Bi-Decomposition of Discrete Function Sets

Bernd Steinbach, Christian Lang, and Marek Perkowski {
Freiberg Univ. of Mining and Technology, Inst. of Computer Science
09599 Freiberg, Germany, steinb@informatik.tu-freiberg.de
T Portland State Univ., EE Dept., Portland, OR 97207
mperkows@ee.pdx.edu

Abstract

This paper extends the bi-decomposition of Boolean functions by generalizing the
notion of Incompletely Specified Functions (ISFs) to the new concept of function
sets. In particular, the relation between EXOR-decomposition and a special class of
function sets, C-ISFs, is discussed, and the respective decomposition algorithms for
C-ISFs are presented. It is shown that decompositions of better quality are obtained
when using C-ISF's instead of ISFs. Decomposition of function sets is extended to sets
of multi-valued functions, where especially good results have been obtained for highly
unspecified benchmark functions from the area of Data Mining.

1 Introduction

Decomposition has many applications in circuit design or machine learning. The background
on decomposition and bi-decomposition can be found in [1, 2, 3]. Usually, decomposition
is performed recursively over several stages. Each stage makes some decisions about the
decomposition process based on local knowledge, but with global consequences. Usually,
heuristics are used to make these decisions. In functional decomposition for instance, a func-
tion f(X) = h(A, g(B)) is decomposed into component functions g and h. However, there
exists not just one pair of functions (g, h) that satisfy the above equation. Many decom-
position algorithms select a promising candidate pair from the set of all pairs of functions
G ={(g,h)|f = h(A, g(B))} for further decomposition by some heuristic [12]. This method
is efficient if there is only a small number of functions to choose from. Machine learning
benchmarks, however, frequently contain incompletely specified functions with an extremely
high percentage of don’t cares. Therefore, there is a very large number of functions from
which the heuristic has to choose from. In such case it is difficult to find good heuristics
especially for the early stages of the decomposition process. In some cases however, it is
possible to postpone such a decision until more information becomes available. Decomposi-
tion of Incompletely Specified Functions (ISFs) is one example [5, 9, 15, 14]. This paper is a
continuation of [17] where standard incompletely specified functions were discussed (Here we
improve on the concepts and ideas introduced there, repeating only the minimum notations

sollle>

F 01 10d
abe 00 11 ¢ abc e
000l 1 aTol MTiTolol 000 @ 0@ T
001l 1le 1lel 1olo1l o001 0|1
o11lolelolel [o1l1l0l o011 L@ 0]
010/e|1]el0o| [1[1fojo] o010 (PO P
110 oo 1] [0[0f1]1 110 Q) 1|®0
111 (1o 1o [1j0/0/1] 111 oo 1 o]
101 0[e]e/ e folt[1]o] |, 1 |®|0 ®
1001]e|1]@ 110101 100 0/|D||1||D
07010 I]h&&&E o ¢ T 5
{?%é%b Emm g & & &
0 1,0[0]h, L[] 1][o] b

Figure 1: a) EXOR decomposable ISF b) Decomposition graph.

necessary to understand the paper.) Many pairs of functions (g;, h;) can be selected from the
set, G if one decomposes ISFs instead of completely specified functions. The decision which
particular function is designed will be made by further decomposition steps. Here, ISF's can
be considered as a special class of function sets. In many algorithms however, other sets
of functions than ISFs arise from the decision step. Usually, these sets are approximated
by a heuristically chosen ISF. Consider the ISF from Fig. 1a). EXOR bi-decomposition
of this ISF gives four possible pairs of functions (ga, ha), (95, B), (ges Be), (94, ha) Where set
G = {94, 9, 9c, 92} cannot be described by an ISF. The algorithm from [14] would choose
function g, instead of g, which has a more expensive total realization f, = g, ® h, than
the realization f, = g, @ hy, as shown in Fig. 2. To select the best solution (g;, h;) we will
suggest here a new strategy of postponing the selection process. When we have to select
among several functions, we compute all these functions and pass the set of functions to
a suitable algorithm for further decomposition. One problem with this strategy is the
complexity of the function sets. There are 22" Boolean functions of n variables, but 22 sets
of Boolean functions. Because of this high number, representations of function sets must be
problem-specific and exploit the structure of sets created by the algorithm. Efficient data
structures must be applied to store large sets of functions.

This paper introduces and investigates C-ISF; a special class of function sets which al-
lows to store and process function sets arising from EXOR-decompositions of [SF. In many
problems of EXOR logic and decomposition theory there is a need to represent a function
as an EXOR of two functions that satisfy certain properties, for instance have the smallest
literal cost. Our introduced here methods can find applications in many of those problems,
although here we will concentrate on bi-decomposition for Data Mining [17].

Section 2 will introduce the Function Sets and discuss some of their properties. Section
3 discusses the decomposition of Function Sets, and section 4 the EXOR decomposition of
ISFs. In section 5 we introduce the crux of this paper - the decomposition of C-ISF's. These

ﬂ

o |

a

EJ g > > &

a —

T L b

P ot o
e =P "

Figure 2: Two realizations of the EXOR-decomposition from Fig. 1a) with different cost.

results are next generalized in section 6 to multiple-valued C-ISFs. Section 7 presents our
experimental results and section 8 introduces the new concept of Vector Relation Sets that
are more general than both the C-ISFs introduced here and the Boolean and Multi-Valued
Relations introduced in [4, 17]. Finally, section 9 concludes the paper.

2 Definition and Properties of Function Sets

A Boolean function is a mapping B" — B! and is denoted f(z), where x is a vector of n
Boolean variables. An ISF can be understood as a subset of B® x B!. Here, we define an
ISF as a set of Boolean functions.

Definition 1. An ISF F < f(z), ¢(
for which f(z) < g(z) < f(z) V ¢(z
©(x) the don’t care set of F.

x) > with f(z) A p(z) = 0 is the set of functions g(x)
). The Boolean function f(z) is called the on-set and

An ISF F < f, ¢ > consists of 2" functions, where m = |p|. Note that, by this definition,
a Boolean function is a special case of an ISF with ¢ = 0. To denote an ISF by a single

function, we define the characteristic function of an ISF that assumes the constant value ®
for the don’t cares of the ISF.

Definition 2. The characteristic function Fo(z) of an ISF F < f(z), ¢(x) > is a mapping
B" — {0,1,®} with

o otherwise.

Fo(z) = {f(&) if p(z) =0, (1)

There is an one-to-one mapping between ISFs and characteristic functions. Therefore,
we will use the same notation for an ISF and its characteristic function.

Example 1. Fig. 3 gives an example of an ISF F' < f, ¢ > with the on-set f, the don’t care
set o and the characteristic Function Fio. The ISF contains the 4 functions fi, fs, f3, and

fa-

01 |®| |1 0|1
1|® |0 0 10

f, f, f, f,
110 1 1)1 11
010 1 010 110

Figure 3: ISF F < f,» > and its element functions f, fo, f3, f1.

To decide whether function g(z) is an element of an ISF F it is sufficient to compare the
values of g with the characteristic function F(z) for all the cares of F.

Lemma 1. A Boolean function g(x) is element of an ISF F if g(x,) = F(z,) for all z, with
F(z,) # ®.

The value of a element function of an ISF can be flipped at the don’t cares, and the result
still is an element of the ISF. To define this property symbolically, we introduce the delta
function.

Definition 3. The delta function d, (x) is a Boolean function whose value is 1 for z = x,
and 0 otherwise [20].

Lemma 2. Let F be an ISF and function g(z) € F be an element of F. If F(z,) = ®, then
g'(z) = g(z) ® 64, (2) is also an element of F, denoted by ¢'(x) € F.

Because there are sets of Boolean functions that cannot be described by an interval of
functions as in the case of ISF, we will generalize ISF's and the notion of their characteristic
function.

Definition 4. A function set S(z) is a non-empty subset of the set of all Boolean functions
F(z) that depend on the vector of variables z. Its characteristic function Sc(z) is defined
as a mapping B" — {0,1,®, A}, with

ifvfesS: flz) =1
ifvVfeS: f(z,) =0
ifVfeS: f(z)ddy,(z) €S
A otherwise

= =

Sc(zy) =

where A is a new constant value which we call a dependent care.

Example 2. Consider the functions fi, fo, f3, and f; in Fig. 4. Assume there is an ISF F
that contains exactly these 4 functions. Consider the value of F for z, = @be. This value
cannot be 1 because of function f,, it cannot be 0 because of f;, and it cannot be ® because,
by Lemma 2, f; = f; @ 0,5, would be an additional element of F'. This contradicts the
assumption that there is an ISF F' containing only fi,..., f1.

abn 0 1
00111 11 110 110 110 1 |[0,1] 1A
01110 110 00 010 110 [o,13 0 AlO
)11 0|1 1)1 01 1|1 D |1 O |1
10/ 0|0 010 00 010 010 010 0

Figure 4: Function set S = {fi, fo, f3, fa} and characteristic function Sc.

Fig. 4 also shows the function set S = {fi, f2, f5, f4} and its characteristic function Sc.
The values 0, 1, and ® can be interpreted as in the case of an ISF. For the dependent cares
(cells @bc and @be), the Karnaugh map of S shows vectors of values and the characteris-
tic function Se assumes value A. The interpretation of the vectors of values is that any
component of the vector can be chosen as the value of an element function of S, but the
components with the same index must be chosen for every vector. For function set S for
instance, we can choose f(@bc) = f(abe) = 0 (first component), or f(abc) = f(abe) = 1
(second component).

Note that an ISF is a special case of a function set. Because function sets are more general
than ISFs, we need to introduce another constant value A for the characteristic function that
describes the dependent cares. It follows from Lemma 2 that the characteristic function
of an ISF does not assume value A, and Definition 4 is consistent with Definition 2 of the
characteristic function for ISF. Note that there is a many-to-one relation between function
sets and characteristic functions. Two different function sets can have the same characteristic
function with different interpretations of the A-values. Therefore, we have to distinguish
between a function set S and its characteristic function Sc.

The characteristic function gives some information about the possible choices for a certain
function value. A value S¢(z,) = @ indicates, as in the case of ISF, that the value of an
element function can be chosen arbitrarily for z,. For a value Sc(z,) = A, the element
function can be 0 or 1 at z,, but the choice of values for other z; # z, is restricted by this
decision.

Example 3. Consider the function set S from Fig. 4. The value at abc can be 0 or 1
without additional restrictions for other function values. For f (@bc) we have a dependency
with f(abe) of the form f(abc) = f(abe).

It would be possible to store function sets by enumerating all element functions described
by them. The number of element functions, however, can become very large, as in the case of
[SF's for example. Therefore, we compose functions sets from ISF's by using set operations on
them. Because the function sets are sets themselves, the union and intersection operations
on them are well defined.

Definition 5. The intersection of two function sets, Sy NS, is the set of functions S3 which
are elements of both S; and S,.

abn 0 1
00|11 110 10,1 O | D
01110 010 0,11 0 O | D
11| &1 o1 O | D o1
10/ 0|0 010 O | D 00

Figure 5: Function sets for union and intersection.

Definition 6. The union of two function sets, S; U Sy, is the set of functions which are
elements of Sy, or Sy, or both.

The intersection of function sets is either empty or a function set. The union is always a
function set. It is important to distinguish between these set operations on sets of functions
and the conjunction and disjunction operations that can be applied to incomplete Boolean
functions. Conjunction and disjunction are defined for Boolean functions and the result is a
Boolean function. Intersection and union are set operations over function sets. Their results
are sets of functions.

Example 4. Consider the Boolean functions fi, fo, f3, and f; from Fig. 3. Their disjunction
is the Boolean function f; V fo V fsV fs = f1 = @ V b, their union fi U fo U f3U f; =
{f1, f2, f5, f1} = F is the ISF F shown in Fig. 3. Their conjunction is the Boolean function
fiNfoAfsAfa=fi =a Ab. Because f; and f, are different functions, the intersection is

empty; fiN foN fanN fa=0.

In this paper we only deal with two special cases of intersection and union of function
sets.

1. Intersection of functions sets where the cares and dependent cares of one function set
lie completely in the don’t care area of the other function set: In this case the don’t
cares of the first function are specified by the care and dependent care values of the
other function.

2. Union of ISFs with the same dont’t care sets: Different care values become dependent
care values with two choices. The cares of the first function set form the first choice,
and the cares of the other function form the second choice.

Example 5. For the first special case, see Fig. 5, the intersection S = S3N F} is the function
set S shown in Fig. 4. The cares of F} replaced the ® values of S5.

For the second special case assume ISFs F| = {f1, fo} and F, = {f3, f1} (compare Fig. 4).
Therefore, S = {f1, f2, f3, f1} = F1 U F5. The cares of the ISFs F; and F; differ for ab¢ and
@bc. These are the dependent cares of S. The first choice f(abc) = f(abc) = 0 has the
care values of Fy. The second choice f(abc) = f(@bc) = 1 has the care values of F}.

We sometimes only want to verify whether or not the intersection of two function sets is
empty. A value ® in the characteristic function of a function set does not put restrictions

on other values of the element functions of a function set. Therefore, intersection with ®
always gives non-empty results.

Lemma 3. The intersection of function sets S1 and So; S1 NSy is non-empty if their char-
acteristic functions Sc1(x) and Sca(x) only combine values # ® with values ® in the other
function, i.e. for all z, there is Sco(xy) = @ if Scu(zy) # P.

There is the identity x@®y = T @y . Therefore, we have to compute the set of all functions
whose complement is an element of F'.

Definition 7. The negation F of an ISF F is the set of functions f’ whose negation is an
element of F, FF = {f'|f" € F}.

The next Lemma shows how the negation of an ISF can be computed.

Lemma 4. The negation Fy < fy, ps >= Fy of an ISF Fy < f1, 1 > is an ISF with on-set
fo= fi NP1 and the don’t care set vy = ;.

The negation of an ISF can be thought of an ISF with the same don’t care set where
the cares are negated. The column to the right of Fig. 1b) shows an ISF ¢;(a,b,c) and its
negation g;(a, b, c).

3 Decomposition of Function Sets

Bi-decomposition is the decomposition of a function into two subfunctions f(X) = g(A,C)o
h(B,C) where (A, B, C') is a partition of X, and operation o is an arbitrary binary operation.
Depending on operation o, we distinguish OR-decomposition (V), AND-decomposition (A),
and EXOR-decomposition (@). If C' = (), we call the decomposition disjoint. Here, we
will discuss only the case of disjoint decompositions. The more general case of non-disjoint
bi-decompositions can be reduced to disjoint decomposition of function sets with repeated
variables [9].

The definition of bi-decomposition can be extended to function sets. Generally, if S is a
function set then there are many pairs of functions g and h so that go h € S.

Definition 8. Given a function set S(X) and a partition (A, B) of X, a decomposition
relation D z(g, h) is a relation whose domain is the set F(A) of all functions that depend on
A and whose codomain is the set of all functions F(B) that depend on B. Functions g(A)
and h(B) have relation D%5(g,h) =1 if and only if goh € S.

Example 6. Consider the ISF F from Fig. 3. The decomposition relation for A = {a} and
B = {b} for OR-Decomposition (o — V) is shown in Fig. 6a. For g(a) = 0 and h(b) = b
we have gV h = f, € F. Therefore, DY,(0,b) = 1. The only other elements of D), are
DY (@,0) =1 and DY, (@,b) = 1.

Consider EXOR-decomposition of the ISF F from Fig. 1la with respect to A = {a,b, ¢}
and B = {d, e}. There are four pairs of functions, (ga,), (9, o), (ge, he), and (ga, hg) with
g(a,b,¢) ® h(d,e) € S. The domain of DYy is the set of the 256 functions g(a,b, c) that

h(d,e)
g@b,e)\ h, . h h h h, . _h;

go
h(b) _ : | 0
g@ 0 b b 1 g 1/0]/0]0
alolofolo] P GGl
a|l/0]1]/0 :
110/0/0|0 s

Figure 6: Decomposition relation for a) OR-Decomposition of F' from Fig. 3, b) EXOR-
Decomposition of the ISF from Fig. 1a.

depend on the variables {a, b, ¢}, the codomain are the 16 functions h(d,e) that depend on
{d,e}. The decomposition relation has D5 =1 only for the above mentioned four pairs of
functions.

Definition 9. Given a function set S with a decomposition relation D% ;. The image of a
function set S,(A) is a set of functions S, (B) so that for every h(B) € S}, there is a function
g(A) € S, with D% 5(g,h) = 1. The decomposition set G(A) is the image of the set of all
the functions that depend on B, F(B).

The decomposition set G of a function set S is the largest set of functions such that for
every function g € G there is a decomposition g o h € S. The decomposition set will be
passed to the next stage of recursive decomposition. The remainder of this section and the
next section will show how the decomposition set of EXOR-decomposition of an ISF can be
computed.

Example 7. The image of S;(a) = {ga,g.} With respect to decomposition relation DY,
in Fig. 6b is the set S, = {hq, h.} because DY5(ga, ha) = 1 and D$5(ge, he) = 1. The
decomposition sets of S are G = {ga, gb, g, 94} and H = {hq, hy, he, ha}.

To find the structure of a decomposition set, we partition the function set into indepen-
dent parts. For this reason we depict function sets in a decomposition chart, which is a
Karnaugh map with variables from A for the rows and variables from B for the columns,
see Fig. la with A = {a,b,c} and B = {d, e}. Using this chart we can define decomposition
graph.

Definition 10. A decomposition graph of function set S is a graph that has one vertex for
each care or dependent care value of Sc(X), where S¢ is the characteristic function of S.
The vertex is labeled with the value of S¢. There is an edge between any two vertices from
the same row or the same column of the decomposition chart of S¢(X). A row(column)
cover set is the set of all rows(columns) where the decomposition graph has at least one
vertex.

The decomposition graph of a function set can be partitioned to independent compo-
nents, each of them being a connected component. No connected component is connected
to another.

F, 01 0 d
abec 00 1 1ce
000/ 1]®/ 0 |0]1]
001 ||| oo gg
0O01l1|o |o| oo 22
010/ 1L]* 0 Jo|1]
110 oo 1] [1]/0
1110|000 gg
1010 |o|e|o DD
100 |o| | gg
(o[1[@[0] he &
(@o[o][@]1]h

Figure 7: Component ISF F of ISF F' from Fig. 1.

Example 8. Fig. 1b depicts the decomposition chart of the ISF' F' from Fig. 1a with respect
to the variable sets A = {a,b,c} and B = {d,e} (transitive edges in the same row or
column are not shown). There is one vertex for each care value of F. There are edges
between the vertices in the same rows and columns. The graph of F' has two independent
connected components, F; and Fy, shown by circle and square vertices in Fig 1b, respectively.
Each of the independent components is connected by itself. There is no edge between
the (independent) components F; and F,. The row cover set of Fj consists of rows R =
{abe,abe,abe }. The column cover set of Fy consists of columns C = {de,de}.

Our EXOR-decomposition algorithm for ISFs first finds the decomposition sets of the
independent components, and then combines these sets to compute the decomposition set
of the whole ISF. We first show that an ISF can be divided into its independent components.

Definition 11. Let F' be an ISF and P,,..., P, be the independent components of the
decomposition graph of F. A component ISF F; of F is the ISF that has a care with the
same label for each vertex of P, and is ® otherwise.

Theorem 1. An ISF F s the intersection of all its component ISFs F,...,F,: F =
Ny B
Proof. The care sets of the component ISFs are disjoint. Their intersection is the combination

of the cares. Because each care of F' is the care of one component ISF F;, the intersection
of all component ISF's gives ISF F'. O

The component ISF F; of F' from Fig. 1b is depicted in Fig. 7. Comparison of Fig. 1la
and Fig. 1b shows that F' = F| N F5.

4 EXOR Decomposition of ISF

In bi-decomposition it is sufficient to consider the cases of EXOR-~ and OR-decomposition
[13]. Other types of bi-decomposition can be reduced to these two types. For the case

of OR-decomposition of ISF, it has been shown that the decomposition set is an ISF [5].
However, the decomposition set has a more complicated structure for EXOR decomposition.
The decomposition set G of a fully specified decomposable function f = g®h =g ® h
consists of the two functions G = {g,g }. The structure of the decomposition set of EXOR-
decomposable ISFs is the topic of this section.

We start with ISFs whose decomposition graph is connected.

Theorem 2. Let F(X) be an ISF whose decomposition graph is connected. Then, the de-
composition set G(A) for EXOR-decomposition of F' is the union of an ISF Fg and its
negation, G = Fg U F. We call Fg the decomposition ISF of F'.

Proof. Let be z,, € R be an arbitrary but fixed element of R, where R(A) is the row cover
set of F'. We first show that the set Gy of all decomposition functions g € G with g(z,,) =0
is an ISF. Let Hy be the image of G with respect to the decomposition relation DY ,. We
can compute the values of functions in Gy and Hj successively. For a care of F'in row z,, and
column z,, of the decomposition chart, we obtain h(z,y) = F (2,9, L) D g(2,0). Similarly, if
h(zy,) has been computed, we can compute g(z,,) = F(z,,Zy) ® h(z,,) for a care of F' in
row z,, and column z,,. Because the decomposition graph of F' is connected, all values of
G for the row cover set of F' can be computed. For values z,; ¢ R by definition of the row
cover set, it holds F'(z 4, z,) = ®. Therefore, the value for g(z,;) can be chosen arbitrarily,
and Go(z,3) = ®. Note that Gy does not have dependent cares. Therefore, Gy is an ISF.
Similarly, it can be shown that Gy, the set of all functions g € G with g(z,,) = 1 is an
ISF. Because of g® h =9 ® h, we have Gy = G, and G = Gy U Gy . O

Example 9. We show the generation of the decomposition set for EXOR-decomposition of
ISF Fy from Fig. 7. Choose z,, = @b¢ as an element of the row cover set of F' and compute
the ISF Gy of all decomposition functions g with g(@bc) = 0. Now h(de) = Fi(abcde) @
g(@be) = 0® 0 = 0 can be derived. With h(de) computed g(@bc) = Fi(abede) ® h(de) =
0 is found. Similar computation gives the values for g and h as shown in Fig. 7. The
decomposition set of F consists of the function set G = G, U G .

Existing algorithms for EXOR-decomposition, like [10, 14], compute the decomposition
set for component [SFs very efficiently. We will now show how the results for the component
[SF's should be combined to produce the decomposition set of general ISFs. With the help
of the next Lemma, the theorem about the combination of the decomposition sets of the
component ISFs will be formulated.

Lemma 5. Let S(X) be a function set with the decomposition set G(A) and the column cover
C(B). The image of a function set Sy(A) C G with respect to the decomposition relation
DSy is a function set Sy(B) whose characteristic function Scp(x,,) = @ for all z,y ¢ C.

Proof. We have to show that if h € Sj, then b/ = h®d,, € Sy, forall 2, ¢ C. Because S, is a
subset of G' and S, is a image of S, there is a function g(A) so that goh € S. It follows from
Def. 3 that h(z,,) = h/(z;,) for all z;; € C and g(A)oh(x,,) = g(A)oh'(x,,). By definition of
the column cover set, S¢ (A, z,,) = ®. Therefore, for each z, either g(A)oh(z,) = g(A)oh/(z;)

or Sc(A,z,) = ®, and go h' € S. Therefore, that A’ is element of Sj,. O

Theorem 3. Let S; and S5 be two function sets with disjoint row covers Ry and Ry and
disjoint column covers Cy and Cy. Let G1 and Hy be the decomposition sets of Si; and G,
and Hy be the decomposition sets of So. Then, the decomposition sets of S3 = S1 NSy are
G3 :GlmGg anngzHlﬂHQ.

Proof. We first show that H3 C H; N H,. Obviously, S3 C S;. Therefore, each decomposition
function h € Hj is also element of H;. Similarly, Hy C Hy, and Hy C H; N H,.

We now show that H;NH, C H;. That means it should be shown that for all h € HNH,
there is a function g(A) so that goh € Ss;. Let Sg(A) be the image of h with respect to
decomposition relation D7 45z of S;. Then, by Lemma 5, we get, for the characteristic function
Scg1 of Sg1, Scqi(x,) = @ for all z,; ¢ Ry, where Ry is the row cover of set S;. Similarly
one obtains Sy (2,) = @ for all z,, ¢ Ry, where Sy, is the image of h with respect to
the decomposition relation D3, of Sy, and R; is the row cover set of S;. Because the row
covers Ry and Ry are disjoint, we get Sy N Sgs # 00 by Lemma 3. Let g € Sy N Sye. Since
gohe Syand goh € Sy then goh € Ss.

Because H3; C Hy N Hy, and H; N Hy C H; then H3 = H; N H,. O

The next lemma shows that component ISFs satisfy the assumption of disjoint row and
column cover sets in Theorem 3.

Lemma 6. Let P be the decomposition graph of a function set S, and P, and Py be two
independent connected components of S (that are not connected to each other). Then, the
column cover sets of Py and Py are disjoint. Similarly, the row cover sets of Py and Py are
disjoint.

Proof. Assume the column cover sets of P; and P, were not disjoint. Then, there would be
a column where both graphs had a vertex. By definition of the decomposition graph there
would be an edge between these vertices and the graphs would be connected. A similar proof
holds for the row cover. O

Now the theorem about the structure of the decomposition set of an ISF for EXOR-
decomposition can be finally formulated.

Theorem 4. The decomposition set G of EXOR-decomposition of an ISF F' is given by
G=(FaUFe)N (FeaUFg) ... (Fon U Fan), (3)
where Fgi, ..., Fan, are the decomposition ISFs of the component ISFs of F.

Proof. By Theorem 2, the decomposition set of each component ISF F; is the union F;UFg; .
By Lemma 6 the row and column cover sets of the component ISFs F},..., F},, are mutually
disjoint, and F' = FiN... F,, because of Theorem 1. Because of Theorem 3, the decomposition
set of F'is given by the intersection of the decomposition sets of its component ISFs F;. [

Example 10. Fig. 1b shows the component ISFs F; and F5 of the ISF F' from Fig. 1a. The
decomposition set of Fj is the union Gy = ¢g; U¢g; . The decomposition set of Fj is the union
G5 = g5 UGy also shown in the Figure. Every decomposition function g,, ¢, g. and g4 of F’

is an element of the decomposition sets G; and G5. That is, each decomposition function g;
is an element of either g; or g and an element of either g, or g3 . For instance, g, € g7 and

9a € 92 -

To describe the decomposition set of EXOR decomposition of ISF, a special class of
function sets will be defined; the so-called Combinational ISF's, or C-ISFs.

Definition 12. A combinational ISF, or C-ISF Sp < Fi,..., F, > is the set of functions
defined by

Sp=(FUR)N(FKRUR)N---N(F,UFE,) (4)

By Theorem 4, the decomposition set of EXOR-decomposition of ISF is a C-ISF. We will
now show an algorithm for the computation of a C-ISF. There are several algorithms that
compute the largest ISF approximation of the decomposition set of an ISF [10, 14]. These
algorithms can be used to compute the decomposition ISF of the component ISFs. This
vector of decomposition ISF's is then returned as an C-ISF. This leads to Algorithm 1.

Algorithm 1. EXOR-Decomposition of ISF.
Input: ISF F(A, B)
Output: C-ISF G < F(A) > that is the decomposition set of F'
1. Compute the decomposition graph F'.
2. Find the component ISFs Fi,..., F, of F.
3. Fori=1,...,n
Find the decomposition ISF Fg;(A) of F; as introduced in Theorem 2.
4. Return G < Fgu, ..., Fqgn >.

Example 11. We demonstrate the above algorithm for a decomposition of the ISF F' from
Fig. 1a. The algorithm finds the component ISFs F; and F,. EXOR-decomposition of the
ISF's results in ISFs ¢g; and g¢» or their negations. Because the C-ISF also contains the

negation of g;, it does not matter if we obtain g; or g; from the decomposition. The result
is the C-ISF

G<g1,02>= (1Y) N(g2UG2)
= (1 Ng)U(g1NG2)U(r Ng2) U (gr Ngz).

Comparison with Fig. 1a shows that g, =91 NGz, g» = 91 Nga, g = g1Ngo, and g4 = g1 N3 .

(5)

5 Decomposition of C-ISF

The previous section demonstrated that the decomposition sets of ISFs can be described by
C-ISFs. In this section it will be shown how to decompose C-ISFs. By rewriting (4), the set
of functions described by a C-ISF S < F > can be written as

Sp= (FENKN...F,) UFRNEKEN...F,) U... (FFNEKN...F) (6)
- FNl UFNQ U... FNZ”

where the union runs over all 2" possible patterns of negation of Fi,..., F,. Because the
intersection of ISF's is an ISF, the terms in parentheses are ISFs Fly;. A naive decomposition
algorithm computes all these 2" ISFs and checks their decomposability by decomposition
algorithms for ISFs. This algorithm is not very efficient because even for small n the number
of ISFs that must be checked becomes very large. There is no efficient and exact algorithm
known that computes OR- or AND-decompositions of C-ISF. We suggest here a heuristic
approach. Our greedy algorithm can be applied to AND-, OR-, and EXOR-decomposition.

Algorithm 2. Or-Decomposition of C-ISF.

Input: C-ISF Sp < F = (F},..., F,) >, variable sets A and B
Output: OR-decomposition of Sr with respect to A and B

1. Fr=97

2. fori=1ton

3. if ((Fr N F;) is OR~-decomposable)

4 FR = FR N .FZ

5 else

6. if ((Fr N F;) is OR-decomposable)
7. Fr=FrNE

8 else

9. return (no decomposition found)
10. return (OR-decomposition of Fp)

The algorithm successively selects either F; or F; for the ISF Fr. Whether F; or its
complement is selected, depends on the decomposablility of the resulting ISF. After the
termination of the loop in line 2, it holds that Fr = F1 N F2 . Fn, where F is either F;
or F;. Because of (6) we have FR € Sg. Therefore, if a decomp051t10n is returned in line 10,
this is a valid decomposition for the C-ISF Sr. This algorithm is applicable to any binary
operation for which there is a ISF decomposition algorithm. It is possible however, that Sg
is decomposable, and Algorithm 2 returns “no decomposition found”.

Example 12. Consider the C-ISF S < Fy, Fig, F¢, Fp > from Fig. 8. The cares of Fs, Fp,
Fe and F)p are labeled with letters A, B, C, and D in the Karnaugh map. The C-ISF S
can be thought of an ISFs where the cares can be complemented. If a care is complemented
however, all cares labeled with the same letter must be complemented. The Kmap of F in
Fig. 8 gives an example where the cares with labels A and B are complemented.

Algorithm 2 searches a suitable pattern of negation so that the resulting ISF is OR-de-
composable. An ISF F' is OR-decomposable if every 1-care in the decomposition chart is
an element of either a row with only 1s and don’t cares, or an element of a column with
only 1s and don’t cares ®. The algorithm starts with Frp = ® N F4 = Fy4. ISF F, is
not OR-decomposable because the value 1 at @b¢d is not an element of either a row, or
a column with only 1s and ®. The complement F,; shown in Fig. 8 is OR-decomposable.
Therefore, Fr; = F, after the first iteration of the for-loop. The second iteration checks
F4 U Fg which is not decomposable because of the 1 at @béd. The intersection Fy N Fg is
decomposable, hence Fry = F4 N F after the second iteration. Two more iterations give
Fry = F4 N Fg N FzN Fp with the decomposition shown in Fig. 8.

ced S F
a,b : F

00 01 10 11
00/ 1,[0,[o|o| |0 |l |o|a|[|0 |1l |o]|a n G(a,b)
o1/ 0,10, [0, [0, [1[1]e]all1]1]1]1 n
oo |l 1.] |0 |0 | oo ool |1
1010,/ 1,/ 0, @]]o o [o]ollo]1]0]a n

[0 11 10 [® JH(c.d)

Figure 8: OR-Decomposition of a C-ISF.

Algorithm 2 does not always find a decomposition for a given decomposable C-ISF. To
find all possible decompositions, we should implement a search strategy with back-tracking.
Such a strategy can be very time consuming because to check ISFs for decomposability is
computationally expensive, and the number n of component ISFs can become very large.
Therefore, we only implemented Algorithm 2. In the case of EXOR-decomposition, proper-
ties of the EXOR-operation can be used to avoid the search among all patterns of negation
in (6). For a C-ISF Sp < Fi,..., F, >, the EXOR-decomposition algorithm first finds the
component ISFs F;; for the ISFs F;. The decomposition sets of these components can then
be combined by a system of linear equations. The details can be found in [16].

6 Decomposition of Multi-Valued C-ISFs

The notion of function sets can be extended to multi-valued functions. The equivalent of
EXOR-decomposition in the multi-valued case is MODSUM-decomposition, f(X) = g(A)+,
h(B), where +,, denotes addition modulo n, a +, b = (a + b)mod n. The equivalents of OR-
and AND-decomposition are MAX-decomposition, f(X) = maz(g(A),h(B)), and MIN-
decomposition, f(X) = min(g(A), h(B)), respectively. Efficient algorithms for MAX- and
MIN-decomposition of multi-valued ISFs can be found in [17].

To show the main ideas of MODSUM-decomposition, the difference modulo n operator
—, is defined as the inverse operation of addition modulo n: a —, b = ¢ if and only if
a = b+, c. The decomposition set G of a connected multi-valued ISF F' can be found
as shown in Example 9. First, we compute G the set of all decomposition functions with
g(z,,) = 0 for a chosen z,,. Next the values of G and its image Hy are sucessively computed;
by Ho(zy;) = F(Zai> ;) —n Gol2,;) and Go(z,,) = F(Z4rs 2y) —n Ho(zy,) where F(z,;, ;)
and F(z,,,z,,) are cares of F', and Gy(z,;) and Hy(z,,) are cares of Gy and H that have been

computed. The identity g@®h =g ©h translates to the identity g+, h = (g +,7) +n (b —p 1)
for every integer ¢ in the multi-valued case. Therefore, the decomposition set G of ISF F' is
the union
n—1
G =GoU(Go+n 1) U(Go+n2)U...(Go+n (n—1)) = [J(Go+n). (7)
i=0
The decomposition set of MODSUM-decomposition of ISF's can be described by the inter-
section of the decomposition sets of their component ISFs. Finally, a multi-valued C-ISF is

G[A G(A) A G(A)
FX) B F[X] BA H . FX)
BB
H(B] H . HB)

b) d)

Figure 9: Two-Level decompositions used for the benchmark functions.

created.

Sp < Fi,... Fp >= (U (R +n¢1)> N (U(P2 +n¢2)> n... (U (Fm+nim)> . (8)

11=0 12=0 1m =0

The extension of Algorithm 2, decomposition of C-ISF, is shown in Algorithm 3. The
algorithm now checks the decomposability of the component ISFs for addition of every integer
0<<n.

Algorithm 3. MAX-Decomposition of multi-valued C-ISF.

Input: multi-valued C-ISF Sp < F = (F},..., Fy,) >, variable sets A and B
Output: MAX-decomposition of S with respect to A and B

1. Fr=2®

2. forj=1tom

3. fori=0ton—1

3 if (Fr N (Fj 4+, 1) is MAX-decomposable)
4. FR = FR N E

5. break

6. if (i==n)

9 return (no decomposition found)
10.return (MAX-decomposition of Fp)

7 Experimental Results

To verify that C-ISFs can improve the quality of function minimization, we compared decom-
position using ISFs with decomposition using C-ISFs. The functions are taken from POLO
directory and come from the machine-learning domain [17]. All functions have multi-valued
inputs and multi-valued outputs. The benchmarks are strongly unspecified functions. We did
two experiments. The first experiment used ISFs and the second experiment used C-ISFs. In
both experiments, decomposition was two-level, see Fig. 9a). The first level was MODSUM-
decomposition. In the first experiment we applied the algorithm from [10] producing F/(X) =
Grsr(A) +, Hisp(B), where Grsp and Hygp are ISFs. In the second experiment we applied
Algorithm 1 pI‘OdLICiIlg F(X) = G(,‘fISF(A) “+n HC%ISF(B); where G(,‘fISF and HC%ISF

#inp #111[)2 chr;za:v chr;nn erga:v Rﬁm time[s]
monks3tr 6 8.8 - - 1.00 1.00 93
monksltr 6 8.8 1.00 1.00 0.19 1.00 15
post-operative 8 11.9 - - 1.00 1.00 168
bridges1 9 14.8 0.42 0.75 0.75 1.00 428
cloud 6 17.7 1.00 1.00 - - 1734
sleep 9 43.4 | 2.89E-04 5.79E-04 1.00 1.00 2785
trains 32 64.4 1.00 1.00 1.00 1.00 881

Table 1: Comparison of DFC ratio of 2-level bi-decomposition using C-ISF or ISF.

are ISFs. The function sets G;sp and G¢_jsr were then MAX-decomposed to Grsp(A) =
max(Gesp(AA), GB . (AB)) and Go_jsp(A) = max(GA_, s (AA),GE_,5(AB)) in the first
and second experiment respectively. We applied the algorithm from [17] in the first experi-
ment and Algorithm 2 in the second experiment. To compare the complexity of the solution,
we compared the complexities of the subfunctions G\, and G¥,. with the complexities of
G24_;sp and GE_ ¢, by means of the ratio

RC DFC(G? ;sr) + DFC(GE_;sr) (9)
e DFC(G{sp) + DFC(Glsp)

with DFC(F) = mygy™m*™inn where myy; is the output mulitplicity and my,, . .. Minn
are the input mulitplicities of F. The ratio RS, for various benchmark functions is shown
in Table 1. A value of smaller than 1 indicates that a better solution has been found
using C-ISF's in the decomposition process. A ’-” in the table indicates the cases where
neither algorithm found a decomposition. The other columns contain the results when MIN-
decomposition instead of MAX-decomposition was used, see Fig. 9b) (RS,,), and when
function set H(B) was decomposed in the second level instead of function set G(A), see
Figures 9¢) and d) (RZ_ . and RZ.). Column (#inp) in Table 1 shows the number of input
variables, column (#inp2) shows the equivalent number of binary input variables (inputs
are multi-valued). The last column (time) contains the total computation time on a 90MHz
Pentium PC for the decomposition of the benchmark by both methods, ISF and C-ISF

decomposition.

8 The Concept of Vector Relation Sets

We believe that the introduced above concept of function sets can be further extended in
several ways and that it can find many practical applications. Especially in the area of
EXOR logic we often have to decompose some function to an EXOR of few functions [11,
19]. Various new classes of function sets arise from new types of applications. It can be
shown also that Ashenhurst decomposition of ISFs, or the OR-decomposition of C-ISFs
produce decomposition sets that cannot be described by either ISFs or C-ISFs. Curtis
decomposition of ISF's, or the decomposition of relations [15] produce vector functions which

b {y,Z} =R(aab)

01

00 | 10
01 10 | o1
100 | 11

Figure 10: Example of a relation.

| Vector Relation Set |

| Relation | [Vector of function sets
Output Input
dependency dependency
Vector of ISF

Figure 11: Hierarchy of sets of vector functions.

can be described by relations. In Example 3 we demonstrated that function sets impose
dependencies between values of their element functions for different inputs. This behavior
could not be described by ISFs. Relations extend vectors of ISFs in a similar way for the
outputs. Consider the relation {y,z} = R(a,b) in Fig. 10. There is a dependency of
different outputs for the same input of the form y(ab) = z(ab). Such dependencies cannot
be expressed by vectors of ISFs, or vectors of function sets. A further generalization of
relations and function sets leads therefore to vector relation sets, as shown in Fig. 11. Vector
relation sets can not only express dependencies between different input values, but also
dependencies between different output values. Thus they are the way of describing very
general constraints on discrete data.

Example 13. Fig. 12 shows two vector functions {y,z} = fi(a,b) and {y,z} = fa(a,b).
The vector relation set V' = {fi, fo} has a dependency between different outputs for different

f f
s an Haw CHan faw YSEH Seb
D01
0]00| 10 10| 01 00| 01 00| 11 [0,1])[1,0] [UNN)
1] 00| 11 00| 11 00| 11 00| 11 01 0|1

Figure 12: Functions of a vector relation set.

inputs of the form y(@b) = z(@b). There is no relation, or vector of function sets that can
express this ”vector relation set”. For instance, consider the relation R from Fig. 10. This
relation contains the functions f; and fo, but also the function f3 ¢ V from Fig. 12. On
the other hand, the vector of function sets [y = Si, z = Sy in Fig. 12b also contains f; and

fo, but also fy ¢ V. Thus the vector relation set V.= {f;, fo} can be not represented by
a relation, nor can it be represented by a vector of function sets. This clearly demonstrates
the natural need to introduce such a new powerful concept to the research areas of Logic
Synthesis and Machine Learning.

Concluding, vectors of ISF's and C-ISF's are the result of decomposition of vectors of ISF's.
Relations can be used to describe problems in machine learning and finite state machine
design or are a result of function decomposition. Vector relation sets arise in decomposition
of general relations as in [15]. To our knowledge, vector relation sets are the most powerful
generalizations of binary and mutli-valued functions introduced so far in the literature.

9 Conclusion

The concept of function sets was presented as a generalization of ISFs. Because of the huge
number of function sets created even during decomposition of functions with small numbers
of variables, the algorithms to process sets of functions have to correctly exploit specific
structures of the sets. We demonstrated the creation of C-ISFs, a special class of function
sets, during EXOR-decomposition of an ISF. A decomposition algorithm for C-ISF was
also developed. Using highly unspecified multi-valued benchmarks we showed that better
decompositions can be found with algorithms that use C-ISFs instead of ISFs. These results
can be useful not only for EXOR and MODSUM gates but also for any gate that has similar
to them linear properties [18].

References

[1] R. M. Karp, “Functional Decomposition and Switching Circuit Design”, J. S.L.A.M.,
Vol. 11, pp. 291-335, 1963.

[2] H. A. Curtis, The Design of Switching Circuits. Van Nostrand, 1962.

(3] M. Davio, J. P. Deschamps, and A. Thayse, Discrete and Switching Functions. McGraw-
Hill, (Chapter 11), 1978.

[4] R. Brayton and F. Somenzi, “An Exact Minimizer for Boolean Relations”, Proc. of
ICCAD, pp. 316-320, 1989,

[5] D.Bochmann, F. Dresig, and B. Steinbach, “A new decomposition method for multilevel
circuit design”, Proc. Furopean Design Automation Conference, pp. 374-377, 1991.

6] T. Luba, J. Kalinowski, and K. Jasinski, “PLATO-—a CAD tool for logic synthesis
based on decomposition”, Proc. Furopean Design Automation Conference, pp. 65—69,
1991.

[7] T. Sasao, “FPGA design by generalized functional decomposition”, in Logic Synthesis,
ed. T. Sasao, Kluwer Academic Publishers, Boston, pp. 1-31, 1993.

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Q. Le, “Dekomposition und ihre Anwendung bei der Synthese mehrstufiger Schal-
tungen”, Proc. Workshop Boolesche Probleme, pp. 81-89, Freiberg, 1994.

M. A. Perkowski, “A new representation of strongly unspecified switching functions and
its application to multi-level AND/OR/EXOR synthesis”, IFIP WG 10.5 Workshop on
Applications of the Reed-Muller Ezpansion, pp. 143-151, 1995.

B. Steinbach and A. Wereszczynski “Synthesis of multi-level circuits using EXOR-
gates”, IFIP WG 10.5 Workshop on Applications of the Reed-Muller Expansion,
pp. 161-168, 1995.

M. A. Perkowski, I. Schaefer, A. Sarabi, M. Chrzanowska-Jeske, “Multi-level Logic Syn-
thesis Based on Kronecker Decision Diagrams and Boolean Ternary Decision Diagrams
for Incompletely Specified Functions,” VLSI Design , 1995, Vol. 3., Nos. 3-4, pp. 301-
313.

Y-T. Lai, K-R. Pan and M. Pedram, “OBDD-based functional decomposition: algo-
rithms and implementation”, IEEE Trans. on Computer-Aided Design, Vol. 15, No. 8
August 1996.

T. Sasao and J. T. Butler, “On Bi-Decomposition of Logic Functions”, Proc. of IWLS
’97, Tahoe City, 1997.

A. Zakrevskij, “On a special kind decomposition of weakly specified Boolean functions”,
Computer-Aided Design of Discrete Devices, pp. 36—45, Minsk, 1997.

M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel, M. Nowicka,
R. Malvi, Z. Wang, and J. S. Zhang, “Decomposition of Multiple-Valued Relations”,
Proc. ISMVL °97, pp. 13-18, Halifax, Nova Scotia, Canada, May 1997.

B. Steinbach and Ch. Lang, “A General Data Structure for EXOR-Decomposition of
Sets of Switching Functions”, Proc. 3rd Workshop on Boolean Problems, pp. 59-66,
Freiberg, 1998.

B. Steinbach, M. A. Perkowski, and Ch. Lang, “Bi-Decompositions of Multi-Valued
Functions for Circuit Design and Data Mining Applications”, Proc. ISMVL ’99,
Freiburg, Germany, May 17-21, 1999.

U. Kalay, D. Hall, and M. Perkowski, “Highly Testable Boolean Rings,” Proc. IS-
MVL’99, Freiburg, Germany, May 17-21 1999.

M. Perkowski, B. Falkowski, M. Chrzanowska-Jeske, and R. Drechsler, “Efficient Algo-
rithms for Linearly Independent Decision Diagrams,” submitted.

R. Barthel, Grundlagen einer Booleschen Signaltheorie, Wissenschaftliche Schriftenreihe
13/1984, TH Karl-Marx-Stadt, p. 21, Karl-Marx-Stadt, 1984.

