
 1

Bi-Decomposition of Multi-Valued Relations

 Alan Mishchenko αααα Bernd Steinbach ββββ Marek Perkowski αααα
 ααααPortland State University ββββFreiberg University of Mining and Technology
 Department of Electrical and Computer Engineering Institute of Computer Science
 Portland, OR 97207, USA D-09596 Freiberg, Germany
 [alanmi,mperkows]@ee.pdx.edu steinb@informatik.tu-freiberg.de

Abstract
This paper discusses an approach to decomposition of multi-

valued functions and relations into networks of two-input gates
implementing multi-valued MIN and MAX operations. The
algorithm exploits internal flexibilities generated in the process of
decomposition as well as of the incompleteness of the initial
specification. Experimental results over a set of multi-valued
benchmarks show that this approach outperforms other
approaches [5,6] in the quality of final results and CPU time.

Introduction
Decomposition of multi-valued relations has important

applications in data mining and machine learning [1]. Potentially,
multi-valued decomposition can be also used in the design of
multi-valued hardware devices, software compilers, and
asynchronous logic synthesis [2].

Several approaches to multi-valued functional decomposition
have been proposed [3-7]. Applicability of [3] is limited to
relatively simple multi-valued objects due to the use of explicit
data structures. Approaches [3,4] rely on Multi-Valued Decision
Diagrams (MDDs), which have been shown to be less robust than
other representations [8]. MDD-based approach used in [5,6,7]
does not allow for variable reordering, which significantly
improves the performance of multi-valued computation.

Our approach to MV decomposition is based on
• Binary-Encoded Multi-Valued Decision Diagrams

BEMDDs have been introduced in [8] to solve the problem
of support minimization for multi-valued relations. This
hybrid data structure combines the efficiency of BDDs [9]
for implicit representation with the expressive power of
MDDs [6] for manipulation of MV relations.

• Bi-Decomposition
This concept has been under development for the last
decade [10]. Recently, it has been successfully applied to
Boolean functions [11].

Essentially, bi-decomposition consists in recursive splitting of
large logic blocks into compositions of the three smaller logic
blocks interconnected as shown in Fig. 1. Blocks A and B
typically have reduced complexity (expressed in terms of smaller
support or more don’t-cares) compared to the initial logic block.
Block C always has two inputs. In the binary case, block C is an
elementary Boolean function, while in the multi-valued case, it is
a MAX or MIN gate.

Fig. 1. Schematic representation of the two types of
bi-decomposition: strong (left) and weak (right)

The following sections present our approach.
Section 1 introduces BEMDDs as a vehicle for manipulation of

multi-valued relations. Section 2 introduces operations on MV
relations. Section 3 lists conditions for the existence of MAX- and
MIN-bi-decomposition and formulas to derive relations of blocks
A and B. Section 4 outlines the main bi-decomposition algorithm.
Section 5 gives experimental results. Section 6 concludes the
paper.

1 BEMDDs
As stated in the introduction, we advocate the use of

BEMDDs as the representation of choice for multi-valued
relations. The motivation is that BEMDDs are efficient for large
functions and lead to improved decomposition procedures
compared to other representations: multi-valued cubes and cube
partitions [3], edge-valued BDDs and classical MDDs [6,7].

In BEMDDs, multi-valued variables are encoded using the
smallest sets of binary variables. A k-valued variable requires at
least log2(k) binary variables to uniquely encode its values.
(Here the vertical bars stand for the closest larger integer.)

For example, a 5-valued variable A is encoded using the set of
three binary variables {a1, a2, a3}. In the simplest case, the set of
all possible values of variable A, {0, 1, 2, 3, 4}, is encoded using
the set of binary cubes:

{ 321 aaa , 321 aaa , 321 aaa , 321 aaa , 321 aaa }.
If k is not an integer power of two, the minimum length binary

encoding results in (2log2(k) - k) spare minterms. It is possible to
leave them unused and account for them in the decomposition
routines. In this case, it is necessary to remember that the domain
of binary variables encoding the inputs is limited to only those
minterms that provide codes for the values of multi-valued
variables. Experimentally, we found that this approach increases
the BEMDD size and makes traversal routines more complicated.

C

XA

XB

XC

A

B

C

XA

XB=∅

XC

A

B

 2

From the practical point of view, it is better to distribute the
unused minterms between the values of the function. For example,
consider the two encodings of ten values using sixteen minterms
of the four binary variables shown in Fig. 2.

 00 01 11 10 00 01 11 10
00 0 4 8 8 00 0 2 7 4 B\A 0 1
01 1 5 9 9 01 0 2 8 4 0 0,1,2 2
11 3 7 10 10 11 1 3 10 6 1 1 0,1,2
10 2 6 10 10 10 1 3 9 5 2 1,2 0,1

 Fig. 2. Two ways to encode ten Fig. 3. The truth table
 values using binary variables for relation R(A,B)

Currently, as the default encoding of values, we use the
encoding shown on the left of Fig. 2.

For multi-valued relations, we use a similar encoding scheme
to represent the outputs values. The variables used for this
purpose are called output-value-encoding variables (or simply,
value variables). Typically, the value variables are ordered below
other variables in the BEMDD.

Algorithms of this paper are reordering-independent. It means
that, for the purpose of multi-valued bi-decomposition, the binary
variables encoding input or output values can move freely during
reordering, not limited even to the boundaries of variable groups
encoding the same multi-valued variables.

Definition. Let the domain of a multi-valued variable Ai be
DAi. A multi-valued relation R over a set of multi-valued input
variables {Ai}, with the multi-valued output Z having domain Dz,
is a mapping from the Cartesian product of the input variable
domains into the domain of subsets of the output values:

R(A1,A2,…,An): DA1×DA2×…×DAn → 2Dz.
Definition. The set of minterms (vertices) of the combined

input domain of R such that the output of R is the set of all
possible output values, is called the don’t-care set. The set of
other minterms of the domain of R is called the care set.

Once the input and output multi-valued variables are encoded,
the BEMDD representing a multi-valued relation is constructed as
a binary relation. This relation puts in correspondence encoded
input values with the appropriate encoded output values.

For example, shown in Fig. 3 is a three-valued-output multi-
valued relations depending on binary variable A and ternary
variable B. (All examples in this paper use relations depending on
the same two variables.) This relation can be represented as a
binary relation over five binary variables (three variables for
inputs and two variables for the output).

v1v2 \ ab1b2 000 001 011 010 110 111 101 100
00 1 0 0 0 1 1 1 0
01 1 1 1 1 1 1 1 0
11 1 0 1 1 0 0 1 1
10 1 0 1 1 0 0 1 1

Fig. 4. The Karnaugh map for the binary relation encoding multi-
valued relation R(A,B) in Fig. 3.

Suppose the binary variable a encodes multi-valued variable
A, variables b1 and b2 encode B, while variables v1 and v2 encode
the output values of R(A,B). If ternary values { 0,1,2 } are
encoded as { 00,01,1- }, the binary relation R(a,b1,b2,v1,v2),
which represents R(A,B), is expressed using variables a, b1, b2, v1,
and v2 as follows:

R(a,b1,b2,v1,v2) = 21bba + 2121 vvbba + 1ba (v2+ v1) +

121 vbba + 21bba + 11vab .

Each of the six terms in the above formula is obtained directly
by encoding a cell of the multi-valued Karnaugh map in Fig. 3.
The Karnaugh map and the BEMDD for the resulting binary
relation R are shown in Figs. 4 and 5.

Fig. 5. The BEMDD for multi-valued relation R(A,B).

2 Operations on MV Relations
This section introduces important theoretical concepts and

operations used in the procedures that check the existence of
MAX- and MIN-bi-decomposition and derive the multi-valued
relations for the logic blocks A and B.

Interval Relation
The bi-decomposition algorithm discussed in this paper is

applicable to multi-valued relations satisfying the property of a
function interval [5]. Below this definition is restated with some
adaptation to the terminology accepted in this paper.

Definition. A multi-valued relation is an interval relation if in
each vertex (minterm) of the domain, the output values form a
contiguous range.

For example, relation R(A,B) in Fig. 3 is an interval relation,
but if, for example, in the vertex (0,0) instead of value set {0,1,2}
it had value set {0,2}, it would not be an interval relation because
values 0 and 2 do not form a contiguous range.

From the practical point of view, limiting our attention to only
interval relations does not seem to restrict the applicability of the
decomposition method because the majority of multi-valued
benchmarks satisfy this property. For those that do not satisfy,
below we propose a simple way to convert a non-interval multi-
valued relation to an interval one, by filling in the unused values
between the smallest and the largest values used in each vertex.

Lower and Upper Bound Intervals
Definition. For the given multi-valued relation R, a lower

(upper) bound interval (denoted RLBI and RUBI) are multi-valued
relations depending on the same input variables, having the same
number of possible output values, and differing only in sets of the
output values. In each vertex of the domain, the LBI takes all the

a
b1 b1

b2b2

v1 v1 v1 v1

v2

a

1 0

 3

values starting from 0 up to (and including) the first value used in
this vertex by the given relation, while the UBI takes all the
values starting from (and including) the largest value used by the
given relation up to the largest possible value of the output
variable.

Fig. 6 illustrates this definition. An interval relation F is shown
on the left. Its LBI and UBI are given in the center and on the
right. For example, consider vertex (0,2). The LBI in this vertex
has values starting from 0 up to the first value used by F, which is
1. The UBI in this vertex has all the values starting from the last
value of F, which is 2, up to the largest possible value of the
relation, which is also 2.

 F FLBI FUBI
 B\A 0 1 B\A 0 1 B\A 0 1
 0 0,1 2 0 0 0,1,2 0 1,2 2
 1 1 0,1,2 1 0,1 0 1 1,2 2
 2 1,2 0,1 2 0,1 0 2 2 1,2

Fig. 6. Example illustrating the upper and lower bound intervals.
If the relation R(x,v) is represented by a BEMDD over the

input-encoding variables x and the value-encoding variables v,
computation of its lower (upper) bound interval can be performed
using the formulas:

RLBI(x, v) = vwwv][w)(v,R&v)R(x,v →<∃ ,

RUBI(x, v) = vwwv][w)(v,R&v)R(x,v →>∃ ,

where ∃∃∃∃ stands for the existential quantification and Rv<w and Rv>w
are characteristic functions of relations “more than” and “less
than” which depend on two equal-sized interleaved sets v and w
of value-encoding variables.

The first formula is interpreted as follows. For each vertex of
the domain (given by one assignment of variables x), the lower
bound interval contains all values w (v after variable
replacement), for which there does not exists value v belonging to
the relation such that v is less than w.

The interpretation of the second formula is similar.
It is interesting to note that if the initial relation is not an

interval relation, its LBI and UBI are the same as the LBI and UBI
of the interval relation created by filling in the intermediate
unused values. Therefore, if the relation is represented by the
LBI/UBI pair, there is no need for a specialized procedure to
convert non-interval relations into interval ones!

In the procedures below, multi-valued relations are represented
as LBI/UBI pairs. This simplifies processing because relations of
blocks A and B resulting from the bi-decomposition are also
computed as LBI/UBI pairs. In our experiments, we observed an
additional advantage of this representation, namely that the
BEMDDs for LBI/UBI are typically smaller than those for the
pure lower/upper bounds as defined in [5].

Interval Increments and Decrements
Another operation for the manipulation of interval relations is

the interval increment and decrement discussed in this subsection.
Definition. For the given multi-valued interval relation R, the

upper increment (decrement) (denoted RU+ and RU-) are multi-
valued relations depending on the same input variables, having
the same number of possible output values, and differing only in
sets of the output values. In each vertex of the domain, the value

set of RU+ (RU-) is determined as the value set of the given relation
plus (minus) one value at the upper end of the value set.

Similarly, it is possible to define the lower increment
(decrement) of an interval relation by adding (subtracting) one
value at the lower end of the value set.

Fig. 7 illustrates the definition for the upper increment and
decrement. An interval relation R is shown on the left. RU+ and
RU- are shown in the center and on the right. For example,
consider vertex (1,1) with value set {0,1}. RU+ in this vertex has
values {0,1,2} created as the same value set plus the value
immediately following the largest value, which is 2. RU- in this
vertex has value set {0} created as the same value set as R minus
the largest possible value in the set, which is 1. The dashes in the
table for RU- mean that the value set for some vertices is empty.

 R RU+ RU-
 B\A 0 1 B\A 0 1 B\A 0 1
 0 0,1 2 0 0,1,2 2 0 0 -
 1 0 0,1 1 0,1 0,1,2 1 - 0
 2 0,1,2 0,1 2 0,1,2 0,1,2 2 0,1 0

Fig. 7. Example illustrating the lower increment and decrement of
the interval relation R(A,B).

The upper (lower) increment (decrement) can be computed
using the BEMDD representation as follows:

RU-(x, v) = vwwv][w)(v,R&v)R(x,v →>∃ ,

RU+(x, v) = vwwv][w)(v,R&v)R(x,v →<∃ =

 = vwwv][w)(v,Rv)R(x,v →≥+∀ .

RL-(x, v) = vwwv][w)(v,R&v)R(x,v →<∃ ,

RL+(x, v) = vwwv][w)(v,R&v)R(x,v →>∃ =

 = vwwv][w)(v,Rv)R(x,v →≤+∀ .
If the underlying BDD package does not support the

complement edges, the formulas with the universal quantifier are
likely to be more efficient because they do not require
complementation of the intermediate result.

3 Checking and Deriving Bi-Decomposition
This section presents the main contribution of this paper: the

formulas for checking the existence of strong (weak) MAX- and
MIN-bi-decomposition and deriving the resulting relations for
blocks A and B. It is only necessary to consider the case of MAX-
bi-decomposition because the case of MIN-bi-decomposition can
be checked (derived) using the same formulas after swapping RLBI
and RUBI.

Definition. Expression Rcrit(x,v) = [RLBI(x,v)]U- is called critical
relation. For each vertex of the domain, the critical relation
contains all the values situated below the allowed set of values of
the relation R(x,v).

Theorem 1. Multi-valued interval relation R(x,v) specified by
UBI RUBI(x,v) and LBI RLBI(x,v) has strong MAX-bi-
decomposition with variable sets (xa, xb) iff

Rcrit(x,v) & ∃∃∃∃ xa RUBI(x,v) & ∃∃∃∃ xb RUBI(x,v) = 0.
Sketch of the proof. For each vertex of the domain, the lower

bound interval RLBI(x,v) contains all the values below the value

 4

set and the smallest value of the value set. Computing Rcrit(x,v) =
[RLBI(x,v)]U- removes the smallest value of the value set, so that
remaining are only the values below the value set that do not
belong to the relation.

Each of the two components with the existential quantifier
computes the projection of the upper bound interval in the
direction of variables xa and xb. The product of projections
denotes in each domain vertex the largest allowed value belonging
to the value set of the relation and all the values above it.

The formula, therefore, reiterates the theorem as follows: the
function is MAX-bi-decomposable with the given variable sets iff
in all vertices the largest value below the value set is less than the
largest allowed value in the row and in the column of the
Karnaugh map created by variable sets xa and xb. Q.E.D.

 R RLBI RUBI
 B\A 0 1 B\A 0 1 B\A 0 1
 0 1,2 0,1 0 0,1 0 0 2 1,2
 1 0,1,2 0 1 0 0 1 2 0,1,2
 2 2 1,2 2 0,1,2 0,1 2 2 2

 [RLBI]U- ∃∃∃∃ xa RUBI ∃∃∃∃ xb RUBI
 B\A 0 1 B\A 0 1 B\A 0 1
 0 0 - 0 1,2 1,2 0 2 0,1,2
 1 - - 1 0,1,2 0,1,2 1 2 0,1,2
 2 0,1 0 2 2 2 2 2 0,1,2

 RA RB MAX(RA, RB)
 B\A 0 1 B\A 0 1 B\A 0 1
 0 2 0 0 1 1 0 2 1
 1 2 0 1 0 0 1 2 0
 2 2 0 2 2 2 2 2 2

Fig. 7. Example of checking the existence of strong MAX-bi-
decomposition for relation R(A,B).

The example in Fig. 7 illustrates Theorem 1.
Theorem 2. Multi-valued relation R(x,v) specified by its UBI

RUBI(x,v) and LBI RLBI(x,v) is MAX-bi-decomposable in the
weak sense with the variable sets (xa, xb=∅) iff

ψ(x) = ∃∃∃∃ vRcrit(x,v) − ∃∃∃∃ v[Rcrit(x,v) & ∃∃∃∃ xa RUBI(x,v)] ≠ 0.
Proof. The weak MAX-bi-decomposition exists if, after

excluding variables xa from the support of block B, the UBI of
this block (∃∃∃∃ xaRUBI(x,v)) has no overlap with the critical relation
in at least one vertex of the domain where the value set of the
critical relation is not empty. Q.E.D.

The quality of weak MAX-bi-decomposition with one variable
in xa can be measured by the number of minterms of the Boolean
function ∃∃∃∃ xaψ(x).

Theorem 3. If the multi-valued relation R(x,v) specified by UBI
RUBI(x,v) and LBI RLBI(x,v) is MAX-bi-decomposable with the
variable sets (xa, xb), the relations of blocks A and B are:

RA
LBI = ∃∃∃∃ xb[(v=0) + RLBI & ∃∃∃∃ v (Rcrit & ∃∃∃∃ xaRUBI)].

RA
UBI = ∃∃∃∃ xb RUBI.

RB
LBI = ∃∃∃∃ xa[(v=0) + RLBI & ∃∃∃∃ v (Rcrit & RA)].

RB
UBI = ∃∃∃∃ xa RUBI.

Proof. Deriving the UBIs for both blocks is straightforward.
Computation of the LBI for block A is based on the observation
that is should contain zero value (v=0) everywhere, except those

vertices of the domain where the critical relation (Rcrit) overlaps
with the projection of the UBI (∃∃∃∃ xaRUBI). In the latter cases, to
prevent the violation of the initial relation, the LBI of block A
should be set to the LBI of the initial relation.

In the formulas for block B, the projection of the UBI is
replaces by the completely-specified multi-valued function of the
block A, found after bi-decomposition is performed recursively
for its fanins. Q.E.D.

The formulas for deriving the relations for blocks A and B are
also true for the case of weak bi-decomposition if set xb is
assumed to be empty (no quantification w.r.t. xb).

The example in Fig. 8 illustrates Theorem 3.
 R RLBI RUBI
 B\A 0 1 B\A 0 1 B\A 0 1
 0 1,2 0,1 0 0,1 0 0 2 1,2
 1 0,1,2 0 1 0 0 1 2 0,1,2
 2 2 1,2 2 0,1,2 0,1 2 2 2

 Rcrit=[RLBI]U- ∃∃∃∃ xa RUBI ∃∃∃∃ xb RUBI
 B\A 0 1 B\A 0 1 B\A 0 1
 0 0 - 0 1,2 1,2 0 2 0,1,2
 1 - - 1 0,1,2 0,1,2 1 2 0,1,2
 2 0,1 0 2 2 2 2 2 0,1,2

 Rcrit&∃∃∃∃ xaRUBI RA

LBI RA
UBI

 B\A 0 1 B\A 0 1 B\A 0 1
 0 - - 0 0 0 0 2 0,1,2
 1 - - 1 0 0 1 2 0,1,2
 2 - - 2 0 0 2 2 0,1,2

 RA Rcrit & RA RB

LBI
 B\A 0 1 B\A 0 1 B\A 0 1
 0 2 0 0 - - 0 0 0
 1 2 0 1 - - 1 0 0
 2 2 0 2 - 0 2 0,1 0,1

 RB

UBI RB MAX(RA, RB)
 B\A 0 1 B\A 0 1 B\A 0 1
 0 1,2 1,2 0 0,1 0,1 0 2 0,1
 1 0,1,2 0,1,2 1 0 0 1 2 0
 2 2 2 2 1,2 1,2 2 2 1,2
Fig. 8. Example illustrating the computation of multi-valued

relations for blocks A and B.

4 Bi-Decomposition Algorithm
This section presents the upper-level procedure that performs

one step of recursive bi-decomposition (Fig. 9).
Procedure BiDecompose() is called with the LBI/UBI pair

representing a MV relation. It returns a completely specified MV
function implemented by the decomposed network of blocks.

If the relation has inessential variables, they are removed using
a simple greedy algorithm.

Support size, |S|, is checked for being less than two. If the
support size is 0 (or 1), a block representing a constant (or multi-
valued literal) is added to the network. Otherwise, the procedure
GroupVariables() is called to find sets XA and XB, leading to a bi-
decomposition with MAX and MIN gates.

 5

 Procedure FindBestVariableGrouping() considers the variable
sets and determines the best one. The cost function evaluating the
variable sets takes into account two factors: how many variables
are included into XA and XB (the more, the better), and whether
XA and XB are well-balanced (the closer their sizes are, the
better). The procedure returns the best variable grouping and the
indication what decomposition to perform (MAX or MIN).

procedure BiDecompose(bdd LBI, bdd UBI)
{ bdd LBIA, UBIA, LBIB, UBIB, S, FA, FB, F;

 (LBI, UBI) = RemoveInessentialVariables(LBI, UBI);
 if (|S| < 2) {
 (F, gate) = CreateConstantBlockOrLiteral (LBI, UBI);
 AddBlockToDecompositionTree(F, gate);
 return F; }
 bdd XA

OR, XB
OR, XA

AND, XB
AND, XA

BEST, XB
BEST;

(XA
OR, XB

OR) = GroupVariablesOR(LBI, UBI);
 (XA

AND, XB
AND) = GroupVariablesAND(LBI, UBI);

 (XA
BEST, XB

BEST, gate) = FindBestVariableGrouping(
(XA

OR, XB
OR), (XA

AND, XB
AND));

 if ((XA
BEST, XB

BEST) == (∅∅∅∅ , ∅∅∅∅))
 (XA

BEST, XB
BEST, gate) = GroupVariablesWeak(LBI, UBI);

 if ((XA
BEST, XB

BEST) == (∅∅∅∅ , ∅∅∅∅))
 return CompletelySpecifiedFunction(LBI, UBI);
 (LBIA, UBIA) = DeriveBlockA(LBI, UBI, XA

BEST, XB
BEST , gate);

 FA = BiDecompose(LBIA, UBIA);
 (LBIB, UBIB)=DeriveBlockB(LBI, UBI,FA,XA

BEST,XB
BEST, gate);

 FB = BiDecompose(LBIB, UBIB);
 F = Gate(FA, FB);

AddBlockToDecompositionTree(F, gate);
 return F;

}
Fig. 9. The pseudo-code of bi-decomposition algorithm.
If variable grouping with non-empty variable sets XA and XB is

not found, procedure GroupVariablesWeak() finds the best
variable grouping for the weak MAX- or MIN- bi-decomposition.
If there is no weak decomposition, a completely specified function
from the interval (LBI, UBI) is returned. In practice, it happens in
less the 10% of cases, and the non-decomposable gate rarely has
more than 2 inputs. An example if a weakly-non-decomposable
gate is an Exclusive-OR for relations with binary inputs/outputs.

Given the variable sets and the type of decomposition, the
LBI/UBI pair for block A are derived using formulas of Section 3.
Next, procedure BiDecompose() is called recursively for block A,
returning the completely specified function FA representing one
part of the netlist. FA together with variable sets XA and XB is
used to compute the LBI/UBI pair of block B. Procedure
BiDecompose() is called again for block B.

Finally, multi-valued functions FA and FB derived in the process
of decomposition and the information about the gate, is used to
find the function F implementing the initial relation.

Similar to the case of bi-decomposition for Boolean functions
[11], we implemented cache to store the functions represented by
the decomposed parts of the network. However, savings due to the
component reuse, which were substantial in the binary case, were
negligible for MV relations (less than 1% of gates). One of the
reasons for this is that there are many different MV literals.

5 Experimental Results
We implemented the bi-decomposition algorithm in a C++

program BI-DECOMP-MV with the BDD package BuDDy [12].
We tested our program on a 933Mhz Pentium III PC under
Windows 2000 using multi-valued machine-leaning and data-

mining benchmarks available from Portland Logic Optimization
Group (POLO) [13].

Experimental results are listed in Table 1. Column “Bmark”
gives the benchmark name. “In/Out” is the number of inputs and
outputs. “Val” is the sum total of input values. “Cubes” is the
number of lines (MV cubes) in the input file. “BDD nodes” is the
number of nodes in the shared ROBDD without complement
edges representing the BEMDD for LBI and UBI before the bi-
decomposition. “Reading time” is the time needed to read the
input file and derive the BEMDD representation for the problem.

Column “Logic levels” gives the number of levels in the
decomposed network. Multi-valued literals are counted as logic
blocks. “DFC” gives the Decomposed Function Cardinality
measured as the sum total of products of the input-variable
cardinalities for all blocks including the multi-valued literals. The
section “Gates” gives the number of MAX/MIN gates (“MM”),
literals (“Lits”), non-decomposable blocks (“NonDec”) and the
total number of gates in the decomposed network. Finally, the
column “BiDec time” gives the runtime of bi-decomposition.

The results of bi-decomposition for all benchmark functions
have been verified by a built-in verifier, which computed a
completely-specified MV function representing the decomposed
network and checked that it is contained in the interval given by
the original relation.

Table 2 compared the experimental results produced by BI-
DECOMP-MV with those of a multi-valued bi-decomposer
YADE [5] based on similar principles. The runtime of BI-
DECOMP-MV shows the advantage of BEMDDs for the
manipulation of MV relations.

Table 2. Comparison of decomposition results with YADE.

YADE [5] BI-DECOMP-MV
Bmark Gates DFC Time, c Gates DFC Time, c
balance 268 2012 18 236 3600 0.09
breastc 95 634 24 96 1284 0.24
flare1 154 932 11 109 1656 0.14
flare2 300 8049 37 215 9787 0.32
hayes 22 128 1 17 117 0.02

6 Conclusions
We presented a new approach to decompose MV relations into

netlists of two-input MV MAX and MIN gates. The
decomposition algorithm is based on BEMDDs and formulas with
quantifiers evaluated using a standard BDD package.

Our algorithm can be characterized as follows:
• The generated netlists are compact, because the algorithm

exploits external and internal don’t-cares.
• The netlists are well-balanced (i.e., the subnetworks for both

inputs of a logic gate are close in the number of gates), which
reduces the delay of the resulting circuit.

• It can be shown that the resulting multi-valued netlists are
100% testable for single MV stuck-at faults. A test pattern
generation technique can be integrated into the
decomposition algorithm with little if any increase in the
complexity and runtime.

The future work may include extending the algorithm to work
with arbitrary standard cell libraries (not only MAX and MIN)
and integration of ATPG into the process of decomposition.

 6

7 Acknowledgements
The research was sponsored by the NSF grant for the

U.S./German collaborative research in functional decomposition
for datamining (grant #315/PPP/gű-ab).

Authors would like to thank Christian Lang for helpful
comments on implementation of multi-valued bi-decomposition.

8 References
[1] C. M. Files, M. A Perkowski. Multi-valued functional

decomposition as a machine learning method. Proc. of ISMVL
'98, pp. 173 -178.

[2] MVSIS Group. MVSIS Manual. UC Berkeley, February 2001.
[3] M.Perkowski, M.Marek-Sadowska, L.Jozwiak, T.Luba,

S.Grygiel, M.Nowicka, R.Malvi, Z.Wang, J.S.Zhang.
Decomposition of multiple-valued relations. Proc. of
ISMVL’97, pp. 13-18.

[4] B. Steinbach, M. A. Perkowski, Ch. Lang. Bi-Decomposition
of Multi-Valued Functions for Circuit Design and Data
Mining Applications. Proc. of ISMVL’99, pp. 50 – 58.
http://www.informatik.tu-freiberg.de/prof2/publikationen/
ismvl99_final.ps.

[5] Ch. Lang, B. Steinbach. Decomposition of Multi-Valued
Functions into Min- and Max-Gates. Accepted to ISMVL’01.

[6] C.M. Files, M.A Perkowski. New multi-valued functional
decomposition algorithms based on MDDs. IEEE Trans.
CAD. Vol. 19, No. 9, Sept. 2000, pp. 1081-1086.

[7] C. Files. A New Functional Decomposition Method as Applied
to Machine Learning and VLSI Design. Ph.D. thesis, Portland
State University, Portland, Oregon, June 2000.

[8] A. Mishchenko, C. Files, M. Perkowski, B. Steinbach, C.
Dorotska. Implicit algorithms for multi-valued input support
minimization. Proc. Intl. Workshop on Boolean Problems,
Freiberg, September 2000, pp. 9-20.

[9] R. E. Bryant, "Graph-Based Algorithms for Boolean Function
Manipulation", IEEE Trans. on Comp., Vol. C-35, No. 8
(August, 1986), pp. 677-691.

[10] D.Bochmann, F.Dresig, B.Steinbach, “A new decomposition
method for multilevel circuit design”. Proc. of Euro-DAC,
Amsterdam, 1991, pp. 374 – 377.

[11] A. Mishchenko, B. Steinbach, M. Perkowski. “An algorithm
for Bi-Decomposition of Logic Functions”. Proc. of DAC’01.

[12] J. Lind-Nielsen. BDD Package BuDDy, v.1.9, August 2000,
http://www.itu.dk/research/buddy/index.html

[13] POLO benchmark functions at http://www.ee.pdx.edu/~polo/
originally coming from the UCI Database
http://www.ics.uci.edu/~mlearn/MLRepository.html

Table 1. Results of multi-valued bi-decomposition for POLO benchmarks [13]

Gates Bmark In/Out Val Cubes Bdd
nodes

Reading
time,c

Logic
levels DFC MM Lits NonDec Total

BiDec
time,c

audiology 69/1 154 200 12677 0.27 15 54648 94 74 14 182 0.91
balance 4/1 20 625 179 0.02 20 3600 121 115 0 236 0.07
baloon1 4/1 8 16 6 0.01 2 8 1 2 0 0 0.01
breastc 9/1 90 699 4027 0.07 10 1284 51 38 7 96 0.17

bridges1 9/1 29 108 616 0.01 11 2483 47 38 5 90 0.06
bridges2 10/1 32 108 815 0.02 13 3070 58 46 7 111 0.10

car 6/1 21 1728 246 0.07 10 603 31 30 0 61 0.02
chess1 6/1 40 28056 15074 1.37 64 1.7·106 5081 3493 716 9290 29.67
chess2 36/1 73 3196 9448 0.84 10 415 68 62 4 134 1.61
cloud 6/1 48 108 621 0.01 9 599 24 16 5 45 0.04

employ1 9/1 27 9600 154 0.51 12 505 26 23 0 49 0.01
employ2 7/1 29 18000 132 0.77 8 639 32 31 0 63 0.01

flag 28/1 133 194 10504 0.13 12 4313 96 75 13 184 0.51
flare1 10/3 33 969 305 0.06 8 1656 56 45 8 109 0.08
flare2 10/3 33 3198 342 0.17 12 9787 113 85 17 215 0.15
hayes 4/1 18 132 122 0.01 5 117 8 9 0 17 0.01
lung-c 56/1 224 32 4171 0.09 8 232 16 14 2 32 0.09

mushroom 22/1 117 8124 1230 1.18 6 64 5 6 0 11 0.03
programm 12/1 42 20000 47581 2.27 49 3.6·105 11160 6621 1502 19283 64.46

sensory 11/1 36 576 3506 0.06 27 7.9·104 633 442 109 1184 0.71
ships 4/1 16 34 105 0.01 9 320 15 10 2 27 0.01
sleep 9/1 83 62 1274 0.02 8 582 17 17 0 34 0.04

sponge 44/1 165 76 3146 0.09 5 80 5 6 0 11 0.06
tic-tac-toe 9/1 27 958 697 0.07 17 2134 274 208 42 524 0.24

train 32/1 105 10 336 0.01 2 8 1 2 0 3 0.01
zoo 16/1 39 101 448 0.02 6 431 8 9 0 17 0.01

