

LBI 
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 2 0  0 - -  0 0 0  
 1 2 0  1 - -  1 0 0  
 2 2 0  2 - 0  2 0,1 0,1  
             
 RB

UBI  RB MAX(RA, RB) 
 B\A 0 1  B\A 0 1  B\A 0 1  
 0 1,2 1,2  0 0,1 0,1  0 2 0,1  
 1 0,1,2 0,1,2  1 0 0  1 2 0  
 2 2 2  2 1,2 1,2  2 2 1,2  
Fig. 8. Example illustrating the computation of multi-valued 

relations for blocks A and B. 

4 Bi-Decomposition Algorithm 
This section presents the upper-level procedure that performs 

one step of recursive bi-decomposition (Fig. 9). 
Procedure BiDecompose() is called with the LBI/UBI pair 

representing a MV relation. It returns a completely specified MV 
function implemented by the decomposed network of blocks.  

If the relation has inessential variables, they are removed using 
a simple greedy algorithm. 

Support size, |S|, is checked for being less than two. If the 
support size is 0 (or 1), a block representing a constant (or multi-
valued literal) is added to the network. Otherwise, the procedure 
GroupVariables() is called to find sets XA and XB, leading to a bi-
decomposition with MAX and MIN gates. 
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  Procedure FindBestVariableGrouping() considers the variable 
sets and determines the best one. The cost function evaluating the 
variable sets takes into account two factors: how many variables 
are included into XA and XB (the more, the better), and whether 
XA and XB are well-balanced (the closer their sizes are, the 
better). The procedure returns the best variable grouping and the 
indication what decomposition to perform (MAX or MIN). 

procedure BiDecompose( bdd LBI, bdd UBI ) 
{  bdd LBIA, UBIA, LBIB, UBIB, S, FA, FB, F; 

 ( LBI, UBI ) = RemoveInessentialVariables( LBI, UBI ); 
 if ( |S| < 2 ) { 
     (F, gate) = CreateConstantBlockOrLiteral ( LBI, UBI ); 
     AddBlockToDecompositionTree( F, gate ); 
     return F; } 
 bdd XA

OR, XB
OR, XA

AND, XB
AND, XA

BEST, XB
BEST;  

( XA
OR, XB

OR ) = GroupVariablesOR( LBI, UBI ); 
 ( XA

AND, XB
AND ) = GroupVariablesAND( LBI, UBI ); 

 ( XA
BEST, XB

BEST, gate ) = FindBestVariableGrouping(    
(XA

OR, XB
OR), (XA

AND, XB
AND)  ); 

 if ( (XA
BEST, XB

BEST) == ( ∅∅∅∅ , ∅∅∅∅  ) ) 
      (XA

BEST, XB
BEST, gate) = GroupVariablesWeak( LBI, UBI ); 

 if ( (XA
BEST, XB

BEST) == ( ∅∅∅∅ , ∅∅∅∅  ) ) 
                  return CompletelySpecifiedFunction( LBI, UBI ); 
 (LBIA, UBIA) = DeriveBlockA( LBI, UBI, XA

BEST, XB
BEST , gate); 

 FA = BiDecompose( LBIA, UBIA ); 
 (LBIB, UBIB)=DeriveBlockB( LBI, UBI,FA,XA

BEST,XB
BEST, gate); 

 FB = BiDecompose( LBIB, UBIB ); 
 F = Gate( FA, FB ); 

AddBlockToDecompositionTree( F, gate ); 
 return F;  

} 
Fig. 9. The pseudo-code of bi-decomposition algorithm. 
If variable grouping with non-empty variable sets XA and XB is 

not found, procedure GroupVariablesWeak() finds the best 
variable grouping for the weak MAX- or MIN- bi-decomposition. 
If there is no weak decomposition, a completely specified function 
from the interval (LBI, UBI) is returned. In practice, it happens in 
less the 10% of cases, and the non-decomposable gate rarely has 
more than 2 inputs. An example if a weakly-non-decomposable 
gate is an Exclusive-OR for relations with binary inputs/outputs. 

Given the variable sets and the type of decomposition, the 
LBI/UBI pair for block A are derived using formulas of Section 3. 
Next, procedure BiDecompose() is called recursively for block A, 
returning the completely specified function FA representing one 
part of the netlist. FA together with variable sets XA and XB is 
used to compute the LBI/UBI pair of block B. Procedure 
BiDecompose() is called again for block B.  

Finally, multi-valued functions FA and FB derived in the process 
of decomposition and the information about the gate, is used to 
find the function F implementing the initial relation.  

Similar to the case of bi-decomposition for Boolean functions 
[11], we implemented cache to store the functions represented by 
the decomposed parts of the network. However, savings due to the 
component reuse, which were substantial in the binary case, were 
negligible for MV relations (less than 1% of gates). One of the 
reasons for this is that there are many different MV literals. 

5 Experimental Results 
We implemented the bi-decomposition algorithm in a C++ 

program BI-DECOMP-MV with the BDD package BuDDy [12]. 
We tested our program on a 933Mhz Pentium III PC under 
Windows 2000 using multi-valued machine-leaning and data-

mining benchmarks available from Portland Logic Optimization 
Group (POLO) [13]. 

Experimental results are listed in Table 1. Column “Bmark” 
gives the benchmark name. “In/Out” is the number of inputs and 
outputs. “Val” is the sum total of input values. “Cubes” is the 
number of lines (MV cubes) in the input file. “BDD nodes” is the 
number of nodes in the shared ROBDD without complement 
edges representing the BEMDD for LBI and UBI before the bi-
decomposition. “Reading time” is the time needed to read the 
input file and derive the BEMDD representation for the problem.  

Column “Logic levels” gives the number of levels in the 
decomposed network. Multi-valued literals are counted as logic 
blocks. “DFC” gives the Decomposed Function Cardinality 
measured as the sum total of products of the input-variable 
cardinalities for all blocks including the multi-valued literals. The 
section “Gates” gives the number of MAX/MIN gates (“MM”), 
literals (“Lits”), non-decomposable blocks (“NonDec”) and the 
total number of gates in the decomposed network. Finally, the 
column “BiDec time” gives the runtime of bi-decomposition. 

The results of bi-decomposition for all benchmark functions 
have been verified by a built-in verifier, which computed a 
completely-specified MV function representing the decomposed 
network and checked that it is contained in the interval given by 
the original relation. 

Table 2 compared the experimental results produced by BI-
DECOMP-MV with those of a multi-valued bi-decomposer 
YADE [5] based on similar principles. The runtime of BI-
DECOMP-MV shows the advantage of BEMDDs for the 
manipulation of MV relations. 

Table 2. Comparison of decomposition results with YADE. 

YADE [5] BI-DECOMP-MV 
Bmark Gates DFC Time, c Gates DFC Time, c
balance 268 2012 18 236 3600 0.09 
breastc 95 634 24 96 1284 0.24 
flare1 154 932 11 109 1656 0.14 
flare2 300 8049 37 215 9787 0.32 
hayes 22 128 1 17 117 0.02 

6 Conclusions  
We presented a new approach to decompose MV relations into 

netlists of two-input MV MAX and MIN gates. The 
decomposition algorithm is based on BEMDDs and formulas with 
quantifiers evaluated using a standard BDD package.  

Our algorithm can be characterized as follows: 
•  The generated netlists are compact, because the algorithm 

exploits external and internal don’t-cares. 
•  The netlists are well-balanced (i.e., the subnetworks for both 

inputs of a logic gate are close in the number of gates), which 
reduces the delay of the resulting circuit. 

•  It can be shown that the resulting multi-valued netlists are 
100% testable for single MV stuck-at faults. A test pattern 
generation technique can be integrated into the 
decomposition algorithm with little if any increase in the 
complexity and runtime.  

The future work may include extending the algorithm to work 
with arbitrary standard cell libraries (not only MAX and MIN) 
and integration of ATPG into the process of decomposition. 
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Table 1. Results of multi-valued bi-decomposition for POLO benchmarks [13] 

Gates Bmark In/Out Val Cubes Bdd 
nodes

Reading 
time,c

Logic 
levels DFC MM Lits NonDec Total 

BiDec 
time,c

audiology 69/1 154 200 12677 0.27 15 54648 94 74 14 182 0.91 
balance 4/1 20 625 179 0.02 20 3600 121 115 0 236 0.07 
baloon1 4/1 8 16 6 0.01 2 8 1 2 0 0 0.01 
breastc 9/1 90 699 4027 0.07 10 1284 51 38 7 96 0.17 

bridges1 9/1 29 108 616 0.01 11 2483 47 38 5 90 0.06 
bridges2 10/1 32 108 815 0.02 13 3070 58 46 7 111 0.10 

car 6/1 21 1728 246 0.07 10 603 31 30 0 61 0.02 
chess1 6/1 40 28056 15074 1.37 64 1.7·106 5081 3493 716 9290 29.67 
chess2 36/1 73 3196 9448 0.84 10 415 68 62 4 134 1.61 
cloud 6/1 48 108 621 0.01 9 599 24 16 5 45 0.04 

employ1 9/1 27 9600 154 0.51 12 505 26 23 0 49 0.01 
employ2 7/1 29 18000 132 0.77 8 639 32 31 0 63 0.01 

flag 28/1 133 194 10504 0.13 12 4313 96 75 13 184 0.51 
flare1 10/3 33 969 305 0.06 8 1656 56 45 8 109 0.08 
flare2 10/3 33 3198 342 0.17 12 9787 113 85 17 215 0.15 
hayes 4/1 18 132 122 0.01 5 117 8 9 0 17 0.01 
lung-c 56/1 224 32 4171 0.09 8 232 16 14 2 32 0.09 

mushroom 22/1 117 8124 1230 1.18 6 64 5 6 0 11 0.03 
programm 12/1 42 20000 47581 2.27 49 3.6·105 11160 6621 1502 19283 64.46 

sensory 11/1 36 576 3506 0.06 27 7.9·104 633 442 109 1184 0.71 
ships 4/1 16 34 105 0.01 9 320 15 10 2 27 0.01 
sleep 9/1 83 62 1274 0.02 8 582 17 17 0 34 0.04 

sponge 44/1 165 76 3146 0.09 5 80 5 6 0 11 0.06 
tic-tac-toe 9/1 27 958 697 0.07 17 2134 274 208 42 524 0.24 

train 32/1 105 10 336 0.01 2 8 1 2 0 3 0.01 
zoo 16/1 39 101 448 0.02 6 431 8 9 0 17 0.01 

 


