
NEW APPROACH TO LEARNING NOISY BOOLEAN

FUNCTIONS

MAREK PERKOWSKI� LECH JOZWIAK �� and SANOF MOHAMED �

Department of Electrical Engineering� Portland State University� Portland� OR
����������

Portland� Oregon ����������� USA� Tel� ��	������
��� mperkows�ee�pdx�edu
 Faculty of Electrical Engineering� Eindhoven University of Technology
P�O� Box ��	� EH ������ ���� MB Eindhoven� The Netherlands� Tel�

	��
���
�	�
�� lech�eb�ele�tue�nl
COMPASS Design Automation� ���� Lundy Ave� M�S
	�� San Jose CA ���	��

Tel�
���
	
����	� sanof�compass�da�com

We give a new formulation of noise removal from data being Boolean functions
used in Conceptual Inductive Learning� The algorithm is used as a part of a func�
tional decomposition program� Paper gives an e�cient heuristic algorithm for the
minimization of multi�output Exclusive DNF �EDNF� expressions that general�
ize the Disjunctive Normal Forms �DNF� expressions popularly used in Machine
Learning �ML�� The algorithm can be used for preprocessing� after any stage of
decomposition� and for postprocessing� In EDNF� the ANDs of DNF are AND�ed
with NANDs� providing Exclusion cases� The EDNF is thus a disjunctive sum
of AND�NAND gates� called Conditional Decoder �CDEC� functors� A pruning
technique is based on analysis of sizes of AND and NAND parts in CDEC functors�
and the numbers of true and false minterms covered by them� Experiments on ML
benchmarks prove that our approach generates high�quality solutions� is especially
e�cient on strongly unspeci�ed functions� and reduces the recognition errors�

� Introduction�

In recent years there has been a big progress in Inductive Learning approach
to Machine Learning �� The traditional machine learning approaches such as
Neural Nets �NN� postulated that the recognizing network had some assumed
structure which was �tuned� by the learning process �for instance� by decreas�
ing and increasing the numerical values of some coe�cients�� Thus� creating a
new structure was accomplished by setting some coe�cients to zero� All �new�
structures are in a sense �hidden� in the assumed mother�structure� Also the
type of an element� such as a formal neuron in Neural Nets� is decided before
the learning takes place� Thus� the approach has inherent bias� and explana�
tion of learned concepts is also usually not possible� In contrast� the approach
of conceptual inductive learning is the concept learning from examples �called
also concept acquisition�� The task is to induce general descriptions of con�
cepts from speci�c instances of these concepts� Various logic structures have
been used for descriptions	 DNFs �AQ� CN� Espresso�Dexact� Espresso�� Vari�

able Valued Logic expressions �Michalski�� decision trees �Quinlan� C����� and
other ����� Such systems can produce better explanations than NNs and re�
duce recognition errors� However� these systems still assume certain structure
of the expressions derived in the inductive process� Constructive Induction
is the induction process that changes the description space� it produces new
descriptors �called also features or concepts that were not present in the input
events �� Few Constructive Induction systems have been recently developed ��
and they provide even better explanations� In this paper we are focusing on the
Constructive Induction system based on Functional Decomposition��������������
Although the very early ideas of such systems based on decomposition come
perhaps from the famous checkers program by Samuel� the �rst group who
formulated the learning problem as Ashenhurt Decomposition were Biermann
et al�� Unfortunately� their paper did not make inuence on Machine Learning
community and is very rarely referenced� In �� a machine learning system by
Ross� based on logic synthesis methods� is described� The main component
of this system is an algorithm performing Ashenhurst�Curtis decomposition
�ACD� of Boolean functions� There is no a priori assumption of structure of
the learned description� nor on the type of the elements� The elements� called
blocks� are arbitrary discrete mappings �functions�� Blocks are connected to
form a network with no loops� Both the structure and the elements are cal�
culated in the learning process� and this process is entirely based on �nding
patterns in data� In ����� a Machine Learning system that generalized the
approach of Ross by formulating the theory of non�disjoint decomposition of
Multi�Valued� Multi�output Relations has been presented� Observe� that ML
data benchmarks are naturally such relations� Pattern �nding is in our sys�
tem a generalization and formalization of feature extraction� Furthermore�
it constructs this network representation by minimizing the complexity� as in
Occam�based learning � we use the DFC measure of complexity de�ned in ���
Similar systems are also described in �����

It has been shown ������������� that the decomposition approach leads to
better results �a smaller classi�cation error� a solution being the description
simpler and easier to understand� than the competing approaches of Neural
Nets� tree classi�ers and logic methods� Unfortunately� for large functions the
decomposition method is slow� because the NP�complete problem of creating
and coloring a graph of columns incompatibility must be solved a lot of times�
and on large data� Also� this approach� called noise�free decomposition� as�
sumed perfect �non�noisy� data� In order to extend this approach to realistic
data that have continuous values of attributes� missing and false attributes�
and false decisions� as well as data coming from unreliable sources� we devel�
oped an improved decomposition� called �noisy decomposition�� that takes all

�

these �noisy� factors into account�
Although our noisy decomposition theory is for multivalued� multioutput

relations and includes three stages	 preprocessing� �iterated� decomposition
step and postprocessing� for simpli�cation� this paper discusses only binary�
single�output functions �The full theory is presented in ��� The case of multi�
output functions is discussed in ��� Similarly� we will not discuss in detail the
noisy column�compatibility approach applied during the decomposition step�
but will concentrate only on the three�level network �EDNF� minimization
used in preprocessing or after every decomposition stage�

The proposed method of dealing with noisy functions can be used not only
as a part of the decomposition� but by itself� as a stand�alone Machine Learning
method� similar to DNF approaches �but this would no longer be a method of
Constructive Induction�� While this paper presents a stand�alone approach to
deal with noisy functions� our next paper ��� will discuss the total system with
both approaches combined� and will demonstrate the e�ect of noise removal
on the recognition errors of the entire noisy decomposition�

� The problem of noisy functions

Input variables are called attributes� output variables are called decisions� A
minterm �called also a sample or data instance� of single�output function is
the vector of attribute values and the decision value� If the decision value is
true �
� or �belongs to the class�� then the minterm is called a true minterm��
If the decision value is false ��� or �does not belong to the class�� then the
minterm is called a false minterm�� Thus� for a function with three variabls� a
true minterm� a�� a�� a�� d� � � � ��
�
�
� � �

 is represented as a value

 in Kmap in cell � a�� a�� a� � � �

� A false minterm
��� is represented
as a value � in cell
��� �Output� don�t care is a vector of attribute values for
which the function value is not speci�ed� True and false minterms are called
cares�

ML benchmark �functions� �data for learning� can have the following prop�
erties which distinguish them from the data �Boolean functions� used in circuit
design	

�
� Strongly Unspeci�ed� ML problems have an extremely high �more
than ���� percent of don�t cares� The missing� or unknown decision data can
be represented as don�t cares� This is in contrast to circuit design where the
percent of don�t cares is rarely higher than ����

��� Representation� The data are usually minterms or �rarely� cubes�
This is in contrast to circuit design where the initial data are netlists� BDDs
or cubes�

�

��� Multi�Output� Sometimes classi�cation of patterns into more than
two categories is desired �one wants not only to distinguish a �friend from
foe� airplane� but also to learn its orientation� speed� etc��� In terms of logic
synthesis� this property corresponds to concurrent minimization of switching
functions with many outputs� �f � binary variable ffriend� foeg� g �
��valued
variable �orientation�� h � ���valued variable �speed���

��� Many input variables� Practical ML�related minimization prob�
lems require at least �� binary input variables but more typically� about
��
multiple�valued variables� In machine learning benchmarks� with the increase
in the number of input variables� there is only a small increase in the number
of both true and false minterms� but a dramatic increase in the number of
don�t cares� For instance� it is reasonable to expect that for a function of
��
attributes there will be no more than
����� cares�

��� Binary� symbolic� numerical� multi�valued or continuous at�

tributes� Attributes in ML problems are naturally Boolean� multiple�valued�
symbolic� or continuous� Symbolic values can be converted to multiple�valued�
Continuous values can be be discretized� and thus converted to multiple�valued�
Any value of a multiple�valued attribute can be encoded by a vector of binary
variables� Although this is not the best approach ������ for simpli�cation� we
will consider here the encoding� and thus binary functions�

��� Noise in attributes� In the context of ML� �noise in the attribute�
means that the measurement is imprecise or subjective evaluation by the per�
son collecting information is wrong ��is this actress dark�blond or red�hair���
This can be modelled by taking some known function and next adding some
statistical noise to the values of attributes� �Noise� ips a correct bit to an
incorrect value� Thus� minterm �

� becomes for instance

� because of
noise in the �rst attribute�

��� Noise in decisions� This noise is even more dangereous than the
noise in attributes ����� For instance� a typist who typed information to the
data�base can make a mistake and encode a minterm corresponding to a patient
without cancer �correct decision �� as one who has cancer �incorrect decision

��

��� Unknown values of attributes� The data in the form can be left
missing� for instance the age group is omitted for some reason from the data
about a lung cancer patient� In a binary case� a single unknown in a minterm
means that a symbol corresponding to this minterm is placed in one of two
positions on the Kmap� For instance� if the second attribute is unknown�
represented by minterm ��

� value
 should be placed either in cell ��
 or in
cell �

� This possibility of choice should be taken into account by the learning
program�

�

100

101

111

110

010

011

001

000

000 001 011 010 110 111 100101

1 1 1

1 1

1

1 1 1 1

1

1

1 1

1 1

1 1

1

1

1 1

1

abc
def

C BBBABA A

100

101

111

110

010

011

001

000

000 001 011 010 110 111 100101

1 1 1

1 1

1

1 1 1 1

1

1

1 1

1 1

1 1

1

1

1 1

1

abc
def

CDEC

(a) (b)

(c) (d)

100

101

111

110

010

011

001

000

000 001 011 010 110 111 100101

1 1 1

1 1

1

1 1 1 1

1

1

1 1

1 1

1 1

1

1

1

1

abc
def

1

100

101

111

110

010

011

001

000

000 001 011 010 110 111 100101

1 1 1

1 1

1

1 1 1 1

1

1

1 1

1 1

1 1

1

1

1 1

1

abc
def

1

A B A B B A B A

Figure �	 �a� Function f to Example �� Types of columns� A�B�C� are below the table� �b�
DNF for function f � �c� original EDNF for function f � �d� pruned EDNF for function f

with CDEC�implicant bcef replaced with prime implicant bcefad� False Minterm ������ is
replaced with true minterm� Types A�B of the new columns are below the table�

�

��� Data with con�icts� from unreliable sources� data with re�

peated minterms� If one has two minterms with the same values of at�
tributes and di�erent values of decision� there is clearly a conict� Such data
can be simply discarded �treated as a don�t care�� but it is better to count
how many times the decision value for a given cell was
 and how many times
�� and utilize these information in the decision making by assigning a valued
of con�dence factor to the minterm corresponding to this cell� Similarly� if
there exist repeated non�conicted data� their numbers of occurences may be
counted� Thus� a decision
 that repeated many times in some cell is more
reliable than a
 that occured only once in this cell� Similarly� if the data
come from various people collecting and preparing data bases� or from various
measuring devices� some of them may be more reliable than others� and thus
con�dence factors are added to each minterm� Concluding� each minterm can
have an additional numerical value in interval ����
��� that denotes the prob�
ability of having the respective value of the decision� Similar con�dence factor
values can be associated with every value of an attribute�

�
��Discretization problems� The e�ect of discretization of continuous
attributes is somewhat similar to the unknown� For instance� for a continuous
attribute� the value ��� can be discretized to either value � or value �� but
not to both� Thus� after discretization of the second attribute to three bits�
the two�argument true minterm � �� ����
� should be the value
 put to cell
� �� �

 � or value
 put to cell � ��
�� �� This is similar to the unknown
value�

�

� Relations� Relations may be useful to model many problems with
imprecise data ������ For instance� discretization of a decision value can be
described as a relation �continuous value ��� can be discretized to multiple�
valued value � or �� thus a relation of input vector with both decision values �
and � is created�� Here� we will assume that we deal with functions� i�e� special
cases of relations� Dealing with noise in relations is presented in ���

� An approach to Noise Removal in Noisy Decomposition�

Example 	� Given is a function from Fig�
a� One can see� that there are three
types of columns� A�B�C� so the column compatibility index � for bound set of
input attributes d� e� f is three� This value of � would be used in a standard
non�noisy decomposition program� and thus two new intermediate variables
would be necessary for a Curtis decomposition with � � �� Let us� however�
observe� that if we would change just one cell abcdef �

 from value �
to value
� then there would be only two types of columns� column def would
become of type A� � would decrease to �� and thus Ashenhurst decomposition

�

a b c

10110100

10

11

01

00

ab

1

1

1

1

1

1

(a)

c d
abd

cd

cd
ab

00

01

11

10

00 01 11 10

(c)

C 1 C
3

C
4

C 2

1

1

1

1

1

1

cd
ab

00

01

11

10

00 01 11 10

(b)

CDEC 2

cd
ab

00

01

11

10

00 01 11 10

(d)

1

1

1

1

1

1 1

1

color A color B
color D

color C

CDEC 1

Figure
	 �a�b� Function that demonstrates that the minimum EDNF cannot be obtained by
factorization of primes� �c� Compatible and conditionally compatible cubes from Example
�� Cubes C� and C� are compatible� cubes C� and C� are conditionally compatible� �d�

function to Example � and its CDEC cover�

with only one intermediate variable and smaller complexity becomes possible	
f � bc � �b � c�x� x � e � f � Let us observe� that a new concept
x has been induced by this decomposition stage� Also� variables a and d

become vacuous� which means that these attributes were irrelevant to the
concept induced� Decomposition stage reduced the DFC complexity of the
function� Observe also that the reduction in complexity is more substantial in
this noisy decomposition than it would be in the noise�free decomposition with
� � �� The method to deal with noise is thus to perform such minterm value
replacements that the column multipicity will be decreased by the minimum
number of changes� We assume that that only very few cells can be modi�ed
like this � this technique is similar in principle to the prunning techniques
used for decision trees ����� If the number of necessary changes would exceed
some threshold� the modi�cation would be not performed� This method can
be applied at every stage of decomposition�

Example
� Another method is to create a DNF �for the initial function�
or the function from any block of the decomposition�� next remove from DNF
those products� that cover very few true minterms� and allow to have prod�
ucts that cover few false minterms� Good selection of products that would
allow for such function modi�cations is� however� a di�cult task� We pro�
pose an approach based on the new concept of Exclusive DNF �EDNF� ex�

�

pressions that generalize the Disjunctive Normal Forms �DNF� expressions�
The function from Fig�
a can be minimized to a DNF as in Fig�
b	
bcef � b�c�ef � �bc�ef � bc�e �f � �bce �f � If we� however� allow the false
minterm

 to become a true minterm� then the DNF from Fig�
d would
be found� The e�ect on the noise�free decomposition in this case would be
the same as in the noisy column compatibity method from Example
� Such
method can be used as a preprocessing� postprocessing and�or after each stage
of a decomposition� The decomposition itself can be noise�free or can use
the method from Example
� The numbers of false minterms treated as true
minterms can be user�controlled� similarly as in prunning methods in C��� or
other decision diagram creating programs� Analysis of possibe noise sources
as described in section II �points ��� � �
�� and use of con�dence factors are
also performed to make all prunning decisions� We assume that the groups
of ��s should be treated as
�s especially if they are located closely and not
separated by
�s� In such situation� sub�functions of type P � Q are created�
where P and Q are product terms� Part Q is the exclusion product� P � Q is
called a CDEC�implicant�� We assume that product P does not include ��s� If
the exclusion product P includes few ��s� it can be replaced with a constant
�
thus creating a product implicant Q� In our case� the DNF from Fig�
d was
obtained by �nding EDNF from Fig�
c and next replacing CDEC�implicant
bcefad with prime implicant bcef � We assumed that if Q includes one � than
it can be dropped �in practize only large cubes P with few ��s and many don�t
cares are replaced with
��

Similarly� CDEC�implicants that cover few
�s are discarded� Again� con�
�dence factors are used� as well as sizes of P and Q are being considered by
the heuristic evaluation rules Our method minimizes the function to EDNF
form only once� and next the minimized EDNF expression is transformed sev�
eral times by heuristic rules with respect to all noise�related information ���
� �
��� Such approach leads to several EDNF expression variants of reduced
DFC complexity� that are next veri�ed towards function benchmarks to �nd
those with minimized error� Our EDNF method to deal with noise allows to
treat separately false positive �� replaced with
� and false negative decisions
�
 replaced with ��� which is useful in some decision problems� especially in
medical applications� Please note� that this entire approach is based on Occam
Principle that a simple function �small DFC� is more probable than a complex
one�

Because we want to create as large as possible CDEC�implicants� the con�
cept of prime CDEC�implicants� i�e� CDEC�implicants that are not totally
included in any other CDEC�implicants� is useful� From these de�nitions� a
product and prime implicants used in DNF minimization are special cases of

�

CDEC�implicants� but a prime is not necessarily a prime CDEC� because it can
be included in a CDEC�implicant� EDNF minimization is based on covering
with CDEC�implicants� which we will call CDEC�covering� A CDEC�implicant
is an implicant that can be realized with a single CDEC gate� It has an AND�
part and a NAND�part sometimes called an OR�part� since abcd � ab��c � �d��
The concept of a CDEC�implicant is a concept generalization of a prime impli�
cant �a prime� and a product implicant��� used in standard DNF minimizing
programs such as Espresso ���

� Conditionally Compatible Cubes and Compatible Graph Color�

ing for EDNF Minimization

Boolean functions are implemented as sets of minterms or cubes� �Minterms
can be grouped to cubes in preprocessing to decrease the problem size� Many
benchmarks have cubes and changing them to minterms would create �les too
large to handle e�ciently�� The following notation will be used	 ON�f� is the
set of ON�cubes of f� OFF�f� is the set of OFF�cubes� and DC�f� is the don�t
care set� A Cube Ci is a string of ��s�
�s� and X�s� it represents a prod�
uct of literals of the function f� A product implicant is an implicant being
a cube� A prime implicant is a product implicant which is not included in
any other prime implicant of that function� Standard notions of literals� sum
of products� essential and secondary essential prime implicants 	� consensus�
sharp� disjoint sharp� intersection and Hamming distance of cubes will be used
by our program� The cubes Ci below can be of any kind� if not mentioned
otherwise� The main cube operator used in our approach is the supercube�
The supercube of two cubes Ci and Cj is denoted by Ci � Cj� When the
positional cube notation is used� the supercube operator corresponds to the
component�wise Boolean OR of the two cubes� This is the smallest cube that
includes both Ci and Cj� For instance� for Ci � X
�
 and Cj � X

��
Ci � Cj � X
XX is the supercube of Ci and Cj� We say that two cubes
overlap if they have a non�empty intersection cube� Two cubes Ci � ON �f�
and Cj � ON �f� are compatible if their supercube Ci � Cj does not over�
lap with any cube Ck � OFF �f� �i� e� does not include a false minterm�	
�Ci � Cj� uOFF �f� � � � Ci and Cj are compatible� These cubes can
be combined to one CDEC�implicant �in this case� prime implicant� with their
supercube SUij � Ci � Cj as the AND�part �the NAND�part is ��� Given
are two cubes Ci� Cj � ON �f� and their supercube SUij � Ci � Cj� If
the supercube SUij overlaps with OFF�f�� the intersection is called the OFF�
part OFFP �SUij� of the supercube SUij 	 OFFP �SUij� � OFF u SUij �

�

The supercube
U

Cl�OFFP
SUij �

Cl of all cubes of the OFF�part OFFP �SUij�

is denoted by SOFFP �SUij�� Two cubes Ci and Cj are called condition�
ally compatible if cube SOFFP �SUij� does not intersect Ci nor Cj � Such

cubes can be combined to one CDEC�implicant �SUij � SOFFP �SUij��� with
cube SUij as the AND�part and cube SOFFP �SUij� as the NAND�part� The
cube SOFFP �SUij� is called the condition cube under which Ci and Cj

are conditionally compatible� Two cubes are incompatible if they are not
compatible nor conditionally compatible� Such cubes cannot be combined to
a single CDEC�implicant� The set of cubes is called a set of compatible
cubes if each pair Ci� Cj � � is either compatible or conditionally compat�
ible with respect to the same condition cube SOFFP �

U

Ci��
Ci�� The set

 can be described by a single CDEC�implicant	 �AND part�NAND part�
� �

U

Ci��
Ci � SOFFP �

U

Ci��
Ci��

Example �� The Boolean function f �Fig� �a� is represented by the cubes	
f � �ab�c �d� �a�cd � a�cd � abcd� Let C� � �ab�c �d� C� � �a�cd� C� � a�cd� C� � abcd

�shown in Fig� �c�� The cubes C� and C� are compatible� because their
supercube C� � C� � �cd does not intersect the OFF�set of f � The cubes C� and
C� are conditionally compatible under the condition cube SOFFP��a�c� � �a�b�c �d�
Their supercube C� � C� � �a�c overlaps the OFF�set of f � Therefore the OFF�
part of C� � C� is given by OFFP �C� � C�� � �a�b�c �d� However� SOFFP��a�c�
does not overlap C� or C�� The cubes C� and C� are not compatible� because
their supercube C� � C� � b overlaps the OFF�set of f and the supercube of
the OFF�part of C� � C� overlaps the cubes C� and C�� Sets of conditionally
compatible cubes are	 fC�� C�g and fC�� C�g �see Fig� �a�� The cubes C�

and C� are of Hamming distance�
� i�e� there is exactly one variable d that
has di�erent sets of truth values� We call them distance�
 cubes� C� and C�

are not of distance�
� because there are three variables a� c and d that have
di�erent sets of truth values� so Hamming distance is equal ��

EDNF minimization is based on Conditional Graph Coloring� The input of
the Conditional Graph Coloring algorithm is the non�ordered graph GCCC �
�SMI� RSN� RSC�� where SMI is the set of nodes corresponding to product im�
plicants �in particular� minterms� of function f � RSN is the set of non�directed
normal edges and RSC is a set of non�directed conditional edges between the
nodes� The normal edges are drawn as continuous lines� and the conditional
edges as dotted lines� Two nodes �i�e�� cubes�� MIi � SMI and MIj � SMI�
are connected by a normal edge ifMIi and MIj are incompatible� Such cubes
must be colored with di�erent colors� If there is no edge between nodes� these
nodes can be colored with the same color� MIi and MIj are connected by a

�

0001

0101 0111

1101 1111

1011

0110

1100

D

A

B
C

CB

1001

0100

1001

1110

0011

0011

0100

1100

B

C

C 2

C
1

C
3

C
4

0000

1011

(a) (b)

Figure �	 Compatible Coloring	 �a� graph GCCC for Examples
 and �� �b� graph GCCC
for Example ��

conditional edge ifMIi and MIj are compatible under the condition indicated
by the label of the edge� The label l�SCij� of the conditional edge SCij con�
necting the nodes MIi and MIj � is calculated as SOFFP�SUij �� If the groups
of nodes have the same label on all its conditional edges� the nodes are com�
patible without any condition� that means� the labels of the conditional edges
are not taken into account by the coloring algorithm� and the nodes can be
colored with the same color�

Example �� Using the minimal conditional coloring method to the function
from Fig� �a a GCCC with nodes C�� C�� C�� and C� is created �Fig� �a�� The
conditionally compatible nodes are shown by dotted edges connecting them�
Conditions are written near edges� The coloration of nodes C� and C� with
color A and nodes C� and C� with color B produces an exact CDEC cover
with only two CDEC gates �Fig� �b�� As we see� the minimal solution can
be obtained by the factorization of product implicants that are not primes	

f � �ab�c � �a�cd � a�cd � abd � �a�c�b � d� � ad��c � b� � �a�c��b �d� � ad�c�b� �
CDEC� � CDEC�� This function demonstrates� that the approach based
on factoring prime implicants can not �nd the minimum CDEC cover� The
function f can be represented as the sum of three essential prime implicants	
f � �cd��ab�c�abd� Based on these implicants� f can not be further factorized to
CDEC�implicants� The CDEC realization would consist of three CDEC gates
and the CDEC�implicants would be identical to the prime implicants� This
example shows that prime CDEC�implicants must be created not only from
prime implicants� but also from some product implicants included in prime
implicants�

Example � Fig� �d illustrates a minimum color cover with CDEC�implicants
in a Karnaugh map of certain function g� These CDEC�implicantswere created
by CDEC�compatible coloring of the nodes of the graph from Fig� �b� In Figs�
�d and �b color A describes a CDEC�implicant abcd� Color B corresponds to

a CDEC�implicant cda b� Color C corresponds to a CDEC�implicant bca d�
Color D corresponds to a CDEC�implicant abcd� The nodes of the graph in
Fig� �b correspond to the minterms in the Karnaugh�Map from Fig� �d� The
dotted edges labeled with a cube are the conditional edges �with their label
given by the cube associated to the edge�� The continuous edges are the normal
�unconditional� edges� The nodes connected by an unconditional edge must be
colored with di�erent colors� A set of nodes� that have the same color� describe
a CDEC�implicant� For instance� the nodes given by the minterms �

� �

�
and

 are colored with the same color� C� The supercube of all those nodes
is �

 � �

� �

 � X

X� The only cube in OFF u X

X is

��
which does not overlap with the minterms �

� �

�� or

� The solution

found� g � abcd � cda b � bca d � abcd� has the minimum number of
terms� but not necessarily the minimum number of literals� Another coloring
could �nd the minimum literal cost solution as g� � adc � abc � abc � bcd�
Thus� the literal cost should be calculated by the graph�coloring procedure as
a secondary cost for all solutions which have the same number of colors�

In Example � all groups of nodes with the same color have only one type
of label on edges connecting them� but in general they can have many types
of labels� The labels of the set fSCi� � � � � SCikg �k � �� of conditional
edges SCi � RSC have to be taken into account by the coloring algorithm
only if the set of nodes fMIj � � � � � MIjlg �l � �� connected by set of edges
fSCi� � � � � SCikg is attempted to be colored with the same color� Coloring
these nodes with the same color is possible only if the supercube of all the
labels� l�SCi� � � � � � l�SCik�� does not intersect any nodes from the set
fMIj� � � � � MIjlg� Compatible coloring is one in which any set of nodes
colored with the same color is a compatible set of nodes �compatible set of
cubes�� Compatible set of nodes is a set in which all nodes correspond to a
set of compatible nodes� The problem of minimal conditional graph coloring is
to �nd such coloring that is compatible� minimizes the number of colors� and
minimizes the literal cost as the secondary cost function� The literal minimum
solution is the CDEC�minimum solution which in addition has the minimum
literal cost�

Results with a better literal cost can be obtained when a node is allowed
to be colored with several colors� which is called multi�coloring� For instance�
multi�coloring of nodes for a function from Example � would create� among

others� a solution g� � cda b � abc d � cda b � abc d� The multi�coloring
method creates larger CDEC�implicants� Observe that the minimum literal
cost solution g� from Example � could not be found from a cover with prime
CDEC�implicants� since all the primes from this solution are included in some
prime CDEC�implicants� The solution with the exact minimum number of

�

MCNC Variables from from from T
Examples minterms Espresso split

in ou mnt CD cu CD CD sec
�xp� � �� � � �� �� �� ���
b�	 �� � � �
� 	� 	� ���
con� � 	 ��� � � � � ���
cu �
 �� � � �� �� �� 	��
f��m � � � � �� 	� 	� ���
i� 	� �� � � 	� 	� 	� ���
inc � � ��� 	� �� 	� 	� ���
misex� � � �
� �	 �	 �	 �	 	��
misex	 	� �� � � 	� 	� 	� ���
rd�� � �
	 	� �� 	� 	� ��

rd�� � � ��� 	� �	� 		 	� ��

rd�
 �
 ��� �� 	�� �� �� 	��
sao ��
 ��
 �� �� �� �� ���
squar� � � �� 		 	� 	� 		 ���
temp � � �� � �� � � ���
vg	 	� � � � ��� �� �� ���

Table �	 Multi output MCNC benchmarks� All CDEC covers �CD� calculated with Socmin�
Graphs for coloring created from minterms �mnt� or cubes from Espresso�minimized DNF�
Column Socmin has results calculated using split cubes� Time �T� given for split cubes� it

was counted together with the preprocessing time�

CDEC�implicants is called CDEC�minimum solution� The exact minimization
of the number of CDEC�implicants is based on the theorem that states that
if graph GCCC is created with minterms as nodes and the �multi�coloring of
the GCCC is compatible and has the minimum number of colors �is an exact
compatible coloring�� then the CDEC covering created from this coloring has
the exact minimum number of CDEC�implicants�

The CDEC cover minimization process results in a EDNF� The exact
EDNF representation of function f has never more terms than a DNF of this
function because the set of all CDEC implicants includes the set of prime
implicants� Observe that we do not generate all primes nor all prime CDEC�
implicants� but are still able to �nd the exact cover� The number of prime
CDEC�implicants increases rapidly with the number of minterms� especially
for functions with many don�t cares� It is well�known that the set of primes can
become too large to enumerate even if it is possible to �nd the exact minimum
cover ����� A similar property can be shown for prime CDEC�implicants� The
application of algorithms based on generating all primes or all prime CDEC�
implicants is limited because of results of this kind� It can also be shown that
an attempt to reduce the size of the covering problem by removing the primes
included in prime CDEC�implicants can lead to a loss of the EDNF with the
minimum literal cost� In addition� the covering problem is NP�hard� The cov�
ering table can become too large to store in memory� Therefore� our approach
is based on graph coloring � one NP�hard problem is solved instead of two� and
a minimum literal solution is always found� The graph GCCC for coloring can
be created with arbitrary cubes from the ON�set of the function f as nodes�
For instance� these can be	 minterms� primes� minimal product implicants

�

���� or the �optimal� split cubes used here� They are based on splitting large
primes to smaller cubes that can be next recombined to CDEC�implicants�
The advantage of using minterms is the guarantee of the optimum solution if
exact coloring for GCCC is found� The disadvantage of minterms is the large
size of the graph for completely speci�ed functions with many inputs �if the
number of inputs is n� the number of minterms can be of the order of �n���
and the graph will be too big to construct�� The advantage of using arbitrary
cubes instead of minterms is an improved execution speed� but the minimum
EDNF can be lost� Our coloring algorithm can create the graph from any type
of cubes� We use special kind of cubes called split cubes� for their e�ciency�
This means that the minimal solution can be in theory lost� but experimental
results show that this never happened on the tested by us benchmarks�

	 Experimental Results

We created a program� called Socmin� and tested it extensively on MCNC
and Machine Learning benchmarks� Let us observe that contrary to MCNC
benchmarks� the Machine Learning benchmarks from U�C� Irvine have a very
large number of don�t cares �we binary�encoded the multiple�valued variables��
A Miller method � for transforming a multi�output problem to a single�output
problem has been used in order to extend the presented approach to multi�
output functions� We veri�ed all our results� Some results for benchmark
functions are presented in Tables
� � and �� The goals of the presented here
experiments with Socmin were to answer the following questions	 How much
improvement in implicants� literals or DFC is gained by using the CDEC�
implicants instead of prime implicants� How fast is Socmin� How large func�
tions can be minimized� Table
 has columns for input and output variables�
for experiments with various types of initial cubes Minterms� Espresso� and CS
�Cube Split Algorithm�� and for Time� Column from Minterms has two sub�
columns�mnt� which includes the number of minterms� and CD� which includes
the number of CDEC�implicants in exact solutions generated from minterms
by Socmin� Column from Espresso has two subcolumns� cu and CD� The �rst
subcolumn shows the number of prime implicants in the Espresso solution� and
the second column shows the number of CDEC�implicants in the approximate
EDNF generated by Socmin from primes of Espresso as the starting point
for coloring� Finally� column �from split� shows the numbers of implicants in
CDEC cover found by Socmin in a GCCC created from split cubes produced
in preprocessing� The last column� Time� is given for this experiment �time
includes the splitting time for cubes�� proving that even with preprocessing
our algorithm is very fast� In all cases �which could be compared thanks to the

�

Example ON Terms Literals DFC Time
Es So Es So Es So sec

add� �	� �� � �

	 	�	 ��
 ��	�
add	 �	� �� � ��

 	�� ��� ��		
add
 �	� 	 	

 �	 �	 ����
ch��f� �� �	 �� �� �
 	�� 	

 ���

ch���f� �
 	 	 � � 	� 	� ���

ch���f� �	� 	 	

 �	 �	 ����
ch		f�
� �
 �� 	
 ��� �	 ��

ch��f� �
 � � �	
� �	
 ��� ����
ch
�f� �	 � �
�
� ��� ��� ����
ch�	f
 �� �� �� ��� ��
	�
	� ���

ch��f� 	
 �
 	� 	
 ��� ��
 ����
ch�
f� �� �� � �� �� 		� 		
 ����
ch��f	 �� �� �� ��� �	
�� �

 ����
ch�f� 		
 � � �� �� �� �� ����
c
 on �� �� �� ��� ��� 		�� 		�� �
��
grt th �	� �� � �

	 	�	 ��� ����
intrvl� �� �� �� �� �� ��� ��� ��
�
intrvl	 �	� 		 �
 ��� �	
�� ���
���
kdd� ��� 	 	 � � � �� ����
kdd�� �	� �
 	� �� ��� �� ����
kdd	 	
 	 � � � 	� �� ����
kdd� �� 	 	 � � �� 	
 ���	
kdd
 �	� � � � � �
 ����
kdd� ���

 �� ��
� �� ����
kdd� 	
�
 �

 �	 �	 ����
kdd� ���

 � � 	� 	� ����
kdd� �
 	 	 � � 	� 	� ���

kdd� �

 �� 	
 �
� ��� ����
maj gate �� �� 	� 	�� ��� ���� ��	 ����
mdls 	
� �� �
� �� ��� ��	 ���
mux� �	�

 �	 �	

 �� ����
pal �� �� �� �	� �	� ��� ��� ����
pal db op ��� 	� 	� ��� ��� ��� ��� 	���
pal ou ���
�
� 	�� 	�	 ���� ���� �	��
parity �	� �	� �	� ��	
 ��	

��	
��	 		��
remder	 �� 	� �� ��� ��� �	�
�	 	���
rnd m� � � � � � 	� 	� ����
rnd m�� �� � � �� �� 	�� 	�� 	���
rnd m	� 	� 	� �� ��
 �
� ��	 ��	 ���
rnd m� � � �
�
� ��� ��� ���
rnd m�� �� �
 	� 	�� 	�
 ��� �
� ����
rnd� �		 �� �� �	
 ��	 ��	� �	�	 ����
rnd	 �	

� �� 	�	 	�� ���
 ���
 ��
	
rnd� ��

� �	 ��� 	
� �	
� ��	 ����
substr� �
	 � � �� �� �� �� ��	

substr	 �� � � 	� 	� �� �� ����
sbtrct� ��
 �
 		 	�� �
� ��� ���
���
sbtrct	 �	� 	 	

 �	 �	 ��
�

Table
	 Comparison of numbers of terms� numbers of literals� and DFC values for DNF
expressions of Espresso �Es�� and EDNF expressions of Socmin �So�� for single�output

Machine Learning benchmarks� Time is given for Socmin�

�

non�excessive number of minterms�� the results of Socmin generated using the
preprocessing splitting algorithm� have the same number of CDEC�implicants
as in the exact minimumgenerated with the minterms� This demonstrates the
that if we start from minterms we can use our algorithm alone� or to precede
it with Espresso and splitting to decrease the size of the graph� The program
can start from �ON and OFF� minterms or arbitrary cubes� If the data are for�
mulated with cubes� the program splits these cubes optimally� Thus� for large
examples the program should use Espresso and cube splitting for preprocessing
to allow graph creation� Next we checked how much we gain in the number
of terms compared to Espresso� Some functions� rd��� rd��� vg
� demonstrate
that the EDNF is substantially smaller than the DNF � in the case of rd��
there are only �� CDEC�implicants in the cover found by Socmin versus ���
primes in the cover from Espresso� In multi�coloring mode the nodes can be
colored with more than one color� which further decreases the number of liter�
als� Socmin was tested for ML examples with high percentage of don�t cares�
As the algorithms used in Socmin have been designed for strongly unspeci�ed
functions� very good results compared to Espresso have been obtained �tables
�� ��� The numbers of terms� literals� and DFC were compared� DFC was
calculated by adding the cardinalities of each of the subfunctions in the de�
composition� For arbitrary non�decomposable block in Curtis Decomposition
the DFC of the block is calculated as �k where k is the number of inputs to the
block� In �gate�based� minimizers such as Espresso it then fair to assume that
a DFC of a decomposable gate �such as AND� OR or EXOR� is equal to the to�
tal DFC of a circuit equivalent to this gate� that is constructed from two�input
gates� The DFC of a four�input AND gate� OR gate or EXOR gate is then
�� � �� � �� �
�� since such gates can be decomposed to balanced trees of
three two�input gates� The DFC of a CDEC functor is calculated in the same
way� by decomposing it to two�input AND and NAND gates� The number of
terms and literals for the CDEC implicants generated using Socmin is never
greater than the number of terms and literals for the prime implicants gener�
ated by Espresso� The DFC is lower in most cases� In another experiment�
to analyze behavior of Socmin on strongly unspeci�ed functions� subsets of
cares have been removed� and comparisons with Espresso performed� Table �
presents these results with ���� and ��� of data replaced with don�t cares� As
the percent of don�t cares increases� Socmin gives solutions that are better and
better than those of Espresso� There is a huge decrease in the number of terms
and DFC� compared to Espresso� This proves that our method works better
for very strongly unspeci�ed functions� Concluding� for both single�output and
multi�output functions� EDNFs are better than DNFs� Socmin produces high
quality EDNFs� and is very fast�

�

example 	�� dont cares ��� dont cares
Espresso Socmin Espresso Socmin
t DFC t DFC t DFC t DFC

add� 	� �	� � ��� ��
�� �

add	 	� ��� � 	�� �� ��� 	
�
add
 �� ��	 	 �	 �� ��
 	
�
ch��f� 	
 ��	 �� �
� � 	�	 � ��	
ch���f� �� 	�	 	 	�
 ��� � �
ch���f� 		
�� 	 �	 � ��
 � �
ch		f� �	 	�	
 ��� � ��� 	 	�
ch��f� �� ��	 � ��� � ��� 	 �	
ch
�f� ��
�� � ��	
 �	
 � ��

ch�	f
 ��

� ��
�� � �	 �
�
ch��f� � 	�� � �
 � 	� � 	�
ch�
f� �	 	�� � 	
�
 �	
 � 	

ch��f	 ��
	� �� ��
 	 �� � ��
ch�f� �� ��� �	 ��	 �� �
� � ��
c
 on �� ���� 	� ��	�
 �	
 	 ��
grt th 	� �	� � ��� �	 ��	 	 	�
intrvl� �� ��� �	 �	
 � ��� � �
intrvl	 	� ��	 ��
�� �� ��� �
�
kdd� 	

�	 	 �	 �� �	
 	 	�
kdd�� 	� �
� � ��� � 	�
 	

kdd	
 �
 � �	 � 	
 � 	

kdd� �
 ��	 	 	� � ��� � �
kdd
 	�
�� �
 ��� �� ��
 � �
kdd� ��
��
 �� � 	�� � ��
kdd� �� ��� 	� �	� �� �	� � 	�
kdd� �� ��
 		 �

 ��
�� � ��
kdd� �� ��� �	 ��	 � 	�	 � �
kdd� ��

� �� �	� � ��
 	 	

maj gate

 ���� �	
�� �� ��� 	 �	
mod	 �	 	�� � ��� � ��� �

mux� 	
 ���
 �� � 	�	 � �
pal �

 �

 	 �� � �	
pal db op
� ��	
� ��	 �	 ��
 � ��
pal op
	 ���� �� ��	 �� ��
 	
�
parity �
 ���
 	� ��� � 	�	 	

remder	 	� �	� �� ��� � ��	 	 ��
rnd�
� �		�

 ���� �	 ��	
 ��
sbstr� 	� �	� � ��
 �� �
�
 ���
sbstr	 	�
�	 � ��� � 	�� 	
�
sbtrct�
� ���� �� ��� �� ��	 � �
sbtrct� �� ��� 	 �	 � 	�� 	 ��

Table �	 Comparison of numbers of terms and DFC values for DNF expressions of Espresso
and EDNF expressions of Socmin� for single�output Machine Learning benchmarks in which

���� and �� of don�t cares were next randomly generated �cares randomly removed�

�

 Conclusions

We presented a new approach� called Exclusive Disjunctive Normal Forms
�EDNF� minimization to deal with noise in Machine Learning� The respec�
tive minimization algorithm has been developed and compared to known DNF
minimizers� The method gives very good solutions� better than Espresso� for
multi�output strongly unspeci�ed functions of Machine Learning and Knowl�
edge Discovery from Databases� Practical usefulness of EDNFs to reduce the
number of terms and recognition errors has been demonstrated� More details
on the algorithms and experimental results can be found in �����������

� References

� A�W� Biermann� J�R�C� Fair�eld� T�R� Beres� �Signature Table Systems
and Learning�� IEEE Trans� on Syst� Man and Cybern�� Vol�
�� No� ��
pp� ��������
����

�� R�K� Brayton� P�C� Mc Geer� J�V� Sanghavi� and A�L� Sangiovanni�
Vincentelli� �A New Exact Minimizer for Two�Level Logic Synthesis��
in T� Sasao �ed�� �Logic Synthesis and Optimization�� Kluwer Academic
Publishers� pp�
��
�
����

�� M� Ciesielski� S� Yang� and M�A� Perkowski� �Multiple�Valued Minimiza�
tion Based on Graph Coloring�� Proc� ICCD���� pp� ��������
����

�� T� Luba� �Decomposition of Multiple�Valued Functions�� Proc�
th
ISMVL� pp� ������
�
����

�� Michalski et al �ed�� �Machine Learning� An Arti�cial Intelligence Ap�
proach�� Volumes
��� Morgan Kaufmann Publishers� San Mateo� Cali�
fornia�

�� R�E� Miller� �Switching Theory�� Vol�
 and �� John Wiley� New York�

����

�� S� Mohamed� M� Perkowski� L� Jozwiak� �Fast approximate minimiza�
tion of multi�output Boolean functions in Sum�of�Product�Condition�
Decoders structures�� Proc� Euromicro���� Sept�
����

�� L�B� Nguyen� M�A� Perkowski� and N�B� Goldstein� �PALMINI � Fast
Boolean Minimizer for Personal Computers�� Proc�
�th DAC� Miami�
FL� pp� �
����
�
����

�� M�A� Perkowski� P� Wu� and K�A� Pirkl� �KUAI�exact	 A new approach
for multi�valued logic minimization in VLSI synthesis�� Proc� ISCAS�
pp� ��
�����
����

�� M� Perkowski� T� Luba� S� Grygiel� M� Kolsteren� R� Lisanke� N� Iliev�
P� Burkey� M� Burns� R� Malvi� C� Stanley� Z� Wang� H� Wu� F� Yang� S�

�

Zhou� and J� S� Zhang� �Uni�ed Approach to Functional Decompositions
of Switching Functions�� PSU Report� Version IV� December
����

� M� Perkowski� M� Marek�Sadowska� L� Jozwiak� T� Luba� S� Grygiel�
M� Nowicka� R� Malvi� Z� Wang� and Jin S� Zhang� �Decomposition of
Multiple�Valued Relations�� Proc� ISMVL���� pp�
��
�� May
����

�� M�A� Perkowski� M� Marek�Sadowska� L� Jozwiak� P� Burkey� and S�
Mohamed� �Noisy Multiple�Valued Relations	 Characterization� Mini�
mization and Decomposition�� PSU EE Dept� Report�
����

�� J�R� Quinlan� �C���	 Programs for machine learning�� San Mateo� CA	
Morgann Kaufmann�

�� T�D� Ross� M�J� Noviskey� T�N� Taylor� D�A� Gadd� �Pattern Theory	
An Engineering Paradigm for Algorithm Design�� Final Technical Report
WL�TR��	�	���� Wright Laboratories� USAF� WL�AART�WPAFB�
OH ����������� August
��
�

�� R� Rudell� and A� Sangiovanni�Vincentelli� �Exact Minimization of
Multiple�Valued Functions for PLA Optimization��Proc� ICCAD���� pp�
�������� November
����

�� B� Zupan� M� Bohanec� �Learning Concept Hierarchies from Examples
by Function Decomposition�� Techn� Rep�� Dept� Intell� Syst�� Jozef
Stefan Inst�� Ljubljana� Slovenia� Sept�
����

�

