
IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2000 1081

[3] S. Devadas and K. Keutzer, “Synthesis of robust delay-fault-testable
circuits: Theory,” IEEE Trans. Computer-Aided Design, vol. 11, pp.
87–101, Jan. 1992.

[4] , “Synthesis of robust delay-fault-testable circuits: Practice,”IEEE
Trans. Computer-Aided Design, vol. 11, pp. 227–300, Mar. 1992.

[5] I. Pomeranz and S. M. Reddy, “Achieving complete delay fault testa-
bility by extra inputs,” inProc. Int. Test Conf., 1991, pp. 273–282.

[6] V. A. Vardanian, “On completely robust path delay fault testable realiza-
tion of logic functions,” inProc. VLSI Test Symp., 1996, pp. 302–307.

[7] N. K. Jha, I. Pomeranz, S. M. Reddy, and R. J. Miller, “Synthesis of
multi-level combinational circuits for complete robust path delay fault
testability,” inProc. FTCS, 1992, pp. 280–287.

[8] A. K. Pramanick and S. M. Reddy, “On the design of path delay fault
testable combinational circuits,” inProc. FTCS, 1990, pp. 374–381.

[9] W. Ke and P. R. Menon, “Delay-testable implementations of symmetric
functions,”IEEE Trans. Computer-Aided Design, vol. 14, pp. 772–775,
June 1995.

[10] I. Pomeranz and S. M. Reddy, “On synthesis-for-testability of combi-
national logic circuits,” inProc. ACM/IEEE Design Automation Conf.,
1995, pp. 126–132.

[11] Z. Kohavi, Switching and Finite Automata Theory. New York: Mc-
Graw Hill, 1977.

[12] D. L. Dietmeyer, “Generating minimal covers of symmetric function,”
IEEE Trans. Computer-Aided Design, vol. 12, pp. 710–713, May 1993.

[13] C. Ding, G. Xiao, and W. Shan,The Stability Theory of Stream Ci-
phers. Berlin, Germany: Springer-Verlag, 1991. LNCS.

[14] Y. X. Yang and B. Guo, “Further enumerating Boolean functions of cryp-
tographic significance,”J. Cryptol., vol. 8, no. 3, pp. 115–122, 1995.

[15] S. Chakrabarti, “Studies in redundancy and testable design of logic cir-
cuits,” Ph.D. thesis, Univ. Calcutta, Calcutta, India, 1998.

New Multivalued Functional Decomposition Algorithms
Based on MDDs

Craig M. Files and Marek A. Perkowski

Abstract—This paper presents two new functional decomposition parti-
tioning algorithms that use multivalued decision diagrams (MDDs). MDDs
are an exceptionally good representation for generalized decomposition
because they are canonical and they can represent very large functions.
Algorithms developed in this paper are for Boolean/multivalued input and
output, completely/incompletely specified functions with application to
logic synthesis, machine learning, data mining and knowledge discovery
in databases. We compare the run-times and decision diagram sizes of
our algorithms to existing decomposition partitioning algorithms based
on decision diagrams. The comparisons show that our algorithms are
faster and do not result in exponential diagram sizes when decomposing
functions with small bound sets.

Index Terms—Algorithms, logic design, unsupervised learning.

I. INTRODUCTION

Functional decomposition is known as expressing a function as a
composition of two or more functions. While many papers were written
about the topic of functional decomposition there was no comprehen-
sive approach until Ashenhurst presented a unified theory of functional
decomposition, and for the first time defined its basic properties in [1],
[2]. Curtis used the theorems of Ashenhurst to develop a generalized

Manuscript received May 12, 1999; revised April 8, 2000. This paper was
recommended by Associate Editor L. Stok.

The authors are with The Department of Electrical Engineering, Portland
State University, Portland, OR 97207-0751 USA (e-mail: cfiles@ee.pdx.edu).

Publisher Item Identifier S 0278-0070(00)07476-5.

form of decomposition in [3] and [4]. There have been many other pro-
posed types of functional decompositions since the advent of Curtis
decomposition. But, the fundamentals of Ashenhurst and Curtis de-
composition provide essential insight into a wide range of functional
decomposition types.

Two new functional decomposition partitioning algorithms that are
based on multivalued decision diagrams (MDDs) [5] are presented in
this paper: PARTITION and EVAL. Both algorithms are compared to
the existingcut_leveland LPV (Lai, Pedram, and Vrudhula) binary de-
cision diagram (BDD)-based functional decomposition partitioning al-
gorithmsdevelopedbyLai,Pedram,andVrudhula[6]–[8].Thecut_level
algorithm is very well known, but is based on reordering the variables in
the decision diagram. This can be a problem because variable reordering
may lead to decision diagrams of exponential size [9]. This is the advan-
tage of the PARTITION algorithm over thecut_levelalgorithm because
the PARTITION algorithm does not reorder variables in the decision di-
agram. The LPV algorithm is much faster than thecut_levelalgorithm
and can quickly evaluate many partitions, but the LPV algorithm can
only be used to determinecolumn multiplicities, to decompose a func-
tion thecut_levelalgorithm must be used.

The advantage of the EVAL algorithm over the LPV algorithm is
based on the way the two algorithms construct partition tables and
determine column equalities. The LPV algorithm constructs a parti-
tion table by constructing each column in the table. After the partition
table is created each pair of columns is checked for equality. For com-
pletely and incompletely specified functions, two columns are equal if
their encoded integer values are equal. An extension to the LPV algo-
rithm for incompletely specified functions is presented in this paper to
find columns that are compatible (by setting output don’t cares in the
columns, the two columns can be made equal).

The EVAL algorithm constructs the partition table by rows and
checks if two columns are equal while constructing the partition table.
This makes it possible to determine that two columns are not equal
or not compatible before completing their construction. Of course,
if the two columns are equal then the two columns must be fully
constructed. The advantage of the EVAL algorithm is that after the
construction of the partition table no extra computation is needed. The
LPV algorithm must construct the partition table and then determine
column equalities and column compatibilities.

Section II gives the general notations for functional decomposition.
Section III presents the Lai, Pedram, and Vrudhula algorithms and our
new MDD-based algorithms. Section IV shows the experimental re-
sults of the algorithms and the paper is concluded in Section V.

II. GENERAL DECOMPOSITION

The decomposition of a function can be an expression of the
function in terms of a composition of other functions. For example,
if f(x0; x1; x2; x3) = F (�(x0; x1); x2; x3), then the term on the
right is a decomposed function that is equivalent in behavior to the
original functionf .

In general, ann-input, single output Boolean function,f :
f0; 1gn ! f0; 1g, has the set of input variablesX =
fx0; x1; . . . ; xn�1g. The number of variables in setX is de-
noted byjXj.

Definition 1: LetA � X andB � X, whereA 6= ; andB 6= ;.
A partition , denoted asAjB, exists ifA \B = ; andA [B = X.

Definition 2: A functionf(x0; x1; . . . ; xn�1) has anAshenhurst
simple disjunctive decomposition[1], if f can be represented byf =
F (�(B); A). This is known as partitioning the input variables into the
bound setB and thefree setA. The variables inB andA are known
asbound variablesandfree variables, respectively.

0278-0070/00$10.00 © 2000 IEEE

1082 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2000

Fig. 1. Partition matrixfagjfb; cg.

Definition 3: For the partitionAjB onX, apartition matrix repre-
sentation off(X) is defined as a rectangular array of the2n functional
values off , arranged in2jAj rows and2jBj columns.

Definition 4: The number of distinct column vectors in a partition
matrix is called thecolumn multiplicity of the partition and is denoted
by �.

Theorem 1: A function f(x0; x1; . . . ; xn�1) has an Ashenhurst
simple disjunctive decomposition, denoted byf = F (�(B); A) if the
partition matrixAjB has column multiplicity� � 2.

Proof: Proof is given in [4].
Obviously, Theorem 1 can be expanded for partitions that have larger

column multiplicities.
Definition 5: A Boolean functionf(x0; x1; . . . ; xn�1) has a

Curtis disjunctive decomposition [10], denoted by the composite
function

f = F (�0(B); �1(B); . . . ; �k�1(B); A)

if the partition matrixAjB has column multiplicity� � 2k, where
k < jBj.

A multivalued function over multivalued argumentsxi; 0 � i < n,
denoted byf(x0; x1; . . . ; xn�1), takes output values from a finite set
of values. A multivalued variablexi can take values from the setQi =
fq0; q1; . . . ; qjQ j�1g. For reference,Qi denotes the set of values that
variablexi can have. Each symbolic valueqk can be associated with a
unique integerk, and because only integer values are considered, then
Qi = f0; 1; . . . ; jQij � 1g.

A multivalued functionf is a function which maps vertices inQ0�
Q1�� � ��Qn�1 toQf , formally,f : Q0�Q1�� � ��Qn�1 ! Qf .

Definition 6: For the partitionAjB on X, a multivalued parti-
tion matrix representation off(X) is defined as a rectangular array
of the functional values off . Given thatA = fxj ; . . . ; xkg and
B = fxl; . . . ; xmg, the partition matrix is arranged injQAj = jQj j�
� � � � jQkj rows andjQB j = jQlj � � � � � jQmj columns.

The definitions of simple disjunctive decompositions can easily be
applied to functions that are incompletely specified. An incompletely
specified function can be represented in a partition matrix, where the
column multiplicity is found by finding columns that arecompatible.

Definition 7: Two columns in a partition matrix arecompatible if
for every row, the output values of both columns are equal, or if at least
one of the output values is adon’t care.

Example 1: Given the partitionfagjfb; cg of f in Fig. 1, the
columns “00” and “11” are equal, and columns “01” and “10” are
compatible. By setting the don’t care in column “01” to 3, columns
“01” and “10” are now equal and the column multiplicity�(bcja) = 2.
Because� = 2 and the number of� composite functions isk=
dlog

2
�e = dlog

2
2e = 1, f can be written asF (�(b; c); a).

III. D ECISION DIAGRAM BASED DECOMPOSITION

Because partition matrices are exponential in the number of func-
tional inputs, many researchers have looked for different data structures

to represent partition matrices, including decision diagrams. This sec-
tion discusses decision diagram-based functional decomposition [11],
[12], [6]–[8].

Definition 8: A decision diagramover a set of variablesX and a
nonempty terminal setT is a connected, directed acyclic graphG =
(V; E) with the following properties:

• a vertexvi 2 V is either anonterminalor a terminal vertex;
• each nonterminal vertexvi represents a variablexi 2 X andvi

has exactlyjQij successorsinV , given thatxi hasjQij cofactors;
• each terminal vertexvi has no successors and is labeled with a

valueti 2 T whereT = Qf , given thatQf is the set of output
values functionf can have;

• a root vertex is the top vertex inG, i.e., no vertex in the graph
has a root vertex as a successor.

Definition 9: A decision diagram partition matrix of a function
can be represented by partitioning the input variables in the decision
diagram, such that all of the bound variables are above (at the top of
the graph) all of the free variables. Note, the order of variables within
the bound set or within the free set has no effect on the partition found.

Definition 10: Thecut_leveldesignates the boundary between the
bound variables and the free variables in the decision diagram.

The method for detecting decompositions using the decision dia-
gram canonical form is called thecut_levelalgorithm [8]. The algo-
rithm states that the number of distinct columns in a decision diagram
partition matrix is the number of vertices below the cut_level that have
an edge that crosses the cut_level. This statement is true because of
the canonical representation of the decision diagram. If a function is
completely specified, then the column multiplicity is just the number
of distinct columns found in the decision diagram.

As proposed in [11], thecut_levelalgorithm can easily be extended
to multivalued functions. The following example illustrates the
cut_levelalgorithm for multivalued functions.

Example 2: Consider the four-valued function in Fig. 2, where the
partitionfagjfb; cg of the functionf(a; b; c) is shown in Fig. 2(a).
The column multiplicity is the number of vertices below thecut_level
that have an edge that crosses thecut_level. From the decision diagram
shown in Fig. 2(b) the column multiplicity is four, which implies the
decompositionf = F (�(b; c); a), where� is a four-valued function.
Fig. 2(c) illustrates the decomposed functional blocks.

The cut_levelalgorithm, although popularly used, does have its
problems. To evaluate partitions, the variables must be reordered
within the decision diagram package. The process of variable re-
ordering can actually lead to diagrams that have exponential size [9],
which can result in increased run-times. The remaining algorithms
presented in this paper do not reorder the variables in a decision
diagram.

A. Bound Set Evaluation without Reordering

Given that variable reordering can cause large timing and size con-
straints, researchers looked for a method that would require very little
reordering. The only algorithm that has been published, as far as we
know, is the LPV evaluation algorithm proposed by Lai, Pedram, and
Vrudhula [8]. An advantage of the LPV algorithm is that the inclusion
or exclusion of bound variables is done without reordering the vari-
ables in the BDD package. The rest of this subsection discusses the
implementation of the LPV algorithm. At the end of this subsection we
extend the LPV algorithm for multivalued functions.

The LPV algorithm determines the number of distinct columns by
using bit vectorsto represent each of the columns. Abit vector is
defined as a set of Boolean values corresponding to the functional
output values of a function in order. Because each column in a partition
matrix may be represented by a bit vector. By encoding a bit vector to

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2000 1083

Fig. 2. Example of MDD-based decomposition. (a) Partition matrixfagjfb; cg. (b) Corresponding MDD. (c) Decomposed blocks.

Fig. 3. LPV example. (a) Partitionfagjfb; cg. (b) LPV encoding.

an integer value, the determination of column equality is done by com-
paring the encoded integer value of each column. If the encoded in-
teger values of two columns are equal, then the two columns are equal.
Because the integers can be very large (the size of each bit vector is
exponential in the number of free variables), an edge-valued BDD is
used to represent each of the encoded integer values.

Example 3: Given is the partition matrixfagjfb; cg for f(a; b; c)
shown in Fig. 3(a). The first column in the partition can be encoded
as20 � 0 + 21 � 0, where the encoding is given by the multiplica-
tion of 2rownumber. This operation can be continued until all columns
are found, which is the same as finding the integer vectors for each
row, namely[0; 0; 0; 1] and[0; 0; 1; 1], and encoding them such that
20� [0; 0; 0; 1]+21� [0; 0; 1; 1] as shown in Fig. 3(b). The column
multiplicity is three, found by the number of different encoded integer
values in the vector[0; 0; 2; 3].

The following is a possible extension of the LPV algorithm to in-
completely specified functions (this is not presented in [8]). Instead
of using one encoded integer value to represent a column, a pair of
encoded integer values are used. The pair of encoded integers are the
minimum and maximum values of a given column bit vector, denoted
as [min, max]. The minimum and maximum encoded integer values
are obtained by forcing alldon’t caresin the bit vector to 0 and 1, re-
spectively. For instance, given the bit vector of a column as00� 10�,
where a dash denotes adon’t carevalue, the minimum and maximum
values are 4 and 13. The binary representations of 4 and 13 are 000 100
and 001 101. If a column does not havedon’t caresthenmin = max.

The pair [min, max] can be used to compute the corresponding cube
C that represents the output values of a column. Two columns are com-
patible if their corresponding cubesC1 andC2 have a nonempty inter-
section. Converting the integer values to cubes and checking if the two
cubes intersect are linear procedures. The problem is that the cubes are
exponential in the number of free variables. Because of the edge-valued
BDD representation of the encoded integer values, computation of the
cubes is generally less than exponential, but can still be quite large.

To compare our new algorithm EVAL (presented in the next sub-
section) with the LPV algorithm, we have created an LPV algorithm
for multivalued functions. This extension is exactly the same as in the
LPV algorithm for incompletely specified functions except that it uses
powers ofQf instead of powers of two to encode each row, given that
the functional output takes values from the setQf .

B. New Decomposition Algorithms Based on MDDs

The decomposition strategy proposed here is the same as the strategy
of Lai, Pedram, and Vrudhula algorithms, where one algorithm (EVAL)
is used to evaluate the column multiplicity of a partition and a second
algorithm (PARTITION) is used to decompose the function. Two al-
gorithms are used because the algorithm to determine column multi-
plicity is much faster than the algorithm for decomposing a partition.
Both algorithms were developed for large Boolean/multivalued, com-
pletely/incompletely specified functions to check small bound sets.

Our first algorithm, called EVAL determines column incompatibil-
ities while traversing a functional graph by using an incompatibility
graph to store the incompatibilities between columns [13]. While
traversing a functional graph, the EVAL algorithm extracts sets of
partition matrix rows. Each set of rows is a subset of all rows in
a partition matrix, and thus, pairs of columns can be checked for
incompatibilities over the subset of rows. When the EVAL algorithm
completes its traversal, the columns have been checked for incom-
patibilities over all rows of a partition matrix. Incompatibility of two
columns is determined by simultaneously traversing the graphs that
represent the columns over a given set of rows. If the traversals reach
terminal vertices that have different values and neither vertex is adon’t
care, then the columns are incompatible as defined in Definition 7.

Before running the EVAL algorithm, an incompatibility graph is cre-
ated with no edges and each vertex in the graph is associated with a
column in the partition matrix. If two columns are found to be incom-
patible over a given set of partition matrix rows, an edge is placed in
the incompatibility graph between the two vertices that represent the
two columns. If two columns are found to be incompatible during the
traversal, the columns are not checked for incompatibility over any re-
maining set of rows. In the worst case (two columns are compatible),
columns are checked for incompatibilities over all possible row values.
In the best case, the columns are found to be incompatible for the first
row in the partition matrix, and only one row is evaluated.

The EVAL algorithm extracts a set of rows from the decision di-
agram by using adepth-firstalgorithm that simultaneously traverses
subgraphs of the graph representation off . The number of subgraphs
traversed equals the number of columns,jQB j, in the partition ma-
trix. The algorithm starts by traversing the functional diagram off ,
until a vertex that represents a bound variable,xi, is reached. The tra-
versal is continued by simultaneously traversing each of thejQij co-
factors of the vertex. When the traversals reach vertices that represent a
second bound variable,xj , the traversal is continued by simultaneously
traversing each of thejQj j cofactors of each vertex. At this point the
number of subgraphs being traversed simultaneously isjQij � jQj j.
The traversal is continued until the number of subgraph traversals is
jQB j. Each of thejQB j subgraphs represents a column over a set of
rows, and therefore, pairs of subgraphs are checked for incompatibil-
ities. The traversal routine then continues to find the next set of rows.
The EVAL pseudo code is shown in Algorithm 1.

1084 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2000

Fig. 4. EVAL and PARTITION example. (a) Partition matrixfc; dgjfa; bg. (b) Decision tree. (c) EVAL incompatibility graph. (d) 00 column returned by
PARTITION.

Algorithm 1 EVAL pseudo code.
EVAL(vector of MDD vertices:)

let be the variable represented by the
set of vertices in
let be the number of cofactors of
variable
let be a vector of vertices repre-
senting the th cofactor of each vertex
in
let be a vector of vertices such
that and are subsets of the vector
if is a bound variable

call EVAL()
else is a free variable

if
denotes all the columns in the

partition matrix for all pairs

if there does not exist an edge in
the incompatibility graph between

and
if elements are incompat-
ible columns

add an edge in the incompati-
bility graph between and

else
for to

call EVAL()

Example 4: Given the functionf(a; b; c; d) and the partition
fc; dgjfa; bg shown in Fig. 4(a), the corresponding decision tree in
Fig. 4(b) is used to explain the EVAL algorithm. First, an incompat-
ibility graph is created with four vertices and no edges, the vertices
represent each of the columnsf00; 01; 10; 11g in the partition matrix
and the edges between vertices represent incompatibilities between
columns.

The EVAL algorithm is started by traversing the decision tree repre-
sentation off . The root vertex,c0, does not represent a bound variable,
so EVAL is called with the 0-cofactor ofc0: [d0]. d is not in the bound
set, so EVAL is called with the 0-cofactor ofd0: [a0]. Variablea is in

the bound set, so EVAL is called with both cofactors ofa0: [b0; b1].
Variableb is in the bound set, so EVAL is called with all four cofactors
of [b0; b1]: [1; 0; 0; �] (shown in the figure asS0). The number of
vertices in vectorS is the same as the number of columns in the parti-
tion, so the vertices in vectorS are checked for incompatibility. Edges
are placed in the incompatibility graph between the pairs of columns
f00; 01g andf00; 10g because the first element inS is incompatible
with the second and third elements inS. The algorithm then moves
back to the vertexd0, and then traverses the 1-cofactor ofd0: [a1].
Because variablesa and b are bound variables, EVAL is iteratively
called with both cofactors ofa1: [b2; b3], and then all four cofactors
of [b2; b3]: S = [�; 1; 1; 0]. Edges are placed between the pairs of
columnsf01; 11g andf10; 11g in the incompatibility graph [shown
in Fig. 4(c)]. By traversing the remaining vertices in the diagram, the
vectors[0; �; 1; 0] and[�; 0; 0; 1] are checked for incompatibility.
Because no additional incompatibilities exist, the incompatibility graph
is not changed. After EVAL traverses all vertices in the diagram, graph
coloring of the incompatibility graph determines that the column mul-
tiplicity of this partition is two. Notice that� = 2 is also true for the
partition matrix shown in Fig. 4(a).

To decompose a function given a partition, the PARTITION algo-
rithm is used. The PARTITION algorithm returns decision diagrams
that represent each of the columns in the partition matrix. Algorithm 2
shows the recursive procedure that returns the left-most column in the
partition matrix, by only traversing the 0-cofactor of each bound vari-
able. The full algorithm of PARTITION simultaneously calculates all
columns in the partition matrix

Algorithm 2 PARTITION pseudo code to find
the left-most column.
PARTITION(: vertex)

if is a terminal vertex
return

let be the variable represented by
let be the number of cofactors of
variable
let be the th cofactor of the vertex
,

if is a bound variable
return PARTITION ()

IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2000 1085

TABLE I
RUN-TIME COMPARISONS OF THEEVAL

AND LPV ALGORITHMS

else is a free variable
return a new vertex with cofac-
tors [PARTITION (), PARTITION

,PARTITION()].

Example 5: Given the decision tree in Fig. 4(b), and bound set
fa; bg, the PARTITION algorithm starts atc0, traverses to vertex
d0, then down to vertexa0 (traversing the 0-cofactor of each vertex).
Vertex a0 represents a bound variable so traverse the 0-cofactor of
a0: b0. The 0-cofactor ofb0 is a terminal vertex-1, so a 1 is returned.
PARTITION moves back tod0 and then traverses the 1-cofactor ofd0
down to the 0-cofactor ofb2: don’t careterminal vertex. PARTITION
returns “�” and moves back tod0, creating a new vertex,d2 vertex
with cofactors[1; �]. Calling PARTITION on the 1-cofactor ofc0
returns a new vertexd3 with cofactors[0; �]. Becausec0 is a free
variable, a new vertex,c1 is created with cofactors[d2; d3]. The new
diagram that represents the 00 column in the partition matrix is shown
in Fig. 4(d).

Because PARTITION and EVAL do not perform any variable swap-
ping, the algorithms are fairly fast. The EVAL and PARTITION algo-
rithms are limited to small bound sets because the number of columns
is exponential with respect to the number of variables in the bound
set. The restriction of small bound sets is used in many decomposition
algorithms, including FPGA synthesis [6] and decomposition for ma-
chine learning decomposition [14], [15]. The LPV algorithm does not
have the same restriction, but finding the column multiplicity of a in-
completely specified function is a NP-hard problem with respect to the
number of columns in the partition [16]. To reduce the complexities of
finding the column multiplicity of a partition, the bound set size should
be restricted, which in essence also restricts the bound set sizes used
by the LPV algorithm.

IV. EXPERIMENTAL RESULTS

Tables I and II compare the run-times of the different algorithms pre-
sented in this paper on different benchmark sets using a MDD package.
The benchmark sets used are the MCNC benchmarks [17] and the
multivalued benchmarks [18]. The benchmarks are separated in the ta-
bles for readability and to show the difference of timing between each
benchmark type. In the tables, the MCNC benchmarks are at the top and
the multivalued benchmarks are on the bottom. The MCNC benchmark
functions are multiinput and multioutput, completely specified func-
tions. The multivalued benchmarks are all single output, incompletely
specified, multivalued input and multivalued output functions.

TABLE II
RUN-TIME AND SIZE COMPARISONS OF THEPARTITION AND

cut_levelALGORITHMS

The units for time are in seconds. Any element in the table that begins
with “>”, states that the program did not complete in the designated
time. A “�” denotes that the number of bound variables selected was
larger than the number of input variables, thus a decomposition could
not be done.

Table IcomparestheEVALandtheLPValgorithms.Tomakethecom-
parison, we implemented our own multivalued version of the LPV algo-
rithm. The EVAL and LPV algorithms were run using variable bound set
sizes of two, four, six, and eight. For each bound set size, the algorithms
were run on 100 random partitions and the time to evaluate all 100 parti-
tions is displayed in the table. The set of random partitions was the same
for both algorithms. The comparison of these algorithms is the run-time
to find 100 partitions, this does not include the time to determine the
column multiplicity of each partition. In all cases of two-variable bound
sets, the EVAL algorithm is much faster than the LPV algorithm. As
the size of the bound sets increases, the LPV algorithm starts to perform
better than theEVALalgorithm.This iscausedby thenumberofsimulta-
neous traversals in theEVALalgorithm.Whencomparing theEVALand
LPV algorithms on the multivalued benchmark functions, the run-times
of the LPV algorithm were found to be very high. The reason for the
large amount of time is that each of the functional inputs are multivalued
which greatly increases the number of possible output combinations for
the function. In fact, the LPV algorithm does not complete in the spec-
ified time for most of the multivalued benchmark functions, while the
EVAL completes for all two- and four-variable bound sets.

Table I shows that the two algorithms are almost equivalent for the
binary, completely specified functions, but for multivalued functions
the EVAL algorithm performs much better than the LPV algorithm.
The algorithmic complexity of the LPV algorithm encoding depends
on the number of row output values for a given column, specifically,
the complexity is exponential in the number of free variables. Once
the LPV algorithm is completed, each encoded integer value must be
decoded to determine column compatibilities, which is based on the
number of free variables for the decoding and the number of bound
variables for checking for column compatibility. The time complexity
of the EVAL algorithm is exponential in the number of bound variables.
Thus, for small bound sets, the EVAL algorithm should perform well,
even for very large multivalued functions. The reason that EVAL did
not complete in the specified time with eight-variable bound sets for
most of the benchmarks, is that the number of columns in each partition
is greater than 20 000.

Table II compares the PARTITION andcut_levelalgorithms. To
compare the two algorithms, all two-input bound set partitions of the

1086 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 9, SEPTEMBER 2000

functions were evaluated. The table shows the initial size (number
of vertices in the MDD) before starting the decomposition process.
PARTITION and cut_levelwere compared by showing the time to
evaluate all two-input bound set partitions and the worst-case size
(number of vertices). The two algorithms were also compared on the
worst-case number of vertices in the MDD when evaluating a partition.
The column size% gives the size percentage of the two algorithms.
Table II shows that the PARTITION algorithm is always faster than
the cut_levelalgorithm. When comparing the decision diagram sizes
created by the two algorithms, the sizes are generally the same, except
for the benchmark functionfrg1. We feel that this function fits in the
category of reordering that results in a decision diagram of exponential
size. While the PARTITION andcut_levelalgorithms usually result
in the same size decision diagrams and the same amount of time to
complete the task, there are situations where thecut_levelalgorithm
results in decision diagrams that are much larger than the PARTITION
algorithm.

V. CONCLUSION

Two new algorithms, EVAL and PARTITION, were created that do
not reorder the MDD and, thus, do not cause an exponential increase in
size of the MDD by reordering. The advantage of the EVAL algorithm
is that the partition table is constructed by rows and determines column
compatibilities while constructing the partition table. The LPV algo-
rithm, on the other hand, constructs the partition table and then must
determine column compatibilities.

Comparisons were run against the well-known algorithms presented
by Lai, Pedram, and Vrudhula. In most cases, the EVAL algorithm
is faster than the LPV algorithm, especially on small bound sets. In
fact, the EVAL algorithm was able to complete in the specified amount
of time on the large multivalued functions while the LPV algorithm
could not. EVAL is also much faster than running the PARTITION or
cut_levelalgorithms. A restriction of the EVAL and PARTITION algo-
rithms is that they are only practical for partitions with small bound
sets. This restriction is actually used in many decomposition strate-
gies, including FPGA decomposition and decomposition for machine
learning [14], [15]. Machine learning functions are typically large mul-
tivalued, incompletely specified functions where heuristics are used to
reduce the search space by only evaluating small bound sets.

REFERENCES

[1] R. L. Ashenhurst, “The decomposition of switching functions,” Bell
Laboratories Rep., vol. 16, 1956, pp. III-1–III-72.

[2] , “The decomposition of switching functions,” inProc. Int. Symp.
Theory of Switching Functions, 1959, pp. 74–116.

[3] H. A. Curtis, “Generalized tree circuit-the basic building block of an
extended decomposition theory,”ACM, vol. 10, pp. 562–581, 1963.

[4] , A New Approach to the Design of Switching Circuits. Princeton,
NJ: Van Nostrand, 1962.

[5] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A.
Aziz, S.-T. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S.
Qadeer, R. Ranjan, S. Sarwary, T. Shiple, G. Swamy, and T. Villa,
“VIS: A system for verification and synthesis,” inProc. 8th Int. Conf.
Computed-Aided Verification, R. Alur and T. Henzinger, Eds. New
Brunswick, NJ, 1996, pp. 428–432.

[6] Y. T. Lai, K. R. Pan, and M. Pedram, “OBDD-based functional decompo-
sition: Algorithms and implementation,”IEEE Trans. Computer-Aided
Design, vol. 15, pp. 977–990, Aug. 1996.

[7] Y. T. Lai, M. Pedram, and S. B. K. Vrudhula, “BDD-based logic de-
composition,” Dept. Elect. Eng. Syst., Univ. Southern California, Los
Angeles, CA, Tech. Rep., 1992.

[8] , “BDD-based decomposition of logic functions with application
to FPGA synthesis,” inProc. Design Automation Conf., 1993, pp.
642–647.

[9] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-de-
cision diagrams,”ACM Computing Surveys, vol. 24, no. 3, pp. 293–318,
1992.

[10] H. A. Curtis, “Generalized tree circuit,”ACM, pp. 484–496, 1963.
[11] C. Files, R. Drechsler, and M. Perkowski, “Functional decomposition

of MVL functions using a multi-valued decision diagram,” inProc. Int.
Symp. Multi-Valued Logic, 1997, pp. 27–32.

[12] C. Files and M. Perkowski, “Multi-valued functional decomposition as
a machine learning method,” inProc. Int. Symp. Multi-Valued Logic,
1998, pp. 173–178.

[13] M. Perkowski, R. Malvi, S. Grygiel, M. Burns, and A. Mishchenko,
“Graph coloring algorithms for fast evaluation of Curtis decomposi-
tions,” in Proc. Design Automation Conf., 1999, pp. 225–230.

[14] C. Files and M. Perkowski, “An error reducing approach to machine
learning using multi-valued functional decomposition,” inProc. Int.
Symp. Multi-Valued Logic, 1998, pp. 167–172.

[15] B. Zupan, M. Bohanec, I. Bratko, and J. Demsar, “Machine learning by
function decomposition,” inProc. ICML-97, D. H. Fisher, Ed., 1997, pp.
421–429.

[16] M. Perkowski, T. Luba, S. Grygiel, P. Burkey, M. Burns, N. Iliev, M.
Kolsteren, R. Lisanke, R. Malvi, Z. Wang, H. Wu, F. Yang, S. Zhou, and
J. Zhang, “Unified approach to functional decompositions of switching
functions,” Portland State Univ., Portland, OR, ser. Tech. Rep., 1995.

[17] MCNC. (1991) Benchmark functions. [Online] Available:
ftp://mcnc.mcnc.org/

[18] C. Files. (1999) POrtland Logic Optimization (POLO) group Boolean
and multi-valued benchmark functions. [Online] Available: HTTP:
http://www.ee.pdx.edu/polo/functions/

On Synchronizable Circuits and Their Synchronizing
Sequences

Irith Pomeranz and Sudhakar M. Reddy

Abstract—Synchronizing sequences are important in facilitating the test
generation process for detectable faults, and in identifying undetectable
faults. Synchronizing sequences are also important in determining whether
an undetectable fault can be removed from a circuit without affecting its
normal operation, i.e., in determining whether a fault is “redundant.” In
this work, we show a class of faults such that a synchronizing sequence for
a faulty circuit can be obtained by repeating the synchronizing sequence
of the fault-free circuit. Identification of such faults can be done by simu-
lating the faulty circuits under the repeated synchronizing sequence of the
fault-free circuit. We present experimental results to demonstrate the exis-
tence of such faults in benchmark circuits.

Index Terms—State diagrams, synchronizing sequences, synchronous se-
quential circuits.

I. INTRODUCTION

Synchronizing sequences for synchronous sequential circuits are im-
portant during test generation for detectable faults and in determining
whether a given fault is undetectable [1]–[3]. A sequence that synchro-

Manuscript received April 25, 1998; revised August 5, 1999. This work was
supported in part by the National Science Foundation (NSF) under Grants MIP-
9357581 and MIP-9725053. This work is based in part on “On Synchronizing
Sequences and Test Sequence Partitioning,” inProc. IEEE VLSI Test Symp.,
Apr. 1998. This paper was recommended by Associate Editor K.-T. Cheng.

I. Pomeranz is with the School of Electrical and Computer Engineering,
Purdue University, W. Laffayette, IN 47907-1285 USA.

S. M. Reddy is with the Electrical and Computer Engineering Department,
University of Iowa, Iowa City, IA 52242 USA.

Publisher Item Identifier S 0278-0070(00)07478-9.

0278–0070/00$10.00 © 2000 IEEE

