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faster and do not result in exponential diagram sizes when decomposing " D
functions with small bound sets. . GENERAL DECOMPOSITION
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Index Terms—Algorithms, logic design, unsupervised learning. The decomposition of a function can be an expression of the
function in terms of a composition of other functions. For example,
if f(xo, 21, x2, x3) = F(®(xo, 21), 22, x3), then the term on the

|. INTRODUCTION right is a decomposed function that is equivalent in behavior to the
Functional decomposition is known as expressing a function ag#ginal functionf. _ )
composition of two or more functions. While many papers were written N general, anx-input, single output Boolean functionf:
about the topic of functional decomposition there was no comprehdf: 1} — {0, 1}, has the set of input variables’ =
sive approach until Ashenhurst presented a unified theory of functioridlo» ©1» - --» a—1}. The number of variables in seX is de-
decomposition, and for the first time defined its basic properties in [1]0ted by|X]|.

[2]. Curtis used the theorems of Ashenhurst to develop a generalizedefinition 1: Let A C X andB C X, whereA # § andB # 0.
A partition , denoted ast|B, existsifAN B =@ and4 U B = X.
_ _ _ _ _ Definition 2: A function f(xo, #1, ..., 2,—1) has amAshenhurst
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be to represent partition matrices, including decision diagrams. This sec-
a 00 01 10 11 tion discusses decision diagram-based functional decomposition [11],
(12], [6]-[8].
0] 0 1 1 Y Definition 8: A decision diagramover a set of variableX and a
nonempty terminal séf’ is a connected, directed acyclic graph=
1| 2 - 3 2 (V, E) with the following propetties:

e avertexv; € V is either anonterminalor aterminal vertex
« each nonterminal vertex; represents a variable € X andwv;
has exactlyQ, | successorin V', given thate; has|Q;| cofactors;
 each terminal vertex; has no successors and is labeled with a
valuet; € T whereT = @)y, given that(); is the set of output

0 1 1 Q0 <@ column labels

Fig. 1. Partition matria}|{b, c}.

Definition 3: For the partitiond|B on X, apartition matrix repre- values functionf can have; _
sentation off (X) is defined as a rectangular array of tHefunctional * aroot vertex is the top vertex irc, i.e., no vertex in the graph
values off, arranged ire!*! rows anc2!'?! columns. has a root vertex as a successor.

Definition 4: The number of distinct column vectors in a partition Definition 9: A decision diagram partition matrix of a function
matrix is called theolumn multiplicity of the partition and is denoted can be represented by partitioning the input variables in the decision

by v. diagram, such that all of the bound variables are above (at the top of
Theorem 1: A function f(xo, «1, ..., xn—1) has an Ashenhurst the graph) all of the free variables. Note, the order of variables within
simple disjunctive decomposition, denotedpy F(®(B), A) ifthe the bound set or within the free set has no effect on the partition found.
partition matrixA|B has column multiplicityy < 2. Definition 10: Thecut_leveldesignates the boundary between the
Proof: Proof is given in [4]. B bound variables and the free variables in the decision diagram.
Obviously, Theorem 1 can be expanded for partitions that have largeiThe method for detecting decompositions using the decision dia-
column multiplicities. gram canonical form is called thaut_levelalgorithm [8]. The algo-
Definition 5: A Boolean function f(zy, #1, ..., #,—1) has a rithm states that the number of distinct columns in a decision diagram
Curtis disjunctive decomposition [10], denoted by the composite partition matrix is the number of vertices below the cut_level that have
function an edge that crosses the cut_level. This statement is true because of
the canonical representation of the decision diagram. If a function is
f=F(®o(B), 1(B), ..., Pr_1(B), A) completely specified, then the column multiplicity is just the number

of distinct columns found in the decision diagram.
if the partition matrixA|B has column multiplicityr < 2* where  As proposed in [11], theut_levelalgorithm can easily be extended
k < |B|. to multivalued functions. The following example illustrates the
A multivalued function over multivalued arguments 0 < ¢ < n,  cut_levelalgorithm for multivalued functions.

denoted byf(xg, 1, ..., r,—1), takes output values from a finite set Example 2: Consider the four-valued function in Fig. 2, where the
of values. A multivalued variable; can take values from the s@t =  partition {a}|{b, ¢} of the functionf(a, b, ¢) is shown in Fig. 2(a).
{qo. 41, - ... qj0,—1 }. For reference); denotes the set of values thatThe column multiplicity is the number of vertices below the_level
variablez; can have. Each symbolic valye can be associated with a that have an edge that crossesdhe level From the decision diagram
unique integek:, and because only integer values are considered, th&/iown in Fig. 2(b) the column multiplicity is four, which implies the

Qi ={0,1,....|Q:] —1}. decompositiory = F(®(b, c), a), whered is a four-valued function.
A multivalued functionf is a function which maps vertices{p, x  Fig. 2(c) illustrates the decomposed functional blocks.
Q1 XX Qn 1 10Qy, formally, f: Qo X Q1 X -+ X Qn_1 — Q. The cut_levelalgorithm, although popularly used, does have its

Definition 6: For the partition4|B on X, a multivalued parti-  problems. To evaluate partitions, the variables must be reordered
tion matrix representation of (X) is defined as a rectangular arraywithin the decision diagram package. The process of variable re-

of the functional values of. Given thatd = {z,, ..., 2;} and ordering can actually lead to diagrams that have exponential size [9],
B = {2, ..., 2, },the partition matrix is arranged j 4| = |@;|x  which can result in increased run-times. The remaining algorithms
c+ % |Qk| rows andQg| = |Qi| X -+ X |@Qm]| columns. presented in this paper do not reorder the variables in a decision

The definitions of simple disjunctive decompositions can easily s#agram.
applied to functions that are incompletely specified. An incompletely
specified function can be represented in a partition matrix, where the Bound Set Evaluation without Reordering
column multiplicity is found by finding columns that acempatible

Definition 7: Two columns in a partition matrix aeompatible if G'iven that variable reordering can cause large timing apd size con-
for every row, the output values of both columns are equal, o if at leslfaints, researchers looked for a method that would require very little
one of the output values isdon't care reordering. The only algorithm that has been published, as far as we

Example 1: Given the partition{a}|{b. ¢} of  in Fig. 1, the know, is the LPV evaluation algorithm propo.sed py Lai, Pet;lram, .and
columns “00” and “11” are equal, and columns “01” and “10” aré/rudhula_[S]. An advantag_e of theT LPV aIgo_nthm is that the mclusmq
compatible. By setting the don't care in column “01” to 3, column8" €xclusion of bound variables is done without reordering the vari-
“01” and “10” are now equal and the column multiplicitybe|a) = 2. gbles in the BDD package. Thg rest of this subsec"[lon dlscugses the
Becauser = 2 and the number ot composite functions ig= implementation ofthe_ LPV algorlthm.Atthe enq of this subsection we
Mog, v] = [log, 2] = 1, f can be written aF(&(b, c), a). extend the LPV a_lgorlthm for _multlvalued functlons_. _

The LPV algorithm determines the number of distinct columns by
using bit vectorsto represent each of the columns.bit vector is
defined as a set of Boolean values corresponding to the functional

Because partition matrices are exponential in the number of furmatput values of a function in order. Because each column in a partition
tional inputs, many researchers have looked for different data structunestrix may be represented by a bit vector. By encoding a bit vector to

Ill. DECISION DIAGRAM BASED DECOMPOSITION
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Fig. 2. Example of MDD-based decomposition. (a) Partition mdtai¥|{b, c}. (b) Corresponding MDD. (c) Decomposed blocks.
be B. New Decomposition Algorithms Based on MDDs
a 00 01 10 11
ofl o 0 0 1 2°¢[0 0 0 1] + 2'x[0 0 1 1] The decomposition strategy proposed here is the same as the strategy
f{g 8 g %% + [002 2] of Lai, Pedram, and Vrudhula algorithms, where one algorithm (EVAL)
1] 0 0 1 1 is used to evaluate the column multiplicity of a partition and a second
algorithm (PARTITION) is used to decompose the function. Two al-
() () gorithms are used because the algorithm to determine column multi-
‘ N - ) plicity is much faster than the algorithm for decomposing a partition.
Fig. 3. LPV example. (a) Partitiofu}|{b, ¢}. (b) LPV encoding. Both algorithms were developed for large Boolean/multivalued, com-

pletely/incompletely specified functions to check small bound sets.

an integer value, the determination of column equality is done by com-Our first algorithm, called EVAL determines column incompatibil-

paring the encoded integer value of each column. If the encoded €S While traversing a functional graph by using an incompatibility
teger values of two columns are equal, then the two columns are eq@&@Ph to store the incompatibilities between columns [13]. While
Because the integers can be very large (the size of each bit vectof@ersing a functional graph, the EVAL algorithm extracts sets of

exponential in the number of free variables), an edge-valued BDDRatition matrix rows. Each set of rows is a subset of all rows in
used to represent each of the encoded integer values. a partltlon matl’IX, and thus, paII’S Of COIUmnS can be CheCked f0r

Example 3: Given is the partition matriXa}|{b, ¢} for f(a, b, ¢) ~incompatibilities over the subset of rows. When the EVAL algorithm
shown in Fig. 3(a). The first column in the partition can be encodé@Mmpletes its traversal, the columns have been checked for incom-
asQU x 0+ 21 x 0, where the encoding is given by the mu|t|p||ca_pat|b|||t|es over all rows of a partition matrix. Incompatlblllty of two
tion of 27" ™ber This operation can be continued until all columngolumns is determined by simultaneously traversing the graphs that
are found, which is the same as finding the integer vectors for ed@present the columns over a given set of rows. If the traversals reach
2° %[0, 0, 0, 1] +2' % [0, 0, 1, 1] as shown in Fig. 3(b). The column care, then the columns are incompatible as defined in Definition 7.

multiplicity is three, found by the number of different encoded integer Before running the EVAL algorithm, an incompatibility graph is cre-
values in the vectofl), 0, 2, 3]. ated with no edges and each vertex in the graph is associated with a
The following is a possible extension of the LPV algorithm to ineolumn in the partition matrix. If two columns are found to be incom-
completely specified functions (this is not presented in [8]). Instegxhtible over a given set of partition matrix rows, an edge is placed in
of using one encoded integer value to represent a column, a pairtled incompatibility graph between the two vertices that represent the
encoded integer values are used. The pair of encoded integers arawwecolumns. If two columns are found to be incompatible during the
minimum and maximum values of a given column bit vector, denotdrhversal, the columns are not checked for incompatibility over any re-
as [min, max]. The minimum and maximum encoded integer valuezining set of rows. In the worst case (two columns are compatible),
are obtained by forcing atlon’t caresin the bit vector to 0 and 1, re- columns are checked for incompatibilities over all possible row values.
spectively. For instance, given the bit vector of a columfitas 10—, In the best case, the columns are found to be incompatible for the first
where a dash denoteglan’t carevalue, the minimum and maximum row in the partition matrix, and only one row is evaluated.
values are 4 and 13. The binary representations of 4 and 13 are 000 10bhe EVAL algorithm extracts a set of rows from the decision di-
and 001 101. If a column does not halen’t caresthenmin = max. agram by using a@epth-firstalgorithm that simultaneously traverses
The pair [min, max] can be used to compute the corresponding cuhébgraphs of the graph representatiorf oThe number of subgraphs
C that represents the output values of a column. Two columns are canaversed equals the number of colum|i@z|, in the partition ma-
patible if their corresponding cubés andC’; have a nonempty inter- trix. The algorithm starts by traversing the functional diagramny pf
section. Converting the integer values to cubes and checking if the twatil a vertex that represents a bound variable s reached. The tra-
cubes intersect are linear procedures. The problem is that the cubewarsal is continued by simultaneously traversing each ofhé co-
exponential in the number of free variables. Because of the edge-valtectors of the vertex. When the traversals reach vertices that represent a
BDD representation of the encoded integer values, computation of gexond bound variable,, the traversal is continued by simultaneously
cubes is generally less than exponential, but can still be quite largetraversing each of thg) ;| cofactors of each vertex. At this point the
To compare our new algorithm EVAL (presented in the next sulmumber of subgraphs being traversed simultaneoudi§is x |Q;].
section) with the LPV algorithm, we have created an LPV algorithifihe traversal is continued until the number of subgraph traversals is
for multivalued functions. This extension is exactly the same as in th@ z|. Each of the()g| subgraphs represents a column over a set of
LPV algorithm for incompletely specified functions except that it use®ws, and therefore, pairs of subgraphs are checked for incompatibil-
powers of() ; instead of powers of two to encode each row, given thities. The traversal routine then continues to find the next set of rows.
the functional output takes values from the Qat The EVAL pseudo code is shown in Algorithm 1.
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Fig. 4. EVAL and PARTITION example. (a) Partition matr{x, d}|{a, b}. (b) Decision tree. (c) EVAL incompatibility graph. (d) 00 column returned by
PARTITION.

Algorithm 1 EVAL pseudo code. the bound set, so EVAL is called with both cofactors:6f [0, b1].
EVAL(vector of MDD vertices: S) Variableb is in the bound set, so EVAL is called with all four cofactors
let 2« be the variable represented by the of [0, b1]: [1, 0, 0, —] (shown in the figure as$’). The number of
set of vertices in S vertices in vectolS is the same as the number of columns in the parti-
let |@Q.| be the number of cofactors of tion, so the vertices in vectdi are checked for incompatibility. Edges
variable T are placed in the incompatibility graph between the pairs of columns
let S, be a vector of vertices repre- {00, 01} and{00, 10} because the first element fis incompatible
senting the ith cofactor of each vertex with the second and third elements $h The algorithm then moves
in S back to the vertext0, and then traverses the 1-cofactorddf [al].
let [S;, S;] be a vector of vertices such Because variables and b are bound variables, EVAL is iteratively
that ﬁ ; and S, are subsets of the vector called with both cofactors of1: [62, 53], and then all four cofactors
if =z is a bound variable of [2, b3]: S = [—, 1, 1, 0]. Edges are placed between the pairs of
call EVAL( [Sy, 81, -+, 89, |-1]) columns{01, 11} and {10, 11} in the incompatibility graph [shown
else z is a free variable in Fig. 4(c)]. By traversing the remaining vertices in the diagram, the
if S| = Q5| vectors|0, —, 1, 0] and[—, 0, 0, 1] are checked for incompatibility.
S denotes all the columns in the Because no additional incompatibilities exist, the incompatibility graph
partition matrix for all pairs is not changed. After EVAL traverses all vertices in the diagram, graph
{si, 8, € 8 coloring of the incompatibility graph determines that the column mul-
if there does not exist an edge in tiplicity of this partition is two. Notice that = 2 is also true for the
the incompatibility graph between partition matrix shown in Fig. 4(a).
s; and s; To decompose a function given a partition, the PARTITION algo-
if elements {si, s;} are incompat- rithm is used. The PARTITION algorithm returns decision diagrams
ible columns that represent each of the columns in the partition matrix. Algorithm 2
add an edge in the incompati- shows the recursive procedure that returns the left-most column in the
bility graph between s; and s; partition matrix, by only traversing the 0-cofactor of each bound vari-
else able. The full algorithm of PARTITION simultaneously calculates all
for i=0to |Q.]—1 columns in the partition matrix

call EVAL( S,)

Algorithm 2 PARTITION pseudo code to find
Example 4: Given the functionf(a, b, ¢, d) and the partition the left-most column.
{e, d}|{a, b} shown in Fig. 4(a), the corresponding decision tree iIRARTITION( »: vertex)
Fig. 4(b) is used to explain the EVAL algorithm. First, an incompat- if v is a terminal vertex
ibility graph is created with four vertices and no edges, the vertices return v

represent each of the colum{30, 01, 10, 11} in the partition matrix let =« be the variable represented by v
and the edges between vertices represent incompatibilities betweetet || be the number of cofactors of
columns. variable x

The EVAL algorithm is started by traversing the decision tree repre- let  v; be the ith cofactor of the vertex
sentation off . The root vertex;0, does not represent a bound variable, v, 0 <1t < |Qm|
so EVAL is called with the O-cofactor @f): [d0]. d isnotinthe bound if =z is a bound variable
set, so EVAL is called with the 0-cofactor @6: [«0]. Variablea is in return PARTITION (  wo)
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TABLE | TABLE I
RUN-TIME COMPARISONS OF THEEVAL RUN-TIME AND SIZE COMPARISONS OF THEPARTITION AND
AND LPV ALGORITHMS cut_levelALGORITHMS
EVAL LPV init. | PARTITION cut_level ot tevel
N - PARTITION
glename 021 140 1(?0 95:0 320 340 860 430 filename | size | time size | time  size size%
sym ) X X ! / y I . Osym 41 | 01 70 | 01 70 100.0
alu2 01 30 330 280 100 130 250 1240 ah),/z 264 | 20 517 | 20 456 88.3
b12 10 30 210 2880 | 7130 2850 1800 499.0 b12 100 30 161 | 60 115 715
;%‘ (1’-(1) (3’-(1) 1(;10 12-910 g-(l) 1%10 105-10 3(210 frgl 230 | 250 415 |441.0 19411 | 46774
. . ) ) ) ) ) | 16a | 1 ] ‘ ‘
spla |50 200 1040 >1000|>1000 >1000 1106 1000 2;;’3 620 1500 136317 212% 1330351 g?i
1481 01 30 460 5140 | >1000 >1000 8770 >1000 481 47 |30 134 | 70 134 1150
‘1"263 g‘? 2(?'10 1;360 8820 3?‘30 2?760 2;260 4310 table3 | 951 | 150 2075 | 240 2297 | 1107
Elb ol o1 10 i o 10 >0 i pal2 26 | 0.1 42 | 0.1 34 81.0
2b 10 70 153 >1000 | >1000 >1000 >1000 >1000 C;E 12010 g'(l) 13822 (2"(1) 13822 }88'8
c3b 20 100 279 >1000| >1000 >1000 >1000 >1000 °3b P04 : :
d1 01 10 90 - | >1000 >1000 >1000 - ¢ 133 | 40 2 70 245 100.0
42 3.0 240 >1000 >1000 | >1000 >1000 >1000 >1000 dl 31101514 01 51 100.0
43 40 310 >1000 >1000 | >1000 >1000 >1000 >1000 a2 152120 291 | 20 287 987
d3 217 | 80 419 | 80 415 99.1
else z is a free variable
return a new vertex with cofac- The units for time are in seconds. Any elementin the table that begins
tors [PARTITION v9), PARTITION with “>", states that the program did not complete in the designated
prog p g
(v1), .., PARTITION( v, |-1)]- time. A “—” denotes that the number of bound variables selected was
larger than the number of input variables, thus a decomposition could

é?ot be done.
Table |comparesthe EVAL andthe LPV algorithms. To make the com-

d0, then down to vertex( (traversing the 0-cofactor of each vertex).panson’ we implemented our own multivalued version of the LPV algo-

Vertex a0 represents a bound variable so traverse the 0-(:ofactorrBPm'The EVAL anq LPV algorlthmswere runusing vquable bounq set
a0: b0. The O-cofactor ob0 is a terminal vertex-1, so a 1 is returned >'“€3 of two, four, six, and eight. For each bound set size, the algorithms
PARTITION moves back td0 and then traverses the 1-cofactodef WE'e run on 100 random partitions and the time to evaluate all 100 parti-
down to the O-cofactor df2: don't careterminal vertex. PARTITION tions is displayed in the table. The set of random partitions was the same
returns =" and moves back t@0, creating a new vertex{2 vertex for POth algorith_njs. The f:omparison_of these algqrithms Is the rl_Jn-time
with cofactors[1, —]. Calling PARTITION on the 1-cofactor of0 to find 100 partitions, this doe;_not include the time to d(_atermme the
returns a new vertex3 with cofactors[0, —|. Because-0 is a free column multiplicity of each partition. In all cases of two-variable bound

' sets, the EVAL algorithm is much faster than the LPV algorithm. As

variable, a new vertex;l is created with cofactoffg2, d3]. The new . . .
X 1612, d3] rHa size of the bound sets increases, the LPV algorithm starts to perform

diagram that represents the 00 column in the partition matrix is shO\é/ . o .
in Igig 4(d) P P etterthan the EVAL algorithm. Thisis caused by the number of simulta-

Because PARTITION and EVAL do not perform any variable swadﬁgc\)/usltrav_e':sals n t::e EV'IA‘!‘ a:go[r;tgm. Vk\‘/hen;;)mpgrlng t:e EVAL. and
ping, the algorithms are fairly fast. The EVAL and PARTITION algo- ha Eg:/'t rlns qnht emu t'¥a uz et?c marh_ ur:lc_tllﬂns,t € rur;-tlmr(]es
rithms are limited to small bound sets because the number of colun?rg € algorithm were found to be very high. The reason for the

is exponential with respect to the number of variables in the bou ge amount of time is that each of the functional inputs are multivalued
set. The restriction of small bound sets is used in many decomposit}% ich greatly increases the number of possible output combinations for
%e function. In fact, the LPV algorithm does not complete in the spec-

Example 5: Given the decision tree in Fig. 4(b), and bound s
{a, b}, the PARTITION algorithm starts at0, traverses to vertex

algorithms, including FPGA synthesis [6] and decomposition for ma-~ . . . :
chine learning decomposition [14], [15]. The LPV algorithm does n ed time for most of the multivalued benchmark functions, while the
' VAL completes for all two- and four-variable bound sets.

have the same restriction, but finding the column multiplicity of a in- Table | sh hat th lqorith | valent for th
completely specified function is a NP-hard problem with respect to the able | shows that the two algorithms are almost equivalent for the

number of columns in the partition [16]. To reduce the complexities gfnary, complet_ely specified functions, but for multivalued func_tions
finding the column multiplicity of a partition, the bound set size shouIH'Ie EVAL algorithm performs much better than the LPV algorithm.

be restricted, which in essence also restricts the bound set sizes J algorithmic complexity of the LPV algquthm encoding depends
by the LPV algorithm. on the number of row output values for a given column, specifically,

the complexity is exponential in the number of free variables. Once
the LPV algorithm is completed, each encoded integer value must be
decoded to determine column compatibilities, which is based on the
Tables I and Il compare the run-times of the different algorithms praumber of free variables for the decoding and the number of bound
sented in this paper on different benchmark sets using a MDD packaggriables for checking for column compatibility. The time complexity
The benchmark sets used are the MCNC benchmarks [17] and ti¢he EVAL algorithm is exponential in the number of bound variables.
multivalued benchmarks [18]. The benchmarks are separated in theTtaus, for small bound sets, the EVAL algorithm should perform well,
bles for readability and to show the difference of timing between eaekien for very large multivalued functions. The reason that EVAL did
benchmark type. Inthe tables, the MCNC benchmarks are at the top antl complete in the specified time with eight-variable bound sets for
the multivalued benchmarks are on the bottom. The MCNC benchmamiost of the benchmarks, is that the number of columns in each partition
functions are multiinput and multioutput, completely specified funds greater than 20 000.
tions. The multivalued benchmarks are all single outparinpletely Table 1l compares the PARTITION anclit_levelalgorithms. To
specified, multivalued input and multivalued output functions. compare the two algorithms, all two-input bound set partitions of the

IV. EXPERIMENTAL RESULTS
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functions were evaluated. The table shows the initial size (humber[9] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-de-
of vertices in the MDD) before starting the decomposition process. igglfzn diagrams,ACM Computing Surveysol. 24, no. 3, pp. 293-318,
PARTITION and _cut_levelwere compgr_ed by showing the time to. 10] H.A..Curtis, “Generalized tree circuitACM, pp. 484-496, 1963.
evaluate all tW(?"nPUI bound set p.artltlons and the worst-case siz 1] C. Files, R. Drechsler, and M. Perkowski, “Functional decomposition
(number of vertices). The two algorithms were also compared on the ~ of MVL functions using a multi-valued decision diagram,®moc. Int.
worst-case number of vertices in the MDD when evaluating a partition.  Symp. Multi-Valued Logjcl997, pp. 27-32. y

The column ize% gives the size percentage of the two algorithms.[12] C- F"ers]_a”(: M. Perkowilfl,dl’\‘/lyn]tl-vallueidéunctlor,\}lalISe\c/:olmpdols_ltlon as
Table Il shows that the PARTITION algorithm is always faster than ignggcpg‘elff_r%ng method,” fAroc. Int. symp. Mulli-valued Logic
the cut_levelalgorithm. When comparing the decision diagram sizes|13] m. Perkowski, R. Malvi, S. Grygiel, M. Burns, and A. Mishchenko,

created by the two algorithms, the sizes are generally the same, except “Graph coloring algorithms for fast evaluation of Curtis decomposi-

for the benchmark functiofrgl. We feel that this function fits in the tions,” in Proc. Design Automation Confl999, pp. 225-230. _

category of reordering that results in a decision diagram of exponential¥ C- Files and M. Perkowski, "An error reducing approach to machine
. . . learning using multi-valued functional decomposition,” Rroc. Int.

size. While thg PARTITION .anatut_levelalgorlthms usually resqlt Symp. Multi-Valued Logicl998, pp. 167-172.

in the same size decision diagrams and the same amount of time {g5] B. Zupan, M. Bohanec, I. Bratko, and J. Demsar, “Machine learning by

complete the task, there are situations wherectlte levelalgorithm function decomposition,” ilProc. ICML-97 D. H. Fisher, Ed., 1997, pp.

results in decision diagrams that are much larger than the PARTITION, _ 421-429. _ ,
algorithm. [16] M. Perkowski, T. Luba, S. Grygiel, P. Burkey, M. Burns, N. lliev, M.

Kolsteren, R. Lisanke, R. Malvi, Z. Wang, H. Wu, F. Yang, S. Zhou, and
J. Zhang, “Unified approach to functional decompositions of switching
functions,” Portland State Univ., Portland, OR, ser. Tech. Rep., 1995.
[17] MCNC. (1991) Benchmark functions. [Online] Available:
Two new algorithms, EVAL and PARTITION, were created that do . fépil/:/_frc“i-l”;gg‘)?-gg/tl d Logic Optimization (POLO) Bool
P : . Flles. rtian ogic Optimization group boolean
npt reorder the MDD and, thus, do not cause an exponential mcregse H] and multi-valued benchmark functions. [Online] Available: HTTP:
size of the MDD by reorc_ierlng. The advantage of the EVAL_ algorithm http:/mww.ee.pdx.edu/polo/functions/
is that the partition table is constructed by rows and determines column
compatibilities while constructing the partition table. The LPV algo-
rithm, on the other hand, constructs the partition table and then must
determine column compatibilities.

Comparisons were run against the well-known algorithms presented
by Lai, Pedram, and Vrudhula. In most cases, the EVAL algorithm On Synchronizab'e Circuits and Their Synchronizing

V. CONCLUSION

is faster than the LPV algorithm, especially on small bound sets. In Sequences
fact, the EVAL algorithm was able to complete in the specified amount
of time on the large multivalued functions while the LPV algorithm Irith Pomeranz and Sudhakar M. Reddy

could not. EVAL is also much faster than running the PARTITION or
cut_levellgorithms. A restriction of the EVAL and PARTITION algo-
rithms is that they are only practical for partitions with small bound Abstract—Synchronizing sequences are important in facilitating the test

sets. This restriction is actually used in many decomposition straf@-nera“o” process for detectable faults, and in identifying undetectable
.Taults. Synchronizing sequences are also important in determining whether

gles, _'ndUd'ng FPGA dgcompos!tlon and_ decompos!t'on for maCh'%ﬂ undetectable fault can be removed from a circuit without affecting its
learning [14], [15]. Machine learning functions are typically large mulhormal operation, i.e., in determining whether a fault is “redundant.” In
tivalued, incompletely specified functions where heuristics are usedthis work, we show a class of faults such that a synchronizing sequence for
reduce the search space by only evaluating small bound sets. a faulty circuit can be obtained by repeating the synchronizing sequence
of the fault-free circuit. Identification of such faults can be done by simu-
lating the faulty circuits under the repeated synchronizing sequence of the
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