
IE
EE

Pr
oo

f

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 0, 2006 1

Optimal Synthesis of Multiple Output Boolean
Functions Using a Set of Quantum Gates

by Symbolic Reachability Analysis

1

2

3

William N. N. Hung, Xiaoyu Song, Guowu Yang, Jin Yang, and Marek Perkowski4

Abstract—This paper proposes an approach to optimally syn-5
thesize quantum circuits by symbolic reachability analysis, where6
the primary inputs and outputs are basis binary and the inter-7
nal signals can be nonbinary in a multiple-valued domain. The8
authors present an optimal synthesis method to minimize quan-9
tum cost and some speedup methods with nonoptimal quantum10
cost. The methods here are applicable to small reversible func-11
tions. Unlike previous works that use permutative reversible gates,12
a lower level library that includes nonpermutative quantum gates13
is used here. The proposed approach obtains the minimum cost14
quantum circuits for Miller gate, half adder, and full adder, which15
are better than previous results. This cost is minimum for any16
circuit using the set of quantum gates in this paper, where the con-17
trol qubit of 2-qubit gates is always basis binary. In addition, the18
minimum quantum cost in the same manner for Fredkin, Peres,19
and Toffoli gates is proven. The method can also find the best20
conversion from an irreversible function to a reversible circuit as a21
byproduct of the generality of its formulation, thus synthesizing in22
principle arbitrary multi-output Boolean functions with quantum23
gate library. This paper constitutes the first successful experience24
of applying formal methods and satisfiability to quantum logic25
synthesis.26

Index Terms—Formal verification, logic synthesis, model check-27
ing, quantum computing, reversible logic, satisfiability.28

I. INTRODUCTION29

R EVERSIBLE logic [1] plays an important role in the30

synthesis of quantum computing circuits [2], [3]. The31

synthesis of reversible logic circuits using elementary quantum32

gates [4], [5] is different from classical (nonreversible) logic33

synthesis. There are some works [6]–[9] on reversible logic34

synthesis using basic reversible gates (Toffoli, Fredkin [10], or35

Feynman gates). However, these reversible logic gates have dif-36

ferent quantum implementation costs (e.g., the cost of Feynman37

is lower than Toffoli). Therefore, finding the smallest number38

of gates to synthesize a reversible circuit does not necessarily39

result in quantum implementation with the lowest cost (in terms40

of quantum gates).41

Manuscript received November 8, 2004; revised February 22, 2005 and
June 8, 2005. This paper was recommended by Associate Editor J. H. Kukula.

W. N. N. Hung is with Synplicity Inc., Sunnyvale, CA 94086 USA (e-mail:
william_hung@alumni.utexas.net).

X. Song, G. Yang, and M. Perkowski are with Portland State University,
Portland, OR 97207 USA.

J. Yang is with Strategic CAD Labs, Intel Corporation, Hillsboro, OR 97124
USA.

Digital Object Identifier 10.1109/TCAD.2005.858352

In this paper, we focus on synthesizing reversible circuits 42

using quantum primitives with the lowest total cost using a 43

library of basic 2-qubit quantum gates, which will be described 44

in Section III. Our synthesis method can also be modified to 45

use other libraries of gates. We chose a library of basic 2-qubit 46

quantum gates in this paper as they allow us to better evaluate 47

the quantum implementation costs. The circuits we synthesized 48

include common reversible gates that can next be used at higher 49

levels of logic synthesis. Our approach can also be used as an 50

equivalent of “technology mapping” for quantum circuits. 51

We reduce the quantum logic synthesis problem to multiple- 52

valued logic synthesis; this reduction simplifies the search 53

space and reduces the algorithm complexity. We formulate the 54

above quantum logic synthesis task via symbolic reachability 55

analysis [11], [12]. We used satisfiability-based model checking 56

to solve the problem, but other decision methods or combinato- 57

rial optimization techniques can be similarly applied here. Our 58

method not only guarantees to find a quantum implementation 59

(for reversible circuits) but also guarantees the lowest quantum 60

cost in the synthesized result (for the set of circuits where 61

the control qubit of our 2-qubit gates is always basis binary). 62

We also introduce an automated way of adding ancilla qubits 63

and finding their appropriate constant values in the synthesis 64

process. Thus, even irreversible circuits can be converted to 65

reversible circuits that in turn are synthesized by our method. 66

In contrast to previous works, which either use permutative 67

reversible gates to design permutative circuits or universal 68

quantum gates to design quantum circuits, we use a subset of 69

quantum gates to design permutative circuits. 70

II. BACKGROUND 71

Given a function f , we say f is reversible if and only if there 72

exists a function g such that x = g(f(x)) for all x in the domain 73

of f . The corresponding function g (as described above) is usu- 74

ally referred to as f−1. Given n Boolean inputs, any multiple- 75

output Boolean function on such n Boolean inputs must have 76

exactly n Boolean outputs so that it is reversible [2]. We use 77

n× n to denote a reversible function with n Boolean inputs 78

and n Boolean outputs. Given an n× n reversible function f , 79

there are 2n input rows and 2n output rows in the truth table of 80

f . The output rows must be a permutation of the input rows in 81

the truth table of f . 82

In quantum computing [2], the fundamental information unit 83

is a qubit. The state of a qubit is a superposition of 0 and 1 84

0278-0070/$20.00 © 2006 IEEE

IE
EE

Pr
oo

f

2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 0, 2006

states, also denoted as |0〉 and |1〉, respectively. The qubit state85

q can be represented by86

q = α|0〉 + β|1〉

where α and β are both complex numbers and |α|2 + |β|2 = 1.87

The classical state of binary 0 corresponds to the case where88

α = 1 and β = 0. Similarly, the classical state of binary 1 cor-89

responds to α = 0 and β = 1. We refer to them as basis binary90

0 and basis binary 1, respectively. All other combinations of α91

and β are not basis binary. The quantum state of a single qubit92

is usually denoted by the vector93

(
α

β

)
.

Given the state of each qubit, the overall quantum state is a94

Kronecker product of the states of each qubit. Take two qubits95

for example96

(
u0

u1

)
⊗
(
v0

v1

)
=

u0

(
v0

v1

)

u1

(
v0

v1

)

 =

u0v0

u0v1

u1v0

u1v1

 . (1)

Notice that if the individual qubits are basis binary, then the97

Kronecker product is simply an enumeration of all the possible98

binary values (truth table) of its qubits. If we can use the99

quantum state of multiple qubits to determine the individual100

state of each qubit (such as the above case), we call it a101

separable state. There are some cases where the quantum state102

cannot be separated into individual states of each qubit, i.e.,103

we cannot describe (mathematically) the state of each qubit but104

we can describe the quantum state of all the qubits combined.105

We call such states entangled states. This idea of entangled106

state is called quantum entanglement, and it originated from107

the Einstein–Podolsky–Rosen paradox [13].108

The effect of quantum gates on a quantum state can be109

described as vector operations, where the quantum gates are110

represented by unitary matrices. A unitary matrix is a n× n111

complex matrix M with the property112

M ×M+ = M+ ×M = I

where I is the identity matrix and M+ is the conjugate trans-113

pose (also known as the Hermitian adjoint) of M .114

Given an n-qubit quantum gate G, we call G a permutative115

quantum gate if and only if the outputs of G are all basis binary116

when its inputs are all basis binary, i.e., G is a permutative117

quantum gate if and only if G implements an n× n Boolean118

reversible function (when its inputs are basis binary).119

A generalized 2-qubit controlled U gate [5] is shown in120

Fig. 1. Its unitary matrix is121

1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

Fig. 1. Controlled-U gate.

where the four entries in the right bottom also form a (single 122

qubit) unitary matrix U by itself 123

U =
(
u00 u01

u10 u11

)
.

124

It has been shown [4], [5] that permutative quantum logic 125

circuits can be constructed using elementary quantum, XOR, 126

controlled-V , controlled-V +, or NOT gates, as shown in Fig. 2. 127

The NOT gate is also called an inverter. Its unitary matrix is 128

MNOT =
(

0 1
1 0

)
.

129

Quantum XOR gates are also called Feynman gates or 130

controlled-NOT (CNOT) gates. The controlled-V gate’s data 131

output is the same as its data input (B) when its control input 132

(A) value is 0 (FALSE). When its control value is 1 (TRUE), 133

the data output becomes V (input) [2] 134

V =
1 + i

2

(
1 −i
−i 1

)
, V + =

1 − i

2

(
1 i
i 1

)
.

Similar rules apply to the controlled-V + gate, except that its 135

data output becomes V +(input), where V + is the Hermitian of 136

V , i.e., 137

1 + i

2

(
1 −i
−i 1

)
× 1 − i

2

(
1 i
i 1

)
=
(

1 0
0 1

)
.

The quantum XOR (controlled-NOT), controlled-V , and 138

controlled-V + are all special cases of the generalized 139

controlled-U gate, where the matrix U corresponds to MNOT, 140

V , and V +, respectively. 141

According to [2], the values V and V + are constructed 142

such that they are the square root of NOT (i.e., inverter gate): 143

V × V = V + × V + = MNOT. Hence, if the signal V (input) 144

is passed through another controlled-V gate with its control 145

value also equal to 1 (TRUE), the output of the second gate 146

becomes the NOT of the input. 147

The quantum XOR, controlled-V , and controlled-V + gates 148

are 2 × 2 gates. They are also called 2-qubit gates. Similarly, the 149

NOT gate (inverter) is a 1-qubit gate. For quantum implementa- 150

tion, the cost of 2-qubit gates far exceeds the cost of 1-qubit 151

gates. Hence, in a first approximation, the quantum cost of 152

1-qubit gates is usually ignored in the presence of 2-qubit 153

implementations [5], [14]. 154

In this paper, we adopt the quantum gate cost evalu- 155

ation introduced in [4]. According to the method in [4], 156

each of the 2-qubit gates (quantum XOR, controlled-V , 157

controlled-V +) has a quantum implementation cost of 1. 158

In addition, when both quantum XOR and controlled-V (or 159

controlled-V +) are operating on the same two qubits in a 160

IE
EE

Pr
oo

f

HUNG et al.: OPTIMAL SYNTHESIS OF MULTIPLE OUTPUT BOOLEAN FUNCTIONS USING QUANTUM GATES 3

Fig. 2. Elementary quantum logic gates.

Fig. 3. Merged 2-qubit gates.

symmetric pattern (shown in Fig. 3), their total cost is consid-161

ered as 1 as well. A more accurate cost function can be created162

for a particular quantum technology such as nuclear magnetic163

resonance (NMR) [15], but for simplicity and comparison to164

previous work we will use here the cost function from [4].165

Given a reversible function, the quantum logic synthesis task166

considered in this paper is to synthesize the function using167

the above elementary quantum logic gates with the minimum168

cost. Various heuristic methods have been applied to find low-169

cost quantum implementations (using the elementary gates)170

for the functionality of the Fredkin [4], Toffoli [16], and171

Peres [17] gates. Yet, nobody has been able to prove that they172

have the lowest quantum cost implementation (based on the173

cost evaluation criteria given above).174

We can perform the above quantum logic synthesis task175

through reachability analysis. Symbolic reachability analysis is176

a well-known technique in formal verification [11]. Its basic177

idea is to find all the reachable states of a finite state machine178

(FSM). Using symbolic representation, we can check if an179

invariant (property) is true for all reachable states. This tech-180

nique is used in invariant checking [11], where the state space181

is traversed exhaustively against an invariant. Since the state182

space tends to be large for practical systems, recent symbolic183

reachability analysis techniques use various methods, such184

as binary decision diagram (BDD) [18], [19] or satisfiability185

(SAT), to avoid enumerating every system state while preserv-186

ing the completeness of the reachability analysis. We use state-187

of-the-art SAT-based bounded model checking [12] to check188

invariants. If the invariant is false, it can automatically generate189

a counter-example. We can find the shortest counter-example190

in this way by starting with a zero bound and gradually incre-191

menting the bound. If the invariant is true and given enough192

time, this method can also check that the bound is sufficiently193

large and establish the proof. SAT-based model checking has194

been successfully deployed in the industry [20]–[22].195

III. SYMBOLIC FORMULATION196

We consider each “quantum wire” of the quantum circuit as197

a superposition of |1〉 and |0〉, denoted as 1 and 0, respectively.198

We are interested in synthesizing quantum circuits with basis199

binary inputs (1 and 0). The values of these signals are modified 200

after passing through elementary gates (Fig. 2). There are six 201

possible output values when we apply binary (1 and 0) inputs 202

to one of those elementary gates: 0, 1, V0, V1, V +
0 , V +

1 , where 203

V0 represents V (input) when the input is 0, and similarly for 204

V1, V +
0 , V +

1 , i.e., 205

V0 =
1 + i

2

(
1 −i
−i 1

)
×
(

1
0

)
=

1 + i

2

(
1
−i

)

V1 =
1 + i

2

(
1 −i
−i 1

)
×
(

0
1

)
=

1 + i

2

(
−i
1

)

V +
0 =

1 − i

2

(
1 i
i 1

)
×
(

1
0

)
=

1 − i

2

(
1
i

)

V +
1 =

1 − i

2

(
1 i
i 1

)
×
(

0
1

)
=

1 − i

2

(
i
1

)
.

These six possible values are used as input values to gates 206

in subsequent stages. We want to synthesize our circuit 207

such that the “control” input of controlled-NOT (quantum 208

XOR), controlled-V , or controlled-V + is always basis binary 209

(0s and 1s), i.e., their input values cannot be V0 or V1, etc. 210

We impose the above restriction because a nonbinary value 211

at the control input of the controlled-NOT, controlled-V , or 212

controlled-V + gate can generate an entangled quantum state. 213

For example, if we have V0 at both control and data inputs 214

of the controlled-V gate, the unitary matrix multiplied by the 215

Kronecker product (of the inputs) becomes 216

1 0 0 0
0 1 0 0
0 0 1+i

2
1−i
2

0 0 1−i
2

1+i
2

×

0.5i
0.5
0.5

−0.5i

 =

0.5i
0.5
0

0.5 − 0.5i

 .

The vector result cannot be separated into two individual qubit 217

states using (1). The u1u0 entry from (1) is 0, which requires 218

u1 = u0 = 0. It contradicts with the other entries of the vector. 219

This is an entangled quantum state. Similar scenarios exist for 220

controlled-V +. The controlled-NOT also has similar examples 221

[23]. For the rest of this paper, we focus on synthesizing quan- 222

tum circuits using our set of quantum gates (NOT, controlled- 223

NOT, controlled-V , and controlled-V +), where the control 224

input of the 2-qubit gates is always basis binary. However, the 225

same approach can be used to synthesize circuits using other 226

libraries of quantum gates as long as it can be reduced to a 227

multiple-valued logic problem. 228

IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 0, 2006

Based on the unitary matrices in Section II, we can see that229

if the input of the NOT gate is not basis binary, namely V0, V1,230

V +
0 , or V +

1 , its corresponding output is V1, V0, V +
1 , or V +

0 ,231

respectively. Given a basis binary 1 on the control input of the232

controlled-NOT gate, the data input and the data output exhibit233

the same property (above) as the NOT gate. Also, as shown in234

Section II, given the six possible values (0, 1, V0, V1, V +
0 or235

V +
1) at the data input of the controlled-V or controlled-V +,236

their corresponding data output has the same set of six possible237

values. Hence, the input/output of every quantum gate in the238

circuit can be represented using the above six values.239

If we look at the complex matrix representation of V0, V1,240

V +
0 , and V +

1 , we can deduce that V0 = V +
1241

V0 =
1 + i

2

(
1
−i

)
=
(

0.5 + 0.5i
0.5 − 0.5i

)

V +
1 =

1 − i

2

(
i
1

)
=
(

0.5 + 0.5i
0.5 − 0.5i

)

and V1 = V +
0242

V1 =
1 + i

2

(
−i
1

)
=
(

0.5 − 0.5i
0.5 + 0.5i

)

V +
0 =

1 − i

2

(
1
i

)
=
(

0.5 − 0.5i
0.5 + 0.5i

)
.

Thus, it suffices to represent signals in the circuit using four243

values: 0, 1, V0, V1. In this way, we reduce the problem of244

quantum circuit synthesis (which would normally use unitary245

matrices and Hilbert space to represent signals) to a simpler246

synthesis problem in mixed binary/quaternary algebra. This247

is a general approach to efficiently synthesize a subclass of248

quantum circuits. It can be applied to gates other than the249

2-qubit gates introduced above.250

Theorem 1: For any deterministic quantum circuit (with n251

qubits, n > 0) that produces basis binary outputs for basis252

binary inputs, its unitary matrix is canonical, i.e., there is only253

one unitary matrix that represents the function of this circuit.254

This is a permutation matrix.255

Proof: We prove the theorem in four steps. Step 1): There256

are 2n! distinct n× n binary reversible logic functions. Step 2):257

When all n qubits are basis binary, their Kronecker product has258

one entry equal to 1 while all the other entries are equal to 0.259

Step 3): Each row or column of the unitary matrix should have260

only one entry equal to 1 while all the other entries are equal261

to 0. Step 4): The unitary matrix must be unique under the above262

circumstances.263

Step 1) The function of this quantum circuit is a binary264

reversible logic function. The output entries in the265

truth table are permutations of the input entries266

for this function. The truth table has 2n rows, i.e.,267

2n distinct binary input entries (and corresponding268

output entries). Since the output entries are permu-269

tations of the 2n input entries, there are 2n! ways to270

permute them. Hence, there are 2n! distinct n× n271

binary reversible logic functions.272

Step 2) The Kronecker product of n qubits is 273

(
α1

β1

)
⊗ · · · ⊗

(
αn

βn

)
=

α1α2, . . . , αn−1αn

α1α2, . . . , αn−1βn
...

β1β2, . . . , βn−1βn

.

For each qubit, αβ have only two choices (10 or 01) 274

to be basis binary. There are 2n distinct ways for all 275

n qubits to be basis binary. Under this circumstance, 276

the above Kronecker product is an enumeration of 277

the truth table patterns for α and β of each qubit. 278

Hence, there is one entry in the Kronecker product 279

equal to 1 while all the other entries are equal to 0. 280

Step 3) Let U be a unitary matrix of the n-qubit circuit. 281

There are 2n rows and 2n columns in U . Let P and 282

Q be the Kronecker product of the input and output 283

for this circuit, respectively. We have 284

U × P = Q. (2)

According to Step 2), the vector P has one entry 285

equal to 1 and all the other entries are 0. Similarly, 286

the vector Q has one entry equal to 1 and all the 287

other entries are 0. We use uij to denote the value of 288

matrix U in the ith row and jth column, and pi and 289

qi to denote the value of vector P and Q in the ith 290

row, respectively. 291

Given 0 ≤ i ≤ 2n, suppose all the entries in the ith 292

row of U are 0, then qi will be 0 for all possible 293

values of P due to (2). This is a contradiction 294

because Q has 2n rows and 2n distinct values, so 295

qi must be 1 for one of those cases. Hence, any row 296

of U cannot be all zeros. 297

Furthermore, suppose there are more than one en- 298

try that is nonzero (say columns uij and uik are 299

nonzero), then we can have two distinct patterns 300

of P , one with pj = 1 and the other with pk = 1, 301

both being able to produce a nonzero qi. Again, this 302

is a contradiction because we can only have one 303

possibility for qi to be nonzero. Hence, every row 304

of U must have exactly one nonzero entry. In order 305

to produce a corresponding 1 in the vector Q, the 306

nonzero entry in U must be 1. 307

Lastly, suppose we have uij = 1 and ukj = 1, both 308

in the jth column. We can pick a valuation of P with 309

pj = 1. The corresponding vector Q will have qi = 310

1 and qk = 1. This is again a contradiction since 311

only one row of vector Q can be nonzero. Thus, 312

every column of U must have exactly one nonzero 313

entry (which must be 1). 314

Step 4) There are 2n! possibilities for U to satisfy the prop- 315

erty in Step 3), which is exactly the number of 316

distinct permutations. Hence, to each permutation 317

corresponds a unique unitary matrix U . This com- 318

pletes the Proof of Theorem 1. � 319

The importance of the above theorem is that once we have 320

specified the basis binary input/output behavior of the quantum 321

IE
EE

Pr
oo

f

HUNG et al.: OPTIMAL SYNTHESIS OF MULTIPLE OUTPUT BOOLEAN FUNCTIONS USING QUANTUM GATES 5

circuit, there is only one unitary matrix that can satisfy the322

specification (because it is canonical). Hence, the functional323

behavior of the synthesized quantum circuit, under nonbinary324

(complex number) input/outputs, would be deterministic, even325

though they were not in the original specification. This idea326

is especially important for the synthesis of binary reversible327

functions (Toffoli, Fredkin, etc.) using quantum gates. It suf-328

fices to specify the basis binary input/output behavior of the329

reversible function, and the synthesized quantum circuit would330

have identical behavior as those of classical quantum circuits331

for all quantum values.332

Suppose we intend to synthesize an n× n reversible function333

R specified by its truth table with n input columns, n output334

columns, and 2n rows corresponding to n output patterns using335

the 2-qubit quantum gates [Fig. 2(b)–(d)] described above. The336

synthesized result should be a cascade of L stages. Each stage337

consists of one of the above quantum gates. Since the function338

applies to n qubits and the quantum gates at each stage are339

1-qubit or 2-qubit gates, the synthesized result should indicate340

to which qubits the gates are connected. For each stage i, we341

use gi to represent the gate selection variable [Fig. 2(b)–(d)],342

and we use Ai and Bi to indicate the two qubits that the343

gate is connected to, i.e., Ai, Bi ∈ {1, . . . , n}. As a naming344

convention, we refer to the qubit indicated by Ai [the upper345

qubit in Fig. 2(b)–(d)] as the control qubit, and we refer to the346

qubit indicated by Bi [the lower qubit in Fig. 2(b)–(d)] as the347

data qubit. Since the two qubits must be different, we have348

Ai �= Bi. (3)

We denote the inputs of stage i as �Ui, where �Ui =349

u1iu2i, · · · , uni. Each qubit (uqi, q = 1, . . . , n) of the stage i350

can have four possible values (0, 1, V0, V1). The output of stage351

i is denoted by �Ui+1, i.e.,352

uq(i+1) =

uAii ⊕Q uqi, (q = Bi)∧(g = Fig. 1(b))
V (uqi), (q = Bi)∧(g = Fig. 1(c))∧uAii

V +(uqi), (q = Bi)∧(g = Fig. 1(d))∧uAii

uqi, otherwise.

Note that we use ⊕Q to denote the quantum XOR operation.353

Due to our restriction on the control input, the values V0 and354

V1 cannot be applied to the control input of controlled-NOT,355

controlled-V , or controlled-V + gates. We create a Boolean356

signal Ei to represent whether the gate has been erroneously357

configured (misconfigured) with the V0 or V1 values in the358

current (ith) synthesis stage or any previous synthesis stages. At359

the initial stage, there is no misconfiguration, and we initialize360

by setting361

E0 = 0.

As we move to subsequent stages, the Ei+1 value (in stage362

i+ 1) is 1 if either of the following two cases is true.363

1) Ei (in the previous stage) is already 1.364

2) The value of the control qubit uAii is not binary (where365

Ai is the control qubit).366

Fig. 4. L-2Syn problem.

Thus 367

Ei+1 = Ei ∨ (uAii �∈ {0, 1}) .

So far, gi had only three possible values [Fig. 2(b)–(d)]. To 368

better reflect the quantum implementation cost, let us use a 369

different gate selection variable Gi with seven possible values. 370

Gi has all the three possible values of gi, with four additional 371

values to reflect the quantum XOR gate merged with controlled- 372

V and controlled-V + gates (Fig. 3). We define the synthesis 373

function S as 374

(�Ui+1, Ei+1) = S(Gi, Ai, Bi, �Ui, Ei). (4)

Definition 1 (L-2Syn): The quantum logic synthesis problem 375

for the reversible function R using 2-qubit gates as a cascade 376

of L stages is to find a set of satisfying values to Gi, Ai, Bi 377

(whereAi �= Bi and i = 0, 1, . . . , L− 1) such thatE0 = EL = 378

0 and �UL = R(�U0) for all possible Boolean input values of 379
�U0. Mathematically speaking, a solution to the L-2Syn problem 380

exists if and only if 381

∃G0∃A0∃B0, . . . ,∃GL−1∃AL−1∃BL−1 ·
(
∀�U0 ∈ {0, 1}n

·(E0 = EL = 0) ∧
(
�UL = R(�U0)

))
∧
(

L−1∧
i=0

Ai �= Bi

)
(5)

where G0A0B0, G1A1B1, . . . , GL−1AL−1BL−1 form a solu- 382

tion to the L-2Syn problem. 383

Fig. 4 illustrates the L-2Syn problem. Notice that we are 384

performing n× n reversible logic synthesis here. E0 is not 385

an input constant to the reversible logic circuit because all the 386

reversible gates use only qubits 1, . . . , n. The Ei (i = 0, . . . , n) 387

Boolean values are used to keep track of prohibited logic values, 388

they are not a part of the reversible circuit. 389

Definition 2 (min-2Syn): The minimum length quantum 390

logic synthesis problem for the reversible function R using 391

2-qubit gates (quantum XOR, controlled-V , controlled-V +, or 392

their merged versions) is to solve L-2Syn with the smallest 393

possible number L. 394

Theorem 2: For any reversible function R that does not 395

require inverters in its quantum implementation, finding its 396

quantum logic implementation with the minimum cost is equiv- 397

alent to solving the min-2Syn for R. 398

Proof: The min-2Syn solution consists of the smallest 399

possible L stages where each stage has a quantum cost of 1. 400

Thus, the minimum quantum cost is L. � 401

IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 0, 2006

Fig. 5. FSM for reachability analysis.

So far, we have not considered inverters (1-qubit gates).402

Since the 1-qubit gate cost is negligible compared to 2-qubit403

gate costs, we can model our synthesis problem without worry-404

ing about the cost of inverters. This can be done by injecting405

inverters for each qubit at the inputs, outputs, and between406

stages. We can modify the equations mentioned in this section407

to arrive at a theorem similar to Theorem 2 for the minimum408

quantum logic implementation cost using inverters (1-qubit) or409

other 2-qubit gates.410

IV. REACHABILITY ANALYSIS411

Let us first formulate a solution for synthesizing reversible412

functions that do not require inverters. Later in this section, we413

will extend our formulation for any reversible function with or414

without inverters.415

A. Invariant Checking416

We have shown in Theorem 2 that finding the quantum417

implementation with the minimum cost of a reversible function418

(that does not require inverters) is equivalent to solving the419

min-2Syn problem.420

We construct an FSM shown in Fig. 5, use a bounded model421

checker [12] to temporally unroll the FSM up to a specific422

bound, and invoke an SAT solver to find a counter-example.423

Our machine in Fig. 5 is in a way similar to Fig. 4, but there424

are some differences. Instead of cascading L instances of the425

S functional block in Fig. 4, we have 2n parallel instances426

of FSMs (M1, . . . ,M2n) in Fig. 5, as many as the number427

of rows in the truth table. Each FSM contains a functional428

block S. Three primary inputs (G,A,B) are fed to every FSM.429

Each machine has its own set of registers (or memory states)430

containing �U (in terms of u1, . . . , un) and E.431

The FSM will be initialized at time t = 0, and then proceeds432

to new states at t = 1, 2, For convenience, we use �µ(Mh, t)433

to denote the value of the register vector u1, . . . , un of machine434

Mh at time t, where h = 1, . . . , 2n. Similarly, we use ε(Mh, t)435

to denote the value of the register E of machine Mh at time t. 436

In addition, we use Gt, At, Bt to denote the input values at time 437

t. As a constraint (environmental assumption), we require 438

∀t ≥ 0 · (At �= Bt). (6)

From Fig. 5, we can see that the next state is computed 439

from the current state and inputs through the combinational 440

functional block S, i.e., 441

(�µ(Mh, t+ 1), ε(Mh, t+ 1))

= S (Gt, At, Bt, �µ(Mh, t), ε(Mh, t)) . (7)

We initialize the E register of every machine to 0 (FALSE): 442

ε(Mh, 0) = 0 for h = 1, . . . , 2n. We also initialize the �U regis- 443

ters of every machine to their corresponding patterns in a truth 444

table, i.e., 445

M1 : �µ(M1, 0) = 0 . . . 00

M2 : �µ(M2, 0) = 0 . . . 01

...

M2n : �µ(M2n , 0) = 1 . . . 11. (8)

Given the reversible function R that we want to synthesize, 446

we want to check the nonsynthesizeability invariant 447

inv(t) = ¬
2n∧

h=1

(�µ(Mh, t) = R (�µ(Mh, 0))) ∧ (ε(Mh, t) = 0)

where inv(t) is checked for all time t ≥ 0. 448

Theorem 3: The function R is synthesizeable using 2-qubit 449

gates if and only if there exists a counter-example (input 450

sequence Gt, At, Bt for t = 0, . . . , L) that satisfies (6)–(8) 451

and violates the invariant inv(t) at time t = L, where L is the 452

IE
EE

Pr
oo

f

HUNG et al.: OPTIMAL SYNTHESIS OF MULTIPLE OUTPUT BOOLEAN FUNCTIONS USING QUANTUM GATES 7

corresponding quantum cost using any of those seven 2-qubit453

gates presented in Section III.454

Proof: Given a counter-example of length L, this counter-455

example will consist of assignments to the inputs Gt, At,456

Bt for t = 0, . . . , L. The counter-example satisfies the initial457

condition (8), which means that all Boolean patterns (from the458

truth table) for �Ut=0 have been explored. The initial condition459

essentially states that460

∀�Ut=0 ∈ {0, 1}n · Et=0 = 0. (9)

For any t > 0, the machine states �µ(Mh, t) and ε(Mh, t) are461

computed from their initial states �µ(Mh, 0) and ε(Mh, 0) and462

the inputs Gt′ , At′ , Bt′ for t′ = 0, . . . , t− 1. Since our initial463

condition explored all possible patterns of �Ut=0, any formula of464

the form465

∀h ∈ {1, . . . , 2n} · (ε(Mh, 0) = 0) ∧ f (�µ(Mh, t), ε(Mh, t))

can be rewritten as ∀�Ut=0 ∈ {0, 1}n · (E0 = 0) ∧ f(�Ut, Et).466

We can conjunct the violated invariant inv(t) with the initial467

condition (9) and rewrite them as468

∃G0∃A0∃B0, . . . ,∃GL∃AL∃BL · ∀�Ut=0 ∈ {0, 1}n

·(Et=0 = 0) ∧ (Et=L = 0) ∧
(
�Ut=L = R(�Ut=0)

)
. (10)

The existence of a counter-example is equivalent to the469

conjunction of formulae (6), (9) ,and (10). We can rewrite (6)470

as
∧L

t=0 At �= Bt. We can also push the conjunction inside the471

quantification operators to obtain472

∃G0∃A0∃B0, . . . ,∃GL∃AL∃BL

·
(

L∧
t=0

At �= Bt

)
∧ ∀�Ut=0 ∈ {0, 1}n

· (Et=0 = Et=L = 0) ∧
(
�Ut=L = R(�Ut=0)

)
. (11)

Equation (11) characterizes the Boolean condition for the ex-473

istence of a counter-example. The difference between (11) and474

(5) is that the existential quantification of 1inputs Gt, At, Bt475

and the constraint on input assumption At �= Bt ranges from 0476

toL in formula (11) but only ranges from 0 toL− 1 in (5). Now477

observe that the registers (E and �U) in our FSM (Fig. 5) depend478

only on the input values of the previous time cycle. Therefore,479

the input values GL, AL, BL do not affect the existence of480

our counter-example at all. Hence, the existence of a counter-481

example is equivalent to the existence of a solution to the482

L-2Syn problem. �483

We have shown that synthesizing the quantum logic is equiv-484

alent to finding a counter-example to the invariant checking485

problem. Using bounded model checking, we can find the486

existence of a counter-example within the length of the bound.487

By starting with a small bound and gradually increasing the488

bound, we can find the shortest counter-example, essentially the 489

minimum cost quantum implementation of the function R. 490

As mentioned in Section III, we can easily modify the above 491

invariant checking formulation to find the minimum quantum 492

implementation cost with inverters or other types of 2-qubit 493

gates. 494

The invariant checking formulation is useful for synthesizing 495

the quantum logic with the minimum cost as outlined above. 496

In case the function R is not synthesizeable, as being not 497

reversible, the model checker will prove the invariant has no 498

counter-example (Theorem 3). However, we can easily add 499

ancilla qubits (input constants) to transform nonreversible func- 500

tions to reversible functions, thus making it synthesizeable. 501

The next section describes an automatic approach for this 502

transformation. 503

B. Synthesizing With Input Constants 504

Our formulations so far concentrated on synthesizing a 505

function without additional input constants (ancilla qubits). 506

However, some functions (e.g., irreversible functions) cannot 507

be synthesized without input constants. For these functions, it 508

makes sense to synthesize them with the minimum number of 509

input constants. 510

We can add k input constants to the original n× n circuit, 511

making it an (n+ k) × (n+ k) circuit, run it through our 512

model checker, and see if we can get a counter-example or 513

a proof. If we get a proof, we can increment k until we 514

eventually get a counter-example (which should happen for 515

finite k according to [10]). A systematic way of doing this is 516

to start with k = 1 and gradually increment k until we reach a 517

counter-example. 518

The invariant checking formulation with k input constants is 519

slightly different from Section IV-A. For every input constant 520

bit, we do not know if it should be a constant 0 or a constant 1. 521

In order to get a counter-example (i.e., synthesize the circuit), 522

we want to find out these constant values. 523

Let us look back at our machines in Fig. 5. From the 524

figure, we have 2n machines (M1, . . . ,M2n), each with n 525

registers. We modify this figure so that we have n+ k registers 526

(u1, . . . , un+k) in each machine and each S (and δ if applica- 527

ble) functional block will handle n+ k instead of n registers, 528

as well as the E register. 529

For notational clarity, we still use �µ(Mi, t) to denote the 530

value of the register vector (u1, . . . , un) for machine Mi (where 531

i = 1, . . . , 2n) at time t. We use νj(Mi, t) to denote the value 532

of each register uj (where j = 1, . . . , n+ k) of machine Mi 533

(where i = 1, . . . , 2n) at time t. Thus, the newly introduced reg- 534

ister values can be referred to as νn+1(Mi, t), . . . , νn+k(Mi, t). 535

Let us also introduce a new state ζ in addition to all the 2n 536

machines (M1, . . . ,M2n). This register is initialized to 0 and 537

then set to 1 thereafter, i.e., 538

ζ =
{

0, t = 0
1, t > 0.

(12)

For those additional k registers, we want to limit their initial 539

state to the set {0, 1}. In addition, we want to restrict the initial 540

IE
EE

Pr
oo

f

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 0, 2006

state of the jth register (j = n+ 1, . . . , n+ k) at each machine541

to be the same542

n+k∧
j=n+1

2n∧
i=1

νj(Mi, 0) ∈ {0, 1} (13)

n+k∧
j=n+1

ζt ∨ (νj(M1, t) = . . . = νj(M2n , t)) . (14)

Equation (13) is possible because the symbolic model checking543

formulations [11] allow the initial state to be a set of values.544

The constraint (14) is used as an assumption that restricts the545

state space. Notice that we still have 2n FSMs (M1, . . . ,M2n)546

overall because the number of rows in the truth table for input547

patterns is still the same as in the case without the additional548

input constants.549

By increasing the combinational function blocks S (and δ550

if applicable), we are essentially synthesizing for (n+ k) ×551

(n+ k) reversible logic. Our initial state specification allows us552

to consider the constant 0 and constant 1 cases. The generated553

counter-example will contain specific values for the initial state554

of each bit, thus finding out the constant input values.555

C. Example556

Consider a classical computation unit, half adder, which557

takes two input bits (n = 2) and outputs a sum and a carry.558

There are two input patterns in its truth table (ab = 01, 10)559

that produce the same output pattern. Therefore, one needs to560

add a single input constant in order to separate 01 and 10 and561

to create a 3 × 3 reversible function R. We construct the 22562

machines and the invariant according to Sections IV-A and563

IV-B. A model checker can return a counter example that564

contains values of initial states and a sequence of input values.565

Most of the initial state values are already specified in (8),566

except for the state values of the input constant in (13). In this567

case, the model checker tells us that the input constant is 0, i.e.,568

v3(M1, 0) = v3(M2, 0) = · · · = v3(M22 , 0) = 0.

Hence, the initial state values of the FSM are569

M1 : �µ(M1, 0) = 000

M2 : �µ(M2, 0) = 001

M3 : �µ(M3, 0) = 010

M4 : �µ(M4, 0) = 011.

The sequence of input values in the counter-example is570

G0 =V +, A0 = 2, B0 = 3

G1 =XOR, A1 = 1, B1 = 2

G2 =V, A2 = 2, B2 = 3

G3 =V _XOR, A3 = 1, B3 = 3.

Notice that the above input sequence satisfies the constraint (6). 571

If we substitute these inputs back into the FSM, we will arrive at 572

M1 : �µ(M1, 4) = 000

M2 : �µ(M2, 4) = 110

M3 : �µ(M3, 4) = 010

M4 : �µ(M4, 4) = 001.

We compare the final state with the initial state. The initial 573

state of M1, . . . ,M4 corresponds to the input patterns in a truth 574

table. The final state of M1, . . . ,M4 corresponds to the output 575

patterns in a truth table. Notice that the least significant bit 576

(rightmost column) in the final state satisfies the carry function, 577

and the middle bit (middle column) satisfies the summation 578

function. The bottom bit in Fig. 10 is a garbage function a ∧ ¬b. 579

Let us assume that in the circuit the top qubit corresponds to the 580

least significant bit of our truth table, and similarly the bottom 581

qubit corresponds to the most significant bit of our truth table. 582

The gate types (quantum XOR, controlled-V , etc.) are already 583

given by G0, . . . , G3 of the counter-example. The connection 584

of these gates to qubits are given by A0, B0, . . . , A3, B3. These 585

values directly translate to the circuit in Fig. 10. 586

V. COMPLEXITY AND TIME 587

Industrial experience [20], [22] suggests that the complexity 588

of model checking is sensitive to the number of state retaining 589

elements in the FSM. For our FSM in Fig. 5, there are n× 590

2n registers, where n is the number of qubits. Each register 591

has four possible values (0, 1, V , V +). If we use Boolean 592

states to encode these registers, we have 2n× 2n Boolean state 593

elements. However, the number of qubits n tends to be small 594

due to physical limitations. So far, the largest number [24] of 595

qubits is 7, which is 1792 Boolean state elements. This is still 596

manageable in the scope of industrial strength bounded model 597

checkers [20], [22]. Nevertheless, we would like to speed up 598

our synthesis process. 599

We introduce two speed up methods in this section. The first 600

method breaks the synthesis process into two or more smaller 601

synthesis stages. The second method constrains the location of 602

certain gates (such as the controlled-V or controlled-V + gates), 603

which reduces the search space of the algorithm. 604

A. Synthesis in Multiple Stages 605

We devised a strategy to speed up the synthesis process at the 606

expense of a higher circuit cost. Given an n× n reversible gate 607

to synthesize, there are 2n cases to be enumerated. Assume, 608

however, that we pick one of the inputs, say the first input, and 609

consider only cases where it is 0. Then we have 2n−1 cases. To 610

perform reachability analysis, we construct the same FSM as 611

shown in Fig. 5, but check it with a different invariant inv′(t) 612

¬

2n−1∧

h=1

(�µ(Mh, t) = R (�µ(Mh, 0))) ∧
2n∧

h=1

(ε(Mh, t) = 0)

 .

IE
EE

Pr
oo

f

HUNG et al.: OPTIMAL SYNTHESIS OF MULTIPLE OUTPUT BOOLEAN FUNCTIONS USING QUANTUM GATES 9

The main difference between inv′(t) and inv(t) is that the new613

invariant inv′(t) checks that R is accomplished for only half of614

all the possible input patterns, which accounted for those cases615

where the first input is 0. It is easier to find a counter-example616

for this new invariant because only half of the cases have to617

be accomplished. We take a snapshot of all register states at618

the end of this counter-example and use it as the initial state of619

the FSM. We then run model checker again with our original620

invariant inv(t). This time, since we started from a state fairly621

close toR, it is easier to generate a counter-example. According622

to Theorem 4, this method guarantees to generate the counter-623

example if the function that we want to synthesize is reversible.624

Theorem 4: Suppose we want to synthesize a reversible625

function R, and suppose we have already synthesized another626

reversible function Q, then there exists a reversible function P627

such that R is equivalent to the cascade of Q and P , i.e., R =628

Q ◦ P , where R, Q, and P are all n× n reversible functions.629

Proof: Since Q is reversible, we have function Q−1 such630

that Q ◦Q−1 = I , where I is the identity function (outputs are631

equal to inputs). Hence, there exists P = Q−1 ◦R such that632

Q ◦ P = Q ◦Q−1 ◦R = I ◦R = R. �633

B. Constraining Search Space634

The runtime complexity of model checking is due to its635

exhaustive nature. We can introduce more constraints to reduce636

the search space. For instance, we can limit the location of the637

data input for the controlled-V and controlled-V + gates to a638

subset of the qubits (such as the first qubit). This example will639

mean that (5) in Definition 1 will be changed to640

∃G0∃A0∃B0, . . . ,∃GL−1∃AL−1∃BL−1

·
(
∀�U0 ∈ {0, 1}n · (E0 = EL = 0) ∧

(
�UL = R(�U0)

))

∧
(

L−1∧
i=0

((Gi = Fig. 1(c)) ∨ (Gi = Fig. 1(d))) ⇒ Bi

)

∧
(

L−1∧
i=0

Ai �= Bi

)
. (15)

Once formula (5) is changed, all subsequent logic reasoning can641

be adjusted for the constraint as well.642

Formula (15) is just an example to limit the location of the643

V input to the first qubit. Similar constraints can be constructed644

to limit the location of the control input for the controlled-V645

and/or controlled-V + gates, or to limit the control or data inputs646

of the Feynman gates, etc.647

VI. EXPERIMENTS648

We constructed our invariant checking formulations de-649

scribed in Section IV using NuSMV with BerkMin [25]. Our650

method was applied to synthesize some common quantum cir-651

cuits. All experiments are conducted on a 850-MHz Pentium III652

processor running on Linux.653

The quantum costs of several circuits are summarized in654

Table I. The “Prior” and “Our” columns indicate the best pub-655

TABLE I
QUANTUM COST OF COMMON CIRCUITS

Fig. 6. Miller gate with optimum quantum cost = 6.

Fig. 7. Alternative Fredkin gate implementation with quantum cost = 5.

Fig. 8. Peres gate implementation with optimum quantum cost = 4.

Fig. 9. Toffoli gate implementation with optimum quantum cost = 5.

lished quantum cost in previous literature and our synthesized 656

quantum cost, respectively. For Miller gate [26], our synthesis 657

result has a quantum implementation cost of 6, shown in Fig. 6. 658

It is better than any previously published result (cost of 7) 659

[26], [27]. 660

For the Fredkin [10], Peres [17], and Toffoli [5], [16] gates, 661

our synthesized results (Fig. 7–9) have the same quantum costs 662

as reported in prior literature [4], [27]. But nobody was able to 663

show that the cost was minimum until now. Notice also that our 664

synthesized Fredkin circuit (Fig. 7) is different from the circuit 665

in [4], but they are functionally equivalent (due to the canonical 666

unitary matrix as described in Theorem 1). 667

We synthesized a classical half adder using input constants 668

discussed in Section IV-B. In the past, people have been syn- 669

thesizing the 2-bit adder using a Toffoli gate and a quantum 670

XOR gate [23], [28]. Since the Toffoli gate has a minimum 671

cost of 5 and the quantum XOR gate cost 1, the total quantum 672

IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 0, 2006

Fig. 10. Half adder with quantum cost = 4.

Fig. 11. Alternative half adder with quantum cost = 4.

Fig. 12. q4 example.

Fig. 13. Peres-double and Toffoli-double specification.

implementation cost would be 6 using that method. Our method673

proved that the minimum quantum cost is actually 4, as shown674

in Fig. 10. In fact, if we do not restrict the output of the adder to675

be the top two qubits, we can put one of the desired outputs on676

the ancilla qubit. Such an implementation is actually the Peres677

circuit with the last qubit input set to zero, shown in Fig. 11.678

We also synthesized several 4-qubit functions using the679

method in Section V-B by restricting the data input/output680

of the controlled-V or controlled-V + gates to be the fourth681

qubit. The “q4-example” is a simple 4-qubit function shown in682

Fig. 12. The “Peres-double” and “Toffoli-double” functions are683

specified by cascading two 3-qubit Peres and Toffoli functions,684

respectively, in a 4-qubit manner shown in Fig. 13, where the685

numbers 1, 2, and 3 indicates the input/output correspondence686

to the first, second, and third qubit of the original Peres or687

Toffoli functions. Since the smallest quantum cost of Peres and688

Toffoli gates are known to be 4 and 5, respectively, the quantum689

cost of having two Peres and Toffoli in a cascading manner690

would be 8 and 10, respectively. However, our synthesis result691

indicate that their quantum cost can be heuristically decreased692

to 6 (Fig. 14) and 7 (Fig. 15), respectively.693

We synthesized the full adder using four different strategies694

shown in Table II. Recent papers [6], [7] used two Toffoli695

gates and two Feynman gates to implement a quantum cost696

Fig. 14. Peres-double quantum cost = 6.

Fig. 15. Toffoli-double quantum cost = 7.

TABLE II
SYNTHESIS OF FULL ADDER

of 12. We proved that the minimum quantum cost for a full 697

adder is 6, as shown in Fig. 16. To shorten the CPU runtime 698

for synthesizing the full adder, we used a two-stage strategy 699

mentioned in Section V-A and obtained an implementation with 700

quantum cost of 9, shown in Fig. 17. The CPU runtime is 701

significantly reduced (from 7 h to 140.83 s). Notice that the 702

cost of this implementation can be reduced to 8 if we choose 703

to omit the “propagate” logic (the last quantum XOR gate). We 704

also applied the synthesis method in Section V-B by restricting 705

the data input of the controlled-V or controlled-V + gates to the 706

location of the “sum” qubit. The runtime is reduced from 7 h 707

to 1104.97 s, and the quantum cost is the same as the original 708

optimal method. All the top three experiments in Table II use 709

a specification such that the useful output (sum and carry-out) 710

does not use the same qubit as the garbage input (ancilla qubit). 711

We remove this requirement in the last experiment of Table II 712

and used the input/output specification in [6] and [7]. The result 713

is shown in Fig. 18 and the synthesis took 176.09 CPU seconds. 714

VII. CONCLUSION 715

In this paper, we applied invariant checking, a formal veri- 716

fication technique, to the synthesis of quantum logic circuits. 717

We reduced problems in quantum logic synthesis to those of 718

multiple-valued logic synthesis, thus simplifying the search 719

space and algorithm complexity. To solve the synthesis prob- 720

lem, we created an optimal synthesis method, a multistage syn- 721

thesis method, and several constraint-related speed-up methods. 722

Our optimal method and the multistage method are guaranteed 723

to synthesize the circuit. We created minimum cost quantum 724

circuits for Miller gate, half adder, and full adder, which are 725

better than previous results. This cost is minimum for any 726

circuit using our set of quantum gates, where the control qubit 727

IE
EE

Pr
oo

f

HUNG et al.: OPTIMAL SYNTHESIS OF MULTIPLE OUTPUT BOOLEAN FUNCTIONS USING QUANTUM GATES 11

Fig. 16. Full adder with quantum cost = 6.

Fig. 17. Full adder with quantum cost = 9.

Fig. 18. Full adder with different output arrangement: quantum cost = 6.

of 2-qubit gates is always basis binary. We also proved the min-728

imum quantum cost in the same manner for Fredkin, Peres, and729

Toffoli gates. In addition, we found quantum implementations730

with lower cost (than previous known results) for (cascaded)731

double Peres gates and (cascaded) double Toffoli gates. As732

shown in Section VI, our method can also automatically convert733

a nonreversible (irreversible) function to the simplest equivalent734

reversible function (Fig. 16) by adding and initializing the735

minimum number of ancilla wires. This step is missing from736

most reversible circuit synthesis algorithms, and the problem737

of minimal convertion was never discussed in the literature.738

We have demonstrated our method on small circuits. It can739

be a starting point to create such methods for larger Boolean740

functions. Our work is the first successful application of formal741

methods and satisfiability in quantum logic synthesis.742

REFERENCES743

[1] A. De Vos, “Reversible computing,” Prog. Quantum Electron., vol. 23,744
no. 1, pp. 1–49, Jan. 1999.745

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum746
Information. Cambridge, U.K.: Cambridge Univ. Press, Dec. 2000.747

[3] K. Iwama, Y. Kambayashi, and S. Yamashita, “Transformation rules for748
designing CNOT-based quantum circuits,” in Proc. Design Automation749
Conf., New Orleans, LA, 2002, pp. 419–424.750

[4] J. A. Smolin and D. P. DiVincenzo, “Five two-bit quantum gates are751
sufficient to implement the quantum Fredkin gate,” Phys. Rev. A, Gen.752
Phys., vol. 53, no. 4, pp. 2855–2856, Apr. 1996.753

[5] A. Barenco et al., “Elementary gates for quantum computation,” Phys.754
Rev. A, Gen. Phys., vol. 52, no. 5, pp. 3457–3467, Nov. 1995.755

[6] A. Khlopotine, M. Perkowski, and P. Kerntopf, “Reversible logic synthesis756
by iterative compositions,” in Proc. Int. Workshop Logic Synthesis, New757
Orleans, LA, 2002, pp. 261–266.758

[7] D. M. Miller, D. Maslov, and G. W. Dueck, “A transformation based 759
algorithm for reversible logic synthesis,” in Proc. Design Automation 760
Conf., Anaheim, CA, 2003, pp. 318–323. 761

[8] V. V. Shende et al., “Synthesis of reversible logic circuits,” IEEE Trans. 762
Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 6, pp. 710–722, 763
Jun. 2003. 764

[9] X. Song et al., (2005). Algebraic characteristics of reversible 765
gates Theory of Computing Systems [Online]. Available: http://www. 766
springerlink.com/link.asp?id=vh2mkff02xwm2gdb, Article In Press 767

[10] E. Fredkin and T. Toffoli, “Conservative logic,” Int. J. Theor. Phys., 768
vol. 21, no. 3/4, pp. 219–253, 1982. 769

[11] K. L. McMillan, Symbolic Model Checking. Norwell, MA: Kluwer, 770
1993. 771

[12] A. Biere et al., “Symbolic model checking using SAT procedures instead 772
of BDDs,” in Proc. Design Automation Conf., New Orleans, LA, 1999, 773
pp. 317–320. 774

[13] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical de- 775
scription of physical reality be considered complete?” Phys. Rev. A, Gen. 776
Phys., vol. 47, no. 10, pp. 777–780, Mar. 1935. 777

[14] D. Deutsch, “Quantum computational networks,” Proc. R. Soc. Lond. A, 778
Math. Phys. Sci., vol. 425, pp. 73–90, 1989. AQ1779

[15] J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a 780
nuclear magnetic resonance quantum computer,” J. Chem. Phys., vol. 109, 781
no. 5, pp. 1648–1653, Aug. 1998. 782

[16] T. Sleator and H. Weinfurter, “Realizable universal quantum logic gates,” 783
Phys. Rev. Lett., vol. 74, no. 20, pp. 4087–4090, May 1995. 784

[17] A. Peres, “Reversible logic and quantum computers,” Phys. Rev. A, Gen. 785
Phys., vol. 32, no. 6, pp. 3266–3276, Dec. 1985. 786

[18] R. E. Bryant, “Graph-based algorithms for Boolean function manipula- 787
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986. 788

[19] W. N. N. Hung et al., “BDD minimization by scatter search,” IEEE Trans. 789
Comput.-Aided Des. Integr. Circuits Syst., vol. 21, no. 8, pp. 974–979, 790
Aug. 2002. 791

[20] F. Copty et al., “Benefits of bounded model checking at an industrial 792
setting,” in Proc. Computer-Aided Verification, Paris, France, 2001, 793
pp. 436–453. 794

[21] W. N. N. Hung et al., “Segmented channel routability via satisfiability,” 795
ACM Trans. Des. Automat. Electron. Syst., vol. 9, no. 4, pp. 517–528, 796
Oct. 2004. 797

[22] W. N. N. Hung and N. Narasimhan, “Reference model based RTL 798
verification: An integrated approach,” in Proc. IEEE Int. High Level 799
Design Validation Test Workshop, Sonoma Valley, CA, Nov. 2004, 800
pp. 9–13. 801

[23] A. Ekert, P. Hayden, and H. Inamori, “Basic concepts in quantum compu- 802
tation,” in Coherent Atomic Matter Waves—Ondes de matiere coherentes. 803
NATO Advanced Study Inst., Aug. 1999, pp. 659–699. AQ2804

[24] L. M. K. Vandersypen et al., “Experimental realization of Shor’s quantum 805
factoring algorithm using nuclear magnetic resonance,” Nature, vol. 414, 806
no. 6866, pp. 883–887, Dec. 2001. 807

IE
EE

Pr
oo

f

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 0, 2006

[25] E. Goldberg and Y. Novikov, “BerkMin: A fast and robust SAT solver,”808
in Proc. Design Automation Test Eur. (DATE), Paris, France, 2002,809
pp. 142–149.810

[26] D. M. Miller, “Spectral and two-place decomposition techniques in re-811
versible logic,” in Proc. IEEE Midwest Symp. Circuits Systems, Aug.812
2002, pp. II-493–II-496.AQ3 813

[27] G. Yang, W. N. N. Hung, X. Song, and M. Perkowski, “Majority-based814
reversible logic gates,” Theor. Comput. Sci., vol. 334, no. 1–3, pp. 259–815
274, Apr. 2005.816

[28] J. Gruska, Quantum Computing. McGraw-Hill, Apr. 1999.AQ4 817

William N. N. Hung received the B.S. and M.S.818
degrees in electrical and computer engineering from819
the University of Texas, Austin, in 1994 and 1997,820
respectively, and the Ph.D. degree in electrical and821
computer engineering from Portland State Univer-822
sity, Portland, OR, in 2002.823

From 1997 to 2004, he was a Senior Engineer at824
Intel Corporation, Hillsboro, OR, primarily focused825
on formal property verification of CPU designs.826
Since September 2004, he has been a Senior Staff827
Engineer at Synplicity Inc., Sunnyvale, CA. His828

research interests include logic synthesis, physical design, formal methods,829
satisfiability, combinatorial optimization, and quantum computing.830

Dr. Hung served as a member in the Emergent Technologies Technical831
Committee for the IEEE Computational Intelligence Society. He also served as832
a member in the Program Committee of the IEEE/ACM Design Automation and833
Test in Europe (DATE) and in the Program Committee of the IEEE International834
Computer Software and Applications Conference (COMPSAC).835

Xiaoyu Song received the Ph.D. degree from theAQ5 836
University of Pisa, Pisa, Italy, in 1991.837

From 1992 to 1999, he was on the faculty at the838
University of Montreal, Canada. In 1998, he was839
a Senior Technical Staff member at Cadence, San840
Jose, CA. Since 1999, he has been on the faculty841
at the Department of Electrical and Computer Engi-842
neering, Portland State University, Portland, OR. His843
research interests include synthesis, verification, and844
testing of high-performance digital system designs,845
low-power digital IC designs, timing analysis, and846

formal methods.847
Dr. Song served as an Associate Editor of the IEEE TRANSACTIONS ON848

CIRCUITS AND SYSTEMS and the IEEE TRANSACTIONS ON VERY LARGE849
SCALE INTEGRATION (VLSI) SYSTEMS.850

Guowu Yang received the B.S. degree in mathematics from the University of 851
Science and Technology, China, in 1989, and the Ph.D. degree in electrical and 852
computer engineering from Portland State University, Portland, OR, in 2005. 853

He is currently a Post-Doctoral Researcher in the Department of Computer 854
Science, Portland State University. His research interests include quantum 855
computing, reversible logic, hardware formal verification, floor planning, and 856
routing. 857

Jin Yang received the B.S. and M.S. degrees in computer science from 858
Peking University, China, and the Ph.D. degree in computer science from the 859
University of Texas, Austin, in 1997. 860

He was a Faculty Member at Peking University for two years before he came 861
to the U.S. In 1995, he joined Intel, Hillsboro, OR, and is currently a Principal 862
Engineer at Intel Strategic CAD Labs. He holds five U.S. patents. His research 863
interests include in all aspects of formal methods, with a focus on developing 864
practical solutions for hardware specification and verification. 865

Marek Perkowski received the M.S. degree in elec- AQ7866
tronics and the Ph.D. degree in automatic control 867
from the Technical University of Warsaw, Warsaw, 868
Poland. 869

He has been on the faculty of Warsaw Tech- 870
nical University, the University of Minnesota, and 871
the Korea Advanced Institute of Science and Tech- 872
nology (KAIST), Daejeon, Korea. He has been a 873
Visiting Faculty Member at the Technical University 874
of Eindhoven, The Netherlands, the University of 875
Montpellier, France, and Kyushu Institute of Tech- 876

nology, Japan. He worked as Summer Professor at Intel, GTE, and Sharp, 877
and was a Consultant to several companies including Cypress Semiconductor. 878
He is currently a Professor at Portland State University, Portland, OR. His 879
research interests include quantum computing, automated synthesis of quantum 880
and reversible circuits, testing of quantum circuits, and quantum computational 881
intelligence with intelligent robotics applications. 882

Dr. Perkowski is the Chair of the IEEE Computer Society Technical Com- 883
mittee on Multiple-Valued Logic. 884

IE
EE

Pr
oo

f

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Please provide issue number in Ref. [14].
AQ2 = Please provide publisher location in Ref. [23].
AQ3 = Please provide conference location in Ref. [26].
AQ4 = Please provide publisher location in Ref. [28].
AQ5 = Please specify the field of study.
AQ6 = Please specify the year when the degrees were earned.
AQ7 = Please specify the year when the degrees were earned.
Note: Please provide photo for authors G. Yang and J. Yang.

END OF ALL QUERIES

