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Abstract

This paper describes a family of canonical Reed-Muller forms, called Inclusive
Forms, which allowsto represent all minimum ESOPs for any boolean function.
We outline the hierarchy of known canonical forms, in particular, Pseudo-
Generalized Kronecker Forms [1, 2], which led us to the discovery of the new
family. Next we introduce special binary trees, called S/D trees, which underlie
Inclusive Forms and permit their enumeration. We show how to generate IFs
and Generalized IFs. Finally, we present the results of computer experiments,
which show that Inclusive Forms reduce the search space for minimum ESOP
by several orders of magnitude, and this reduction grows exponentially with the
number of variables.

1 Introduction

Reed-Muller (AND/EXOR) expansions play an important role in logic synthesis
by producing economical and highly-testable implementations of boolean functions
[3,4,5, 6]. The range of Reed-Muller expansions includes canonica forms, i.e.
expansions that create unique representations of a boolean function. Several large
families of canonical forms. Fixed Polarity Reed-Muller forms (FPRMs), Generalized
Reed-Muller forms (GRMs), Kronecker forms (KROs), and Pseudo-Kronecker forms
(PSDKROs), referred to as the Green/Sasao hierarchy, have been described [7, 8, 9]. (See
Figure 1 for a set-theoretic relationship between these families.)

Research in the field of canonical formsis motivated to a large extent by the need
to improve the agorithms currently used for ESOP minimization. Efficient exact
algorithms exist only for certain families of Reed-Muller expansions belonging to the
Green/Sasao hierarchy, for instance [10, 11, 12, 13]. These families, however, do not
exhaust all ESOPs. This is why state-of-the-art ESOP minimizers [14, 15, 16] are based
on heuristics and give the exact solution only for functions with a small number of
variables.

Recently, new genera families of canonical forms have been proposed [1, 2],
which include the above-mentioned well-known families, in particular GRMs and
PSDKROs. The discovery of these forms suggests future advances in exact ESOP
minimization. Still none of these families has been proven powerful enough to include all
minimum ESOPs, or a subset of them.



In this paper, we propose two still more general families of canonical Reed-
Muller forms, called Inclusive Forms and Generalized Inclusive Forms, which include all
minimum ESOPs.

The remainder of this paper is organized as follows. The basic definition of the
families of forms belonging to the Green/Sasao hierarchy and their recent generalizations
[1, 2] are given in Section 2. The concept of S/D trees, which is essentia for creation and
enumeration of Inclusive Forms, is presented in Section 3. Properties of Inclusive Forms
and the formula to calculate their quantity is given in Section 4 and illustrated by
comprehensive enumeration of IFs for two variables. Section 5 is devoted to possible
generdizations of IFs. The application of the new forms to exact logic minimization is
discussed in Section 6. Experimental results are presented in Section 7, followed by
conclusions in Section 8.

2 Green/Sasao hierarchy of canonical forms and their
generalizations

The Green/Sasao hierarchy of families of canonical forms and corresponding

decision diagrams is based on three generic expansions

f(X1, X2, .y Xn) = Xafo(X2, ..oy Xn) A X f1(X2, ..., Xn) (Shannon - S) @

f(X1, X2, ooy Xn) = fo(X2, ..oy Xn) A Xefa(X, ..., Xn) (Positive Davio-pD)  (2)

f(X1, X2, ooy Xn) = fo(X2, ooy Xn) A X fa(X2, ..., Xn) (Negative Davio-nD) (3)
Here fo is (0, Xz, ..., Xn) With x; replaced by O (negative cofactor of variable x;), f; is
f(1, X2, ..., Xn) With X1 replaced by 1 (positive cofactor of variable x1), f2 isfo A 1, and
symbol A means Exclusive OR.

An arbitrary n-variable function f(xi, Xz, ..., Xn) can be represented using the
Positive Polarity Reed-Muller form (PPRM)
f(Xl, X2, ey Xn) = aoA a]_X]_A a2X2A...A AnXn A
allesz a13x1x3A...A An-1nXn-1Xn A Aa]_z,_,nX]_Xz...Xn. (4)

For each function f, the coefficients a are determined uniquely, so PPRM is a canonical
form. If we use either only the positive literal (x;) or only the negative literal (X;) for
each variable in (4), we get the Fixed Polarity Reed-Muller form (FPRM). There are 2"
possible combinations of polarities and as many FPRMs for any given logic function.

If we freely choose the polarity of each literal in (4), we get a Generalized Reed-
Muller form (GRM). In GRMs, contrary to FPRMs, the same variable can appear in both
positive and negative polarities. There are n2™! literals in (4), so there are

2”2n-lpolarities for an n-variable function and as many GRMs. Each of the polarities
determines a unique set of coefficients, and thus each GRM is a canonical representation
of afunction.

Two other types of expansions result from flattening of certain binary trees. To
create these trees, the following procedure is proposed. Let us create a binary tree in such
a way that each k-th level (0 £ k <n), starting from the root node on top of the tree,
contains 2* nodes. There are 1+2+...+ 2"* = 2"-1 nodes in this tree. Suppose we select an
ordering of n variables and use one of the elementary expansions (1)-(3) in each node.



If throughout each level of the tree only one elementary expansion (S, pD, or nD)
is used, the resulting canonical form is the Kronecker form (KRO). If an arbitrary
expansion is alowed in each node, the result is the Pseudo-Kronecker form (PKRO).
There are 3" and 32! different KROs and PKROs [3], respectively. These families
intersect with GRMs but do not contain them (Figure 1). An example of a Pseudo-
Kronecker tree and the resulting canonical form are given in Figure 2.
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Figure 1. Set-theoretic relationship Figure 2. A Pseudo-Kronecker tree and
between families of canonical forms. canonical expansion it produces

In[1, 2], three more families of canonical expansions were proposed. These forms
are generated by flattening certain type of trees. The following procedure for building the
tree is proposed. First, partition all n variables into disoint non-empty sets S, such that
the union of these sets is equal to the initial set of variables. Next order these blocks and
put them in correspondence with levels of the tree. For every level, if the variable block
consists of a single variable, one of the generic expansions (S, pD, or nD) is selected for
its nodes. If the block contains more than one variable, one GRM polarity is selected for
its nodes.

Definition 1. The family of forms created by flattening this tree is called
Generalized Kronocker forms (GKs) [1].

Definition 2. If we allow any of the generic expansions (1), (2), and (3) to be used
with single variable blocks and any of the GRM polarities to be selected for many-
variable nodes on the same level, it is Pseudo-Generalized Kronecker forms (PGK's) [1].

Definition 3. If we additionally allow any variable ordering to be used along any
path in the tree, provided that variables are not repeated, it is Free Pseudo-Generalized
Kronecker forms (FPGKs) [1].

Let us consider two extreme cases. If each block includes only one variable, the
tree reduces to a special case of a PKRO tree. If there is only one block containing all
variables, the tree reduces to one of GRMs. Thus, we may conclude that PGK's subsume
PKROs and GRMs.



3 S/D Trees and Inclusive Forms

In this section, we introduce the concept of S/D trees, which is important to define
the family of Inclusive Forms.

First, we present a generdization of the Positive Davio and Negative Davio
expansions (2) and (3) introduced in the previous section. We call this new expansion
Generalized Davio expansion

f(X1, X2,..., Xn) = fo(X2, ..., Xn) A % fo(X2,..., Xn) (Generdized Davio - D) 5)

Here the underlined literal x, is a generalized literal. It stands for any polarity of

variable x1, positive or negative. In a sense, Generalized Davio expansion is a compact
notation for both Positive and Negative Davio expansions at the same time. It is helpful
to note at the outset that the Generalized Davio expansion is not used in this paper to
build decision diagrams for functions, but only to describe expressions, which produce a
family of canonical forms.

Let us now create a binary tree in the same way we created trees for Kronecker
and Pseudo-Kronecker expressions. Each of the nodes of the tree is selected to have
either Shannon expansion (1) or Generalized Davio expansion (5).

Definition 4. The tree created in this way is called the SD trees for the given
ordering of n variables.

As it was aready pointed out, an S/D tree for n variables has 2"-1 nodes and so

there are 2" "*such distinct trees for each variable order. Figure 3 shows all S/D trees for
two variables.

Definition 5. A generalized expansion (GE) is the expansion containing both
ordinary and generalized literals produced by the S/D tree.

In particular, a GE may have no generalized literals (when S nodes are used
throughout the tree) or consist of n2"* generalized literals only (when gD nodes are used
throughout the tree). It is easy to see that is the latter case, the GE produces all GRMs for
the given number of variables.

Definition 6. Inclusive Forms (IFs) for a given variable ordering is a set of
expansions created by all generalized expansions for this variable order, when
generaized literals presented in the generalized expansions are alowed to have all
possible combinations of polarities.

It is easy to see that a generalized expansion with m generalized literals produces
as many ordinary forms as there are distinct polarity assignments of generalized literals,
namely 2.

Example 1. Figure 3 illustrates derivation of Inclusive Forms for two variables, when the

variable ordering is fixed (a, b). The number N positioned over each tree shows how many
expansions can be created from this tree. For example, tree (b) and its corresponsing GE

{ab, ab, a, ab }, produces two ordinary expansions {a b, ab, a,ab} and {a b,
ab, a, ab}. By adding numbers N for each tree, we get the total number of IFs for n = 2.
Ne=(1+2+2+4)+(4+8+8+16)=45.

In the next Section, we derive an exact formula for Nie for arbitrary number of variables.



) N =8
1/ a
B/Qb 1/ b
b b a ab

Figure 3. All S/D trees and generalized expansion for two variables.

4 Properties of Inclusive Forms

In this section, we prove that al Inclusive Forms for the given variable ordering
are canonical and unique.

Theorem 1. Each Inclusive Form {t}, 1£i £n , is canonicd, i.e, for any
function F of the same number of variables, there exists one and only one set of
coefficients {a;}, such that this function can be represented as F = ayt; A ... A ant,.

Proof: In[5], it was shown that an expansion is canonical iff its terms are linearly
independent, that is, none of the termsis equal to alinear combination of other terms.

Let us prove this statement by induction on the number of variables. For n =1,
there are only three IF forms, which coincide with the generic Shannon and Davio
expansions, introduced in Section 3. These forms are linearly independent and canonical.

Let us now assume that the theorem is true for the number of variables n = k and
prove that it is true for n = k + 1. Suppose that it is not true, i.e. there exists an S/D tree
for n = k + 1 variables (ap, a&,..., a) such that, although all the forms for n = k are
linearly independent, there is the form f; generated by this tree such that one of its termsft;
isalinear combination of other terms.

Suppose ax is the variable on top of the tree. Then, al the terms of f; are split
into two equal groups G; and G,. In case of Shannon expansion, exactly one half of the
terms (group G;) has variable ax complemented while the other half (group G;) has ax
uncomplemented. In case of Generalized Davio expansion, exactly one half of the terms
(group G;) does not have variable a at all, while the other half of them (group G,) have it
present in any polarity. It is easy to see that the term t; and all the terms that constitute the
linear combination equal to t; belong to only one of the group, either G, or G,. In case of
Shannon expansion, we factor ax from both t; and the linear combination and get the
equality, which depends only on variables ap, a;,... ak-.1, meaning that the terms are not
linearly independent for n = k, which is a contradiction. In case of Generalized Davio



expansion, if the term t; and all the terms that constitute the linear combination belong to
group Gq, it isacontradiction. If they belong to group G, again al of them can belong to
either those terms which have ax complemented, or to those terms that have ax
uncomplemented. We repeat our previous argument for Shannon expansion and arrive at
acontradiction. Q.E.D.

Theorem 2. For the given ordering of n variables, there are

nol n- k-1 oK
2 2
O@+2° )
k=0
unigue Inclusive Forms.

Proof: Firgt, let us prove that the forms are unique, that is if a form is produced
by an S/D tree, there is no other S/D tree for the given variable ordering, which will
produce the same form.

Let us prove by induction on the number of variables. For n = 1, there are only
three possible forms and they are unique. Suppose it is true for n = k. Let us prove that it
istruefor n =k +1.

Suppose it is not true, i.e., there are two different S/D trees for the given variable
ordering, which produce the same expansion. Since the theorem is true for n = k, these
expansions may differ only in the variable ax, which is found on top of the S/D tree. But
there are only two distinct S/D trees produced by the variable &, in one of them the root
node has Shannon expansion, in another the root node has Generalized Davio expansion.
Obvioudly, these two trees cannot create identical forms. This proves the second part of
the theorem, the uniqueness of Inclusive Forms.

To derive the formula, let us enumerate the levels of the tree starting from the root
node with O-based integers. Let us consider a node on the k-th level of an S/D tree. If itis
a Shannon node, it does not contribute generalized literals to the generalized expansion
produced by the tree and does not produce more than one resulting canonical expansions.

If it is a Generdlized Davio node, it contributes 2" ** generalized literals to the
generalized expansion, which, in turn, produce 27 reslt ng canonical expansions.

Now we observe that there k-th level consists of 2 nodes, each of which can be
either Shannon or Generalized Davio. It is possible to evaluate the contribution to the
guantity of resulting canonical expansions of the entire k-th level of nodes for al SD

2n- k-1, 2k
trees, which differ only in polarity assignments. This contribution is (1+ 2 ) :

The only thing left to do after this, is to create the product of these contributions, since
each level adds to the sum total of expansions independently of all others. Q.E.D.

a"0 @70

Example 2. For n = 3, there are g ¢ = 2,220,075 possible expansions. Among

2"y €80
them, only 527,121 are linearly independent, or canonical. According to the formula (1),
there are Ng = (1 + 16)1(1 + 4)2(1 + 2)4 = 34,425 Inclusive Forms for each ordering of
variables. We have verified these results using a program, which systematically generates
all linearly independent forms for three variables and checks whether it is possible to
create an S/D tree for a given variable ordering.



5 Generalizations of Inclusive Forms

It is easy to see that, for different variable orderings, some forms are not repeated
while other forms are, for example, Kronecker forms and GRMs. Therefore the union of
sets of IFs for all variable orders contains more forms than any of the IF sets taken
separately and less forms than the sum total of all these IFs.

Definition. The family of forms, which is created as a union of sets of IFs for all
variable orders, is called Generalized Inclusive Forms (GIFs).

If in the later definition we relax the requirement of fixed variable ordering, and
allow any ordering of variables in the branches of the tree but do not allow repetitions of
variables in the branches, we get a still more general family of canonical forms.

Definition. The family of forms, generated by the S/D tree with no fixed ordering
or variables, provided that variables are not repeated along the same branches, is caled
Free Generalized Inclusive Forms (FGIFs).

It can be shown that FGIFs is the same of FPGK forms, intoduced in Section 2.

Example 3. It is easy to calculate the number of GIFs for n = 2, if we notice that four out of
eight S/D trees in Figure 3 generate forms, which are repeated when the variable ordering
is changed from (a, b) to (b, a). These are trees a), d), e) and h). So for the number of GIFs
we have the following calculation:

Ngirs =2+45 - (1 +4 + 4 + 16) = 65.

For n = 2, the number of FGIFs is the same as the number of GIFs.

The studies show that it is difficult to trace the relationship between the number of
forms that are repeated for n > 2 and the number of forms that are not. In Table 1, we
give the result of a computer experiment, which shows that for n = 3 this relationship
becomes rather complicated. The total number of GIFs for n = 3 is given in the last row
of the table.

Table 1. The number of Inclusive Forms as a function of the number of
repetitions of these forms for six possible variable orders (n =3).

# repetitions #1Fs

1 45,696
2 44,880
3 13,872
6 4,913

Total GIFs 109,361




6 Applications of Inclusive Forms to exact logic minimization

In this section, we provide an algorithm to represent any minimum ESOP as an
Inclusive Form.

Algorithm. Given a variable ordering and a minumum ESOP, build the S/D tree
which generates a canonical form representing the minimum ESOP.

Step 1. Assume given variable is the first variable in the ordered list of variables.

Step 2. Divide al terms of the expansion into three sets: those that do not contain
the given variable, those that contain it as a complemented literal, and those that contain
it as a non-complemented literal.

Step 3. (a) If the first set is empty, assume the Shannon expansion on the given
variable, factorize it from the two remaining sets, take the next variable from the list,
assume two expansions are the second and third sets of terms (without the factorized
variable) and go to Step 2 for both expansions.

(b) If the first set is not empty, but either second or third or both of these sets are
empty, assume the Generalized Davio expansion and then proceed asin Step 3 (a).

(c) If neither of the sets is empty, assume Generalized Davio expansion, factorize
the given variable from the second and third sets as a generalized literal, take the next
variable from the list of ordered variables, and check for identical terms in the set of
terms after factorization (see Example 4 for the case when such terms exist). If such
terms exist and include the next variable taken from the list, introduce as many new
variables instead of this one as needed to make all of the terms different. (There will be
s- 1 such variables, if sis the number of repeated terms.) Insert these variables into the
list after the current one. Assume two expansions are the first set of terms and the set of
terms after factorization at the beginning of Step 3 (¢). Go to Step 2 for both expansions.

If there are no more variablesin the list, exit the algorithm.

Example 4. Let us create the S/D tree with variable ordering (abcdef) for the function

a A abef A abcdeAabcdeA b ef.
It is easy to see that this is the minimum ESOP, because the Humming distance between
any pair of cubes is three or more. First, we perform Generalized Davio expansion on
variables a, b and c:

befAa@A bef A bcde A bcde).
befAa@A b(ef A cde A Tde)).
befAa@A b(ef A c(de Ade))).
Next we introduce variable d; and do Generalized Davio expansion on variable d.
befAa@A b(ef A c(de Ade))).
befAa@A b(ef A c(dieAde))).
The remaining part of building the S/D tree is obvious.
Computer experiments show that, for the majority of functions, it is possible to
create the S/D tree for any variable ordering, which generates a canonical form

representing the minimum ESOP without introducing additiona variables, as it was done
in Example 4. Only 5% (???) of randomly generated functions and 2% (?7??) of MCNC



benchmarks require additional variables in order to represent their minimum ESOP as an
S/D tree. Statistical results for the functions that require additional variables are given in
Table 2.

Table 2. The number of additional variables to be introduced to represent the
minimum ESOP by an Inclusive Form

Function #vars #terms | #add vars

Random 1

Random 2

Random 3

Benchmark 1

Benchmark 2

Benchmark 3

Notation used in the table: Function is the name of the random (benchmark) function.

# vars is the number of variables in this functions. # terms is the number of terms in the
minimum ESOP expression. # add vars is the number of additional variables needed to
represent the function as the S/D tree.

7 Experimental Results

Theorem 3 proved in the previous section facilitates creating algorithms of ESOP
minimization by substantially reducing the search space for the exact solution. To study
this property, we conducted a computer experiment. In the course this experiment, we
generated random expansions for each number of variables, checked whether this
expansion is linearly independent (canonical), and next checked whether it is possible to
create the S/D tree for the first variable ordering (a4, &,... a,). The results are given in the
Table 3.

Table 3. The number of canonical forms and Inclusive Forms depending on the
number of variables

#vars #al # canon #if #all/#canon| #all/#if #canon/#if
1 3* 3 3 1 1 1
2 126* 81 45 1.56 2.80 1.80
3 | 2,220,075 | 527,121 34,425 4.21 64.5 15.3
4 | 100,000,000 | 1,037,459 175 96.4 5.7.10° 5.9:10°
5 | 100,000,000 | 108,044 0 925 >1.0710° | >1.010°

Notation used in the table: # vars is the number of variables in the expansions. # all is
the number of generated expansions (asterisk * means that for this number of variables
the program exhaustively generated all expansions). # canon and # if are numbers of
canonical and inclusive forms, respectively, among these (randomly) generated by the
program. In the other columns, the ratios #all/#canon, #all/#if, #canon/#if are given.



This table allows us to observe two properties of canonical expansions. As the
number of variables grows, the percentage of linearly independent (canonical) forms
significantly decreases. Still more dramatic decrease is observed in the percentage of
Inclusive Forms with respect to all possible (and canonical) expansions. The experiment
proves a remarkable property of IFs. They allow us to restrict the search space for
minimum ESOPs. In a sense, IFs are similar to a net into which one may try to catch the
golden fish of minimum ESOP.

8 Conclusions

In this paper we review the hierarchy of known families of canonical forms
described in [3,4,5] and introduce a new family of forms, which includes al minimum
ESOPs. We present a number of properties of Inclusive Forms, as well as prove their
canonicity and uniqueness. We propose a generaization of IFs, called Generaized
Inclusive Forms and created as a union of IFs for all orders of the given number of
variables. We derive the formula for the exact number of IFs as a function over the
number of variables and show that the ratio of the quantity of Inclusive Forms to the
quantity of all canonical forms decreases exponentially over the number of variables. We
believe that Inclusive Forms will find application in exact ESOP minimization.
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