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Abstract— The »Learning Hardware” approach
proposed here involves creating a computational net-
work based on feedback from the environment (for
instance, positive and negative examples from the
trainer), and realizing this network in an array of
Field Programmable Gate Arrays (FPGAs). We ad-
vocate the approaches based on a ”strong AI crite-
rion”; for instance, the computational networks can
be built based on Sum-of-Products logic minimiza-
tion, functional logic decomposition, or Decision Tree
construction. Here we propose the constructive in-
duction approach to Learning Hardware based on
Rough Sets Theory (RST). This approach allows the
use of logical analysis to develop efficient hardware-
realizable algorithms, and is contrasted with the pop-
ular Evolvable Hardware (EHW) approach in which
learning/evolution is based on the genetic algorithm
only. The RST algorithms have a natural high paral-
lelism and high possible speed-ups. Using a fast pro-
totyping tool, the DEC-PERLE-1 board based on an
array of Xilinx FPGAs, we are developing a virtual
SIMD processor that accelerates the learning (design)
of optimized multi-valued logic nets.

1. INTRODUCTION

Recently, the concept of Evolvable Hardware (EHW)
has been invented [7, 8, 9, 11] which is the realization of
a genetic algorithm (GA) in reconfigurable hard-
ware. In contrast, our approach, the Universal Logic
Machine (ULM) [12, 20, 21, 24], we propose to build a
learning machine based on the logic principles, espe-
cially on Constructive Induction [15, 16] and Rough Set
Theory (RST) [17, 19]. While the Genetic Algorithm of
the EHW is a very simple and practically blind mecha-
nism of nature, and as such it can be easily realized in
hardware, the logic algorithms that use previous hu-
man knowledge are mathematically sophisticated, very
effective and efficient, but their software realizations use
complex data structures and controls that make it very
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difficult to realize them in hardware. Moreover, their
hardware realization may suffer from the consequences
of Amdahl’s Law. Thus, some nontrivial and often very
complex software-hardware design trade-offs must be re-
solved to effectively and efficiently realize in hardware the
logic-based learning methods.

The process of solving problems can be sub-divided into
two phases: the phase of learning, which is, construct-
ing and tuning a (knowledge) network, and the phase of
using the knowledge, that is, evaluating the network
for data sets. Comparing to the process of developing
and using a computer, the first stage could be compared
to the entire process of conceptualizing, designing and
optimizing a computer on all its system, behavioral, ar-
chitectural, logic design, and physical design levels (parti-
tioning, placement, routing); the second stage to running
this computer on data to perform pre-programmed cal-
culations. However, you cannot redesign computer hard-
ware automatically when it cannot solve the problem
correctly, while you can do this with the Evolvable or
Learning Hardware. Many new approaches can be cre-
ated and investigated by combining some basic learning
models and methods. For instance, the Artificial Neural
Nets (ANN) used in the Brain Builder’s [9] approach can
be directly compiled to binary hardware without using the
intermediate medium of cellular automata used there, or
an algorithm different than genetic can be used to con-
struct the ANN. It is thus in the network model selec-
tion and network construction methods where the differ-
ent philosophies of designing the Learning Hardware and
Evolvable Hardware essentially differ. The ULM model
investigates various such combined approaches to learn-
ing realized in hardware. In this paper, we will propose
a new methodology to the design of a learning machine,
based on the Field Programmable Gate Arrays (FPGA)
technology and the logic methods of Rough Set Theory.
In particular, this paper presents preliminary work on the
design and implementation of a SIMD Computer to im-
plement Rough Set Theory operations, and for illustration
it examines the RST as it applies to logic minimization.



RST is a mathematical model of data analysis proposed
by Zdzislaw Pawlak [19]. The advantage of RST is its high
expressive power and inherent parallelism. It also has
strong relations to Codd’s Data Base model [3]. RST can
be used to minimize truth tables in much the same way
as Karnaugh Maps. However, logic minimization is only
one of many possible applications of Rough Set Theory.
Another application of RST is Data Mining [14]. It is im-
portant to note that some subsets of RST are isomorphic
with some subsets of logic synthesis and decomposition
theories, and thus their mutual relationships can be in-
vestigated, leading to synergies of concepts. For instance,
powerful logic concepts of RST can be linked with efficient
algorithms and data structures developed in logic synthe-
sis for EDA [4, 12, 20, 21, 22, 23, 24, 25, 27]. A Paral-
lel Rough Set Computer, PRSComp, has been proposed
by Muraszkiewicz and Rybinski as a possible hardware
implementation of the Rough Set Theory [17]. Here we
extend these concepts and implement them in a practical
reconfigurable FPGA architecture, thus using all advan-
tages of this technology.

The remainder of this paper is structured as follows.
Section 2 introduces the basic concepts of the Learn-
ing Hardware approach and contrasts it with the Evolv-
able Hardware research. Section 3 presents basic RST
operations. For simplification, only a subset of opera-
tions is given, and linked to classical logic minimization
methods for better explanation. Section 4 describes a
SIMD Parallel RST computer realized on DEC-PERLE-1
FPGA board; one implementation of our general ” Learn-
ing Hardware” methodology. This computer realizes and
extends the ideas from [17]. The algorithms realized on
this computer are illustrated in section 5. Section 6 con-
cludes the paper.

2. ’EVOLVING IN HARDWARE” OR
"LEARNING IN HARDWARE”?

The learning system satisfies a weak criterium when
it uses sample data to generate an updated basis for im-
proved performance on subsequent data. A strong cri-
terion is satisfied if the system can also communicate its
learned concepts in a symbolic form [16]. For instance,
a medical doctor who uses the aid of a knowledge-based
system cannot rely on a ”black box”-type of decision from
the system. He has to understand the explanation of the
system to undertake his decision, for which only he will be
responsible. Let us observe that ANNs and similar EHW
approaches satisfy only the weak criterium. Our approach
satisfies the strong criterium. In our opinion, the results
of the learning process, and even the process itself, should
be understood by humans. The built-in mathematical op-
timization techniques allow to satisfy the Occam’s Ra-
zor Principle, thus finding solutions that are provably
good in the sense of Computational Learning The-
ory (COLT) [1]. Occam Razor should be used whenever

327

possible because only applying this principle can lead to
meaningful discoveries.

In the past we developed several logic [22], GA-based [4,
5, 6] and mixed [13] approaches to combinational learn-
ing algorithms (such logic is highly unspecified). Based
on these investigations, we developed the opinion that for
our class of problems the logic approaches combined with
smart heuristic strategies and good data representations,
are superior to other approaches with respect to smaller
net complexity and learning error. Especially poor results
were obtained using pure genetic algorithms [4, 5, 6]. Rel-
atively good results were achieved when the logic and GA
approaches were combined together [13]. Maybe ”pure
GA?” performs well in some other application areas. How-
ever, both in our experience and in literature we were
not able to find any single case designing a binary or
multi-valued network of any kind in which a GA-based
algorithm would be superior to a good human-designed
algorithm.

Thus, the following general observations related to the
practical hardware realization of Learning Hard-
ware can be made:

1. Most of the current approaches to learning and evo-
lutionary hardware use binary FPGAs, because there
are simply no other large-scale reconfigurable (repro-
grammable) hardware technologies commercially avail-
able. Other potential realization technologies are either
too primitive and do not allow for large networks or are in
too early development stages. A practical approach will
be then to compare various learning paradigms assuming
the binary FPGA implementation model.

2. In our opinion, the learning process should be per-
formed on the level of logic gates rather than that of
switching transistor sequences responsible for routing con-
nection paths, or that of arithmetic operations (as in
ANNSs or Fuzzy Logic functions), because in binary FP-
GAs everything is realized on the level of binary logic
gates.

3. Once we decide to realize the network using logic gates
in FPGAs, we should re-use all powerful Electronic
Design Automation (EDA) tools that engineers
have already developed in many years in the area of
digital design automation; especially the tools for: re-
configurable computers, state machines, logic synthesis,
technology mapping, placement and routing, partitioning,
timing analysis, etc. The EDA tools should be re-used in
their entirety, rather than duplicated by naive low-level
evolutionary algorithms. To enhance efficiency, some of
them, such as logic minimizers, should be realized in hard-
ware.

Concluding, we believe that the ”purist strategies” to
evolutionary hardware, DeGaris and Brains Builders [8],
will not be practically acceptable for most commercial
applications of Learning Hardware. Therefore, we pro-
pose here the principles of Learning Hardware that will
use previous human problem-solving experience



and apply mathematical algorithms and problem-solving
strategies rather than rely on only two generic methods of
Evolvable Hardware: ANNs and GA. Learning/evolution
should still remain as the main principle, but it should
be restricted to high abstract levels, and the variants
evaluation should be also performed there. Learning
should be performed before mapping to low-level field-
programmable resources because at such low level the
chromosomes are extremely long and the operation of
GA becomes totally inefficient.

Our Learning Hardware approach is thus directed to-
wards the state-of-the-art FPGA (and ASIC) technolo-
gies. It can be summarized as follows:

1. Based on sets of examples classified to several (at least
two) categories, and various network requirements (back-
ground knowledge), the hardware processors (such as
PRSComp from sections 4,5), create the logic network de-
scription (optimized rule sets), using logic/mathematical
algorithms.

2. The (quasi)optimally constructed network is mapped
to standard FPGAs and realized using partitioning, place-
ment, routing and other EDA tools from Xilinx and
EDA software companies (in the context of learning, map-
ping is much more rarely executed than optimization, and
therefore software can be used).

3. The knowledge of the machine is stored in memory
patterns representing the logic nets. While solving new
problems under supervision of the software program in
the main processor, the hardware multiplexes between
various learned nets, depending on rules that also can be
acquired automatically. This phase is similar to the CBM
approach [9].

4. Since a network solves new problems, new data sets
and training decisions are accumulated and the network
is repetitively automatically redesigned. The old
network can serve as a redesign plan for the new network,
or the net is “redesigned from scratch” to avoid any bias.

Thus, we replace the process of evolving on all design
levels of EHW with the ULM model of learning at a
high level and next compiling to the low level using stan-
dard EDA tools for FPGA-based synthesis. Moreover,
the same physical FPGA resources are multiplexed to
realize virtual human-designed ”learning hardware” and
the automatically learned “data hardware”. While the
”learning hardware” is designed once by humans and can-
not be changed, the ”data hardware” can be permanently
modified. Thus the growing virtual hardware has the
”learning hardware” as its base of update and growth.

We consider the ULM to be an early prototype of Data
Mining machines, that some day will be able to col-
lect data from on-line data bases, for instance from the
Internet. Other variants of such machines will acquire
data from industrial, agricultural, military, or other ap-
plication areas in real-time, using sensors, microphones
and TV cameras use the and pre-processing techniques
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of Image Processing and Digital Signal Processing. In
contrast to similar projects, our ultimate goal is not to
build the Artificial Brain (8], a superintelligent robot-pet,
or a model of instinctual animal behavior, but rather to
develop a system being able to perform meaningful dis-
coveries in narrowly defined areas, thus speeding-up
both learning and execution phases of the applica-
tion software programs that are now being used in Ma-
chine Learning, Knowledge Discovery from Data Bases,
Data Mining, and robotics.

Presently, we model our algorithms in software or we
implement them for a prototype reconfigurable platform
from DEC, the DEC-PERLE-1 board [18, 28]. It is es-
sentially an array of FPGAs that can be programmed by
a host computer to implement any desired function (ma-
chine). Typically there are two possibilities on how to
implement a desired function. The function can be com-
mitted to application specific hardware, or it can be re-
alized in software. Both approaches have advantages and
drawbacks. Hardware is fast, but is dedicated and can
only perform the specific function. Software has the flex-
ibility to perform many different functions, through mul-
tiple programs, but is generally much slower than hard-
ware. The appropriate combination of an adequately pro-
grammed DEC-PERLE-1 board and the software run on a
general purpose computer attempts to capture the advan-
tages of both worlds and provide the speed of dedicated
hardware, yet allowing the flexibility of application soft-
ware. The DEC-PERLE-1 board has been used to imple-
ment several different functions and compares favorably
with other similar boards [26, 28]. Below we illustrate the
learning phase of ULM using the virtual RST computer.

3. BasiCc OPERATIONS OF ROUGH SETS

Following is a logic minimization example to explain
how the Rough Set Theory can be applied to logic
minimization in Data Mining. The example is taken
from [19]. The same data will be used later in demon-
strating Muraszkiewicz and Rybinski’s PRSComp algo-
rithms [17] that we emulate on our machine. This will
give us the opportunity to compare the RST method with
the PRSComp algorithms.

Table 1 shows the definition of a desired net (which can
represent a circuit, concept, algorithm, set of rules, etc.)
in the form of an incompletely specified truth table (also
known as a decision table). Variables a, b, ¢, d, and e
are input variables (attributes) and f is the output vari-
able (concept, decision). The truth table is incompletely
specified, because of the total number of possible 2° input
minterms only 15 are present in the table. The goal is to
minimize (Occam’s Razor) the function described by Ta-
ble 1 using the RST method. (Obviously, this problem can
also be solved using Karnaugh maps or Espresso, but our
interest here lies in finding a general software/hardware
realizable algorithm, especially for strongly unspecified



multi-valued (MV) functions). The procedure is to first
eliminate redundant input variables (so-called vacuous
variables) from the table and then eliminate unneces-
sary values of variables from each decision rule. The
result will be a minimum solution to the problem. The
formula obtained will assign specific values to input com-
binations that were don’t cares in the training data from
Table 1. This means generalization and learning. This
procedure will be explained below through more exam-
ples. ‘

Definition 1 A decision rule is the relation of the set
of input variables to the set of output variables.

In our example a decision rule corresponds to a row in
the truth table.

The first step of the minimization procedure is to find
the vacuous variables and remove them. This is performed
by removing each input variable one at a time and then
determining whether the resulting truth table is still con-
sistent.

Definition 2 Consistency of a table. For every com-
bination of input variables presented in the table there is
a unique value for the output.

In this example, the initial truth table, Table 1 is known
to be consistent, because for every input combination of
a, b, ¢, d, and e, there is a unique value for the output
variable f. If there happened to be a row 16, that were
identical to row 1 except that the output variable f were
defined to be 0, the table would then be inconsistent.

Another important concept of Rough Sets Theory is
whether or not an input variable is dispensable.

Definition 3 An input variable is dispensable if it is
possible to remove the variable and result in a consistent
table. A dispensable variable is redundant in the final
table and is also referred to as a vacuous variable.

Since a dispensable input variable does not effect the
value of the output, it can be removed. If a variable is
not dispensable then it is indispensable.

Definition 4 An input variable is indispensable if re-
moving the variable results in an inconsistent table.

Hence, f-indispensable variables effect the output value
and therefore must remain in the table. By removing one
variable (i.e. column) at a time from the table we can
find which variables can be removed and still result in a

‘able 1: initial Trath Table

consistent table. Tables 2 through 4 show the results of
the removal of columns a, b, and c.

From Table 2, we can see that input variable a is f-
indispensable, because removing it results in an inconsis-
tent table. The table is inconsistent because decision rules
6 and 12 yield different output values for identical input
values. Both decision rule 6 and 12 have input values of 1,
1,1 and 0 for b, ¢, d and e respectively. The determining
factor is that the output values differ: 1 for decision rule
6 and 0 for decision rule 12. Similarly, with decision rules
9 and 11. From Table 3, we can see that input variable
b is f-indispensable, because rows 2 and 10 are inconsis-
tent. Table 4 shows that input variable ¢ is f-dispensable
because removing it from the table results in a consistent
table. This means that input variable ¢ does not need to
be present in the final solution. By similarly creating a
table (table not shown) for removal of d we find that input
variable d is f-indispensable because rows 3 and 12, and
rows 8 and 15 disagree with each other. Also, we find that
input variable e is f-indispensable because decision rules
1 and 11, 3 and 13, and 6 and 14 are inconsistent. We do
not test variable f, because it is the output variable and
it cannot be removed and result in the desired functional-
ity. From the above discussion we see that input variable
¢ is the only f-dispensable variable in the original table.
Table 5 is Table 4 after combining identical decision rules.
Further analysis will be performed on Table 5.

When used for referencing decision rules from Table 5,
the first value listed in the U column will be used in the
case of (2,3), (4,7) and (5,6).

Now that redundant input variables have been removed
we can move on to the next step: removing redundant
values of input variables. This is known as finding the
core values. To do this, one input variable is dropped at
a time for each decision rule and then it is determined if
the intersection of values of the remaining input variables
is included in the set of the input variable combinations
having the same value of output variables. This will be
explained by continuing the example. This step is done
for each decision rule independently.

Definition 5 Core Values are those values that must
be kept, rather than dropped, because dropping them would
result in realizing a different function.

This step begins with decision rule 1. First, using rough
set notation, we must prove that the combination of the
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Table 5: Combining rules of Table 4

U & b d ¢ 1
1 0 © 1 1 1
23 o 1 o0 o 1
47 1 1 0 o 1
5,6 1 1 1 o 1
8 1 0o 1 1 1
s 1 o 1 o 1
10 0 o 0 o o
11 06 0o 1 o© o
12 0 1 1 o o
13 06 1 0o 1 o
14 1 1 1 1 o
15 1 0o o 1 o

input values for decision rule 1 is unique (i.e. no other
decision rules have the same combination of input values).

F [l]{a,b,d,e) e n 1)y N [I]d n
1]e .{1,2,10,11,12,13} n {1,8,9,10,11,15}n
{1,5,8,9,11,12,14}n {1, 8,13,14,15} = {1}

In the rough set notation used above, the number ap-
pearing within the square brackets is the decision rule
number. The set [1], is the set of all decision rules that
have the same value for input variable a as decision rule
1. Decision rule 1 has a value of 0 for input variable a.
From Table 5 we can see that decision rules 2, 10, 11, 12
and 13 also have a value of 0 for input variable a, thus
they all belong to [1],. Similarly for the sets [1],, [1]4 and
(1.

Next to determine the set, [1];, that contains all deci-
sion rules that have the same value for the output variable
f as decision rule 1: [1]; = {1,2,4,5,8,9}.

To determine which input values are essential to deci-
sion rule 1 we must find the core values. To perform this,
each input variable is dropped one at a time and then the
resulting intersection is compared to [1];. If the resulting
intersection is a subset of [1]; then the variable can be
dropped, meaning it is not a core value, i.e. it is not es-
sential to the decision rule. The following equations show
the dropping of one variable at a time and obtaining the
intersection.

N(F - [1la) = (s [1]a N [1)e = {1,8,9,10,11,15) N
{1,5,8,9,11,12,14}n {1, 8,13,14,15} = {1,8}.

N(F = [1}s) = [Ja N [1]a N [1]e = {1,2,10,11,12,13}N
{1,5,8,9,11,12,14} N {1, 8,13,14,15} = {1}.

O(F = (112) = [ N (1 A [1]e = {1,2,10,11,12, 13} N
{1,8,9,10,11,15}n {1, 8,13,14,15} = {1}.

OCF - (1) = (e N (15 N 1 = {1,2,10,11,12,13}
{1,8,9,10,11,15}n {1,5,8,9,11,12,14} = {1,11}.

The first equation yields a result of {1,8}. {1,8} C
{1,2,4,5,8,9} = [1];. This means that dropping in-
put variable a from decision rule 1 has no adverse effect
on the value of the output variable with regards to the
other decision rules. Likewise for the second and third
equation. The fourth equation gives a result of {1,11}.
{1,11} ¢ {1,2,4,5,8,9} = [1];. This means that drop-
ping input variable e from decision rule 1 does change
the correct value for the output variable in another deci-
sion rule. Specifically, if we were to drop input variable
e, decision rule 11 would not retain the proper value for
output variable f. For this reason we must keep the value
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of input variable e for decision rule 1.

The same procedure is followed for decision rule 2:

F (2] {a,0,d.e3 2la N [2s N [2a N (2
= {1,2,10,11,12,13}y N {2,4,5,12,13,14}
n{2,4,10,13,15}n {2,4,5,9,10,11,12} = {2}.

2y = {1,2,4,5,8,9}.

N(F - [2la) = [2s N[2Ja N [2]e = {2,4,5,12,13,14} N
{2,4,10,13,15}n{2,4,5,9,10,11,12} = {2,4} C [2],.

N(F = [2]s) = [ZJa N [2la 0 [2]e = {1,2,10,11,12,13} N
{2,4,10,13,15} n{2,4,5,9,10,11,12} = {2,10} € [2];.

n(F - [Q]d) = [210 N [2]b N [2]8 = {lv 2,10,11,12, 13} n
{2,4,5,12,13,14} n{2,4,5,9,10,11,12} = {2,12} ¢ 2],.

N - [210) = [2a N (20 N 210 ={1,2,10,11,12,13} 0
{2,4,5,12,13,14} N {2,4,10, 13,15} = {2,12} ¢ [2);.
Since removing input variables b, d and e result in ex-
tra decision rules appearing in the resulting intersection,
these input variables cannot be removed from decision
rule 2. Table 6 shows the results of computing the core
values for all decision rules. It should be noted that
Table 6 does not directly correspond to the Karnaugh map
of Figure 1, because finding the core values is performed
for each decision rule independently. From manipulation
of Table 6 (described in detail in [19]), the minimal solu-
tion can be found: bd'e’ V ae’ V b'de — f. Observe that
the above algorithm is especially efficient for very strongly
unspecified MV functions, typical for Data Mining, and
this is when its high parallelism proves advantageous. Di-
dactically, it should be noted that the same solution can
be obtained through the use of Karnaugh maps. This
method may be more familiar to circuit designers and
therefore is presented below in Figure 1 (For simplifica-
tion of the Karnaugh map, input variable ¢ has already
been dropped). In general, Kmaps should help the reader
with an engineering background to analyze the minimal
solution found above using RST and also in understand-
ing all subsequent concepts and algorithms here.

When defining the truth table for a logic circuit there is
never a case where the output value can take on different
values for the same set of input values. However, in Data
Mining, it is possible that the data collected could be
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erroneous or inaccurate, so called noisy data. In this
case it is indeed possible to have different output values
for the same input values in the data set. Table 8 shows
an example data set with inaccurate data. Variables a, b,
¢ and d are input variables while f is the output variable.
Fig. 9 presents the erroneous data in a Karnaugh map
form.

Three Rough Set Theory operations take the possi-
bility of erroneous data into account. They are the
Lower and Upper Approximations, and the Bound-
ary. Pawlak [19] defines the lower and upper approxima-
tions and boundary in set notation as follows:

RX ={z€U:[z]r C X}

RX={zeU:[z]rNX # 8}

BNg(X)=RX — RX

RX is the lower approximation. z is a decision rule
of the universe. U is the universe of knowledge as shown
by Table 8. R is an equivalence relation over U and [z]g
is a category in R containing an element ¢ € U. By saying
that [z]g is a category in R it is meant that z C R.

The lower approximation is the set of all elements in U
that can be said with certainty that they are elements of
X in the knowledge R.

RX is the upper approximation. Elements in the
upper approximation can possibly be classified as ele-
ments of X.

BNpg(X) is the boundary. Elements in the boundary
cannot be classified as being elements of X or not being
elements of X.

In addition, Pawlak defines the following:

POSRg(X) = RX, R-positive region of X.

NEGRg(X) = U — RX, R-negative region of X.

BNg(X) = RX — RX, R-borderline region of X.

The positive region of X are elements that can be
classified with certainty whether that they belong to X.
The negative region of X are those elements that can
be classified with certainty that they do not belong to X.
The borderline region include those elements that can
not be classified with certainty whether they belong to X

Table 9: Karnaugh map showing
Lower and Upper Approximation
and Boundary
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or that they do not belong to X.
The following example from [19] is presented here to
clarify the definitions given above. We are given a uni-

verse of knowledge U = {&o,...,z10} with equivalence
classes:

E; = {20, 21}

Ey = {22, z6, 20}

E3 = {.’1:4,:05}

E4 = {1‘4,1‘8}

E5 = {1‘7,1’10}

The example gives the following roughly R-definable sets:

X2 = {20, 23, 24, T5, 28, T10}

Yz = {z), 27,28, 210}

Z2 = {22,23, 24, 28}
Using these sets, the example defines the following ap-
proximations and boundaries:

RXy = E3U By = {23, 24, 25, 28}

‘RX2 E, U E3 U E,
T1,23,%4,T5, 27,28, 10}

BNRr(X2) = E1 U Es = {0, 1, 7, T10}.

RY; = Es = {27,210}

RY, = E,UE4U FEy = {.’Co, Ty, T4,27, 1’3,1‘10}

BNR(YQ) =FEUE,

QZ-_; = E4 = {z4, zs}

RZy = E3U E3U Ey = {3, 23, 24, 5, T6, Ts, To }

BNg(Z2) = E2 U E3 = {23, x3, T5, T, T}
The reader is directed to [19], pp. 18-19, for more infor-
mation regarding this example. The concepts of positive,
negative and the borderline regions will be explained using
Table 8 and Table 9, the Karnaugh map representation
of the dataset. For this example let us define X to be
the set of all decision rules that have an output value of
1: X ={1,3,5,6,7,10,11,12}. The following Rough Set
classifications can be made.

POSg(X) = RX ={1,6,7,10,11,12}.

NEGgr(X) =U —RX = {8,9,13,15,14}.

BNg(X) = {2,3,4,5}.

The presented RST operations are not limited to only
binary logic, but can also be applied to MV logic.

U FEs

{an

4. A SIMD PARALLEL RouGH SETs COMPUTER.

Muraszkiewicz and Rybinski [17] present algorithms
and a possible implementation of a machine to perform
the fundamental Rough Set Theory calculations of up-
per approximation, lower approximation and indispensi-
bility. The name of their machine is the Parallel Rough
Sets Computer or PRSComp. Figure 1 shows the over-
all architecture of PRSComp. They proposed a machine
consisting of m % n primitive processors. An individual
processor is connected to its four neighbors (north, east,
south and west), as well as to global control signals. The
processors execute in lock-step with one another under
coordination of the global control signals. In a traditional
von Neumann computer a single instruction operates on
a single piece of data at any point in time. This is SISD



(Single Instruction Single Data). PRSComp operates as
a SIMD (Single Instruction, Multiple Data) computer.
When designing a parallel computer the question arises
of the origin of instructions executed by the processors.
Should each processor run its own programs or should the
instructions come from a central source? In a SIMD par-
allel computer the instructions come from a single source
(an FSM controller) and therefore each processor is ex-
ecuting the same instruction at a same time. Because
of its rectangular shape and simple cells, this is an ideal
architecture for DEC-PERLE-1, assuming a small num-
ber of instruction types. A small number of instructions
leads to narrow control bus, which is a requirement of this
technology [26] (the central controller is realized in FP-
GAs outside the main FPGA array, and a large number of
connections to it results in the design bottleneck). FPGA
realization allows for fast prototyping and also allows us to
implement only those operations that are actually needed
for any given particular application. Thus, the FPGA
approach decreases the cell size and increases the array
size that can fit in the given physical board resources, in
comparison to a hypothetical universal” ASIC machine
that would realize in hardware all potential operations of
the adopted calculus (in our case RST). In PRSComp the
instructions are provided by a central resource: the global
control signals to each processor (not shown in Figure 1).
Each processor is connected to the global control signals
and therefore each processor performs the same opera-
tion, defined by the instruction at a particular time. This
explains the Single Instruction part of the SIMD classifica-
tion of PRSComp. The input data, on which calculations
are to be performed, is mapped into the m * n processors
as a binary matrix A, ,n, each processor taking on one el-
ement of the matrix. Note, that this means that a single
processor operates on only a single bit at a time. Each
processor operates on its own data that is independent
of the other processors. This explains the Multiple Data
part of the SIMD term. Three registers are utilized in the
Rough Set Theory calculations: the column mask reg-
ister (CM) (horizontal), the comparand register (C)
(horizontal) and the word selection register (E) (verti-
cal). These registers, along with the global control signals
direct the operation of each processor. The column mask
register is used to inhibit the processing of matrix cells.
The comparand register is used to transfer words to and
from the processor array, as well as taking part in com-
parison operations. The word selection register contains
the result of a comparison.

5. PRSCoMP ALGORITHMS AND EXAMPLES

Six routines to compute the fundamental operations of
Rough Set Theory are presented in [17]. The routines
are as follows: BasicCAT (Basic Category), Upper-
APPROX (Upper Approximation), LowerAPPROX
(Lower Approximation), Def (Definable), Indispens-

1,—=> 1"

l LII [ [ ] CM

m [ | I [ 3¢
E 1
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Figure 1: PRSComp Architecture

able and EXTCOMP (External Comparison). These
algorithms are presented in Figure 2. The logical OR op-
eration is represented by “+”. The logical AND operation
is represented by “*”. The algorithms will be illustrated
by the example from Table 1.

Routine EXTCOMP ( A[m, n), C[n], E{m] )
/* C[n] is the comparand */

E{m] :=0

for j = 0 to n If ¢[j] = ali, j] then a couple is transparent
labeled by “t", otherwise it is opaque labeled by “o"
logic value of 1 is propagated through rows

of the array, if all cells in the row are transparent

then 1 is injected into that position in the E reglster

Routine BasicCAT ( A[m,n], |, E[m) ) /* Basic category */
/* The E register contains the characteristic vector that
indicates the words belonging to the basic category
generated by 8, */

MASK

Cln) = a;

EXTCOMP( A[m, n), i, E[m])

Routine UpperAPPROX ( A[m, n], Bm], C[m] )
/* B[m] stores the characteristic vector of the set X, input ./
/* Clm] the characteristic vector of the upper approximation of X,
output */
for i =1 to m BasicCAT( A[m, n), i, E;(m] )
for i =1 to m S;[m] := E{[m] s B{m];C[m] := 0
for i =1 to m if E;[m] # 0 then C[m] := C[m] + E;[m]

Routine LowerAPPROX ( A[m, n], B[m}, C[m] )
* B[m] stores the characteristic vector of the set X, input */
/* C[m] the characteristic vector of the lower approximation of X,
output */
for i = 1 to m BasicCAT( A[m, n}, i, E;[m] ).
for i = 1 to mS;[m] := E;[m] ¢ B[m]; C[m] := o.
for i =1 to m if E;[m] = §{[m] then C(m] := C(m] + E;[m]

Routine Def ( A[m, n], B[m] ) /* Definability */

/* B[m] stores the characteristic vector of the set X */
UpperAPPROX ( A[m, n}, B[m], C[m] )
LowerAPPROX ( A[m, n], B[m], C'[m] )
if C[m] = C/[m] then the set X is definable

Routine Indispensable ( A[m,n},j ) /* Indispensabllity */
/* 3 indicetes the column number to be checked out */
fori=1tom
begin
MASK
BasicCAT ( A[m, n), i, B[m] )
(MASK - {j})
BasicCAT ( A[m, n], i, C{m}) T77
if B{m] # C[m] then {j} is indispensable

Fig\lr:::dAlsorithml presented by Muraszkiewicz and Rybinski.

Another notion used in the PRSComp is the charac-
teristic vector of a subset. If X C U then we can say
that the characteristic vector of X against A(m,n) is:



Table 10: 1aitial State of PRSComp
cm

c

B u a |l blcld)ely
1 D {001 1 T

2 [ T {0106 101

3 [ T T oo 1

4 1 1 0 [} 0 1

5 T T |0 | 1 {071

6 1 1 1 1 0 1

7 1 T [ 1 |0 [0 ] 1

8 1 ] [ 1 1 1

9 T G |01 [0 ]1

10 0 0 0 [] 0 0

11 [ I I I )

12 1 T T T [0

13 [ 1 T o [ 110

14 1 i T T 1] 0

138 1 0 0 0. 1 0

Tab]e 11: iatermediate State of PRSComp

cM | 1 1 1 1 1 1

c o| oo 1 1

E U a | b | clalely
[ 1 0 [ 0 | o [ 1 T T
0 2 0 1| o0{o0o 01
0 3 0 T |1 |00 1
0 4 1 FS N I I )
0 s 1 1 0 1 [ 1
0 3 T T [ 1 T [ 1
0 k4 1 1 1 [ (] 1
[ 8 1 0 0 1 1 1
o 9 1 0 0 1 0 1
o 10 [ 0 0 0 0 [
o 1 0 1 0] 0 [ 1 5 [ 0
0 12 0 i1 [ 1 0 1 0
0 13 ) 1 [ 1 [ 06 {110
o 14 1 1 1 1 1 []
0 15 T 0 0o | 1|0

b;(X) =1 for i such that A(7,+) C X

0 otherwise

i=1tom
m is equivalent to the number of decision rules (rows) in
the input dataset. The characteristic vector, B[m], is a

vertical vector of height m. If b; is equal to 1 then the ith "

decision rule belongs to the set X.

The first step in Section 3 was to determine which in-
put variables were redundant also known as finding which
input variables are dispensable. In Section 3, this was de-
termined by removing one input variable at a time and
determining whether or not the resulting table was con-
sistent. This was shown in Table 2 through Table 5. Here
we investigate how this operation can be performed in
PRSComp. First note that each element of the original
truth table, Table 1, is mapped to a single processor. The
initial state of the PRSComp is shown in Table 10.

Note, that the U column is not stored within
PRSComp, but is merely shown in the table to aid dis-
cussion. Initially, the contents of the CM (column mask),
C (comparand) and E (word selection) register values are
undefined. Each box in Table 10 corresponds to one prim-
itive processor within PRSComp.

The Indispensable routine is used to determine which
input variables can be removed without adversely affect-
ing the results. The for loop within the Indispensable
routine executes its contents once for every row in Ta-
ble 10. The first step in the Indispensable routine is to
set up the CM register, shown in the routine Indispens-
able as M ASK. In this case, the CM register is initialized
to all 1s, meaning that no processors are masked. Next,
the BasicCAT routine is called. The BasicCAT routine
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Table 12: Atter first execution of EXTCOMP routine

CM | 1 1 1 1 1 1

o o 0 3 1 1 1

E u a b < d e !
1 1 0t 0t 0t It it 1t
o 2 [ ioc [ Ot To { 0o [ 11
1] 3 ot 1o 10 0 o 0 o 1t
0 4 1 o 1o Ot 0 o 0 o 1t
0 5 1 o 1o 0t 11 0o 1t
0 6 1 o 1 o 1o 1t 0 o 1t
o 7 1o 1 o0 1 o 0 o 0 o 1t
0 8 1o 0t 0t 1t 1t 1t
0 9 To |Gt [ O¢C Tt To | It
0 10 Ot |0t ot Go | 0o | 0o
3 11 Gt [0t [ B¢ Tt 0o ] 0o
0 12 [ To [ 1o [ It 56 | 0o
o 13 ot To [ 1o | 0o [ It 0o
0 14 1o | 1o [ 1o {1t Tt 0o
0 15 1 o 0t 0t 0 o 1t 0 o
Table 13: Result after second call to EXTCOMP

CM | o 1 1 1 1 1

c o 0 o 1 1 1

E u a b c d 3 f
1 1 Ot [ o0t Tt Tt it 1t
] 2 0t 10 0t 0 o 0 o 1t
0 3 Ot [ 1o | 1o [ O0Oo | Oo { 1t
0 4 1t 1o 0t 0 o 0o 1t
0 5 Tt | 1o [ 0¢ Tt 0o [ 1t
o 6 1t 1 o 1 o 1t [ 1t
0 7 1t 1 o 1 o 0 o 0 o 1t
1 8 1t 0t 0t 1t 1t 1t
[ 9 Tt | 0t 0t it 0o | 1t
[ 10 0t 0t 0t 0 o 0 o 0 o
[ 1 Ot [ Ot ot 1t | 0o [ 0o
[ 12 0t [ 1o | 1o | 1¢ 0o | 0o
0 13 Ot | 1o | 1o | 0o [ 1t | 0o
] 14 1t 1o 1 o 1t 1t 0 o
‘ 0 15 Tt | 0¢ 0t | 0o T1 [ 0o

sets up the CM register, again with all 1s. The state-
ment C[n] := g; in the BasicCAT routine means that the
current row is copied to the comparand register (C).
The EXTCOMP routine is then called and sets up the
CM register again. The E register is then initialized to
all 0s, E[m] := 0. The intermediate state of the machine
is shown in Table 11.

The remainder of the EXTCOMP routine is executed
and the resulting state of the PRSComp is shown in Ta-
ble 12.

It is interesting to note that for a given row the set of all
cells in a particular column that are labeled as transparent
is identical to what was used above with the Rough Set
example as the set of decision rules having the same value
for a particular variable. More specifically, in Table 12,
under the column for input variable a the row numbers
that are labeled with "t” are 1, 2, 3, 10, 11, 12 and 13.
From Section 3 we found that: (1], = {1,2,10,11,12,13}.
This is the case for every column. The current value of
the E register is then saved and the position in the CM
register corresponding to the column being checked, let’s
say the column for variable a is set to 0 . The EXTCOMP
routine is called again and Table 13 shows the results after
complete execution of the EXTCOMP routine.

The new value of the E register is compared with the
previously stored value of the E register and they are
found to be not equivalent. This means that input vari-
able a is indispensable (i.e. it must be kept in the final
solution). It is also interesting to note that masking off
input variable a is analogous to removing input variable
a and checking the intersection.

NF = [11a) = [l N [1)an[1]e = {1,8,9,10,11,15} N



{1,5,8,9,11,12,14} n {1, 8,13,14,15} = {1, 8}

The result of the intersection is 1 propagated through
the processors that are transparent to the final E regis-
ter. If a processor is marked as transparent then the 1 is
propagated to the left. If a processor is marked as opaque
then the 1 is not propagated. In hardware, all compar-
isons are done in parallel for every row. The value of the
E register is stored. Then, a column is masked and the
comparisons occur once again, generating a new E reg-
ister. This new value of the E register is compared to
the old value of E register and if they are equivalent the
current input variable (column) is dispensable and can
therefore be removed.

6. CONCLUSIONS

We presented principles of the Learning Hardware as
a competing approach to the Evolvable Hardware, and
also as its generalization. The concept of a Data Min-
ing machine based on Rough Sets has been outlined and
some basic operations and algorithms discussed. A high
degree of low-level parallelism of these algorithms calls
for an FPGA, ASIC or Contents Addressable Memory
(CAM) realization. Although the DEC-PERLE-1 is a
good medium to prototype such machines, massively par-
allel architectures such as CBM based on new Xilinx series
6000 chips will allow larger arrays and internal memories,
and thus much higher speedups.
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