BI-DECOMPOSITIONS OF MULTI-VALUED FUNCTIONS FOR
CIRCUIT DESIGN AND DATA MINING APPLICATIONS

Bernd Steinbach, Marek A. Perkowski +, and Christian Lang,
Dept. of Computer Science, Freiberg University of Mining and Technology,
Bernhard von Cotta Strasse 1, 09596 Freiberg, Sachsen, Germany, steinb@informatik.tu-freiberg.de
+ Dept. of Electrical and Computer Engineering, Portland State University,
P.O Box 751, Portland, OR 97207-0751, USA, mperkows@ee.pdx.edu

Abstract

We present efficient algorithms for
the bi-decomposition of arbitrary incompletely specified
functions in variable-valued logic. Several special cases
are discussed. The algorithms are especially applicable
for Data Mining applications, because, in contrast to
the general multi-valued approaches to function decom-
position that decompose to arbitrary tables, we create a
network from multi-valued two-input operators that are
selected by the user. Such decompositions lead to de-
cision rules that are easier to understand by humans.

1 Introduction

Simple Functional Decompositions.

Simple disjoint decompositions F = H(G(B), A) have
been used for FPGA synthesis [13], synthesis for layout-
driven logic synthesis, Machine Learning and Data Min-
ing [9, 10, 11, 6, 18, 19]. Larger block F of logic is split
to smaller blocks G and H, and next blocks G and/or
H are recursively split to smaller and smaller blocks,
until they become non-decomposable, or until they can
be directly realized with some other means (such as
in a single PLA block of a CPLD). Set B of variables
is called the bound set, and set A is called the set of
free variables. In binary decomposition the output of
function G is encoded as a binary vector of functions
Gi(B). In multi-valued decomposition the output of
function G is a multi-valued variable. In disjoint de-
composition sets A and B have no common elements.
Efficient methods to represent functions in decomposi-
tion have been recently created: BDD-Encoded Labeled
Rough Partitions [6], and BDD-Encoded Multi-Valued
Decision Diagrams {5, but, for the simplification of pre-
sentation, in this paper we will use Kmaps to illustrate
our concepts. The decomposition principle is always to
find the solution with the smallest possible complexity.
The complexity can correspond to the total size of non-
decomposable blocks, the number of blocks, or some
other evaluation of the result. This is obvious for FPGA
or layout circuit applications, but it holds also for Ma-

0-7695-0161-3/99 $10.00 © 1999 IEEE

50

chine Learning and Data Mining, where a simpler ex-
pression, satisfying the Occam Razor Principle, creates
a more meaningful solution, and one that minimizes
the learning error [4, 14]. Various decompositional ap-
proaches, mainly based on Ashenhurst and Curtis de-
compositions, have been realized in several programs
that can handle both binary and multi-valued, com-
pletely and incompletely specified functions and re-
lations, [11]. The methods have been also extended
to non-disjoint decompositions [9, 10]. Simple non-
disjoint decomposition is: F = H(G(B1UC), A, UC),
where C is the set of shared variables. Thus, sets A
= A;U C and B = B,U C are non-disjoint.

Decomposition in Multi-Valued Circuit Design.
Turning our attention to multi-valued circuit design,
let us first observe that there exist currently very few
methods for synthesis of multi-level multi-valued cir-
cuits. They include factorization methods, decision di-
agram based-methods, and decomposition [3, 11]. Re-
cent decomposers can handle data with don’t cares (and
multi-valued relations) better than other methods. Two
approaches to multi-level multi-valued decomposition
are possible. The first approach, Fired-Multiplicity
Decomposition, [3], assumes that all input and output
variables, as well as all intermediate variables G; that
are created in the decomposition, have not more than
a fixed constant number of values. For instance, they
have at most 3 values for decomposition of ternary func-
tions. This number is called the multiplicity index. The
advantage of such an approach is that it allows for easier
conversion of the tables describing non-decomposable
blocks to Multi-Valued Sum of Products (SOP) circuits
with some existing MV gates from cell libraries, or with
PLA-like function generators. The second approach,
Unrestricted-Multiplicity Decomposition, [11], does not
assume any constraints on the number of values, and
is thus better suited for Data Mining, where the data
are naturally of this type because the attributes (in-
put variables) have various sets of values. For instance,
variable SEX can have as few as two values, and vari-
able AGE can have as many as 100 values. After the
decomposition of this type to tables with variables of

different radii, the symbolic variables are next encoded
with k-valued signals. The advantage of this approach
is sometimes finding a decomposition of a smaller cost,
because of a more general decomposition model used.
Also, this approach allows to find decompositions that
are more general than the Curtis decomposition, but
are based on very similar principles [3, 9, 10]. We allow
there decompositions with arbitrary values of multi-
plicity indices, which is in contrast to Curtis decom-
position that in binary case requires the number p, of
output signals to be smaller than the number y; of in-
put signals to the block. In case of MV decomposition
this constraint translates to Ashenhurst decompo-
sition with single r-valued signal for the block or to
a Curtis-like MV decomposition with r-valued sig-
nals from the block and less output signals than input
signals to the block. Our decompositions (both binary
and multi-valued) assume none of these constraints.
The disadvantage of both Fixed-Multiplicity and Free-
Multiplicity decompositional approaches with respect
to the MV factorization and MV decision diagram ap-
proaches is that arbitrary MV blocks are created as a
result of the decomposition. They are specified by ta-
bles with k-valued input and k-valued output variables.
Such tables require that in order to realize the circuit
corresponding to this decomposition, the blocks spec-
ified by the tables should be next either further opti-
mized using some other MV synthesis tools, or realized
as the not necessarily optimized mv-SOP circuits (us-
ing MIN, MAX and literals), that directly correspond
to the non-decomposable blocks. From the point of
view of circuit realizability of blocks, it would be better
to decompose the function to only few selected types of
blocks (MV gates), described by multi-valued operators
that are directly realizable in hardware. For instance,
it can be shown that every function is decomposable to
MYV inverters or window functions, and two-input MIN
(minimum) blocks. Such realizations, however, may be
very far from the minimum. (The ternary MV inverters
add modulo-3 constant 1 or 2 to the value. The win-
dow literal is defined as follows: X' = 2 for X=i and
0 otherwise. These types of single-input functions can
be easily extended to any number of values and realized
in hardware).

Bi-Decompositions.

Our goal here is to present decompositional approaches
that decompose to finite number of selected
block types, and we will achieve this by the gener-
alization of the bi-decomposition methods introduced
originally by Davio and next discussed by many au-
thors: Bochmann [20, 21], Le [22], Steinbach and co-
authors [26]-citesteinbach-end, Zakrevskij [36, 37, 38],
and Sasao/Butler [12]. The bi-decomposition approach
for Boolean logic is based on AND, OR and EXOR

51

=inl
Y T
o [GREATER 1| T o x
- iMijL i
(LAt

!

T}

o

R T pisTance 1

) 1
v i

»»»»»»»]

Figure 1. Netlist with disjoint and non-disjoint

bi-decompositions

decompositions. It decomposes hierarchically an arbi-
trary function to three types of gates: AND, OR and
EXOR. Each type of one-level decomposition, AND-
decomposition, OR-decomposition or EXOR-
decomposition can be disjoint or non-disjoint. Ev-
ery function was proved to be decomposable, when
non-disjoint decompositions are also allowed [26]. Ob-
serve, that generalizing the bi-decomposition approach
to multi-valued logic would allow it to become a prac-
tical tool for multi-level multi-valued design. As-
suming non-disjoint decompositions and availability of
negation or window functions plus multi-valued con-
stants, only MIN decompositions would be sufficient
(this can be proved by generalizing the proof that
NAND and constants is a complete system for binary
logic).

In another variant, one would use additionally the
MAX gate, which would lead to an MV counterpart of
AND/OR/NOT binary logic. Creating such a system
is possible and is already included in the approach pre-
sented below. The advantage of such approach would
be a requirement of having very few standard MV cells.
However, it can be observed that the desirable possi-
bility of finding a decomposition with no shared vari-
ables or with a small set of shared variables greatly in-
creases with a larger set of operators. Larger set is also
a good assumption for Data Mining applications, where
many different kinds of relational, mv-logic, arithmetic,
and language-based operators are used by knowledge
engineers and human experts that create hierarchical
rule-based expert systems [17]. The question thus re-
mains, how many gate types would be needed to ob-
tain satisfactory solutions, because too large a num-
ber of them would be not practical. Obviously, there
should be operators realizing known operators MIN,
MAX, MODSUM, AVERAGE, MODULO MULTIPLI-
CATION, TRUNCATED SUM and other. Example of
a netlist being a Directed Acyclic Graph of non-disjoint
and disjoint single-level bi-decompositions with opera-
tors MIN, MODSUM, MAX, GREATER, AVERAGE
LOW and DISTANCE is shown in Figure 1.

It was proven by Shannon [15] that when the number
of input variables n grows, the ratio of disjointly decom-

C
D
u

v
Figure 2. Netlist from variable-valued operators
corresponding
to the mized binary-MV decision rule IF (A <
B) AND MIN(C,D) = MAX(U,V)THEN R=
3 ELSE R = AVERAGE(C, D). Intermediate
variables X, Y and Z are binary. Block of MV
multiplezer is internally built from non-disjoint
decomposition to MAX, two MIN, and two level-
changing inverters/buffers.

posable functions decreases to zero. From the practical
point of view, however, this result is not particularly
restrictive, because:

(1) Real-life functions are usually decomposable, in
contrast to randomly generated worst case functions
used in mathematical proofs as one from [15]. For in-
stance, for binary functions it was shown experimen-
tally on large benchmark sets and on many types of real-
life benchmarks from different application areas that
82% of them were decomposable, while only 1% of ran-
dom functions were decomposable [14].

(2) We consider non-disjoint decompositions, for which
it was proven that every function is decomposable, and
practically with only few repeated variables (disjoint
decompositions are still preferable). If disjoint decom-
positions are not possible, we select small sets of shared
variables.

(3) Functions with don’t cares are better decompos-
able: the more don’t cares, the more probable to find
a disjoint decomposition. It is well-known that Data
Mining functions have extremely high percent of don’t
cares. As demonstrated in [11], introducing of shared
(the same as repeated) variables has the same effect as
dealing with incomplete functions; one repeated binary
variable causes creating a new Kmap with half of don’t
cares.

Bi-Decompositions for Data Mining.

Let us now turn our attention to a non-disjont,
operator-based, hierarchical decomposition as a new
approach to Data Mining. All Machine Learning and
Data Mining methods assume Occam Razor principle,

52

which is practically realized by minimizing global cost
functions such as Decomposed Function Cardinality
(DFC) [11], total multiplicity index {Column Cardinal-
ity), or other measures [16]. It was found that there
is a very high correlation between the DFC value and
the learning error for most of the benchmarks [14, 4).
Another important factor taken into account when eval-
uating various decomposition structures with blocks is
also the "understandability” or ”explainability” prop-
erty of the resultant set of rules (expression, network,
circuit) [17,16]. Thus, between two sets of rules created
by a decomposer that have the same DFC cost, the set
of rules that is easier to understand by a human expert
is better. Often, the human can further improve the
rules, and it was shown that systems that combine com-
puter and human knowledge acquisition on these tasks
are better than computers or humans alone [17, 16}.
Moreover, expert system users, such as medical doc-
tors or lawyers, do not want to use systems that do
not provide explanations that would be comprehensible
to them. As one experienced data knowledge engineer
working with human experts observed: “I have never
met a doctor who would use EITHER_OR (EXOR) con-
junctive in his reasoning”. Thus, the medical doctor
will be never satisfied with the diagnosis provided by an
expert system based on a totally ”black-box” approach
(such as an artificial neural net), or even using complex
rules with exotic to them operators such as EXOR or
MODSUM. In addition, it was observed that in real-
life expert systems the functions realized in blocks are
in most cases monotonic [17]. Thus monotonic opera-
tors should be preferably used in decomposition, or at
least given preference during the decomposition choices.
Another preference may be to use symmetric operators.
Concluding, both in MV circuit design and Data Mining
applications, there is a need for a method to synthesize
a strongly unspecified multi-valued function with arbi-
trary numbers of values in variables to the preselected
set of simple two-argument operators, leading to solu-
tion rules such as one illustrated in Figure 2. The goal
of this paper is to introduce an efficient method for find-
ing bi-decompositions of strongly unspecified multiple-
valued functions, for selected sets of two-input opera-
tors.

2 Patterns and Decompositions
Completely Specified Functions

of

Operators in Ternary Logic.

For simplicity, we will illustrate our approach using
ternary logic, but all algorithms can be formulated for
arbitrary variable-valued logic using Multivalued Deci-
sion Diagrams [5]. Some subset of well-known oper-
ators in ternary logic are shown in Figure 3. There
are several subsets of them that are functionally com-

GALOIS 1CD\AB ~ 00 01 02 10 11 13 20 21 22
MODSUM PRODUCT 00 0 0 [0 0 [[
)\Bol 2 Boy 2 Boi 2 ot ot
olo[t]2] ofo[1]2] “o[o[o]o]
1 l][l T 1]2] 11120 Jang
2[0[1]2] 2{2]22] 2[2]01 2[o[2]T}
TRUNCATED AVERAGE AVB!AGE TRUNCATED 0 0 1
SUM PRODUCT 2 L 0' 2
By 2 3012 xw 12 xBoi2 e e lo
41)012 EEH ?o]] ?olo
1[22 112 o[12
N T 1? Table 1. Table for MIN decomposition of
oREATER ternary function f;
Rl
DISTANCE EQUAL GREATER EQUAL
B B B B 4 CD s AB — 00 01 02 10 11 12 20 21 22 hC, D)
0 D 00 T o 0 o 0 0 0 B S 0
0 P) 0
G G B oo B G —— B T o B >
2 2[1]o] 2{0fo]1] 2o} 201} 10 T T 2 1 B) 7 0 T
. 11 [1] 1] 0
Figure 3. Selected Operators for Ternary Logic 5 Tt 1
20 1 1 [1 [1 1
21 1 2 [2 Q 1 2
22 0 0 0 0 0 0 0 [0 0
[1] 1 2 1 2 0 2 0 1 g A,B;

plete, with single-input window functions, inversion
functions, or with arbitrary universal window func-
tions or literals applied only in the input level (as
in MV SOP realizations). Selection of functionally
complete subsets is not a topic of this paper because
for Data Mining larger sets of operators are better.
Operators from Figure 3 are only examples, and the
method shown below will lead to solutions, possibly
non-optimal, for any functionally complete set of
operators. It can be easily proven from the funda-
mental theorem of MV decomposition [11] that if de-
compositions F = ¢(G(B),A) and F = ¢(B, H(4))
exist with multiplicity indices u; and p2, respectively,
then decomposition F = ¢(G(B), H(A)) exists where
gate ¢ has its respective inputs with g; and p, values.
Thus, there exists a Fixed-Multiplicity Decomposition
with M AX (py, p2) values. For instance, if y; = 2 and
p2 3 then a ternary decomposition of a ternary
function F' exists.
MIN Decomposition.
To introduce our ideas, we will start with MIN De-
compositions of a completely specified function. MIN
decomposition has the form:

f(X) = MIN(g(A), h(B)).
For instance,

f(A,B,C,D) = MIN(g(A, B), h(C,D)).

Given is function fi(4, B, C, D) from Table 1. It can
be observed in Table 1 that there are three row patterns
and three column patterns. The patterns of rows are:

000 000 000
011 110 101
012 120 201

We say that all rows that have the same pattern are
compatible. The patterns of columns are:

000
011
012
0312
000

53

Table 2. First stage of decomposition. Func-
tions h(C, D) and g(A, B) for MIN decomposi-
tion of ternary function f,. These functions
are created by labeling with symbols 0,1 and
2 identical rows and identical columns of the
table, respectively

o113
o11
o012
000

Columns with the same pattern are called the compat-
ible columns. Table 2 presents the first stage of finding
the MIN decomposition. By labeling all (compatible)
rows of zeros by 0, all rows of zeros and ones by 1,
and all rows of zeros, ones and 2’s by 2, we obtain the
additional column which describes function h(C, D).
By labeling all (compatible) columns of zeros by 0,
all (compatible) columns of zeros and ones by 1, and
all (compatible) columns of zeros, ones and 2’s by 2,
we obtain the additional row which describes function
9(A, B). From the additional row we can create directly
the Kmap of function g(A, B), Figure 4a. By using the
permutation operation (1-—2) of exchanging rows 1 and
2 of variable C, Figure 4b, we obtain the map of func-
tion h(C, D). This is additionally explained in Kmaps
from Figure 4c-f. Finally, the entire decomposition of
function f; can be drawn, Figure 4g. Observe that the
inverter (the 1-2 permuter) operator in variable C was
used. There exist three such permuter operators (1-2,
0-1, and 0-2) for ternary logic.

Concluding, the algorithm to find ternary MIN de-
composition can be summarized as follows.
[1.] Find all row patterns.
If there are more than 3 patterns, exit.

NCHE 012 Lo12
11200 010[1]2] cC(1-2) ololT2
2030 erofi] — inpn
21[2{0 2020l
g h
@) ®)
Lo12 Loz Loi2 012
ofolo[o] o[o[ojo] o[o]1]2] ofo[1]2
] 1222 Ye[i[2] 1127001
21212121 20O 2[0ef1]2 2[d[2]0
c c(1-2) >}

© @ © (4]

A]

9\ h

ofo]oflo|
w|wf O s
wi=] of{»|

Table 3. Table of ternary MIN operator for func-
tion f;

(3CbXAE~ T 00 Jo1 o0z 110 11
— 00 T 2

ol
(Y
)
o
|
-
|

| EEH|

01
02
10
11
13
20
N
32

NN

ofw|w=io|
ofwfnl=]o|
b0 of | |

Table 4. Table for MAX decomposition of
ternary function f

=] [minioum]

h ® (X AW Y B 5] o1] 63] 0 | 11 [17 | 30 [31 P | SX (R
D () 0 2 3 2 0 1 0

g 0
Figure 4, Second stage of MIN decomposition of o 5 5 : P 3
. 10 2 2 2 2 2 2
function fi 1T 0 3 5 o 3 5
12 1

20

23

?_2

g(A, B))

[2.] Find all column patterns.

If there are more than 3 patterns, exit.
[3.] Label patterns as presented above. If this is a table
of MIN operator (as in Table 3), then MIN decomposi-
tion exists.

This method is a generalization of the method
from [12]. Let us now explain another possible ap-
proach to the same problem, this approach generalizes
the method from [26]. Analyze the patterns of rows
column-by-column. We find that after removing all re-
peated columns, there are only three patterns: 000, 012
and 011. Similarly, removing all repeated patterns of
rows from patterns of columns above, the remaining
patterns are: 000, 012 and 011. The same patterns
as before. Thus the decomposition operator from Ta-
ble 3 was found which is the operator of MIN. Both the
above methods will become useful, when it comes to
find patterns in cofactors of large bound and free sets
for incompletely specified functions.

MAX Decomposition.

Given is function f, from Table 4, with bound and free
sets of variables B = {A,B} and A = {C,D}. Following
the first procedure above, Table 5, we find the realiza-
tion from Figure 5 with the same functions h and g as
previously. Now, following the second procedure above,
but labeling the columns and rows of 0’s, 1’s and 2’s as
0; the columns and rows of 1’s and 2’s as 1; and the
columns and rows of 2’s as 2; we found that the re-
duced pattern table, Table 6, is the table of operator
MAX. Analogously, the same solution is found using
the second approach which we leave to the Reader.
MODSUM Decomposition.

Table 5. Table for functions 2(C, D) and ¢g(A, B)
for MAX decomposition of ternary function f,.
These functions were calculated analogously
as in Table 2

(oS AB = [00 31 | 32
00 1 2 1] 1
o1 2 0 3 1 T 3
03
10
11
17
30_ 1 3
a1 3 o
33 o 1

Table 7. Table for MODSUM decomposition of
ternary function f;

o |l
11l

P ||
Table 8. Table of ternary

SUM operator

maximum f2
e

Figure 5. MAX decomposition for function f,

4 CD S AB — 00 01 02 10 11 12 20 21 22
00 0 0 0 0
0 1 1 1 1
0 2

20
21 2
22 1] [

Table 9. Table of function temp for MODSUM
Decomposition of function f;

Given is function f3 from Table 7, with bound
set of variables B = {A,B} and free set of vari-
ables A = {C,D}. Following the same two pro-
cedures as previously, we find that decomposition
fa = MODSUM/(g(A, B), h(C,D)), with the same
functions h(C, D) and g(A, B) as in the two previous
examples, and the reduced pattern table, Table 8 is the
table of operator MODSUM.
In this case, one more approach is possible:
(1) calculate function g: first row of f3: 012120201 g.
(2) calculate a temporary function
temp = Mod_dif f(f3(A, B,C, D), g(A, B)).

(3) calculate function h: first column of f (constant
values in each .row are neccessary for MODSUM de-
composition)

CD A

00 0

011

022

10 2

110

121

201

212
220

Functions g and h can be found as previously and the
operator table of the decomposition operator is MOD-
SUM, see Table 8.
Composing two-input operators from other op-
erators.
Even if a decomposition with an unknown operator is
found using the method of compatible columns, this op-
erator can be still composed from the known operators.
Example: Function f; from table in Figure 6
cannot be decomposed by MIN(A,B), MAX(A,B) or
MODSUM(A,B). But fs = MAX(g,h), where
functions ¢ and h are as in Figure 6b,c. Thus,

fa = MAX(MODSUM(011,002), MODSU M (002,011))

see Figure 6d, where < 011 > and < 002 > are universal
literals.

Conclusion on these examples.

The above three examples suggest two general proce-
dures for a completely specified function. The first

o=l
N -2
n[Clojo
S[=[=]~

S|ShalN

@ ®) ©)

Figure 6. Schematic of composed realization of an
operator using MAX decomposition for function

fa

procedure, that we will call the Compatibility Algo-
rithm, is based on labeling arbitrary compatible pat-
terns, calculating multiplicity indices, and next find-
ing tables of functions F, g and h. This procedure is
the same for any two-input decomposing operator, it
does not assume any specific operator, and the oper-
ator becomes known only when the decomposition is
completed. Thus, the user has no possibility to influ-
ence the decomposition type. This may lead to an op-
erator that is not one of the selected operators. On
the other hand, this method allows for permuting in-
puts, thus each operator pattern corresponds to one of
many possible compositions of two-input and single in-
put operators, so it is efficient. In case of incompletely
specified function, the Compatibility Algorithm would
require, however, coloring of two large incompatibility
graphs; one with nodes for the cofactors of the bound
set, and the other one with nodes for the cofactors of
the free set [10]. The graphs are large, because we split
the set of input variables into two sets of approximately
the same size. If for both of these graphs we are able to
find coloring with 3 or less colors (multiplicity index 3
or less), the binate decomposition exists. In contrast to
the 2-Colorability, which is polynomial and for which
we have implemented an efficient algorithm [8], the 3-
Colorability Problem is NP-complete. To complicate
things more, because the minimal graph coloring is usu-
ally not unique, several decompositions can be found,
with various decomposition operators. Such coloring-
based procedure would be not very efficient, and would
not give preferences to the desired decomposition types
such as monotonic, or symmetric. The second ap-
proach, called Operator Pattern Algorithm, assumes
certain type(s) of decomposing operator, and looks for
a decomposition only with respect to this operator. It is
thus an operator-oriented decomposition. Therefore be-
low, for incomplete functions, we will present a more ef-
ficient and comprehensive approach, that will make use
of specific properties of the bi-decomposition of multi-

valued incomplete functions, and will combine the ideas
from both the algorithms.

3 Decompositions of
Specified Functions

Incompletely

Number of Decompositions.

In case of a k-valued logic and n variables, there are k*"
functions. If we combine two of these functions, one for
rows and one for columns, we get k%" * k*" = gk"+5"
functions realizable by decomposition. This number is
much smaller than the number of all possible functions
of 2 % n variables: k**~ functions. Taking thus an arbi-
trary randomly selected t;unction of n variables, we have
a probability of 1 — ’—‘i:;,— that this function is not de-
composable. Thus random complete functions of many
variables are very unlikely to be disjoint-decomposable.
Recall, however, that an incomplete function of 2n vari-
ables specified on K cares corresponds to k**"~K com-
plete functions. Thus taking an arbitrary function with

k™ an_
K cares, we have the probability of (1 — ';—’,,;:.— kT

that this function is not decomposable. When K/k%" is
small, as in Data Mining where it can be less than 0.01
percent, the probability of finding disjoint decomposi-
tion is then quite high, even for random functions. Still,
if the disjoint decomposition does not exist, addition of
every shared variable improves the chance of finding a
decomposition. The procedure, however, may become
inefficient, so good methods for finding bound and free
sets are needed, as well as a fast algorithm for basic de-
composition execution step (because it is repeated very
many times).

MIN, MAX and Simple Monotonic Decomposi-
tions,
MIN Decomposition of an incompletely specified func-
tion is based on the same principles as illustrated in
previous sections for complete functions. Simplified al-
gorithm for MIN Decomposition is the following:
[1] Find rows and columns with pattern of only 0’s and
don’t cares, label respective rows and columns by 0.
Remove 0’s from these rows and columns.
[2] Find rows and columns with compatible patterns of
1’s and don’t cares, label respective rows and columns
by 1. Remove 1’s from these rows and columns. If there
is more than one compatible pattern of 0’s and 1’s, exit.
[3] Find rows with compatible patterns of 2’s and don’t
cares, label respective rows and columns by 2. Remove
2’s from these rows and columns. If some patterns re-
main, exit.
[4] The labeled rows and columns determine the MIN
operator pattern.

To understand this algorithm the Reader is advised
to apply it to our previous tables from MIN decomposi-

56

tion. Also, try to apply it to the MIN table from Figure
3. Observe that similar algorithm can be created for
MAX decomposition, but the order of removals will be
not [0,1,2] as for MIN presented above, but [2,1,0]. This
can be checked on the MAX table from Figure 3. Simi-
larly it can be checked in Figure 3 that TRUNCATED-
PRODUCT operator (TRUNCATED-PRODUCT de-
composition) will be found for order [0,2,1}, GREATER
operator for order [0,1,0], and GREATER-EQUAL op-
erator for order [1,0,1). All such functions, for which
the decomposition can be checked by the parametrized
variants of the above algorithm with different orders of
removals, we will call the Simple Monotonic Functions.
Functions for which the removal can be done partially
are also good candidates for non-disjoint decomposi-
tions, and we call them the Partially Monotonic Func-
tions. In tables from Figure 3, GALOIS-PRODUCT
and TRUNCATED-SUM are such functions.
Preprocessing for graph coloring.

Because graph coloring [8, 9, 11] can be slow, we pro-
pose to apply the following algorithm that in many
cases removes totally the necessity of coloring, and in
other cases reduces significantly the size of the rows and
column incompatibility graphs.

[1] Combine all rows that have the same overlapping
symbols.

[2] Combine all columns that have the same overlapping
symbols.

[3] Iterate until no rows or columns can be combined.
[4] If the size of the resultant matrix is 3 x 3, bi-
decomposition is found. The decomposition operator
is specified by the matrix. This matrix can have don’t
cares, thus specifying various decomposition operators.
Moreover, various functions g and & can be created from
the traces of the combined (i.e., labeled the same way)
rows or columns in the process of combining. If more
than 3 rows or columns were found that cannot be com-
bined to 3 patterns, exit.

[5] Execute two Graph Colorings for functions g and h.
For each, if the chromatic number is larger than 3, exit.
Otherwise combine in each the nodes colored with the
same color creating the operator table.

Example. Given is the table of function fs(A, B, C, D)
from Table 10. By combining rows table 11 is created,
and next by combining columns in it, Table 12. Ob-
serve that by combining first columns and next rows,
Tables 13, 14, another solution is found. Observe in
Table 14 the final matrix specifying the ternary decom-
position operator. Note, the decomposition is differ-
ent than in Table 12 because row labels are different.
Because of a don’t care in the operator table, it corre-
sponds to three different decomposition operators; with
the don’t care replaced with 0, with 1, or with 2. Thus,
several solutions may be found, and the one correspond-

ing to the realizable decomposition operator is next cho-
sen.

4 Experimental Results and Conclu-
sions

Table 15 gives results of bi-decomposition of some
Benchmark functions from POLO directory [4, 11, 16]
(Data Mining and Machine Learning). We tried decom-
position for the MIN and M AX operator by successive
removal of values as described in section 3 for simple
monotonic functions. That is, function f(za,zb,zc) =
MIN/MAX (g(za,zc), h(zb, zc)). The meaning of the
columns is: Name = Name of the Benchmark, #In =
Number of muiti-valued inputs, log(In) = log,(Product
of multiplicity indices of inputs), Out = multiplicity in-
dex of output, #GN = number of (multi-valued) inputs
of gfor MIN, #H N = number of (multi-valued) inputs
of h for MIN, #GX = number of (multi-valued) in-
puts of g for MAX, #HX = number of {multi-valued)
inputs of h for MAX. The dashes mean that there is
no decomposition. The total computation time was 10
minutes for all Benchmarks of the table on a 133 MHz
Pentium Processor.

We generalized the binary bi-decompositions dis-
cussed previously by Steinbach and Sasao/Butler for
the case of arbitrary variable-valued logic. Al-
though bi-decomposition is only a special case that can
be derived from the general-purpose Ashenhurst/Curtis
decomposition, this decomposition is especially impor-
tant in Knowledge Discovery, Data Mining, and auto-
matic knowledge acquisition applications, because it
creates networks that when converted to sets
of rules, are easier to understand. Moreover, al-
though every function is disjointly or non-disjointly de-
composable this way, the MV bi-decompositions are es-
pecially efficient and effective for the case of strongly
unspecified functions, characteristic for Data Mining.

References

[1] R. L. Ashenhurst, “The decomposition of switching func-
tions,” Proc. Int. Symp. Th. Swi., pp. 74-116, April 1957.

[2) H. A. Curtis, “A New Approach to the Design of Switching
Circuits,” Princeton, N.J.: Van Nostrand, 1962.

[3] C. Files, R. Drechsler, and M. Perkowski, “Functional De-
composition of MVL Functions using Multi-Valued Decision
Diagrams,” Proc. ISMVL’97, pp. 27-32, 1997.

[4] C. Files, and M. Perkowski, “An Error Reducing Approach
to Machine Learning using Multi-Valued Functional Decom-
position,” Proc. ISMVL’97, pp. 27-32, 1998.

[5] C. Files and M. Perkowski, “Implementing Multi-Valued
Decision Diagram Package using Binary Decision Dia-
grams,” submitted.

[6] S. Grygiel, M. Perkowski, M. Marek-Sadowska, T. Luba,
and L. Jozwiak, “Cube Diagram Bundles, A New Represen-
tation of Strongly Unspecified Multiple-Valued Functions
and Relations,” Proc. ISMVL’97, May 1997, pp. 287 - 292.
http://www.ce.pdx.edu/ mperkows/ML/=xxx.ps

(G<oXAB —~ JJ oo Jor [oz 310] 11] 13 h(C, D) label
00 0 -] - 1 - a
o1 0 5 = 1 1 - 3
02 - - [- 1 - <
10 () - 0 - - - d
11 [1] - - - - <
12 - S - -) T
20 I] 2 1 o €
31 Fl 2 [b
22 - - F] - H
T x 1 m n o T g(A, B) label |

Table 10. Table for incomplete function fs with
labeled rows and columns

row labels |

o
2

x||e © o
Bl|» © o
sl -

off= + =)

a,b,c
dje,f

[
9 £:h,i

P 4= column labels

Table 11. Combined rows for function from Ta-

ble 10
Tow jabels
0 [] 1 s,b,c
[] - d,ef
[2 1 ‘:I\"
k,p I,m n,0 4~ column labels

Table 12. Combined columns for function from
Table 11, the final matrix specifying the
ternary decomposition operator

row labels |

o

roo0000 o0
NwuwwIrooo::
CIC R RN

to
8

[]
°

B LNy

+ columu labels

Table 13. Combined columns for function from

Table 10
row labels §
[} [] 1 a,c
[}] - d,e
[2 1 b,f,‘,h,i
:.P Tm n,0 + column labels

Table 14. Combined rows for function from Ta-

ble 13

Name
.

%]
&

[e
£
-

iris.m)

monks

soo.ml

car.ml

lensesmv.ml
shuttlem.m]
ships.m)
hayes.ml

post-operative.ml
cloud.ml
monksdtr.ml

bridgesl.ml
monks3tr.ml
bridges2.ml

irish.mi
monkslte.ml
monks2te.ml
monksdte.ml
balance.m?
sensory.mt
house-votes-84.ml
tic-tac-toe.ml
flarel.m!

flare2.ml
employl.m!
mursery.ml
employ3.ml
chess]..

itr.ml

LT3N EX TS S EE L TN

ml

GUURB N ASNGED e

GOOVNGATNTONR WY @A O

-
-
T LI RO B GUURNIT SOARR W oou%

TR RR AN O I VUBDONI NGARRU L G

- ANNN
R N

LI I G IR N BUBRRNAIRT OOV R ——-%

18

57

-
whlo o205

Tab

5.LFxpe mental Results

(71
(8]
[0

(10]

f11]

f12]

(3]

ud

(18]

[16]

(17]

[1g]

f19]

[20]

[21]

(22]

(23]

Y-T. Lai, M. Pedram, S. B. K. Vrudhula, “EVBDD-based
algorithm for integer linear programming, spectral transfor-
mation, and functional decomposition,” IEEE Trans, CAD,
Vol. 13, No. 8. Aug. 1994, pp. 959-975.

M. A. Perkowski, “A New Representation of Strongly Un-
specified Switching Functions and Its Application to Multi-
Level AND/OR/EXOR Synthesis,” Proc. RM’95, 27-29
Aug. 1995, pp. 143-151.

M.A. Perkowski, S. Grygiel, and the Functional Decomposi-
tion Group, Department of Electrical Engineering, “A Sur-
vey of Literature on Function Decomposition,” Version IV,
PSU ECE Dept. Report, Nov. 20, 1995.

M.A. Perkowski, T. Luba, S. Grygiel, P. Burkey, M. Burns,
N. Dliev, M. Kolsteren, R. Lisanke, R. Malvi, Z. Wang,
H. Wu, F. Yang, S. Zhou, and J.S. Zhang, “ Unified Ap-
proach to Functional Decompositions of Switching Func-
tions,” PSU Electr. Engn. Dept. Report, Dec. 29, 1995,
M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S.
Grygiel, M. Nowicka, R. Malvi, Z. Wang, and J. S. Zhang,
“Decomposition of Multiple-Valued Relations,” Proc. IS-
MVL’97, Halifax, Nova Scotia, Canada, May 1997, pp. 13
- 18. http://www.ee.pdx.edu/ mperkows/ML/=p33.ps.

T. Sasao and J. Butler, “On Bi-Decompositions of Logic
Functions,” Proc. Intern. Workshop on Logic Synthesis,
Lake Tahoe, California, May 18-21, 1997.

W. Wan, and M. A. Perkowski, “A New Approach
to the Decomposition of Incompletely Specified Func-
tions based on Graph-Coloring and Local Transformations
and Its Application to FPGA Mapping,” Proc. EURO-
DAC ’'92, pp. 230 - 235, Sept. 7-10, Hamburg, 1992.
http://www.ee.pdx.edu/ mperkows/ML/pap.ps.

T.D. Ross, M.J. Noviskey, T.N. Taylor, D.A. Gadd, “Pat-
tern Theory: An Engineering Paradigm for Algorithm De-
sign,” Final Technical Report WL-TR-91-1060, Wright
Laboratories, USAF, WL/AART/WPAFB, OH 45433-
6543, August 1991.

C. E. St on, “The synthesis of two-terminal switching
circuits,” Bell Syst. Techn. J., Vol. 28, 1949, pp. 59-98.

B. Zupan, M. Bohanec, J. Demsar, and I. Bratko, “Feature
Transfe tion by Function Decomposition,” IEEE Ezpert,
Spec. Issue on Feature Transformation and Subset Selec-
tion.

B. Zupan, M. Bohanec, 1. Bratko, B. Cestnik, “A Dataset
decomposition approach to data mining and machine dis-
covery,” preprint from authors, 1998.

M. Burns, M. Perkowski, L. Jozwiak, “An Efficient Ap-
proach to Decomposition of Multi-Output Boolean Func-
tions with Large Sets of Bound Variables,” Proc. 1998 Eu-
romicro, pp. 16 - 23,

R. Malvi, M. Perkowski, and L. Jozwiak, “Exact Graph
Coloring for Functional Decomposition: Do we Need it?,”
Proc. 8rd Int. Work. Boolean Problems, 1998, pp. 1 - 10.
D. Bochmann, and B. Steinbach, “Logikentwurf mit
XBOOLE," Verlag Technik, Berlin 1991.

D. Bochmann, F. Dresig, and B. Steinbach, “A New Decom-
position Method for Multilevel Circuit Design,” European
Design Automation Conference, Amsterdam, 1991, pp. 374
- 377.

T.Q. Le, and B. Steinbach, “Effiziente Methoden zum
Logikentwurf testbarer kombinatorischer Schaltungen und
deren impliziten Testsatzberechnung,” Proc. 9rd ITG/GI-
Workshop: "Testmethoden und Zuverlassigkeit von Schal-
tungen und Systemen”, Blomberg, 1991.

B. Steinbach, and T.Q. Le, “Entwurf testbarer Schaltnetzw-
erke,” Wissenschaftliche Schriftenreihe der TU Chemnitz,
H. 12/1990.

68

[24]

{25]

[26]

(27

[28]

[29]

30

1

[31)

[32]

[33)

(34

=

[35]

(36]

[37]

[38]

B. Steinbach, “Auflosbarkeit und Eindeutigkeit Boolescher
Gleichungen,” Wissenschaftliche Schriftenreihe der TU
Chemnitz-Zwickau, H. 7/1992.

B. Steinbach, “XBOOLE - A Toolbox for Modeiling, Sim-
ulation, and Analysis of Large Digital Systems,” System
Analysis and Modelling Simulation, Gordon & Breach Sci-
ence Publishers, 9(1992), No. 4, pp. 297 - 312.

B. Steinbach, F. Schumann, and M. Stoeckert, “Func-
tional Decomposition of Speed Optimized Circuits,” in: Au-
vergne, D.; Hartenstein, R.: Power and Timing Modelling
for Performance of Integrated Circuits, IT Press Verlag,
Bruchsal, 1993, pp. 65 - 77.

B. Steinbach, and M. Stoeckert, “Design of Fully Testable
Circuits by Functional Decomposition and Implicit Test
Pattern Generation,” Proc. 12th IEEE VLSI Test Sympo-
sium, Cherry Hill, New Jersey, 1994, pp. 22 - 27.

B. Steinbach, and Th. Muller, “Dekompositorische Schal-
tungssynthese mit komplexen Logikmoduln,” Tagungunter-
lagen des GI/ITG - Workshops ”Anwender- programmier-
bare Schaltungen”, Karlsruhe, 1994.

B. Steinbach, and A. Wereszczynski, “Synthesis of Multi-
Level Circuits Using EXOR-Gates,” Proc. RM’95, Chiba
(Makuhari), Japan, 1995, pp. 161 - 168.

B. Steinbach, and K. Hesse, “Design of large digital circuits
utilizing functional and structural properties,” in: Stein-
bach, B. (Hrsg.): Boolesche Probleme, Proceedings des 2.
Workshops, 19. und 20. September 1996, TU Bergakademie
Freiberg, pp. 23 - 30.

B. Steinbach, and Z. Zhang, “Synthesis for Full Testability
of Large Partitioned Combinational Circuits,” in: Stein-
bach, B. (Hrsg.): Boolesche Probleme, Proc. 2nd Work-
shop, Sept. 19-20, TU Bergakademie Freiberg, pp. 31 - 38,
B. Steinbach, and Z. Zhang, “Designing for Testability of
Long Pipeline of Modules,” in: Anheier, W.; (ed): Tagungs-
band - 9. Workshop ”Testmethoden und Zuverlassigkeit von
Schaltungen und Systemen”, Report 1/97, Berichte Elek-
trotechnik, Universitaet Bremen, 1997, pp. 74 - 77.

B. Steinbach, and Z. Zhang, “Synthesis for Full Testability
of Partitioned Combinational Circuits Using Boolean Differ-
ential Calculus,” in: Proc. IWLS’97, Granlibakken Resort
- Tahoe City, CA - USA, 1997, pp. 1 - 4.

B. Steinbach, Z. Zhang, and Ch. Lang, “Logical De-
sign of Fully Testable Large Circuits by Decomposi-
tion,” in: Proc. Second Intern. Conf. on Computer-
Aided Design of Discrete Devices, (CAD DD’97), Vol.
1, pp. 7 - 14, Minsk, Belarus.(http://www.informatik.tu-
freiberg.de/prof2/publikationen/id ftc_d.ps).

B. Steinbach, and A. Zakrevskij, “Three Models and Some
Theorems on Decomposition of Boolean Function,” in:
Steinbach, B. (Hrsg.): Boolean Problems, Proc. $rd In-
tern. Workshops on Boolean Problems, Sept. 17-18, 1998,
TU Bergakademie Freiberg, pp. 11 - 18.

A.D. Zakrevskij, “An algorithm for decomposition of
Boolean functions,” Trudy SPhTI, is.44, 1964, Tomsk, pp.
5-16 (in Russian).

A.D. Zakrevskij, “PLA decomposition over input vari-
ables,” Doklady AN B, 1980, Vol. 24, No. 5, pp. 419-422
(in Russian).

A.D. Zakrevskij, “On a special kind decomposition of
weakly specified Boolean functions,” Computer-Aided De-
sign of Discrete Devices, pp. 36-45, Minsk, 1997.

