
1

TRACE: A Visual Software System to Explore Properties
of Reed-Muller Movement Functions

Alan Mishchenko and Marek A. Perkowski
Dept. of Electrical and Computer Engineering, Portland State University,

P.O. Box 751, Portland, OR 97207-0751, USA, [alanmi, mperkows]@ee.pdx.edu

Abstract

We present new experimental Windows 95/98/NT software for investigation of
graph properties of boolean (in particular, Reed-Muller) logic with an equal
number n of inputs and outputs (called movement functions). Realized at the input
of an n-bit register, such functions create autonomous Finite State Machines
(FSMs). TRACE software system allows the user to visualize State Transition
Graphs (STGs) of the autonomous FSMs. Other features of TRACE help explore
graph properties of function families. These families are produced by a generic
function, differing from it only in the order of components, one operation, or one
literal (this literal is complemented or replaced by another literal). The
autonomous FSMs are used to implement economically next-state logic of real-
time control units such as CPU controllers. A case study using TRACE to build
economical, highly testable reversible counters based on linear Reed-Muller
polynomials is given.

Introduction

The classical approach to FSM synthesis is based on finding an acceptable state encoding
and then deriving boolean equations for flip-flop excitation signals and outputs. In practice,
another approach is often used. This approach relies on the use of counters or shift registers for
the automatic generation of code sequences. The states are encoded by superimposing the counter
or shift register state sequences over state sequences in the STG of the FSM. In this case, the
implementation of the FSM in based on the embedded counter or shift register.

Here we consider a generalization of the approach from [2]. The basic idea is that we can
use not only a counter or a shift register but an arbitrary autonomous FSM (FSM without inputs)
as the device to be embedded into the FSM under design. In particular, we study properties and
implementation of autonomous FSMs created by linear Reed-Muller polynomials [1].

Movement Functions and Autonomous Finite State Machines

The autonomous FSM is implemented
using a register with a feedback consisting of
combinational logic (Figure 1) [3]. The register can
include flip-flops aj of any type, but first we will
limit our attention to D flip-flops. Let us denote the
direct (complemented) flip-flop outputs as aj

(respectively, ja) and the feedback logic outputs

(or the flip-flop inputs) as fn, ..., f2, f1. The feedback
logic consists of a set of boolean functions

fj = fj (an, an-1..., a2, a1). (1)

Functions fj may have any form, in particular, they
can be the constants 1 or 0. Simple functions, such
as EXORs of a few literals, are of special interest.

 Movement Logic

Register

fn f2 f1

aj

an a2 a1

τ
…

…

Figure 1. Structure of the autonomous FSM.

2

An ordered set of n such functions

F = {fn, fn-1... f2, f1} (2)

is called the movement function of the autonomous FSM. For brevity, we will include only the
parts on the right side of equations (1) into set (2). For instance, the function describing a cyclic
shift by one bit to the left is specified as follows

Fshift = {an-1, an-2, ..., a2, a1, an}. (3)

Polynomial counters are based on the following functions

Fpolyn = {an-1, an-2, ..., a2, a1, an ⊕ ar}, (4)

where the symbol ⊕ stands for the EXOR operation, and integer r depends on the number of
flip-flops n, as shown in Table 1.

Due to feedback, a code Q = {qn, qn-1, ..., q2, q1} stored in the D flip-flop register of the
autonomous FSM is transformed into a new code Q' = {qn', qn-1', ..., q2', q1'} in the next clocking
period. Each bit of code Q is transformed according to the equation

qj' = fj(Q),

and each state Q of the register is succeeded by the next state Q' determined from the formula

Q' = F (Q).

In particular, for some transitions, the code Q' can be the same as the code Q.

Given a movement function F, all 2n possible codes stored in the register are arranged in
a sequence. We call this sequence the trace of the movement function F. For example, the trace of
n-bit cyclic shift function (3) consists of a number of n-code cycles plus one or more cycles of a
shorter length (in Figure 2, this trace is shown for n = 4). The trace of polynomial function (4)
includes a zero code cycle and a long cycle of the remaining 2n-1 codes.

Graph Theoretic Properties of STGs of Movement Functions

Traces of movement functions have the following properties:

• Any vertex has only one vertex-follower (in other words, trace graphs have no fan-out
branchings).

• Any vertex can have from 0 up to 2n vertices-predecessors (in other words, a vertex is a
starting vertex or it has a fan-in branching that is limited by the total number of vertices).
For example, if the movement function consists of k constants 1, all the vertices of its trace
converge in the vertex, whose code is “1” repeated k times.

• The trace graph may have from 1 (as in the modulo-2 counter) up to 2n (as in the movement
function of parallel transfer, where fj = aj) isolated parts, without transitions between them.

• In each isolated part of the graph, there is a cycle of length from 1 up to 2n (see examples
from the previous property).

• A vertex belonging to a cycle can be the meeting point of one or more linear code sequences
without branching or other more complex vertex structures.

• The movement function, whose k components are described by equations fj = aj while other
n-k components do not depend on the respective k flip-flop outputs (aj), has a trace consisting
of 2k identical "pages". The codes on these pages differ only in the “page number” (the part of
the code composed of k bits with fj = aj).

3

Figure 2. TRACE software.

Overview of TRACE
TRACE is a software package for visualization of the trace graphs of autonomous FSMs

and exploring their properties. The form of the trace graphs depends not only on functions
themselves but also on the type of flip-flops used in the register (Figure 1).

The system allows the user to enter functions, select the type of flip-flops, and display the
resulting graph, which is shown as the top right window. It is also possible to zoom to the part of
this graph as shown in the bottom right window (Figure 2). Next the system allows the user to
change the function automatically by shifting its components or replacing one literal and
observing how the trace of the function changes in response. This quality makes TRACE an
excellent tool for researching movement functions.

The system works reliably for a number of inputs (outputs) of movement function less
than 16. The following case study illustrates the use of TRACE in research of the properties of
Reed-Muller polynomials.

Case Study: Economic Reed-Muller Implementation of Reversible Counters

Theoretical Foundations
Let us consider linear Reed-Muller polynomials used in polynomial counters and

synthesis of arbitrary automata based on polynomial counters.
Definition 1. An n-bit boolean function F = (f1, f2, ..., fn) over n variables
f1 = f1(x1, x2, .., xn), f2 = f2(x1, x2, .., xn), ..., fn = fn(x1, x2, .., xn)

is called a linear polynomial if

4

fj(x1, x2, .., xn) = ∑
∈ jQi

ix , (5)

where 1 ≤ j ≤ n, Qj is a set of different integers from 1 to n and the sum is an EXOR.
Definition 2. Let F = (f1, f2, ..., fn) be an n-bit Boolean function of n variables

f1 = f1(x1, x2, .., xn), f2 = f2(x1, x2, .., xn), ..., fn = fn(x1, x2, .., xn).

Then the reversible function for F is an n-bit function G(g1, g2, ..., gn) over n variables such that
for every tuple (x1, x2, .., xn) of argument values of the function F such that

(f1, f2, ..., fn) = F(x1, x2, .., xn),

the following equality holds

(x1, x2, .., xn) = G(f1, f2, ..., fn).

Theorem 1. Given is an n-bit linear polynomial Boolean function F = (f1, f2, ..., fn) over
n variables of the form

f1 = xn ⊕ ∑
∈Qk

kx , f2 = x1, f3 = x2, ..., fn = xn-1, (6)

Set Q is a collection of m (0 ≤ m ≤ n-1) different integers k that satisfy the inequality 1 ≤ k ≤ n-1.
In particular, the set Q may be empty. Then for every m, function F has a unique reversible
function G, which is defined by the relationship:

g1 = x2, g2 = x3, ..., gn-1 = xn, gn = x1 ⊕ ∑
∈

+
Qk

kx 1 . (7)

Proof of the theorem [4] is based on solving the matrix equation

 1 k1 … km n

Ax = f, where A =

01000000

00100000

00010000

00001000

00000100

00000010

00000001

10110100

in Galois field and getting the solution in the form

 1 ki+1 … km+1 n

x = A-1f, where A-1 =

01101001

10000000

01000000

00100000

00010000

00001000

00000100

00000010

5

Theorem 2. Let F = (f1, f2, ..., fn) be an n-bit linear polynomial Boolean function over n
variables

f1 = x1 ⊕ xn ⊕ ∑
∈Qk

kx , f2 = x2 ⊕ x1, f3 = x3 ⊕ x2, ..., fn = xn ⊕ xn-1, (8)

where set Q is a collection of m (0 ≤ m ≤ n-2) different integers k that satisfy the inequality
2 ≤ k ≤ n-1. Then for an even m the function F does not have a reversible function, and for an odd
m the function F has a unique reversible function G, which is defined by the relationship

gj = (∑
=

1

1

k

i
ix ⊕ ∑

+=

3

2 1

k

ki
ix ⊕ …⊕ ∑

+=

m

m

k

ki
ix

1

) ⊕ ∑
+=

n

ji
ix

1

, 1 ≤ j ≤ n. (9)

Practical Applications

Let us now consider applications of these results. Discrete devices often include n-bit
binary counters mod 2n to count the number of input signals in natural code. The feedback
function realized on the inputs of the flip-flops used in these counters is a counting function that
increments the counter contents by 1 each time the count signal arrives. Reversible counters are
also used. These counters, in addition to the counting function, realize a function that subtracts 1
from the counter contents. A reversible counter operates in the two modes: counting up and
counting down.

Circuits that realize the counting functions are relatively complex and slow because
counting depends on producing a carry-over bit and letting it ripple through the register from the
lower bits to the higher. Polynomial counters are free from these shortcomings, because they are
based on polynomial movement functions (4). The usefulness of polynomial counters is limited,
however, because the sequence of binary codes generated in the counter differs from the
increasing sequence of n-bit binary numbers in natural code.

The complexity of the circuit realizing polynomial feedback functions depends on the
types of flip-flops used as memory elements and on the number of bits in the counter. Thus, given
D or SR flip-flops, the polynomial counter is usually implemented by functions (6). The sequence
of counter states in this case is a cycle of length 2n-1, which does not include only the zero-code
(it forms a separate cycle of length 1).

According to Theorem 1, reversible functions of a simple form (7) exist for polynomial
functions (6). By Definition 2, when function G, reversible with respect to the original
polynomial function F, is implemented in the counter, it produces a cycle of length 2n-1. This
cycle is formed by the same codes as the previously mentioned cycle and differs from the latter
only in that the sequence of codes has the inverse direction.

Thus, implementation of polynomial functions (6) and their reverse functions (7)
produces a reversible polynomial counter. The counter circuit in this case is simpler and faster
than the ordinary natural code reversible counters based on the counting up and counting down
functions. This implementation exists for SR and D flip-flops (and other flip-flops functioning in
the SR or D mode).

Given T flip-flops (and other flip-flops functioning in the T mode), the realization of the
function (6) on their inputs produces output signals described by function (7). The latter function
is the composition of the characteristic function of T flip-flops and function (6). By Theorem 2,
given odd number n, reversible functions (9) also exist for polynomial functions (8). Due to the
complexity of these functions, their implementation in reversible counters does not meet
hardware and speed requirements. In reversible counters with T flip-flops, it is preferable to use
the counting up and counting down functions rather than polynomial functions.

6

Experimental Results

In Table 1 below, the first column contains the number of bits in the counter, the second
and third columns contain formulas for the EXOR sum S of additional variables in expressions
(6) and (8) for the first component of the polynomial counter found using TRACE:

S = ∑
∈Qk

kx

In the fourth columns, the literal count for the gate-level implementation of reversible counters
based on D/SR flip-flops is given. (Given T flip-flops, according to Theorem 2, similar
implementations do not exist for any of the counters in Table 1.) Calculation of the literal count
LC in the last column of the table is performed according to the formula

LC = LCup + LCdown + 6*n,
where LCup and LCdown are literal counts in (6) and (7), respectively. Additional 6*n literals in
this formula correspond to 3*n 2-input gates needed to control counting in different directions.
In Figure 3, the circuit of the reversible polynomial counter for n = 3, designed using the above
method, is given.

Figure 3. Gate-level implementation of the
reversible polynomial counter for n = 3.

CountUp/CountDown

Clock

D
X1

X1
X3

X2

D
X2

X3

D
X3

X1
X2

X2

X1

Conclusion

Experimental results show that TRACE can be used by hardware designers looking for a
good fit of the FSM under design and the autonomous FSM based on a movement function. By
going over a number of similar functions that comprise a family in the sense described above, an
economic implementation of the real-life FSM may be found with the help of TRACE.

Table 1. The results of design of
reversible counters

The additional
term S in the 1st

component

Literal
count,

LC

Num-
ber of
bits,

n
D ffs T ffs D ffs

2 x1 x 1 16

3 x 1 x 1 22
4 x 1 x 3 28
5 x 2 x 3 34
6 x 1 x 1 40
7 x 1 x 1 46
8 x1⊕x3⊕x5 x1⊕x3⊕x5 56
9 x 4 x 4 58

10 x 3 x 3 64
11 x 2 x 2 70
12 x1⊕x4⊕x6 x 7 80
13 x3⊕x5⊕x10 x3⊕x5⊕x10 86
14 x1⊕x4⊕x8 x1⊕x4⊕x8 92
15 x 1 x 4 94

7

As the case studies show, another possible use of TRACE is finding gate-level
implementations of economical, highly testable reversible counters based on Reed-Muller
polynomials. Such counters and arbitrary FSMs based on these counters can be obtained when the
outputs of polynomial functions (6) and their reversible functions (7), controlled by the signal
CountUp/CountDown, are fed into the inputs of SR and D flip-flops. For T flip-flops, there is no
simple implementation of reversible counters.

Due to the attractive visual qualities of graphs created by TRACE, it can be used in
university education. The authors have successfully incorporated it into logic design classes to
demonstrate the properties of movement functions to electrical engineering students.

TRACE is available on the web [5].

References

[1] A. Gill. Linear Sequential Circuits: Analysis, Synthesis, and Applications. McGraw-Hill,
1966.

[2] A. T. Mishchenko. A control unit synthesis method. Kibernetika, 3, 1972, pp. 148-149
(in Russian).

[3] Yu. V. Kapitonova, A. T. Mishchenko. Logic design of universal automata. Kibernetika, 5,
1986, pp. 32-46 (part 1); 6, 1986, pp. 44-57 (part 2) (in Russian).

[4] A. A. Mishchenko. On properties of reversible polynomial counters. Kibernetika i systemny
analiz, 5, 1997, pp. 44-49 (in Russian).

[5] http://www.ee.pdx.edu/~alanmi/software/index.htm

