NEW APPROACH TO LEARNING NOISY BOOLEAN
FUNCTIONS

MAREK PERKOWSKI, LECH JOZWIAK +, and SANOF MOHAMED *
Department of Flectrical Engineering, Portland State University, Portland, OR
97207-0751
Portland, Oregon 97207-0751, USA, Tel: 503-725-5411, mperkows@ee.pdz.edu
+ Faculty of Flectrical Engineering, Findhoven Unwversity of Technology
P.O. Box 513, FH 10.25, 5600 MB FEindhoven, The Netherlands, Tel:
+31.40.2473645, lech@eb.ele.tue.nl
COMPASS Design Automation, 1865 Lundy Ave, M/S 430, San Jose CA 95131,
Tel: 408-434-7893, sanof@compass-da.com

We give a new formulation of noise removal from data being Boolean functions
used in Conceptual Inductive Learning. The algorithm is used as a part of a func-
tional decomposition program. Paper gives an efficient heuristic algorithm for the
minimization of multi-output Exclusive DNF (EDNF) expressions that general-
ize the Disjunctive Normal Forms (DNF) expressions popularly used in Machine
Learning (ML). The algorithm can be used for preprocessing, after any stage of
decomposition, and for postprocessing. In EDNF, the ANDs of DNF are AND-ed
with NANDs, providing Exclusion cases. The EDNF is thus a disjunctive sum
of AND/NAND gates, called Conditional Decoder (CDEC) functors. A pruning
technique is based on analysis of sizes of AND and NAND parts in CDEC functors,
and the numbers of true and false minterms covered by them. Experiments on ML
benchmarks prove that our approach generates high-quality solutions, is especially
efficient on strongly unspecified functions, and reduces the recognition errors.

1 Introduction.

In recent years there has been a big progress in Inductive Learning approach
to Machine Learning ®. The traditional machine learning approaches such as
Neural Nets (NN) postulated that the recognizing network had some assumed
structure which was “tuned” by the learning process (for instance, by decreas-
ing and increasing the numerical values of some coefficients). Thus, creating a
new structure was accomplished by setting some coefficients to zero. All “new”
structures are in a sense “hidden” in the assumed mother-structure. Also the
type of an element, such as a formal neuron in Neural Nets, is decided before
the learning takes place. Thus, the approach has inherent bias, and explana-
tion of learned concepts is also usually not possible. In contrast, the approach
of conceptual inductive learning is the concept learning from examples (called
also concept acquisition). The task is to induce general descriptions of con-
cepts from specific instances of these concepts. Various logic structures have
been used for descriptions: DNFs (AQ, CN, Espresso-Dexact, Espresso), Vari-

1

able Valued Logic expressions (Michalski), decision trees (Quinlan, C4.5), and
other 13, Such systems can produce better explanations than NNs and re-
duce recognition errors. However, these systems still assume certain structure
of the expressions derived in the inductive process. Constructive Induction
is the induction process that changes the description space, it produces new
descriptors (called also features or concepts that were not present in the input
events °. Few Constructive Induction systems have been recently developed ®,
and they provide even better explanations. In this paper we are focusing on the
Constructive Induction system based on Functional Decomposition */1#411,10:16,
Although the very early ideas of such systems based on decomposition come
perhaps from the famous checkers program by Samuel, the first group who
formulated the learning problem as Ashenhurt Decomposition were Biermann
et al!. Unfortunately, their paper did not make influence on Machine Learning
community and is very rarely referenced. In'* a machine learning system by
Ross, based on logic synthesis methods, is described. The main component
of this system is an algorithm performing Ashenhurst/Curtis decomposition
(ACD) of Boolean functions. There is no a priori assumption of structure of
the learned description, nor on the type of the elements. The elements, called
blocks, are arbitrary discrete mappings (functions). Blocks are connected to
form a network with no loops. Both the structure and the elements are cal-
culated in the learning process, and this process is entirely based on finding
patterns in data. In ''% a Machine Learning system that generalized the
approach of Ross by formulating the theory of non-disjoint decomposition of
Multi-Valued, Multi-output Relations has been presented. Observe, that ML
data benchmarks are naturally such relations. Pattern finding is in our sys-
tem a generalization and formalization of feature extraction. Furthermore,
it constructs this network representation by minimizing the complexity, as in
Occam-based learning - we use the DFC measure of complexity defined in .
Similar systems are also described in 6.

It has been shown 41641110 that the decomposition approach leads to

better results (a smaller classification error, a solution being the description
simpler and easier to understand) than the competing approaches of Neural
Nets, tree classifiers and logic methods. Unfortunately, for large functions the
decomposition method is slow, because the NP-complete problem of creating
and coloring a graph of columns incompatibility must be solved a lot of times,
and on large data. Also, this approach, called noise-free decomposition, as-
sumed perfect (non-noisy) data. In order to extend this approach to realistic
data that have continuous values of attributes, missing and false attributes,
and false decisions, as well as data coming from unreliable sources, we devel-
oped an improved decomposition, called "noisy decomposition”, that takes all

2

these "noisy” factors into account.

Although our noisy decomposition theory is for multivalued, multioutput
relations and includes three stages: preprocessing, (iterated) decomposition
step and postprocessing, for simplification, this paper discusses only binary,
single-output functions (The full theory is presented in'?. The case of multi-
output functions is discussed in 7). Similarly, we will not discuss in detail the
noisy column-compatibility approach applied during the decomposition step,
but will concentrate only on the three-level network (EDNF) minimization
used in preprocessing or after every decomposition stage.

The proposed method of dealing with noisy functions can be used not only
as a part of the decomposition, but by itself, as a stand-alone Machine Learning
method, similar to DNF approaches (but this would no longer be a method of
Constructive Induction). While this paper presents a stand-alone approach to
deal with noisy functions, our next paper *?, will discuss the total system with
both approaches combined, and will demonstrate the effect of noise removal
on the recognition errors of the entire noisy decomposition.

2 The problem of noisy functions

Input variables are called attributes, output variables are called decisions. A
minterm (called also a sample or data instance) of single-output function is
the vector of attribute values and the decision value. If the decision value is
true (1, or "belongs to the class”) then the minterm is called a true minterm).
If the decision value is false (0, or "does not belong to the class”) then the
minterm is called a false minterm). Thus, for a function with three variabls, a
true minterm < aq, a2, as,d; > = < 0,1,1;1 > = 0111 is represented as a value
1 in Kmap in cell < a1, as,a3 > = 011. A false minterm 1000 is represented
as a value 0 in cell 100. (Output) don’t care is a vector of attribute values for
which the function value is not specified. True and false minterms are called
cares.

ML benchmark ”functions” (data for learning) can have the following prop-
erties which distinguish them from the data (Boolean functions) used in circuit
design:

(1) Strongly Unspecified. ML problems have an extremely high (more
than 99%) percent of don’t cares. The missing, or unknown decision data can
be represented as don’t cares. This is in contrast to circuit design where the
percent of don’t cares is rarely higher than 50%.

(2) Representation. The data are usually minterms or (rarely) cubes.
This is in contrast to circuit design where the initial data are netlists, BDDs
or cubes.

(3) Multi-Output. Sometimes classification of patterns into more than
two categories is desired (one wants not only to distinguish a “friend from
foe” airplane, but also to learn its orientation, speed, etc.). In terms of logic
synthesis, this property corresponds to concurrent minimization of switching
functions with many outputs. (f - binary variable {friend, foe}, g - 10-valued
variable ”orientation”, h - 20-valued variable ”speed”).

(4) Many input variables. Practical ML-related minimization prob-
lems require at least 30 binary input variables but more typically, about 100
multiple-valued variables. In machine learning benchmarks, with the increase
in the number of input variables, there is only a small increase in the number
of both true and false minterms, but a dramatic increase in the number of
don’t cares. For instance, it 1s reasonable to expect that for a function of 100
attributes there will be no more than 10,000 cares.

(5) Binary, symbolic, numerical, multi-valued or continuous at-
tributes. Attributes in ML problems are naturally Boolean, multiple-valued,
symbolic, or continuous. Symbolic values can be converted to multiple-valued.
Continuous values can be be discretized, and thus converted to multiple-valued.
Any value of a multiple-valued attribute can be encoded by a vector of binary
variables. Although this is not the best approach %! for simplification, we
will consider here the encoding, and thus binary functions.

(6) Noise in attributes. In the context of ML, “noise in the attribute”
means that the measurement is imprecise or subjective evaluation by the per-
son collecting information is wrong (”is this actress dark-blond or red-hair?”)
This can be modelled by taking some known function and next adding some
statistical noise to the values of attributes. “Noise” flips a correct bit to an
incorrect value. Thus, minterm 0110 becomes for instance 1110 because of
noise in the first attribute.

(7) Noise in decisions. This noise is even more dangereous than the
noise in attributes 13®. For instance, a typist who typed information to the
data-base can make a mistake and encode a minterm corresponding to a patient
without cancer (correct decision 0) as one who has cancer (incorrect decision
1).

(8) Unknown values of attributes. The data in the form can be left
missing, for instance the age group is omitted for some reason from the data
about a lung cancer patient. In a binary case, a single unknown in a minterm
means that a symbol corresponding to this minterm is placed in one of two
positions on the Kmap. For instance, if the second attribute is unknown,
represented by minterm 0711, value 1 should be placed either in cell 001 or in
cell 011. This possibility of choice should be taken into account by the learning
program.

def def
abc 000 001 011 010 110 111 101 100 abc 000 001 011 010 110 111 101 100

000 000 P
001 1 1|1 1 001 @ 1y @
o | 1 1 1 1 o11 @ [€ @
010 1 1)1 1 010 / e 1 \
110 1 1)1 1 110 \ (1) k (2[4))
m |1 1 1 111 @ B @
101 1 1)1 1 101 [@ [an) @ J
100 100 \ 1 /
@ A B A B B C B A (b)

def CDEC def
abc_ 000 001 011 019/110 111 101 100 abc_ 000 001 011 010 110 111 101 100
000 L ~ 000 L |

@ 001

011

o
©
g
/]
b

©)
(=] |18
LT

001 @ﬁ

@

010

©)
[
110 \
7
\

010

©)

[

110 \
7
\

Q]
e ElEhs
e T
Elo)

N

111 111

101 101

o- e
IGNIGE
ISIISE

€

&
Ia
[
©)
e)

]

100 100

/

© @ A B A B B A B A

Figure 1: (a) Function f to Evample 1. Types of columns, A,B,C, are below the table; (b)

DNF for function f, (c) original EDNF for function f, (d) pruned EDNF for function f

with CDEC-implicant beef replaced with prime implicant bee fad. False Minterm 111111 is
replaced with true minterm. Types A,B of the new columns are below the table.

(9) Data with conflicts, from unreliable sources, data with re-
peated minterms. If one has two minterms with the same values of at-
tributes and different values of decision, there is clearly a conflict. Such data
can be simply discarded (treated as a don’t care), but it is better to count
how many times the decision value for a given cell was 1 and how many times
0, and utilize these information in the decision making by assigning a valued
of confidence factor to the minterm corresponding to this cell. Similarly, if
there exist repeated non-conflicted data, their numbers of occurences may be
counted. Thus, a decision 1 that repeated many times in some cell is more
reliable than a 1 that occured only once in this cell. Similarly, if the data
come from various people collecting and preparing data bases, or from various
measuring devices, some of them may be more reliable than others, and thus
confidence factors are added to each minterm. Concluding, each minterm can
have an additional numerical value in interval [0.0 1.0] that denotes the prob-
ability of having the respective value of the decision. Similar confidence factor
values can be associated with every value of an attribute.

(10) Discretization problems. The effect of discretization of continuous
attributes is somewhat similar to the unknown. For instance, for a continuous
attribute, the value 3.5 can be discretized to either value 3 or value 4, but
not to both. Thus, after discretization of the second attribute to three bits,
the two-argument true minterm < 0,3.5,1 > should be the value 1 put to cell
< 0,011 > or value 1 put to cell < 0,100 >. This is similar to the unknown
value.

(11) Relations. Relations may be useful to model many problems with
imprecise data 1%, For instance, discretization of a decision value can be
described as a relation (continuous value 3.5 can be discretized to multiple-
valued value 3 or 4, thus a relation of input vector with both decision values 3
and 4 is created). Here, we will assume that we deal with functions, i.e. special
cases of relations. Dealing with noise in relations is presented in '?.

3 An approach to Noise Removal in Noisy Decomposition.

Ezample 1. Given is a function from Fig. la. One can see, that there are three
types of columns, A,B,C, so the column compatibility index g for bound set of
input attributes d, e, f is three. This value of ;1 would be used in a standard
non-noisy decomposition program, and thus two new intermediate variables
would be necessary for a Curtis decomposition with ¢ = 3. Let us, however,
observe, that if we would change just one cell abcdef = 111111 from value 0
to value 1, then there would be only two types of columns, column def would
become of type A, u would decrease to 2, and thus Ashenhurst decomposition

6

cd
b 00 01 11 10 00 01 11 10
()

01@ 01 [1]

[
B

abed [alx | =
|

[1

10| 10|

cd \abd CDEC?D CDEC 4
(b)

= Q;l

@
c
Cdoo o1 il 10 N 00 01 11 10
—
00| 00| 1
01OU 01 1)1 :Q

11/mo 11@1@
S0 o [lal I\

color C
cy c ¢ color A color BcolorD
34 @
(©

Figure 2: (a,b) Function that demonstrates that the minimum EDNF cannot be obtained by

factorization of primes, (c) Compatible and conditionally compatible cubes from Ezample

2. Cubes Cy and Cs are compatible, cubes C1 and Cy are conditionally compatible, (d)
function to Example 5 and its CDEC cover.

with only one intermediate variable and smaller complexity becomes possible:
f = be @ (b+e)e; ¢ = e @ f. Let us observe, that a new concept
z has been induced by this decomposition stage. Also, variables ¢ and d
become wacuous, which means that these attributes were irrelevant to the
concept induced. Decomposition stage reduced the DFC complexity of the
function. Observe also that the reduction in complexity 1s more substantial in
this noisy decomposition than it would be in the noise-free decomposition with
= 3. The method to deal with noise is thus to perform such minterm value
replacements that the column multipicity will be decreased by the minimum
number of changes. We assume that that only very few cells can be modified
like this - this technique is similar in principle to the prunning techniques
used for decision trees '>®. If the number of necessary changes would exceed
some threshold, the modification would be not performed. This method can
be applied at every stage of decomposition.

Ezample 2. Another method is to create a DNF (for the initial function,
or the function from any block of the decomposition), next remove from DNF
those products, that cover very few true minterms, and allow to have prod-
ucts that cover few false minterms. Good selection of products that would
allow for such function modifications is, however, a difficult task. We pro-
pose an approach based on the new concept of Exclusive DNF (EDNF) ex-

7

pressions that generalize the Disjunctive Normal Forms (DNF) expressions.
The function from Fig. 1la can be minimized to a DNF as in Fig. 1b:
beef + beef + beef + beef + beef. If we, however, allow the false
minterm 111111 to become a true minterm, then the DNF from Fig. 1d would
be found. The effect on the noise-free decomposition in this case would be
the same as in the noisy column compatibity method from Example 1. Such
method can be used as a preprocessing, postprocessing and/or after each stage
of a decomposition. The decomposition itself can be noise-free or can use
the method from Example 1. The numbers of false minterms treated as true
minterms can be user-controlled, similarly as in prunning methods in C4.5 or
other decision diagram creating programs. Analysis of possibe noise sources
as described in section IT (points (6) - (10) and use of confidence factors are
also performed to make all prunning decisions. We assume that the groups
of 0’s should be treated as 1’s especially if they are located closely and not
separated by 1’s. In such situation, sub-functions of type P - @ are created,
where P and @ are product terms. Part Q is the exclusion product. P - Q is
called a CDEC-implicant”. We assume that product P does not include 0’s. If
the exclusion product P includes few 0’s, it can be replaced with a constant 1,
thus creating a product implicant Q). In our case, the DNF from Fig. 1d was
obtained by finding EDNF from Fig. 1c and next replacing CDEC-implicant
bee fad with prime implicant beef. We assumed that if Q includes one 0 than
it can be dropped (in practize only large cubes P with few 0’s and many don’t
cares are replaced with 1).

Similarly, CDEC-implicants that cover few 1’s are discarded. Again, con-
fidence factors are used. as well as sizes of P and @) are being considered by
the heuristic evaluation rules Our method minimizes the function to EDNF
form only once, and next the minimized EDNF expression is transformed sev-
eral times by heuristic rules with respect to all noise-related information (6)
- (10). Such approach leads to several EDNF expression variants of reduced
DFC complexity, that are next verified towards function benchmarks to find
those with minimized error. Qur EDNF method to deal with noise allows to
treat separately false positive (0 replaced with 1) and false negative decisions
(1 replaced with 0), which is useful in some decision problems, especially in
medical applications. Please note, that this entire approach is based on Occam
Principle that a simple function (small DFC) is more probable than a complex
one.

Because we want to create as large as possible CDEC-implicants, the con-
cept of prime CDEC-implicants, i.e. CDEC-implicants that are not totally
included in any other CDEC-implicants, is useful. From these definitions, a
product and prime implicants used in DNF minimization are special cases of

8

CDEC-implicants, but a prime is not necessarily a prime CDEC, because 1t can
be included in a CDEC-implicant. EDNF minimization is based on covering
with CDEC-implicants, which we will call CDEC-covering. A CDEC-implicant
is an implicant that can be realized with a single CDEC gate. It has an AND-
part and a NAND-part sometimes called an OR-part, since abed = ab(e + J)
The concept of a CDEC-implicant is a concept generalization of a prime impli-
cant (a prime) and a product implicant®? used in standard DNF minimizing
programs such as Espresso '°.

4 Conditionally Compatible Cubes and Compatible Graph Color-
ing for EDNF Minimization

Boolean functions are implemented as sets of minterms or cubes. (Minterms
can be grouped to cubes in preprocessing to decrease the problem size. Many
benchmarks have cubes and changing them to minterms would create files too
large to handle efficiently.) The following notation will be used: ON(f) is the
set of ON-cubes of f, OFF(f) is the set of OFF-cubes, and DC(f} is the don’t
care set. A Cube (j is a string of 0’s, 1’s, and X’s; it represents a prod-
uct of literals of the function f. A product implicant is an implicant being
a cube. A prime implicant is a product implicant which is not included in
any other prime implicant of that function. Standard notions of literals, sum
of products, essential and secondary essential prime implicants®, consensus,
sharp, disjoint sharp, intersection and Hamming distance of cubes will be used
by our program. The cubes C; below can be of any kind, if not mentioned
otherwise. The main cube operator used in our approach is the supercube.
The supercube of two cubes C; and Cj is denoted by C; & C;. When the
positional cube notation is used, the supercube operator corresponds to the
component-wise Boolean OR, of the two cubes. This is the smallest cube that
includes both C; and (). For instance; for ¢; = X101 and C; = X110,
C; W C; = X1XX is the supercube of C; and C;. We say that two cubes
overlap if they have a non-empty intersection cube. Two cubes C; € ON(f)
and C; € ON(f) are compatible if their supercube C; @ C; does not over-
lap with any cube Cy € OFF(f) (i. e. does not include a false minterm):
(C; W C;)NOFF(f) =0 = Ciand C; are compatible. These cubes can
be combined to one CDEC-implicant (in this case, prime implicant) with their
supercube SU;; = C; W C; as the AND-part (the NAND-part is 0). Given
are two cubes Cj, C; € ON(f) and their supercube SU;; = C; W C;. If
the supercube SU;; overlaps with OFF(f), the intersection is called the OFF-
part OF FP(SU;;) of the supercube SU;;: OFFP(SU;;) = OFF N SU;;.

9

The supercube 15 Ci of all cubes of the OFF-part OF F P(SUj;)
CieOFFP(SU;;)
is denoted by SOFFP(SU;;). Two cubes C; and C; are called condition-
ally compatible if cube SOFF P(SU;;) does not intersect Cj nor C;. Such
cubes can be combined to one CDEC-implicant (SU;; - SOF FP(SU;;)), with
cube SU;; as the AND-part and cube SOF FP(SU;;) as the NAND-part. The
cube SOFFP(SU;;) is called the condition cube under which C; and Cj
are conditionally compatible. Two cubes are incompatible if they are not
compatible nor conditionally compatible. Such cubes cannot be combined to
a single CDEC-implicant. The set II of cubes is called a set of compatible
cubes if each pair C;,C; € 11, is either compatible or conditionally compat-
ible with respect to the same condition cube SOFFP() ;). The set
Ciell

IT can be described by a single CDEC-implicant: (AN D part, NAND part)
=(4 C,SOFFP(13)

C,ell C,ell

Ezample 3. The Boolean function f (Fig. 2a) is represented by the cubes:
f = abed + aed + aéd + abed. Let Cy = abed, Cy = aed, Cs = aéd, Cy = abed
(shown in Fig. 2c). The cubes Cy and C3 are compatible, because their
supercube Cs W C3 = ¢d does not intersect the OFF-set of f. The cubes ' and
C'y are conditionally compatible under the condition cube SOFFP(ac) = abed.
Their supercube C7 W C5 = ac overlaps the OFF-set of f. Therefore the OFF-
part of C1 W Cy is given by OF FP(Cy W C3) = abed. However, SOFFP(ac)
does not overlap Cy or Cy. The cubes € and C4 are not compatible, because
their supercube Cy W C4 = b overlaps the OFF-set of f and the supercube of
the OFF-part of C; W (' overlaps the cubes € and C4. Sets of conditionally
compatible cubes are: {C1,Cs} and {C3,C4} (see Fig. 3a). The cubes C}
and C5 are of Hamming distance-1, i.e. there is exactly one variable d that
has different sets of truth values. We call them distance-1 cubes. C7 and Cj4
are not of distance-1, because there are three variables a, ¢ and d that have
different sets of truth values, so Hamming distance is equal 3.

EDNF minimization is based on Conditional Graph Coloring. The input of
the Conditional Graph Coloring algorithm is the non-ordered graph GCCC =
(SMI, RSN, RSC), where SMI is the set of nodes corresponding to product im-
plicants (in particular, minterms) of function f. RSN is the set of non-directed
normal edges and RSC is a set of non-directed conditional edges between the
nodes. The normal edges are drawn as continuous lines, and the conditional
edges as dotted lines. Two nodes (i.e., cubes), MI; € SMI and MI; € SMI,
are connected by a normal edge if M I; and M I; are incompatible. Such cubes
must be colored with different colors. If there is no edge between nodes, these
nodes can be colored with the same color. M I; and M I; are connected by a

10

Figure 3: Compatible Coloring: (a) graph GCCC for Evamples 3 and 4, (b) graph GCCC
for Example 5.

conditional edge if M I; and M I; are compatible under the condition indicated
by the label of the edge. The label [(SC};) of the conditional edge SC;; con-
necting the nodes M I; and M I;, is calculated as SOFFP(SU;;). If the groups
of nodes have the same label on all its conditional edges, the nodes are com-
patible without any condition, that means, the labels of the conditional edges
are not taken into account by the coloring algorithm, and the nodes can be
colored with the same color.

Ezample 4. Using the minimal conditional coloring method to the function
from Fig. 2a a GCCC with nodes Cy, Cy, Cs, and Cj is created (Fig. 3a). The
conditionally compatible nodes are shown by dotted edges connecting them.
Conditions are written near edges. The coloration of nodes C7 and C'5 with
color A and nodes C5 and (4 with color B produces an exact CDEC cover
with only two CDEC gates (Fig. 2b). As we see, the minimal solution can
be obtained by the factorization of product implicants that are not primes:

f = abc + aed + acd + abd = ac(b + d) + ad(c + b) = ac(bd) + ad(ch) =
CDECY, + CDEC5. This function demonstrates, that the approach based
on factoring prime implicants can not find the minimum CDEC cover. The
function f can be represented as the sum of three essential prime implicants:
f = ed+abc+abd. Based on these implicants, fcan not be further factorized to
CDEC-implicants. The CDEC realization would consist of three CDEC gates
and the CDEC-implicants would be identical to the prime implicants. This
example shows that prime CDEC-implicants must be created not only from
prime implicants, but also from some product implicants included in prime
implicants.

Ezample 5. Fig. 2d illustrates a minimum color cover with CDEC-implicants
in a Karnaugh map of certain function g. These CDEC-implicants were created
by CDEC-compatible coloring of the nodes of the graph from Fig. 3b. In Figs.
2d and 3b color A describes a CDEC-implicant abéd. Color B corresponds to

11

a CDEC-implicant @da b. Color C corresponds to a CDEC-implicant bca d.
Color D corresponds to a CDEC-implicant abed. The nodes of the graph in
Fig. 3b correspond to the minterms in the Karnaugh-Map from Fig. 2d. The
dotted edges labeled with a cube are the conditional edges (with their label
given by the cube associated to the edge). The continuous edges are the normal
(unconditional) edges. The nodes connected by an unconditional edge must be
colored with different colors. A set of nodes, that have the same color, describe
a CDEC-implicant. For instance, the nodes given by the minterms 0111, 0110
and 1111 are colored with the same color, C. The supercube of all those nodes
1s 0111 W 0110 @ 1111 = X11X. The only cube in OFF M X11X is 1110,
which does not overlap with the minterms 0111, 0110, or 1111. The solution
found, ¢ = abed + edab + bea d + abed, has the minimum number of
terms, but not necessarily the minimum number of literals. Another coloring
could find the minimum literal cost solution as ¢’ = @dc + @bc + abc + bed.
Thus, the literal cost should be calculated by the graph-coloring procedure as
a secondary cost for all solutions which have the same number of colors.

In Example 5 all groups of nodes with the same color have only one type
of label on edges connecting them, but in general they can have many types
of labels. The labels of the set {SC;, ..., SCiyr} (k > 2) of conditional
edges SC; € RSC have to be taken into account by the coloring algorithm
only if the set of nodes {M1;, ..., MI;1;} (I > 3) connected by set of edges
{SC;, ..., SCiq} is attempted to be colored with the same color. Coloring
these nodes with the same color is possible only if the supercube of all the
labels, {(SC;) @ ... W (SC;1r), does not intersect any nodes from the set
{MI;, ..., MI;y}. Compatible coloring is one in which any set of nodes
colored with the same color is a compatible set of nodes (compatible set of
cubes). Compatible set of nodes is a set in which all nodes correspond to a
set of compatible nodes. The problem of minimal conditional graph coloring is
to find such coloring that is compatible, minimizes the number of colors, and
minimizes the literal cost as the secondary cost function. The literal minimum
solution is the CDEC-minimum solution which in addition has the minimum
literal cost.

Results with a better literal cost can be obtained when a node is allowed
to be colored with several colors, which is called multi-coloring. For instance,
multi-coloring of nodes for a function from Example 5 would create, among
others, a solution ¢” = @a b + abc d + cda b + abé d. The multi-coloring
method creates larger CDEC-implicants. Observe that the minimum literal
cost solution ¢’ from Example 5 could not be found from a cover with prime
CDEC-implicants, since all the primes from this solution are included in some
prime CDEC-implicants. The solution with the exact minimum number of

12

MCNGC Variables from from from T

Examples minterms Bspresso split

in ou | mnt | CD cu | ¢D CcD sec
5xpl 7 10 - - 65 37 36 6.9
bl2 15 9 - - 43 27 27 8.7
conl 7 2 161 7 9 8 7 0.1
cu 14 11 - - 19 19 19 2.1
f51m 8 8 - - 76 20 20 5.8
il 25 16 - - 28 20 20 9.5
inc 7 9 305 29 30 29 29 8.5
misexl 8 7 547 12 12 12 12 2.0
misex?2 25 18 - - 28 27 27 1.7
rd53 5 3 42 26 31 29 26 1.4
rd73 7 3 185 20 127 22 20 1.4
rd84 8 4 665 30 255 30 30 2.7
sao 10 4 754 13 58 13 13 0.8
squarb 5 8 85 22 25 25 22 1.8
temp 5 3 33 7 13 7 7 0.3
vg2 25 8 - - 110 38 36 11.4

Table 1: Multi output MCNC benchmarks. All CDEC covers (CD) calculated with Socmin.

Graphs for coloring created from minterms (mnt) or cubes from Espresso-minimized DNF,

Column Socmin has results calculated using split cubes. Time (T) given for split cubes, it
was counted together with the preprocessing time.

CDEC-implicants is called CDEC-minimum solution. The exact minimization
of the number of CDEC-implicants is based on the theorem that states that
if graph GCCC is created with minterms as nodes and the (multi)coloring of
the GCCC is compatible and has the minimum number of colors (is an exact
compatible coloring), then the CDEC covering created from this coloring has
the exact minimum number of CDEC-implicants.

The CDEC cover minimization process results in a EDNF. The exact
EDNF representation of function f has never more terms than a DNF of this
function because the set of all CDEC implicants includes the set of prime
implicants. Observe that we do not generate all primes nor all prime CDEC-
implicants, but are still able to find the exact cover. The number of prime
CDEC-implicants increases rapidly with the number of minterms, especially
for functions with many don’t cares. It is well-known that the set of primes can
become too large to enumerate even if 1t is possible to find the exact minimum
cover 215, A similar property can be shown for prime CDEC-implicants. The
application of algorithms based on generating all primes or all prime CDEC-
implicants is limited because of results of this kind. It can also be shown that
an attempt to reduce the size of the covering problem by removing the primes
included 1n prime CDEC-implicants can lead to a loss of the EDNF with the
minimum literal cost. In addition, the covering problem is NP-hard. The cov-
ering table can become too large to store in memory. Therefore, our approach
is based on graph coloring - one NP-hard problem is solved instead of two, and
a minimum literal solution is always found. The graph GCCC for coloring can
be created with arbitrary cubes from the ON-set of the function f as nodes.
For instance, these can be: minterms, primes, minimal product implicants

13

83 or the (optimal) split cubes used here. They are based on splitting large
primes to smaller cubes that can be next recombined to CDEC-implicants.
The advantage of using minterms is the guarantee of the optimum solution if
exact coloring for GCCC is found. The disadvantage of minterms is the large
size of the graph for completely specified functions with many inputs (if the
number of inputs is n, the number of minterms can be of the order of 2771,
and the graph will be too big to construct). The advantage of using arbitrary
cubes instead of minterms is an improved execution speed, but the minimum
EDNF can be lost. Our coloring algorithm can create the graph from any type
of cubes. We use special kind of cubes called split cubes, for their efficiency.
This means that the minimal solution can be in theory lost, but experimental
results show that this never happened on the tested by us benchmarks.

5 Experimental Results

We created a program, called Socmin, and tested it extensively on MCNC
and Machine Learning benchmarks. Let us observe that contrary to MCNC
benchmarks, the Machine Learning benchmarks from U.C. Irvine have a very
large number of don’t cares (we binary-encoded the multiple-valued variables).
A Miller method ® for transforming a multi-output problem to a single-output
problem has been used in order to extend the presented approach to multi-
output functions. We verified all our results. Some results for benchmark
functions are presented in Tables 1, 2 and 3. The goals of the presented here
experiments with Socmin were to answer the following questions: How much
improvement in implicants, literals or DFC is gained by using the CDEC-
implicants instead of prime implicants? How fast is Socmin? How large func-
tions can be minimized? Table 1 has columns for input and output variables,
for experiments with various types of initial cubes Minterms, Espresso, and CS
(Cube Split Algorithm), and for Time. Column from Minterms has two sub-
columns; mnt, which includes the number of minterms, and CD, which includes
the number of CDEC-implicants in exact solutions generated from minterms
by Socmin. Column from Espresso has two subcolumns; cu and CD. The first
subcolumn shows the number of prime implicants in the Espresso solution, and
the second column shows the number of CDEC-implicants in the approximate
EDNF generated by Socmin from primes of Espresso as the starting point
for coloring. Finally, column ”from split” shows the numbers of implicants in
CDEC cover found by Socmin in a GCCC created from split cubes produced
in preprocessing. The last column, Time, is given for this experiment (time
includes the splitting time for cubes), proving that even with preprocessing
our algorithm is very fast. In all cases (which could be compared thanks to the

14

Example ON Terms Literals DFC Time

Es So Es So Es So sec
addo 120 15 8 64 42 252 164 0.23
add2 128 16 8 68 44 268 180 0.22
add4 128 2 2 4 4 12 12 0.50
ch15f0 88 12 10 60 54 236 244 0.14
ch176f0 64 2 2 6 6 20 20 1.04
ch177f0 128 2 2 4 4 12 12 0.50
ch22f0 48 6 4 30 24 116 92 1.44
ch3ofo 64 7 5 32 40 124 156 5.98
ch47f0 52 9 7 48 40 188 176 1.66
chb52f4 50 18 15 108 926 428 428 1.54
ch70f3 24 5 4 28 24 108 104 1.73
ch74f1 39 10 8 58 55 228 224 1.88
ch83f2 38 17 11 115 82 456 344 1.65
chsfo 224 7 6 16 15 60 60 0.06
c-4_on 70 70 70 560 560 2236 2236 14.7
grt_th 120 15 8 64 42 252 168 0.38
intrvll 58 16 13 926 20 380 380 3.49
intrvl2 128 22 14 110 92 436 380 4.09
kdd1l 160 2 2 3 3 8 16 0.03
kddio 120 8 4 28 18 108 68 0.09
kdd2 24 2 1 8 5 28 16 0.01
kdd3 80 2 2 5 5 16 24 0.02
kdd4 128 1 1 1 1 o 4 0.06
kdds 106 4 4 13 13 48 13 0.11
kdde 240 4 1 4 4 12 12 0.76
kdd7 175 4 4 8 8 28 28 0.85
kdds 64 2 2 6 6 20 28 0.14
kdd9 64 4 4 36 24 140 100 0.76
maj_gate 923 56 20 280 151 11186 612 10.3
mdls2 43 10 6 45 37 160 152 1.5
mux8 128 4 4 12 12 44 60 0.57
pal 16 16 16 128 128 508 508 0.30
pal_db_op 160 29 23 151 136 600 600 2.95
pal_ou 118 46 40 291 262 1156 1168 12.7
parity 128 128 128 1024 1024 4092 4092 22.8
remder2 88 23 16 137 118 528 492 2.97
rnd_m1l 1 1 1 8 8 28 28 1.79
rnd_m10 10 9 9 71 71 280 280 2.15
rnd_m25 25 20 19 154 148 612 612 5.8
rnd_mb5 5 5 5 40 40 156 156 1.9
rnd_mb50 50 34 28 250 214 296 240 6.58
rndl 122 50 39 324 302 1320 1232 11.5
rnd2 124 47 39 292 269 1164 1184 9.42
rnd3 134 49 32 3086 240 1240 972 7.39
substrl 142 6 6 18 18 68 68 1.24
substr2 79 5 5 20 20 76 76 0.95
sbtrctl 104 34 22 200 145 796 616 4.87
sbtrct2 128 2 2 4 4 12 12 0.48

Table 2: Comparison of numbers of terms, numbers of literals, and DFC values for DNF
expressions of Espresso (Es), and EDNF ewpressions of Socmin (So), for single-output
Machine Learning benchmarks. Time 1s given for Socmin.

15

non-excessive number of minterms), the results of Socmin generated using the
preprocessing splitting algorithm, have the same number of CDEC-implicants
as in the exact minimum generated with the minterms. This demonstrates the
that if we start from minterms we can use our algorithm alone, or to precede
it with Espresso and splitting to decrease the size of the graph. The program
can start from (ON and OFF) minterms or arbitrary cubes. If the data are for-
mulated with cubes, the program splits these cubes optimally. Thus, for large
examples the program should use Espresso and cube splitting for preprocessing
to allow graph creation. Next we checked how much we gain in the number
of terms compared to Espresso. Some functions, rd73, rd84, vg2, demonstrate
that the EDNF is substantially smaller than the DNF - in the case of rd84
there are only 30 CDEC-implicants in the cover found by Socmin versus 255
primes in the cover from Espresso. In multi-coloring mode the nodes can be
colored with more than one color, which further decreases the number of liter-
als. Socmin was tested for ML examples with high percentage of don’t cares.
As the algorithms used in Socmin have been designed for strongly unspecified
functions, very good results compared to Espresso have been obtained (tables
2, 3). The numbers of terms, literals, and DFC were compared. DFC was
calculated by adding the cardinalities of each of the subfunctions in the de-
composition. For arbitrary non-decomposable block in Curtis Decomposition
the DFC of the block is calculated as 2 where k is the number of inputs to the
block. In ”gate-based” minimizers such as Espresso it then fair to assume that
a DFC of a decomposable gate (such as AND, OR or EXOR) is equal to the to-
tal DFC of a circuit equivalent to this gate, that is constructed from two-input
gates. The DFC of a four-input AND gate, OR gate or EXOR gate is then
22 + 22 4+ 22 = 12, since such gates can be decomposed to balanced trees of
three two-input gates. The DFC of a CDEC functor is calculated in the same
way, by decomposing it to two-input AND and NAND gates. The number of
terms and literals for the CDEC implicants generated using Socmin is never
greater than the number of terms and literals for the prime implicants gener-
ated by Espresso. The DFC is lower in most cases. In another experiment,
to analyze behavior of Socmin on strongly unspecified functions, subsets of
cares have been removed, and comparisons with Espresso performed. Table 3
presents these results with 25%, and 90% of data replaced with don’t cares. As
the percent of don’t cares increases, Socmin gives solutions that are better and
better than those of Espresso. There is a huge decrease in the number of terms
and DFC, compared to Espresso. This proves that our method works better
for very strongly unspecified functions. Concluding; for both single-output and
multi-output functions, EDNFs are better than DNFs, Socmin produces high
quality EDNFs, and is very fast.

16

example 25% don’t cares 90% don’t cares
Espresso Socmin Espresso Socmin
t DFC t DFC t DFC t DFC
addo 27 620 6 196 13 108 B 14
add2 26 576 9 268 10 308 2 48
add4 17 332 2 12 10 304 2 40
ch15f0 24 592 10 340 8 252 3 112
ch176£0 11 232 2 20 4 116 1 0
ch177f0 22 456 2 12 6 184 1 0
ch22f0 12 292 4 156 5 156 2 28
ch30f0 15 352 5 136 5 156 2 52
ch47f0 16 408 7 192 4 124 3 104
ch&2f4 17 440 15 408 3 92 1 40
ch70£3 8 208 3 84 1 28 1 28
ch74f1 12 296 6 248 4 124 1 24
ch83f2 15 420 13 384 2 60 1 16
ch8fo 38 816 32 672 18 548 3 68
c-d_on 50 1596 27 1320 4 124 2 36
grt_th 28 628 6 188 12 372 2 28
intrvll 15 368 12 324 6 180 1 0
intrvl2 27 612 13 468 10 300 3 48
kddl 24 492 2 12 11 324 2 20
kddio 28 640 6 160 7 204 2 44
kdd2 4 84 3 72 1 24 1 24
kdds 14 312 2 28 6 176 1 0
kdd4 20 408 14 376 10 304 1 0
kdds 19 400 4 76 7 216 3 88
kddeé 33 656 23 620 17 520 1 20
kdd7 31 664 22 644 13 400 3 60
kdds 16 388 12 372 8 252 1 0
kdd9 18 448 16 320 6 184 2 24
majgate 44 1056 12 456 10 308 2 52
mod2 12 296 5 156 5 156 1 4
mux8 24 516 4 56 7 212 1 0
pal 14 444 14 444 2 60 1 12
pal-db_op 41 992 40 952 12 364 3 36
pal-op 42 1108 39 992 10 304 2 48
parity 94 3004 20 596 8 252 2 44
remder2 28 720 13 500 5 152 2 36
rnd1l 46 1228 44 1056 12 372 4 60
shstrl 28 620 7 104 11 340 4 116
shstr2 20 472 5 108 7 216 2 48
sbtretl 43 1160 15 536 10 312 0 0
sbtrct3 18 356 2 12 9 268 2 16

Table 3: Comparison of numbers of terms and DFC values for DNF expressions of Espresso
and EDNF expressions of Socmin, for single-output Machine Learning benchmarks in which
25%, and 95% of don’t cares were newt randomly generated (cares randomly removed)

17

6 Conclusions

We presented a new approach, called Exclusive Disjunctive Normal Forms
(EDNF) minimization to deal with noise in Machine Learning. The respec-
tive minimization algorithm has been developed and compared to known DNF
minimizers. The method gives very good solutions, better than Espresso, for
multi-output strongly unspecified functions of Machine Learning and Knowl-
edge Discovery from Databases. Practical usefulness of EDNFs to reduce the
number of terms and recognition errors has been demonstrated. More details

on the algorithms and experimental results can be found in

7,12,10,11

7 References

1.

10.

. T. Luba, “Decomposition of Multiple-Valued Functions,

A.W. Biermann, J.R.C. Fairfield, T.R. Beres, ”Signature Table Systems
and Learning,” IEEE Trans. on Syst. Man and Cybern., Vol. 12, No. 5,
pp. 635-648, 1982.

R.K. Brayton, P.C. Mc Geer, J.V. Sanghavi, and A.L. Sangiovanni-
Vincentelli, “A New Exact Minimizer for Two-Level Logic Synthesis,”
in T. Sasao (ed), “Logic Synthesis and Optimization”, Kluwer Academic
Publishers, pp.1-31, 1993.

M. Ciesielski, S. Yang, and M.A. Perkowski, “Multiple-Valued Minimiza-
tion Based on Graph Coloring”, Proc. ICCD’89, pp. 262-265, 1989.

” Proc. 25th
ISMVL, pp. 256-261, 1995.

Michalski et al (ed), “Machine Learning. An Artificial Intelligence Ap-
proach,” Volumes 1-4, Morgan Kaufmann Publishers, San Mateo, Cali-
fornia.

R.E. Miller, "Switching Theory”, Vol. 1 and 2, John Wiley, New York,
1965.

S. Mohamed, M. Perkowski, L. Jozwiak, “Fast approximate minimiza-
tion of multi-output Boolean functions in Sum-of-Product-Condition-
Decoders structures,” Proc. Euromicro’97, Sept. 1997.

L.B. Nguyen, M.A. Perkowski, and N.B. Goldstein, “PALMINI - Fast
Boolean Minimizer for Personal Computers,” Proc. 24th DAC, Miami,
FL, pp. 615-621, 1987.

M.A. Perkowski, P. Wu, and K.A. Pirkl, “KUAlI-exact: A new approach
for multi-valued logic minimization in VLSI synthesis”, Proc. ISCAS,
pp- 401-404, 1989.

M. Perkowski, T. Luba, S. Grygiel, M. Kolsteren, R. Lisanke, N. Iliev,
P. Burkey, M. Burns, R. Malvi, C. Stanley, Z. Wang, H. Wu, F. Yang, S.

18

11.

12.

13.

14.

15.

16.

Zhou, and J. S. Zhang, “Unified Approach to Functional Decompositions
of Switching Functions,” PSU Report, Version IV, December 1995.

M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel,
M. Nowicka, R. Malvi, Z. Wang, and Jin S. Zhang, “Decomposition of
Multiple-Valued Relations,” Proc. ISMVL’97, pp. 13-18, May 1997.
M.A. Perkowski, M. Marek-Sadowska, L. Jozwiak, P. Burkey, and S.
Mohamed, “Noisy Multiple-Valued Relations: Characterization, Mini-
mization and Decomposition,” PSU EFE Dept. Report, 1997.

J.R. Quinlan, “C4.5: Programs for machine learning,” San Mateo, CA:
Morgann Kaufmann.

T.D. Ross, M.J. Noviskey, T.N. Taylor, D.A. Gadd, “Pattern Theory:
An Engineering Paradigm for Algorithm Design,” Final Technical Report
WL-TR-91-1060, Wright Laboratories, USAF, WL/AART/WPAFB,
OH 45433-6543, August 1991.

R. Rudell, and A. Sangiovanni-Vincentelli, “Exact Minimization of
Multiple-Valued Functions for PLA Optimization,” Proc. ICCAD’86, pp.
352-355, November 1986.

B. Zupan, M. Bohanec, “Learning Concept Hierarchies from Examples
by Function Decomposition,” Techn. Rep., Dept. Intell. Syst., Jozef
Stefan Inst., Ljubljana, Slovenia, Sept. 1996.

19

