
New Compact Representation of Multiple-Valued Functions and Relations

Stanislaw Grygiel, Marek Perkowski
Portland State University

Department of Electrical Engineering
Portland, OR 97207

Abstract

In this paper we present a new data structure for repre-
senting Multiple-valued relations (functions in particular)
both completely and incompletely specified. Relations are
represented by Labeled Rough Partitions, structure similar
to Rough Partitions introduced in [9] but extended with la-
bels to store the full information about relations. We present
experimental results from comparison of our data structure
to Binary Decision Diagrams (BDDs) on binary functions
(MCNC benchmarks) showing its superiority in terms of
memory requirements in 73% cases. The new representa-
tion can be used to a very large class of multiple-valued,
completely and incompletely specified functions and rela-
tions, typical for Machine Learning (ML) and complex FSM
controller optimization applications.

1. Introduction

Until very recently, experiences gained in the area of
logic synthesis were used only to minimize and optimize
the hardware of digital circuits. In the last few years an
increased trend occurred to apply these methods also in
image processing, machine learning, knowledge discovery,
data-base optimization, AI, image coding, automatic the-
orem proving and verification. Multiple-valued (MV) re-
lations (functions in particular) which include very many
don’t cares are becoming increasingly important, especially
in these new areas of application [11]. It is very important
to have a good representation for such relations. By good
representation we understand one that is compact and al-
lows fast processing. For instance, success of many binary
decomposers depends on appropriate innovative represen-
tation of Boolean functions: cube calculus [19], spectral
transforms [14], decision diagrams [8, 13], or rough par-
titions [9]. Better representation allows storing larger func-
tions, and also, to carry efficiently appropriate calculations.

Three essentially different representation methods for
MV functions have been successfully used in logic synthe-

sis programs and AI applications:
Multiple-Valued Cubes (MVC, using positional nota-

tion) [18], store cubes of the table one by one (row by row),
value by value (linearly) and apply cube calculus for cube
operations.

Multiple-Valued Decision Diagrams (MVDD)
[12],[16],[4],[7] store cubes in a Directed Acyclic Graph
(DAG). Each DAG level corresponds to a different variable,
the number of node’s children is equal to the number of
values a variable can take.

Rough Partitions (r-partitions), this representation [9]
stores the table column-wise, and not row-wise as MVC
does. In r-partition every variable (a column of a table) in-
duces a partition of the set of rows (cubes) to blocks, one
block for each value the variable can take (there are two
blocks for a binary variable, and k blocks for a k-valued
variable).

Cube representation seems to be superior in problems
with a limited number of levels, such as sum-of-products
(SOP) or exclusive-sum-of-products (ESOP) synthesis. The
disadvantage of cube representation is that large multilevel
netlists or BDDs may produce too many cubes after flat-
tening, so that their cube arrays can not be stored. Even if
the initial data is in form of large arrays of cubes in ML
or controller design applications cubes may be too slow for
effective manipulation and alternative representations may
considerably improve the processing speed.

Decision Diagram representation seems to be superior
for general-purpose Boolean function manipulation, simu-
lation, tautology, technology mapping, and verification, but
can be exponential for functions of certain classes. For
some classes of functions such as parity, decision diagram
storage requirement is polynomial in terms of the number
of variables. For other functions however, as shown in [5]
or that occur in ML, logic or controller design [17], it is
exponential.

Rough Partition representation is an interesting and
novel idea but it doesn’t really form a representation of a
function. Since the values of a variable are not stored to-
gether with partition blocks, the essential information on the

function is lost and the original data can not be recovered
from it. Also, the rough partition implementation as de-
scribed in [9], is a flat list representation with its all known
disadvantages.

None of the above representations addresses the problem
of binary or MV strongly unspecified functions and rela-
tions which occur in Machine Learning (ML) [11], Knowl-
edge Discovery in Databases (KDD), Artificial Intelligence
(AI), and Finite State Machine (FSM) and controller design.
Although the logic and FSM methodologies that produce a
very high percent of don’t cares are not very popular yet,
there exist practical industrial applications with more than
95% of don’t cares [15]. In contrast, benchmarks with more
than 99% of don’t cares are common in ML.

With the exception of [9] and [6], the representation
problem has not been addressed for MV decomposers and
other synthesis programs. The data structure presented in
this paper is particularly useful for the decomposition of in-
completely specified MV functions and relations.

The paper is organized as follows. Section 2 defines
generalized values which allow for representation of MV
cubes and relations. Section 3 defines MV cubes. Our rep-
resentation is built from a relation given in the form of MV
cubes. MV cubes are also used to label partition blocks
of the representation. Sections 4 and 5 introduce Labeled
Rough Partition (lr-partition) representation. Section 6 dis-
cusses memory requirements for two different representa-
tions of partition blocks: BDDs and Bit Sets (BS). Section
7 presents results of testing and Section 8 concludes the pa-
per.

2. Generalized values

The following notation will be used in the paper:

X � fxig set of MV input variables.
Y � fyig set of MV output variables.
jXj cardinality of set X.
jxj cardinality of variable x � X.
Qx � fqixg, set of symbols for jxj-valued
i � �� � � � � jxj variable x.

Definition 1 The generalized value V of variable x is de-
fined as a subset of set Qx, V � Qx, and denoted by V �x�.

�

V �x� can be any subset ofQx and the number of possible
values V �x� can take for a given Qx is equal to �jxj (jxj �
jQxj). The set of possible values V �x� can take is a power
set of of the set Qx.

The above definition extends the notion of MV variable
value and defines it as a set of symbols (classical, one sym-
bol value is a special case of that definition). In particu-
lar V �x� � Qx, which is MV equivalent of binary don’t

care (variable x can be assigned any symbol from Qx), and
V �x� � � (none of the symbols can be assigned to the vari-
able).

Definition 1 allows also for expressing situations where
there is an uncertainty on what value to assign to a variable
but the set of acceptable values (symbols) can be clearly
specified. For instance: “the color was red or yellow but
not black or white”. An example of application in logic
synthesis area is a modulo-3 counter that counts in sequence
s� � s� � s� � s� and if the state s� happens to be the
initial state of the counter, counter should transit to any of
the states s�� s�� s�, but not to the state s� itself.

It also allows for representing MV relations in Machine
Learning. For instance: for a given set of attribute values,
cell has been classified as cancerous by one expert and as
non-cancerous by another and both experts opinions need
to be taken into account in the data analysis. Examples of
MV relations are benchmarks hayes, flare1, flare2
from U.C. Irvine Machine Learning repository.

Generalized values for input variables are already known
from cube calculus but generalized values for output vari-
ables are a new concept which allows for representation and
manipulation of relations.

3. Multiple-valued Cubes

Definitions in this section are based on cube calculus def-
initions but extend them on the case of cubes based on dif-
ferent sets of variables.

Definition 2 (MV cube) Let Vxk � fVi�xk�g be a set of
all possible MV values of variable xk. MV cube based on
the set of variables X is defined as an element of the Carte-
sian product Vx� � Vx� � � � �� Vxn . �

In other words MV cube is a vector of generalized values
fV �xi�g.

Later in this paper we will denote a cube by c and a set
of cubes by C. We will use notation c�X�� C�X� to specify
a cube and a set of cubes based on the set of variables X. If
x �� X we will assume that V �x� � � in cube c�X�.

V �x� � � can be used for representing situations where
variable x is not present in a given cube. An example from
ML domain is the well known Michalski’s train benchmark
which describes a set of 10 trains. A set of attributes cor-
responds to every car in the train. Since the number of
cars vary from train to train some cubes (trains) contain at-
tributes which correspond to non existing cars and can be
assigned value V �x� � �. Another application are out-
put variables of multi-output functions and relations corre-
sponding to unspecified cubes (’˜’ in Espresso format).

Definition 3 (proper and improper cubes) Cube c�X�
will be called improper if there exists x � X such that
V �x� � �. Otherwise cube is called proper. �

2

Example 1 improper cube: ff�� �g� f�� �g���f�gg proper
cube: ff�� �g� f���g�f�g� f�gg �

Definition 4 (minterm) Cube c�X� is called minterm if for
every x � X� jV �x�j � �. �

Example 2 minterm: ff�g� f�g� f�g� f�gg �

Definition 5 (cube containment) It is said that cube
c��X�� is contained in cube c��X��, c��X�� � c��X��,
if for every x � X� �X�, V��x� � V��x� and V��x�� V��x�
are values of the variable x in cubes c� and c� respectively.

�

Example 3 Let X� � fx�� x�� x�� x�g and X� �
fx�� x�g. Then cubes c��X�� � ff�g� f�g� f�g� f�gg and
c��X�� � ff�g� f�gg are contained in cube c��X�� �
ff�� �g� f���g�f�g�f�gg, but c��X�� is not contained in
c��X��, c�X�� �� c��X��. �

Definition 6 (cube intersection) The intersection of cubes
c��X�� and c��X�� is the cube c��X�� � c��X��uc��X��,
X� � X� � X�, such that for every x � X�, V��x� �
V��x� � V��x�, and V��x�� V��x�� V��x� are values of the
variable x in cubes c�� c� and c� respectively.

Example 4 Let X� � fx�� x�� x�� x�g, X� � fx�� x�g,
c��X�� � ff�g� f�g� f�g�f�gg, c��X�� �
ff�� �g� f���g�f�g�f�gg, and c��X�� � ff�g� f�gg.
Then c��X�� u c��X�� � c��X�� � ff�g� f�g� ���g �
ff�g� f�gg� c��X��, and c��X�� u c��X�� � c��X��. �

Definition 7 (supercube) The supercube of cubes c��X��
and c��X�� is the cube c��X�� � c��X���c��X��, X� �
X� � X�, such that for every x � X�, V��x� � V��x� �
V��x�, and V��x�� V��x�� V��x� are values of the variable x
in cubes c�� c� and c� respectively. �

Example 5 Let us take the cubes defined as in Example
4. Then c��X���c��X�� � c��X�� and c��X���c��X�� �
c��X��. �

Definition 8 (cube merging) Let c��X�� � c��X�� $
c��X��. We can say that cube c��X�� is a merge of cubes
c��X�� and c��X��, c��X�� � c��X����c��X��, iff there
exists only one x � X� such that V��x� �� V��x�. �

Example 6 Let X� � fx�� x�� x�� x�g, X� �
fx�� x�� x�g, c��X�� � ff�g� f�g� f�g� f�gg,
c��X�� � ff�g� f�g� f�g�f�gg, c��X�� �
ff�g� f�g� f�gg, and c��X�� � ff�g� f�g� f�gg. Then
c��X����c��X�� � ff�g� f�g� f�g�f�gg � c��X�� and
c��X����c��X�� � ff�� �g� f�g�f�g�f�gg. Cube c��X��
however can not be merged with any other cube. �

Cube merging can be used to compress a set of minterms
or cubes and represent them by a smaller number of cubes
without any loss of information. This property is an impor-
tant one as the relation to be transformed into our represen-
tation is given in a form of MV cubes.

4. Labeled rough partitions

Definition 9 Separation of the elements of a nonempty set
S into nonempty subsets Si,

S
Si � S, is called a rough

partition (r-partition) of S. �

Definition of the rough partition allows the subsets S i to
be non-disjoint while the definition of a partition requires
them to be disjoint.

Definition 10 (relation) Let S� and S� be sets. A relation
R from S� to S� is a subset of Cartesian product S� � S�.
A relation R on S� is a subset of S� � S�. �

Function is a special case of relation from S� to S� where
every element s� � S� is the first member of precisely one
ordered pair �s�� s�� � S� � S�.

Definition 11 (labeled partition block) Let C�X� be a set
of MV cubes, and relation Rk be defined by a cube
ck�X��� X� � X, as follows: ci�X�Rkcj�X� iff ck�X�� �
ci�X�� and ck�X�� � cj�X��, where ck�X�� is given and
ci�X�� cj�X� � C�X�. The set of all cubes ci�X� being in
relation Rk to each other and labeled by cube ck�X�� will
be called labeled partition block and denoted by Bck�X��.

�

The labeled partition block consists of two elements: the
partition block which is a set of cubes and the label which is
a cube. Since all the cubes inC�X� can be enumerated with
distinct integer numbers, the partition block can be repre-
sented by a set of integer numbers. Any set of distinct sym-
bols would work here as well. Label added to the partition
block allows for establishing a correspondence between the
set of numbers (or symbols) in the partition block and cubes
in C�X�.

Definition 12 (labeled rough partition) The collection of
all nonempty labeled partition blocks Bck�X�� will be
called labeled rough partition (lr-partition) and denoted
by P �X�� � fBck�X��g. �

In particular, if X� � fxg then P �X�� � P �x�, and, if
X� � X then P �X�� � P �X�.

Example 7 Let X � fx�� x�� x�� x�g, X� � fx�� x�g,
and mx� � mx� � �. Then P �X�� will con-
tain four (at most) blocks corresponding to the following
ck�X�� cubes: ��� ��� ��� ��. In other words P �X�� �
fB��� B��� B��� B��g. �

Definition 13 For lr-partitions P �X�� and P �X�� of a set
of cubes C�X�, X�� X� � X, it is said that P �X�� 	
P �X�� if every block of P �X�� is included in at least one
block of P �X��:
Bci�X���Bcj �X�� � Bci�X�� � Bcj�X��.

�

3

Definition 14 (labeled partition block product) Product
of two labeled partition blocks Bci�X�� and Bcj �X�� is
the labeled partition block Bck�X�� � Bci�X�� � Bcj�X��,
which partition block is an intersection of partition blocks
of Bci�X�� and Bcj �X�� and label ck�X�� is equal to
ci�X���cj�X��. �

Definition 15 (lr-partition product) The product
P �X��P �X�� of lr-partitions P �X�� and P �X�� of
a set of cubes C�X�, X�� X� � X, is lr-partition
P �X��� X� � X� �X�, the blocks of which are non empty
products of the blocks of P �X�� and P �X��. �

Example 8 (lr-partition product) Let:
X� � fx�� x�g� X� � fx�� x�g�
P �X�� � fB��� B��gX�

� ff�� �g��� f�� �g��gx�x� ,
P �X�� � fB��� B��gX�

� ff�� �g��� f�� �g��gx�x� .
Then:

P �X�� � P �X��P �X��
� fB����� B����� B����� B����gX�

� ff�g����� f�g����� f�g����� f�g����gx�x�x�x�
where X� � X� �X�.

Theorem 1 For any set of cubes C�X�, and any set of sub-
sets Xi of X, P �

S
iXi� �

Q
i P �Xi�.

PROOF It is enough to show that P �X� � X�� �
P �X��P �X��. By Definitions 11 and 12 lr-partitionP �X i�
consists of blocks corresponding to every combination of
values of variables x � Xi present in data. Hence, by Def-
inition 14 and 15 product P �X��P �X�� consists of blocks
corresponding to every combination of values of variables
x � X� � X� present in data. Hence, P �X� � X�� �
P �X��P �X��. �

Theorem 2 (lr-partition extraction) For given sets of
variables X�X� � X, and lr-partitionP �X� � fBci�X�g,
lr-partition P �X�� � fBcj �X��g consists of partition
blocks which are unions of those partition blocks of lr-
partitionP �X� which labels meet the following condition:

cj�X�� � ci�X��

where ci�X�� is that part of cube ci�X� which corresponds
to variables x � X�.

PROOF Follows directly from Definitions 5, 11, and 12. �

Example 9 (lr-partition extraction)
Let: X � fx�� x�� x�g� X� � fx�� x�g and:
P �X� � fB���� B���� B���� B���� B���� B���gx�x�x�
� ff�g���,f�g���,f�g���,f�g���, f�g���,f	g���gx�x�x�
Then: P �X�� � fB��� B��� B��� B��gx�x� and:
B�� � B��� �B��� � ff�g � f�gg�� � f�� �g��
B�� � B��� �B��� � ff�g � f	gg�� � f�� 	g��
B�� � B��� � f�g��
B�� � B��� � f�g�� �

5. Representation of MV relations

Theorem 3 (representation) The MV, multi-output
relation can be represented by a set of lr-partitions
fP �X��� � � � � P �Xnx�,P �Y��� � � � � P �Yny�g, whereS
Xi � X�

S
Yi � Y and X�Y are sets of input

and output variables respectively.

PROOF It is enough to show that transition to another rep-
resentation is possible. Transition to the cube representa-
tion can be performed by computing lr-partitions P �X� �Qnx

i�� P �Xi� and P �Y � �
Qny

i�� P �Yi� and taking labels of
P �X� as input cubes and labels of P �Y � as output cubes.
The correspondence between input and output cubes can
be determined in the following way: c i�X� corresponds to
cj�Y � if Bcj �Y �
 Bci�X�. Since this a relation, one input
cube may correspond to several output cubes. �

Contrary to the rough partition [9] which stores an ab-
straction of a function, the labeled rough partitions can be
used for general purpose representation of functions and re-
lations because no information is lost in them.

Example 10 (representation) An example of MV, multi-
output relation is shown in Table 1 and Figure 1. According
to Theorem 3 relation can be represented in many different
ways. Two of them are presented in Figure 1a and 1b.

cube # a b f g
0 0,2 1 - 2
1 0,1 0 0,2 0
2 2 0 1,2 0
3 1 1 1,2 2

Table 1. MV multi-output relation. Rows cor-
respond to MV cubes.

Output variables

variable f: P(f)

0,1,2,3

21

0,2,3

0

0,1

variable g: P(g)

1,2

0

0,3

2

variable a: P(a) variable b: P(b)

0,1

0

0,2

2

1,3

1

Input variables

1,2

0

0,3

1

variables ab: P(ab)

Input variables

0100

1 0

10

1

11

3

20

2

21

0

Output variables

00

1

10 2002

0 2

12

3 1,2

22

0,3

variables fg: P(fg)

a) b)

Figure 1. a) P �Xi� � P �xi�, P �Yj� � P �yj� b)
P �X�� � P �X�, P �Y�� � P �Y �

In Figure 1, partition blocks correspond to the small
squares, upper part of which contain block labels and the

4

lower part set of integer numbers, each number correspond-
ing to one cube. Big squares correspond to labeled rough
partitions for a given set of variables. Figure 1a shows
lr-partitions fP �a�� P �b�� P �f�� P �g�g and Figure 1b lr-
partitions fP �ab�� P �fg�g. �

Lr-partition representation has been created to enable ef-
ficient representation of incompletely specified functions
of many variables. If an (implicit) cube has standard out-
put don’t cares for all its outputs, it is not stored (explic-
itly) at all. This means that only care cubes are stored.
Don’t care minterms are represented implicitly, because ev-
erything that is not a care is implied to be a don’t care.
This means that for large functions and relations with many
don’t cares, a big saving of both storage and processing
time, when compared to the representations that store don’t
cares explicitly (such as MVCC in Espresso-MV). Also, a
MVDD has to store pointers to the terminal node ’DC’. If
there are L disjoint DC cubes in a map, there would be L
such pointers, and this number can be exponential in the
number of input variables. Moreover, MVDD requires a
good ordering of MV input variables, which has not been
successfully solved and can lead to prohibitively large dia-
grams. In contrast, the size of lr-partition representation is
at worst of the order of the number of cares, so it does not
depend on the location of don’t cares. In addition, for lr-
partitions, the encoding of cubes with secondary variables
decreases the size of the DDs. If the secondary variables are
binary, the efficient binary BDD packages based on sifting
or other variable ordering techniques can be used.

In case of using lr-partitions to represent relations, the
generalized value positions are stored in an efficient way,
because they are treated in the same way as the input gener-
alized values, and the sharing of subsets is used between all
the variables. This is one more advantage of representing
input and output variables uniformly.

6. Memory Requirements

The starting point for lr-partitions representation is a re-
lation or function given in a form of MV cubes (see Table 2).
Then lr-partitions are built for selected subsets of input and
output variables (see Example 11). Memory requirement
for lr-partition representation depends on two main factors:

1. Selection of sets Xi and Yj the partitions are based on
([9] allows for jXij � jYjj � � only)

2. Representation of sets of cubes in the partition blocks

���� Selection of sets Xi� Yi

Theorem 3 gives us a lot of freedom in selecting sets Xi

and Yi. Let us analyze memory requirements for such a data

structure. Partition block can be considered an atomic data
structure so the analysis will focus on minimizing the num-
ber of partition blocks required to represent a set of cubes.
To simplify analysis let us assume that the number of val-
ues each variable can take is equal to m, each set Xi con-
tains the same number of variables k, and sets Xi are dis-
joint. Then, for completely specified function represented
by minterms, the number of blocks nB is equal to:

nB �
n

k
mk

where n � jXj,
S
Xi � X, and Xi are disjoint.

In the above formula m�n are constants so nB �
f�k� which takes minimum value for k � �� lnm.
Calculation of k for different values of m results
in k � ����� ��
������� � � � for m � �� �� �� � � �.
Since k has to be a natural number greater than 0
the best choice for k is k � � which leads to
fP �x��� P �x��� � � � � P �xn�� P �y��� P �y��� � � � � P �yk�g in
Theorem 3.

Situation is different, however, if the relation is incom-
pletely specified and the number of care cubes is a small
fraction of the number of all minterms specifying the rela-
tion (as it is often the case for ML data). For instance, if
the number of care cubes grows linearly with the number
of input variables, nB will be described by the following
formula:

nB �
n

k
Kn

where K is a constant.
The value of nB in this equation decreases if the value

of k increases. Since k can not be greater then n, nB takes
minimal value for k equal to n and the set of partitions in
Theorem 3 reduces to fP �X�� P �Y ��g. In this case the
number of blocks and their size (one element) are small
but the storage required for labels (cubes) increases and be-
comes the primary factor determining memory requirement.

Between these two extreme cases there are many other
possible choices. Selection of sets Xi and Yi can also be
done based on some heuristic measures of closeness of vari-
ables. Such operation would correspond to definition of a
higher level abstraction and can easily by represented by
lr-partitions. Example 11 illustrates two cases described
above.

Example 11 An example of a MV relation is shown in Ta-
ble 2 and can be represented as follows:
P �x�� � ff�� �� �g�� f�� �g�gx�
P �x�� � ff�� �g�� f�� �� �g�� f�g�gx�
P �x�� � ff�� �� �g�� f�g�� f�g�gx�
P �x�� � ff�� �� �g�� f�� �� �g�gx�
P �y�� � ff�� �� �g�� f�� �g�� f�g�� f�� �g�gy�
P �y�� � ff�� �� �g�� f�� �� �g�� f�� �� �g�gy�

5

cube # x� x� x� x� y� y�
0 0 0 0 0 0,1 0,1,2
1 0 1 1 0,1 1,2 1
2 1 1 0 0 0 1,2
3 0 0,2 0 1 3 0,2
4 1 1 2 1 0,3 0

Table 2. MV relation

P �X� � ff�g� � � �� f�g� � � ���� f�g� � � ��
f�g� ��� � �� f�g� � � �gx�x�x�x�

P �Y � � ff�g��� ������ f�g��� �� f�g� ���� f�g� ����
f�g��� �gy�y�

Partitions P �X�� P �Y � represent relation with smaller
number of blocks than partitions based on single variables.
Labels are longer and more memory is needed to store them
but the total memory requirement can still be lower then for
single variable partitions.

���� Set representation

All MV operations on lr-partitions use set-theoretical
operations on the corresponding sets of integer numbers
representing blocks. Therefore, any computer package for
representing and manipulating sets (and in particular any
DD package that allows set-theoretical operations), can
be used to implement lr-partitions with no modification:
for instance the packages for BMDDs, EVDDs, KFDDs,
K*BMDs, ZBDDs, etc. [10]. We plan to compare the effi-
ciency and storage requirements for lr-partitions with vari-
ous data structures for partition blocks. Especially, we plan
to experiment with these new packages in our lr-partition
package. Currently we compared only two data structures:
Bit Sets (BS), and U.C. Berkeley standard BDDs.

6.2.1 Binary Decision Diagrams (BDD)

One of the most efficient representations of a large set of
objects is a decision diagram data structure, in particular
Binary Decision Diagram (BDD), which has been very suc-
cessfully applied to the representation of large binary func-
tions [2].

A question of comparison of BDDs and cube arrays is
a much-discussed one in logic synthesis [5, 17]. It is well-
known, that there are functions, such as parity, for which
BDDs are obviously better, and there are other functions,
such as the one shown by Devadas [5] (or that occur in ML,
logic or controller design [17]), that are more efficiently de-
scribed using an array of cubes.

It is advantageous that with good selection of cube enu-
meration in these two extreme worst cases lr-partitions with
blocks represented by BDDs are comparable in size to
the better representation of the two: arrays of cubes, or
BDDs.

One extreme example is a completely specified binary
function, similar to parity, and with many input variables.
Obviously, in this case, a BDD is better than an array of
cubes, because the BDD has the polynomial number of
nodes, and the array of cubes has an exponential number
of cubes. In this case the original variables are selected as
the secondary variables for lr-partition representation. Thus
the size of the block for the ON -set of the output variable is
the same as that of the BDD for this function. All the input
blocks have one node each. Hence, both representations are
comparable in space.

For the other extreme case, let us consider a binary func-
tion like those discussed by [5] that have polynomial num-
ber of cubes and exponential number of nodes in BDD.
When the function is specified with cubes, it has n variables
and k cubes, k �� �n. Very conservatively estimating: in
the worst case there is ��n � �� partition blocks, each rep-
resented by a BDD with k nodes. So, the total number of
nodes is O��nk� while the number of nodes in the single
BDD representation would be O��n�. Examples of multi-
output MV relations can be constructed for which the ad-
vantage over MVDDs would be dramatic for large values
of n and k. There exist practical functions with similar, al-
though not that extreme properties [17]. To this category
belong functions with many cubes and many variables, but
with still very small ratio of cares to don’t cares. This is the
kind of functions from ML benchmarks, but with larger k, n
and number of terms than in the functions from U.C. Irvine
benchmarks. It is our hope that for larger multi-valued func-
tions or relations the storage advantage of lr-partition repre-
sentation will be even more clearly observable.

6.2.2 Bit Sets (BS)

Bit Set (BS), is an object that contains logically infinite set
of bits. Because it is logically infinite, BS possesses a trail-
ing, infinitely replicated 0 or 1 bit, called the “virtual bit”,
and indicated via 0* or 1*.

To represent any subset of a set of n elements, BS con-
tains n bits maximum. If the i-th element of the set is con-
tained in the subset, i-th bit of the BS is set to 1, otherwise
it is set to 0. The memory requirement for this data struc-
ture depends on the enumeration of objects in the set, for
instance S� � f�g requires only two bits of memory (bit 0
equal to 1 and virtual bit 0*) while S � � fn � �g requires
n� � bits, even though both sets contain only one element.
Hence the maximum memory requirement for BS to rep-
resent any subset of a set of n elements is equal to dn�
e
bytes.

6

7. Results

Notations lr-BDD and lr-BS will refer to lr-partition
representations with BDDs and BSs representing partition
blocks respectively. Notation BDD refers to representation
of the function by a single BDD. Since lr-BS implementa-
tion was not ready at the time of writing this paper so the
sizes of lr-BS are sizes computed according to the following
formulae:

size �

�
of cubes � # of partition blocks

�
[bytes]

Where the number of partition blocks for binary func-
tion is double the number of both input and output vari-
ables (two blocks, labeled 0 and 1, per variable). To
compute lr-BS/BDD we assume that one BDD node re-
quires 22 bytes of memory [1]. All the tests were per-
formed on DECstation 5000/240 with 64MB of memory.
Times are user times measured with accuracy of 1/10 sec-
ond by the Unix command /bin/time and are given
in seconds. For lr-BDD and BDD representations we
used U.C. Berkeley BDD package with sifting variable re-
ordering method and lr-partitions based on single variables
fP �x��� P �x��� � � � � P �y��� P �y��� � � �g.

���� Binary functions

The testing has been performed on three special classes
of functions: parity, devadas, multiply, and on two level
MCNC benchmarks. The reason for using two level MCNC
benchmarks is that current implementation of lr-BDD ac-
cepts input data only in the form of multiple-valued cubes
similar to Espresso format. This is a natural representation
of input data in ML and controller design problems. The
implementation which would accept multi-level description
blif format is under development.

The examples analyzed in this section are completely
specified binary functions (to allow for comparison with
BDD representation). Lr-partitions however, allow for
representation of multiple-valued functions and relations
which can be incompletely specified.

7.1.1 Parity functions

For parity functions linearly-sized (�n�� nodes) BDD rep-
resentation can always be found, so in this case BDD should
compare very good to other representations. The compari-
son of BDD and lr-BDD representations presented in Table
4 however, shows that lr-BDD is equally good for this type
of functions and its size is equal to �n nodes. The other rep-
resentation however (lr-BS), compares poorly to both BDD
and lr-BDD but it is not because the lr-BS representation is

i/o # cubes tBDD tlr�BDD

[s] [s]
p9 9/1 512 0.3 0.6
p10 10/1 1024 0.6 1.6
p11 11/1 2048 1.5 3.6
p12 12/1 4096 3.7 8.3
p14 14/1 16384 19.2 40.8
p16 16/1 65536 97.1 194.8

Table 3. Parity functions: time

lr-BDD BDD lr-BS lr-BDD
nodes nodes BDD BDD

p9 18 17 3.42 1.06
p10 20 19 6.74 1.05
p11 22 21 13.30 1.05
p12 24 23 26.31 1.04
p14 28 27 103.43 1.04
p16 32 31 408.40 1.03

Table 4. Parity functions: size

not good but because for this type of functions BDD per-
forms extremely well.

In terms of time, lr-BDD representation requires roughly
twice as much time as BDD to read parity functions and that
ratio remains constant when the function size increases.

7.1.2 Devadas functions

Another type of function to be tested was the one discussed
in [5]. The function has �n � logn inputs and n� product
terms in sum-of-product representation and O��n��� nodes
in BDD representation under any possible variable order-
ing. The functions d8, d10, d11, d12 in Tables 5 and 6
correspond to n �
� ��� ��,and ��.

i/o # cubes tBDD tlr�BDD

[s] [s]
d8 19/1 2038 23.3 12.8
d10 24/1 10308 251.2 104.8
d11 26/1 22631 831.6 249.9
d12 28/1 49151 2984.5 632.3

Table 5. Devadas functions: time

lr-BDD BDD lr-BS lr-BDD
nodes nodes BDD BDD

d8 1743 1610 0.29 1.08
d10 3372 5331 0.55 0.63
d11 2403 16445 0.42 0.15
d12 11930 20784 0.78 0.57

Table 6. Devadas functions: size

In terms of memory requirement both lr-BS and lr-BDD
are better than BDD. However, lr-BS memory requirement
increases with the number of cubes and eventually may be-
come greater than BDD. On the other hand, lr-BDD to BDD
ratio decreases with the number of cubes, the larger the
number of cubes the better lr-BDD comparing to BDD.

Similar situation is in terms of time needed to build a rep-
resentation. Time tlrBDD needed to build lr-BDD increases

7

slower than the time tBDD needed to build a BDD and the
ratio tBDD�tlr�BDD increases from 1.79 for d8 to 4.76 for
d12.

The conclusion is that for devadas type functions lr-BDD
is clearly the winner in terms of both memory requirement
and time.

7.1.3 Multiplier functions

Another type of function is n-bit multiplier function which
requires O��n��� � O����
n� nodes in single BDD repre-
sentation [3]. Functions m6, m7, m8, and m9 in Table 8
correspond to n � �� ��
 and
. As it can be seen from Ta-
ble 8 the size of lr-BDD increases slower than that of BDD.
This would indicate that the number of nodes of lr-BDD is
less than O����
n�.

In terms of time lr-BDD is roughly 1.5 times slower than
BDD for multiply functions in Table 7.

i/o # cubes tBDD tlr�BDD

[s] [s]
m6 12/12 4096 11.0 22.4
m7 14/14 16384 75.0 124.8
m8 16/16 65536 461.2 663.7
m9 18/18 262144 2419.5 3930.9

Table 7. Multiply functions: time

lr-BDD BDD lr-BS lr-BDD
nodes nodes BDD BDD

m6 1109 1103 1.01 1.0050
m7 3116 3109 1.68 1.0020
m8 8849 8841 2.70 1.0009
m9 25063 25054 4.20 1.0004

Table 8. Multiply functions: size

7.1.4 MCNC benchmarks

The results of testing on MCNC benchmarks are shown in
Tables 10 and 9. The lr-BS representation appears to be
smaller than BDD representation in 73% of cases. The lr-
BDD representation however, is larger than BDD in most of
the cases.

For most of the functions in the table the number of
cubes is much smaller then the number of minterms re-
quired to represent the same functions and, as the analysis
in Section 6.1 shows, lr-partitions based on sets of variables
(P �Xi�) instead of single variables (P �xi�) should be less
memory consuming here.

BDD representation for benchmarks apex3 and seq
failed to terminate successfully as it didn’t fit into computer
memory. The lr-BDD representation terminated without
any problem for the same benchmarks. This would indicate
that lr-BDD is less memory consuming when creating the
representation. It can be explained by the fact that lr-BDD

i/o # cubes tBDD tlr�BDD

[s] [s]
apex1 45/45 1440 82.4 31.0
apex2 39/3 1576 42.2 31.0
apex3 54/50 1036 - 20.1
apex4 9/19 1907 1.9 13.8
apex5 117/88 2710 7.2 120.9
seq 41/35 2014 - 47.5
table3 14/14 1686 1.8 19.5
table5 17/15 1600 1.7 21.8
cps 24/109 855 3.2 10.3
cordic 23/2 2105 4.0 14.0
duke2 22/29 404 0.7 4.1
e64 65/65 327 3.5 5.0
ex1010 10/10 1297 2.4 9.7
ex4p 128/28 654 2.5 19.8
misex2 25/18 101 0.1 0.5
misex3 14/14 1391 4.0 15.5
misex3c 14/14 1566 2.3 16.3
pdc 16/40 822 1.6 7.9
spla 16/46 837 1.3 8.5
t481 16/1 841 0.7 4.5
vg2 25/8 304 0.9 2.8
alu4 14/8 1184 2.6 12.4
5xp1 7/10 141 0.0 0.4
9sym 9/1 158 0.1 0.6
bw 5/28 93 0.1 0.2
clip 9/5 271 0.2 1.3
ex5p 8/63 208 0.4 0.8
inc 7/9 94 0.0 0.3
rd53 5/3 67 0.0 0.1
rd73 7/3 274 0.1 1.1
rd84 8/4 511 0.2 2.3
sao2 10/4 137 0.1 0.5

Table 9. MCNC benchmarks: time

lr-BDD BDD lr-BS lr-BDD
nodes nodes BDD BDD

apex1 4877 1345 1.09 3.63
apex2 5594 730 1.03 7.66
apex3 3384 - - -
apex4 4012 892 0.68 4.50
apex5 7435 1130 5.59 6.58
seq 6202 - - -
table3 4311 778 0.69 5.54
table5 4387 711 0.82 6.17
cps 2550 1072 1.21 2.38
cordic 2136 61 9.84 35.02
duke2 1364 392 0.60 3.48
e64 918 229 2.12 4.01
ex1010 3605 1314 0.23 2.74
ex4p 2952 535 2.17 5.52
misex2 369 78 0.65 4.73
misex3 4616 695 0.64 6.64
misex3c 3976 499 1.00 7.97
pdc 2820 609 0.86 4.63
spla 2598 576 1.03 4.51
t481 1368 32 5.12 42.75
vg2 1139 301 0.38 3.78
alu4 3478 800 0.37 4.35
5xp1 388 55 0.51 7.05
9sym 485 26 0.70 18.65
bw 228 105 0.34 2.17
clip 759 92 0.47 8.25
ex5p 562 242 0.69 2.32
inc 265 68 0.26 3.90
rd53 180 19 0.34 9.47
rd73 661 35 0.91 18.89
rd84 928 48 1.45 19.33
sao2 459 89 0.26 5.16

Table 10. MCNC benchmarks: size

consists of many small shared BDDs which are incremen-
tally created and processed while reading the data. On the

8

other hand, BDD representation consists of one large DAG
which may temporarily grow beyond capacity of the avail-
able memory while reading the data and performing neces-
sary transformations.

7.1.5 Summary on binary functions

From the testing presented in the previous sections lr-BS
appears to be less memory consuming than BDD on func-
tions with relatively small number of cubes (MCNC bench-
marks), lr-BS should also be faster than both lr-BDD and
BDD (operations on bit sets are fast).

The other representation, lr-BDD, appears to be compa-
rable or slightly larger then BDD in both size and time (with
the exception of devadas functions). This is probably due to
the structural difference of both representations. BDD con-
sists of one large DAG while lr-BDD of many small BDDs.
This structural difference is probably the reason why lr-
BDD seems to be better suited than BDD to read and pro-
cess large functions (MCNC benchmarks apex3 and seq).
More testing however is needed to fully verify this hypoth-
esis.

���� Multiple�valued functions

Table 11 shows a comparison of selected bench-
marks from U.C. Irvine ML repository, and from Prof.
Bratko, Univ. of Ljubljana (car, employ1, em-
ploy2, programm) in terms of memory requirements
for representation of partition blocks by BDDs and BSs.
Value in column 4 (part blocks) corresponds to the total
number of partition blocks.

i/o cubes part nodes lr-BS time
blocks lr-BDD [s]

zoo 16/1 101 46 412 0.07 0.4
shuttle 6/1 15 18 43 0.04 0.0
breastc 9/1 699 92 3638 0.10 5.3
balance 4/1 625 23 652 0.13 0.1
lenses 4/1 24 12 23 0.07 0.0
trains 32/1 10 107 98 0.10 0.0
trains20 29/1 20 109 185 0.08 0.1
car 6/1 1728 25 1163 0.21 4.5
employ1 7/1 18000 33 4292 0.79 26.4
employ2 9/1 9600 31 1802 0.94 66.3
programm 12/1 20000 47 70447 0.08 325.0

Table 11. ML benchmarks

As can be seen from Table 11 in all the cases lr-BS is
smaller then lr-BDD, even for functions with a large num-
ber of cubes. However, the ratio lr-BS/lr-BDD not only de-
pends on the number of cubes but also on the structure of the
function. For instance, function employ2, which is much
smaller then programm, has lr-BS/lr-BDD = 0.98, much
larger the value then 0.08 for the programm function. If
that ratio depended only on the number of cubes the relation
would have been opposite.

8. Conclusions

We have presented a new data structure (lr-partitions)
and shown that it gives very good results not only on bi-
nary functions but especially on a broader class of multiple-
valued, completely and incompletely specified relations
(functions in particular) which are typical in Machine
Learning and complex FSM controller optimization appli-
cations.

By selecting suitable sets Xi, Yi and partition block
representation, lr-partitions can be tuned (optimized) for a
given type of function or relation. This gives the designer
a fast way of adjusting the representation for very large
functions that would not fit into available computer mem-
ory (like apex3 and seq). For instance lr-BDD based
on single variables (P �xi�) have characteristics similar to
BDD representation (large partition blocks, small labels).
If lr-BDD is based on larger sets (P �X�) then they more re-
semble cube representation of the function (small partition
blocks, large labels).

Comparison of lr-partitions, with BS representing
partition blocks, and single BDD shows superiority of
lr-partitions in most of the binary test cases (73% of
MCNC benchmarks) and all ML benchmarks. If the
number of cubes describing a function or relation is large
(tens of thousands) representing partition blocks with BDDs
is usually less memory consuming than with BSs.

Characteristics of lr-partition representation can be sum-
marized as follows:

� It can easily handle ’generalized values’ to represent
situations where both input (attribute value) and out-
put (class assignment) variable values may be multiple.
This is especially important in ML and complex FSM
controller optimization applications to express uncer-
tainty of choice of variable’s values.

� It can easily handle situations where a variable is not
present in a given cube (Michalski’s train benchmark
and ’˜’ in Espresso format).

� By selection of sets Xi and Yj lr-partitions can be dy-
namically adjusted to a given type of data (completely
vs. incompletely specified, many cubes vs. few cubes)
to minimize memory requirements.

� lr-partitions allow selection of set representation for
partition blocks. Two such representations, BDDs and
BSs, have been compared in this paper but other repre-
sentations (OBDDs, BMDDs, EVDDs, KFDDs, hash
tables, etc.) can be used too.

Based on lr-partitions, we implemented a decomposer of
MV relations which can decompose large functions and re-
lations from ML and controller domains. It proved that this

9

representation is not only compact but also allows for fast
processing. We believe therefore that Labeled Rough Par-
titions are a new and very promising general purpose data
structure for binary and MV functions and relations.

References

[1] K.S. Brace, R.L. Rudell, and R.E. Bryant. Efficient
implementation of a BDD package. In Proc. of 27th
Design Automatiom Conference, pages 40–45, June
1990.

[2] R.E. Bryant. Graph-based algorithms for boolean
function manipulation. Trans. on Comput., C-
35(8):667–691, 1986.

[3] R.E. Bryant. On the complexity of VLSI implemen-
tation and graph representations of boolean functions
with application to integer multiplication. IEEE Trans.
on Computers, 40:205–213, 1991.

[4] A.L. de Oliveira. Inductive Learning by Selection
of Minimal Complexity Representations. PhD thesis,
University of California at Berkeley, 1994.

[5] S. Devadas. Comparing two-level and ordered binary
decision diagram representations of logic functions.
IEEE Trans. on CAD, 12(5):722–723, May 1993.

[6] S. Grygiel, M. Perkowski, M. Marek-Sadowska,
T. Luba, and L. Jozwiak. Cube diagram bundles: a
new representation of strongly unspecified multiple-
valued functions and relations. In Proc. of ISMVL’97,
pages 287–292, Halifax, Nova Scotia, Canada, May
28-30 1997.

[7] R. Kohavi. Bottom-up induction of oblivious read-
once decision graphs. In Europeean Conference on
Machine Learning, 1994.

[8] Y. T. Lai, K.R. Pan, M. Pedram, and S. Vrudhula.
FGMap: A technology mapping algorithm for look-
up table type FPGA synthesis. In Proc. 30-th DAC,
pages 642–647, 1993.

[9] T. Luba. Decomposition of multiple-valued functions.
In Proc. 25th ISMVL, pages 256–261, 1995.

[10] S. Minato. Graph-based representations of discrete
functions. In Proc. Reed-Muller’95 Workshop, pages
1–10, Chiba, Japan, August 1995.

[11] M. Perkowski, T. Ross, D. Gadd, J. A. Goldman, and
N. Song. Application of ESOP minimization in ma-
chine learning and knowledge discovery. In Proc.
Reed-Muller’95 Workshop, pages 102–109, Chiba,
Japan, August 1995.

[12] J.R. Quinlan. Induction of decision trees. Machine
Learning, (1):81–106, 1986.

[13] T. Sasao. FPGA design by generalized functional de-
composition. In T. Sasao, editor, Logic Synthesis and
Optimization, pages 233–258. Kluwer Academic Pub-
lishers, 1993.

[14] V.Y. Shen, A. C. McKellar, and P. Weiner. An fast al-
gorithm for the disjunctive decomposition of switch-
ing functions. IEEE Trans. on Comput., C-20(3):304–
309, March 1971.

[15] Shmerko, Jozwiak, and industry. private communica-
tion, 1996.

[16] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Al-
gorithms for discrete function manipulation. In IEEE
InternationalConference on CAD, pages 92–95, 1990.

[17] Steinbach, Hesse, Kempe, Rhode, and Barthel. Papers
and discussions at the 2nd workshop boolesche prob-
leme. Freiberg, Germany, 19-20 September 1996.

[18] Y.H. Su and P.T. Cheung. Computer minimization of
multiple-valued switching functions. IEEE Transac-
tions on Computers, C-21:995–1003, 1972.

[19] W. Wan and M. Perkowski. A new approach to the
decomposition of incompletely specified multi-output
function based on graph coloring and local transfor-
mations and its application to FPGA mapping. In
Proc. Euro-DAC, pages 230–235, 1992.

10

