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Abstract

Easily testable two-level AND-EXOR circuits have
been investigated by many researchers. However, two-
level AND/EXOR circuits (i.e. ESOP) can be area-
consuming and slow; therefore they should be factorized.
In this paper, a new AND-EXOR factorization method
based on rectangle covering is presented. A factorized
multi-level AND/EXOR circuit can be partitioned into
planes of ESOP circuits, which can be tested separately
using the scheme given in [10]. Therefore, in this paper
we also show a new scan-based easily testable realiza-
tion that uses a universal test set, and that suggests a
deterministic Built-in Self Test (BIST).

1. INTRODUCTION

The transformation from a two-level form (i.e. SOP,
POS) into a multi-level form can lead to very substantial
reductions in area, complexity, and delay. Also, many
logic gates have a certain fan-in limit, so it is not always
practical to implement circuits using two-level expres-
sions despite their high testability, ease of minimization,
and regular layout realizations in programmable logic ar-
rays (PLAs). Thus, multilevel circuits are used in prac-
tice, and one of the most often used ways to obtain them
in industrial CAD systems is the iterated factorization
methods [1, 2, 3, 6, 19, 20, 21, 27].

It is well-known that AND/EXOR circuits are in gen-
eral more easily testable than AND/OR circuits [10, 13,
15, 16, 17]. However, there is not much work on multi-
level AND/EXOR synthesis that targets area and testabil-
ity optimization. Several researchers developed tools for
multi-level logic synthesis based on EXOR gates. Saul
gives an algorithm for multi-level synthesis of Reed-
Muller representations in [19, 21]. His algorithm is
based on a simple factorizer without much optimiza-
tion. Chattopadhyay (et al.) created a tool for multi-
level AND/EXOR design [6], but they did not use factor-
ization and did not consider testability. Rajski (et al.)
showed that the factorization of AND/OR expressions

preserves tests, which means that the factorized logic
network can be tested with the same set of tests as the
original network [14]. Tsai (et al.) showed that a very
simple and restricted factorization of AND/EXOR ex-
pressions preserves some tests and is useful in realization
of arithmetic functions [27]. However, the authors admit
the poor quality of their factorization algorithm. Lee (et
al.) discussed testability of multi-level AND/EXOR cir-
cuits [11], but these circuits are a very special case of
circuits discussed by us here. Steinbach (et al.) proposed
a method to design multi-level AND/OR/EXOR circuits
that are fully testable [23], but their test set is not univer-
sal.

Other methods were proposed to increase the testa-
bility of a multi-level network during logic optimization
by checking for a special type of Boolean resubstitution
[4, 5, 7, 8], or after optimization by test point insertion
[24, 25]. Touba (et al.) also proposed a test point in-
sertion that is performed during the logic optimization in
[26]. However, none of the above methods specifically
considered AND/EXOR designs, or they targeted only
random pattern testability.

The goal of this paper� is to present a complete
method to solve the problem of quasi-optimum factor-
ization of AND/EXOR expressions, and propose a scan-
based testing scheme which requires a minimal and uni-
versal test set. Brayton (et al.) solved the factorization
problem for Sum-of-Products (SOP) expressions by us-
ing a rectangle covering technique [3]. They utilized the
concept of overlapping rectangles to come up with op-
timal solutions. Overlapping rectangle techniques can
also be used for EXOR-Sum-of-Products (ESOP) factor-
ization. Therefore, in this paper we will define a rect-
angle covering approach, Even-Odd Rectangle Covering
for the factorization of ESOPs. This is the first time that
the rectangle covering approach has been used for ESOP
circuits factorization.

In section 2, the basic information on factorizing SOP
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and ESOP forms is given. Section 3 presents our method
for efficiently factorizing ESOPs using rectangle covers.
Section 4 discusses the testability of factorized ESOP
forms. Conclusions and future directions are given in
Section 5.

2. PRELIMINARIES

2.1. Basic Definitions

A Boolean variable is any variable whose domain is
the set �0,1�. A literal is a Boolean variable or its com-
plement (e.g. � or �). A cube is simply a product of
literals. However, it cannot consist of a literal and its
negation (i.e. ��� is not a cube). An expression is a sum
or EXOR-sum of cubes, e.g. � � ��� � ��� � �� or
� � ���� ���.

The support of an expression is the set of all variables
that occur in all literals of the expression, for instance for
the expression ��� ��, the support set is �a,b,c�. Two or
more expressions are said to be disjoint when they have
no common elements in their support sets. For example,
if� � ����� and� � �����, then 	
��� ��	
���� �
�.

2.2. Factorization

A factorized form is an efficient representation of an
equivalent Sum-of-Products (SOP) or EXOR-Sum-of-
Products (ESOP) expression. It contains a smaller num-
ber of literals than the original SOP (ESOP) expression.

An algebraic factorization of a SOP (ESOP) expres-
sion can be obtained by simply factoring out (parenthe-
sizing) the common literals, cubes, or higher-order SOP
(ESOP) expressions in the original expression. For ex-
ample, given the ESOP function

� � ��� ��� ��� ��� �� � ��


an algebraic factorization is

� � ���� ��� ���� ��� ��� � ��

� ��� ����� �� � ��� � ���

An optimum algebraic factorization of an expression is
the one with the least number of literals [9]. By defini-
tion, an optimum factorization is the product of disjoint
SOPs (ESOPs), and/or Sum-of (EXOR-Sum-of) these
products [3]. The factorized ESOP expression above is
not optimal because it can be factorized further into a
fewer number of literals, to give,

��� � ��� ����� �� ���

As our notation, the function name of an optimally fac-
torized expression is written in brackets.

In some cases, other axioms of Boolean logic can be
incorporated into simple algebraic factorization to obtain
better factorizations. The identity law allows the follow-
ing substitutions in an expression:

� � � � �


� � � � �


�� � � �


�� � � ��

Example 1: Given the SOP function

� � ��� ��� �� � ���


the factorized expression is

� � ���� �� � ���� � ��

� ���� �� � ���

Example 2: Given the ESOP function

� � ��� ��� �� � ���

the factorized expression is

��� � ���� ��� ����� ��

� ���� ��� ���

� ���� �� ���

� ������ �� � ��

� ����� ���

Notice that the non-factorized ESOP function of Ex-
ample 2, �, has the same product terms as the non-
factorized SOP function of Example 1, � . Yet, we see
that � has been reduced to fewer literals than � . In
this example, the difference in literal counts is only one.
However, in larger functions the difference may be quite
dramatic.

Another algebraic rule that we can use along with
simple algebraic factorization is the idempotence law,
which can be interpreted as adding more terms to the
original expression. The addition of terms is accept-
able as long as the new terms do not change the log-
ical function implemented by the original expression.
For AND/OR functions, better factorizations may be ob-
tained by repeating one or more existing terms in the ex-
pression;

� � � � � � � � � � � � �
� �� �

� � � ��

additional terms



Example 3: Given the SOP function

� � ��� ��� �� � �� � �� � �� � ��,

after simple algebraic factorization,

� � �� � ���� � �� � ��� � �� � ��,

which has 9 literals. Next, we add an extra term, “��”,
and then factorize the expanded expression,

� � ��� ��� ��� �� � �� � �� � �� � ��

�� � � �� � ���� � �� � �� � ���� � ��


which has 8 literals. Thus, using the idempotence law
we saved one literal and obtained the optimal factorized
form.

For AND/EXOR expressions, we may also obtain bet-
ter factorizations by repeating one or more existing or
non-existing terms in the expression, provided that the
terms are added in even sets only;

� � � � � � � � � � � � �
� �� �

� � � �


additional existing terms
� � � � � � � � � � � � �

� �� �
� � � ��

additional non-existing terms

Example 4: Given the ESOP function

� � �� � ��� �� � �� � �� � ��,

after simple algebraic factorization,

� � ��� � �� � ��� � �� � ��� � ��,

which has a cost of 9 literals. However, after we add an
extra non-existing term (“��”) twice to the function,

� � �� � �� � �� � �� � �� � ��� �� � ��


is factorized to

��� � �� � ���� � �� � ��� ���� � ��,

which has a cost of 8 literals.
As shown in the above examples, SOP (ESOP) mini-

mization rules (i.e. identity, idempotence) can be a part
of the factorization procedure. In the next section, we
will see how these laws can be applied to the rectangle
covering method modified for ESOP factorization.

3. ESOP FACTORIZATION USING RECTAN-
GLE COVERS

In this section the Even-Odd Rectangle Covering
method is presented. First, some fundamentals to our
approach will be given.

3.1. Further Definitions

A cube free expression is the one that cannot be di-
vided evenly by a cube [9]. For example, �� � � is
cube-free, but �� � �� is not cube-free because it can
be evenly divided by the cube �. Also, for an expression
to be cube-free, it must consist of at least two cubes (e.g.
��� is never cube-free because it can be divided evenly
by any subset of its literals).

A kernel is defined as the cube-free quotient, �, of
any expression, � , divided by a cube, �, such that, � =
��� [9]. For example, if � � ��� � ���� � ��� and
� � ��, then� � ���� � ����, which is a cube-free
quotient, and therefore a kernel. Also, note that a kernel
must consist of at least two cubes due to the cube-free
criterium. For completeness, we denote the cube � as
the co-kernel, which divides the function� to obtain the
kernel�.

We define the level of a kernel, such that a kernel is of
�����-� if it has no kernels except itself, and a kernel is
of �����-� if it has at least one kernel of �����-(�-�), but
no kernels (except itself) of �����-� or greater [9]. For
example, for a factorized function

� � ����� � �� � ��� � ����� � �� � � � ��,

the kernels of different levels are:

����� � � � � ������-� �������
����� � ��� � ��� �� ������-� �������
����� � � ������-� �������


where����� � ����� � �����.
A CoKernel-Cube matrix, � , is a matrix such that

each row corresponds to a unique co-kernel of the ex-
pression and each column corresponds to a unique cube
of the kernels found from the expression. A cell in the
matrix, ��� , is � if the cube � exist in the co-kernel
�, where � represents a unique number of a term in
the original expression; otherwise, the cell ��� is left
empty. A rectangle is simply a covering of any num-
ber of different combinations of rows and columns con-
taining non-empty cells. A prime rectangle is a rect-
angle such that none of its cubes are covered by other
rectangles. A redundant rectangle is a rectangle such
that all of its cubes are covered by other rectangles.
Figure 1 illustrates different rectangles in a CoKernel-
Cube matrix. Prime rectangles, non-prime rectangles,
and redundant rectangles are denoted in the figure by
‘A’, ‘B’, and ‘C’, respectively. Notice that a rectangle
is not necessarily formed by only the elements on its
corners. Therefore, all the elements of a rectangle are
circled and the circles are connected with lines. This
can be observed in the rectangle formed by the elements
����
���
���
���
���
���� in Figure 1.
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Figure 1. Rectangles in a CoKernel-Cube matrix.

Example 5: For the function� � ��������������,
numbering each term we obtain: �� = 1, �� = 2, �� = 3,
�� = 4, �� = 5. The CoKernel-Cube matrix is shown in
Figure 2.

a

2 3

4 5

2 4

3 5

(1)

b c d

(2) (3) (4)

(1) a

(2) b

(3) c

(4) d

1

1

Figure 2. The CoKernel-Cube matrix for Example 5.

CoKernels Cubes Kernels
� �
 � �� �
� �
 � �� �
� �
 � �� �
� �
 � �� �

For the rectangle covers connected with dashed lines, we
obtain the non-optimal factorized form,

� � ��� � �� ��� ���� ���

For the rectangle covers connected with solid lines, we
obtain the optimal factorized form,

��� � ��� ����� ��� ��.

Notice that we did not form the rectangle ����
����
to find the optimal factorized form, rather we created a

single-cube rectangle, �����. However, in the case of
Figure 1 the non-prime rectangles shown are necessary
to obtain the optimal solution.

3.2. Odd Rectangle Covering

Odd rectangle covering is a natural consequence of al-
lowing an existing term of an ESOP expression to be re-
peated in odd sets, which occurs when an existing term is
added even number of times. Therefore, in the CoKernel-
Cube matrix, the repeated term is overlapped odd number
of times. The followingexample illustrates odd rectangle
covering.

Example 6: For the expression given below

� � �����������������������������

� � 	 
 � � 
 � � ��

the CoKernel-Cube matrix is shown in Figure 3. In the
figure, term ��� (��), denoted by ‘3’, is overlapped
three times (odd covering), which also means that it is
added twice to the original expression.
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Figure 3. The CoKernel-Cube matrix for Example 6.

The factorized form obtained without odd rectangle cov-
ering (dashed lines),

� � ��� ����� ��� ���� ��� ���� ��� ���� ��


has 13 literals. The factorized form with odd rectangle
covering (solid lines),

��� � ��� �������� ��� ����� ��� ��� �������


has 12 literals. Hence, there is a literal savings of one, by
overlapping the term “��” three times.



3.3. Even Rectangle Covering

Even rectangle covering is a natural consequence of
allowing a non-existing term to be added to the original
ESOP expression in even sets (�� � � �).

Example 7: For the expression given below

� � �����������������

� � 	 
 � �

the CoKernel-Cube matrix is shown in Figure 4. The
non-existing term��� (��), denoted by ‘7’, is added and
overlapped twice (even covering). The factorized form

a b c d
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1
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Figure 4. The CoKernel-Cube matrix for Example 7.

without even rectangle covering (dashed lines) is:

� � ���� �� � ���� ��� ��� � ��,

which has 9 literals. The optimal factorized form with
even rectangle covering (solid lines) is:

��� � ��� ���� � ��� ��� ���� � ��,

which has 8 literals, and saves one literal. Note that the
non-existing addition technique of AND/EXOR expres-
sions does not exist for AND/OR expressions. If the orig-
inal expression in the above example was a SOP with the
same product terms, the factorized expression would be,

� � ���� �� � ���� �� � ��� � ��,

with 9 literals. The next example has cubes larger than
only single-literal cubes for the rows and columns of the
CoKernel-Cube matrix.

Example 8: Given the expression

� � ������������������������
��
���
� � 	 
 � �

CoKernels Kernels
�� ��� � ��
�� ��� � ��
��� �� � ��
�� �� � 
�
�� �� � 
�


the CoKernel-Cube Matrix is shown in Figure 5.

ab cd xyz fg

1 3

2

6

uv nm

7

6

3
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7

4

4
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uv

nm

Figure 5. The CoKernel-Cube matrix for Example 8.

Term “����”, denoted by 7, is added twice to obtain the
optimal factorized form below,

��� � ���� ������� � ��� � ��� � ������ � 
��.

3.4. Even-Odd Rectangle Covering with Tautol-
ogy Test

In the examples given above, we have dealt with
ESOP expressions including only positive polarity (non-
negated) variables. In addition, only the idempotence
law (adding terms) has been adopted. However, the iden-
tity law is also important when factorizing mixed polarity
ESOP expressions.

Example 9: Given the ESOP function

� � �����������
� � 	 


the even-odd rectangle covering shown in Figure 6
yields,

a

1 2

b

c

d 3 4

a b

Figure 6. The CoKernel-Cube matrix for Example 9.



� � ��� � ��� ���� ��


which is not optimal. If we use the identity law and re-
factorize the expression algebraically,

� � ����� ��� ��� ���� ���� ��

� ���� �� �� ��� ���� ��

� ���� ��� ���� ��

��� � ��� ����� ��


which is optimal. First time we tried factorization we
could not perform further factorization because we did
not recognize that ��� �� � ��� ��, an identity. It may
be even harder to determine on which variable to apply
the identity law when there are larger and more complex
terms in the expression. For example, ������� � ��
����� is not easy to observe. However if we apply iden-
tity to all variables to convert them into positive polarity,
we obtain a unique (canonical) representation, Positive
Polarity Reed Muller (PPRM) [18], and we can easily
determine the cubes that have common co-kernels. The
equality of the two expressions in the above example can
then be shown as:

� � ��� �� � � � ��� ��

��� ��� ���� ��� �� � �� � ��� ��� ���� ��

�� �� ��� �� �� � � � �� ��� ��� �

��� ��� � � ��� ��� ��

Therefore, to be able to use even-odd rectangle covering
for the mixed polarity ESOP functions, we need to ap-
ply identity law (� � � � �) to the negated variables
to obtain the PPRM form, and include the cube ‘1’ in
the CoKernel-Cube matrix. The following example il-
lustrates this process.

Example 10: Given the ESOP function

� � ���� ��� � ��� � ���� ��� ��


the even-odd rectangle covering without applying the
identity law gives:

� � ���� ��� ��� � ��� � �� � ���


which is not optimal. If we apply identity before the rect-
angle covering, we obtain the PPRM form,

� � ���� ��������������� ��������

� � 	 
 � � 
 � �

and according to the rectangle covering shown in Figure
7, we obtain the factorized form,

��� � ��� �� ������ �� � ��


1 a b cd

32

6

ef

1

7

4

5

1

a

b

cd

ef

8

3

2

9

6 7

4 5

8 9

Figure 7. The CoKernel-Cube matrix for Example 10.

which is the optimal positive polarity factorized form.
We can obtain a mixed polarity factorized form as

��� � ��� ������ ���

� ��� ����� � ��� ���

� ��� ���� � ��� ����

Notice that we obtained the optimal mixed polarity fac-
tored form by applying the identity law again (��� � �)
to the final factored form found from the rectangle cov-
ering. However, the kernels obtained by this process
may not be minimal ESOPs. Therefore, an ESOP mini-
mizer such as given in [22] can be used on these cubes.
Since the minimized kernels may not be cube-free, a fur-
ther even-odd rectangle covering should be performed.
This loop of even-odd rectangle covering and ESOP min-
imization should be performed until an optimally factor-
ized form with minimal kernels is obtained.

3.5. Nested Iterations of Rectangle Covering

From the definition, we know that after we factor out
(parenthesize) the co-kernels in the original expression,
the kernels are cube-free. However, the factored out co-
kernels may not be cube-free once they are combined in
a factor term. In this case, the even-odd rectangle cov-
ering should be performed on the non-cube-free factor
terms iteratively. This is also the case where multiple-
level kernels are formed in the factorized expression. The
following example shows the iterative process.

Example 11: Given the ESOP function below,

� � �����������������������������

� � 	 
 � � 
 �

we obtain the following factorized form from the first
iteration of rectangle covering shown in Figure 8.

� � �� ��� � �� � ����� � �� � ����



1 a b c

32
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8
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Figure 8. The rectangle covering in the first iteration.

Notice that the factorized form is not optimal because it
has the non-cube-free term,

�� � ��������

� � 	

on which the second iteration is performed. We obtain
the following factorized form for the non-cube-free term
according to the rectangle covering shown in Figure 9.

�� � ��� � �� ���

a b c

321f

Figure 9. The rectangle covering in the second iteration.

The third iteration is performed again on the entire ex-
pression,

� � ����� � �� ����� �������
� � 	

We obtain the following factorized form according to the
rectangle covering shown in Figure 10.

��� � �� ���� � �� ����� �� � ����

1 (a    b    c)(d    e)

1

2

bg

h

f 3

Figure 10. The rectangle covering in the third iteration.

The iterations stop at this point since there is no non-
cube-free factor terms remaining. Notice in the fi-
nal form that �� � � � �� is a level-0 kernel, and
���� �� ����� �� � ��� is a level-1 kernel.

3.6. Rectangle Covering for Multi-Output Func-
tions

The following example generalizes the Even-Odd
Matrix Covering method for multi-output functions.

Example 12: Given the multi-output ESOP function

 � �� � ��� � �� � ���� �� � ��
� � 	 
 � �

! � ��� � �� � ���� ��

 � � ��

" � ���� ���

�� ��

CoKernels Kernels
�� � � � �#� 
� � � � �#� 
� � � � �#� 
�� � � � �#��
� � � � �#�!
�� � � � �#�"


the combined CoKernel-Cube matrix is shown in Figure
11.

a b c ce
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Figure 11. The combined CoKernel-Cube matrix for Ex-
ample 12.



Term “���”, denoted by 13, is added twice for optimum
factorized form for function . The entire factorized net-
work then is:

� � � $ ���� �� � % ���� ��
�! � � $ ��� � ��
�"� � % ��
$ � �� �
% � �� �


with a total of 19 literals. Although each function is fac-
torized separately, creating a combined CoKernel-Cube
matrix helps recognize common factors (U and V) for
further reduction of the literal count.

4. TESTABILITY OF FACTORIZED ESOPS

In this section, a scan-based multi-level AND/EXOR
testing scheme that requires a minimal and universal test
set is presented. Remember that an optimal factorized
AND/EXOR expression consists of products of disjoint
ESOPs and/or EXOR-sums of these products. There-
fore, if the disjoint ESOPs in the factorized expression
are identified, they can be separated during synthesis as
individual ESOP planes with scan registers inserted be-
tween them. As a result, they can be tested separately
since each ESOP plane will have total controllability on
its inputs, and total observability on its output.

4.1. Identification of ESOP Planes

By definition, each kernel is in fact an ESOP plane.
Different levels of kernels (ESOPs) can then be identified
as shown in the following example.

Example 13: If the factorized function is given as below,
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the level-0 ESOPs are:
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� represents the &�� kernel of level-'. The level-1
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and the level-2 ESOP is:
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4.2. Implementation of an ESOP Plane

An easily testable ESOP realization with increased
controllability and observability with a few additional
logic gates, and a minimal-universal test set for the re-
alization were introduced in [10]. The testing scheme
requires only (�+6) test patterns to detect a single stuck-
at fault in the internal lines or the primary inputs/outputs
of the circuit, where � is the number of primary inputs.
Figure 12 shows the generic highly testable ESOP imple-
mentation and the universal test set as was given in [10].
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Figure 12. Highly testable generic ESOP implementation
and the universal test set as presented in [10].

The realization requires a cascade implementation of
the EXOR level in order to be able to obtain a universal
test set. As also illustrated in [10], regular (universal)
and a minimal number of test patterns allow generating
them internally with a special ESOP Deterministic Pat-
tern Generator, EDPG. In the complete BIST (Built-in
Self Test) circuitry proposed in [10], EDPG applies the
(�+6) tests to the highly testable ESOP circuit, and the
results are collected and compacted in a multiple-input
signature register for the final signature analysis.
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Figure 14. Highly testable multi-level AND/EXOR implementation.

The literal part implements the complements of the
input variables as �� is set to ’1’. During testing �� is
set to ‘0‘ for some tests and ‘1’ for others. The AND
part and the linear part implements the realized ESOP
function when �� � �. The additional EXOR cascade
in the check part, the AND gate “A”, and the EXOR
gate “B” are added for improved testability of the real-
ization. Notice that the implementation requires a min-
imal number of controllability inputs and observability
outputs (��
 ��
 #�
 #�), which is one of the main goals of
scan-based design.

4.3. Multi-Level Testing with Scan Registers

Scan registers (SR���) are inserted at the outputs of
ESOP planes (E���) –unless it is a primary output– to
control the logic value applied to the next level, and to
observe the output value of each ESOP plane via the scan
chain. Figure 13 shows the implementation of a scan
block.

The physical separation of levels by means of insert-
ing scan blocks allows the ESOP planes of the same level
to be tested together, in parallel. The test patterns are ap-
plied to the ESOP planes from the primary circuit inputs
in parallel by an EDPG, and also applied from the scan
blocks by shifting them serially into the scan chain. Sim-

mux1

ESOP

Dff
D Q

mux2

ESOP

Scan Register

to next
scan block

......

from prev.
scan block

Read/Shift Clk Normal/Test

Figure 13. Scan block implementation.

ilarly, the results are collected at a multiple-input signa-
ture register, from the primary circuit outputs and from
the scan blocks by shifting them out serially. The testing
of the scan block are performed separately by shifting in
another set of test patterns through the scan chain.

Example 14: Figure 14 shows the proposed highly
testable multi-level AND/EXOR realization for the
multi-output function given below.
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ESOP planes are identified as follows. The level-0
ESOPs are:
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and the level-2 ESOP is:
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The major advantages of our scan-based multi-level
AND/EXOR implementation over the traditional scan-
based multi-level AND/OR design are:

1. The minimal number of test patterns, (� + 6), can
be generated internally and inexpensively [10].

2. The universal test patterns can be shared by the
ESOP planes at each level. This allows simple
shifting of the patterns through the scan chain with
the identification of the ESOP planes.

3. To reduce the area overhead, primary circuit in-
puts and outputs are not included in the scan-chain.
Also note that scan blocks are inserted only at the
outputs of the ESOP planes, not at arbitrary nodes
in the entire realization.

A delay analysis can be performed on the example cir-
cuit by referring to the below set of library components
produced by LSI Logic Corporation [12].

Component Delay(ns)
)*+� ���� � � ���
�,
��
�-#��
)*+-	 ���� � � ���
�,
��
�-#��
� ,�-� ��	 � � ���
�,
��
�-#��
�
� �� � ���� � � ���	�,
��
�-#��

Notice that during normal mode of operation the only
extra delay added to the original multi-level AND/EXOR
circuit is caused by mux2 of the scan block, and by the
single EXOR gate used in the literal part as an inverter.
Today’s technology makes it possible to implement a
�� � multiplexer slower than an AND gate but faster
than an EXOR gate. In the realization in Figure 14, a
critical delay path is highlighted as bold lines. The delay
of the path is calculated as 2.95 ns.

To show the delay improvement of our multi-level
implementation over the 2-level cascaded-EXOR imple-
mentation given in [10], we first obtain the ESOP expres-
sion for function , which has the critical delay path,

� � ����� � ����� � ����� � ����� � �'�&�
�'�� ����� � ����� � ����� � ������
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The expression has 12 product terms. Therefore, the real-
ization given in [10] requires 12 cascaded EXOR-2 gates
in the linear part. The critical delay path, in this case,
one AND-3 gate in the AND part and 12 EXOR-2 gates
in the linear part; giving a total delay of 4.33 ns. This
shows a significant improvement of our multi-level im-
plementation over two-level implementations.

5. CONCLUSIONS AND FUTURE WORK

We defined the Even-Odd Rectangle Covering
method that allows to obtain efficiently factorized multi-
level AND/EXOR circuits. We showed that such cir-
cuits, when realized as partitioned ESOP planes with
cascaded EXORs and scan registers inserted between the
levels, can be upgraded to highly testable multi-level
AND/EXOR realizations with universal test sets. As a
result, a deterministic BIST circuit can be utilized to per-
form the entire testing of the circuit internally, as de-
scribed in [10].

In terms of area, the effectiveness of the scan block
insertion of our method depends on the size of the ESOP
planes. Therefore, the factorization method can be opti-
mized to obtain larger ESOP planes. This also involves
the modification of the AND/EXOR minimizer that is
used on the ESOP expression before the factorization, or
that is used on each ESOP plane after the factorization.

As an alternative, not discussed in this paper, the
EXOR gates in each ESOP plane can be realized as a
tree [17], instead of a cascade [10]. This may yield faster
circuits. However, the advantage of universal test set will
be lost, leading to more complex BIST circuits, or to ex-
ternally controlled scan-designs.

As our future work, a software tool will be devel-
oped to compare the performance of the factorization
method presented in this paper with the methods given
in [6, 19, 21, 23, 27]. Another direction of our future
work will be to perform some measurements on several
benchmark circuits to compare our easily testable multi-
level AND/EXOR realization in terms of area, delay,
power, and especially testability, to other test and imple-
mentation schemes. Such schemes involve multi-level
arbitrary logic realizations with externally controlled or
BIST-based scan test designs.
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