
IMAGE COMPRESSION BASED ON

REED�MULLER TRANSFORMS

Kamran Iravani and Marek Perkowski y�

VLSI Technology� Inc��

���� McKay Drive� M�S ��A� San Jose� CA ������

y Portland State University�

Department of Electrical Engineering�

Portland� Oregon �	��	�

Tel
 ����	�������� Fax
 ����	����

�� mperkows�ee�pdx�edu

Abstract� Wavelet Methods are revolutionizing the area of image processing and

particularly compression� Haar transform is the simplest wavelet� Binary and multiple�

valued nonsingular �NS� transforms ��� have similar local properties but use only logical

operations and do not require additions and subtractions of Haar� It is then interesting

to investigate the applications of NS transforms in these areas� The simplest of NS

transforms is the Positive Polarity Reed�Muller Transform� which was 	rst used by Reddy

and Pai �
� for image data compression� In this paper an attempt will be made to improve

their technique by using the more general �multi�polarity� Fixed Polarity Reed�Muller

�FPRM� forms� It will be shown that the Fixed Polarity Reed�Muller form� although
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better than the positive polarity� does not improve the compression factor enough to

warrant its use as a lossless image compression method� It will be also shown that

some crucial errors in the paper by Reddy and Pai make it impossible to evaluate the

quality and compression factors of their approach� We believe� however� that because

of their speci	c properties� simplicity and speed of calculations� nonsingular transforms

will 	nd their applications niche in the areas of image compression� reconstruction� and

recognition�

I� INTRODUCTION

The computer� telecommunications and video�media applications have de�

veloped rapidly the �eld of multimedia which requires high performance and

speed digital video and audio capabilities� Digital storage media� image dis�

plays� and communication networks that use digital transmission channels

require signi�cant amounts of storage and high data rates to meet the needs

of interactive visualization� home entertainment and multi�media systems�

Multimedia systems are then the main reason of interest in image data com�

pression� This is due to the fact that digital representation of images usually

requires large numbers of bits� while in most applications it is desired to repre�

sent� store� transmit or process the image with a fewer number of bits� Good

examples are still digitized images
 a single DIN A� color picture scanned at

��� dpi with 
 bits�pixel� color produces �� MBytes of data�

Based on the applications� there are two general categories of image com�

pression techniques� lossy image compression and lossless image compres�
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sion� In lossy image compression the reconstructed image is not exactly the

same as the original but the compression factor is high� while in lossless im�

age compression the reconstructed image is exactly the same as the original

one but the compression ratio is not as high� Therefore there exists always a

trade�o� between the compression factor and the quality of the image�

Another important factor in image compression techniques is speed of the

processing� In some applications it is important for the process to be fast� The

speed of the process is directly related to the number of operations needed for

the compression� and also to the hardware realization of the compressor�

In general� the compression techniques based on Discrete Cosine and Fourier

transforms have a high compression factor with good quality compared to

other techniques� The only disadvantage of these methods is that the pro�

cess is slow because it requires a large number of multiplication operations�

The Indeo�C algorithm of Intel used a transform coding called Fast Slant

Transform �FST�� with only additions and shifts� The �non�sinusoidal� Haar

transform is the fastest of all known complete unitary transforms� It is local�

thus used for data compression of non�stationary ��spiky�� signals� as well as

processing operations such as edge extraction� Discrete Wavelet Transform

�DWT� uses Haar functions to code images and is one of the most promising

techniques today� The Arithmetic� Walsh �Hadamard�� and Haar transforms

are used in image compression� processing and related problems� and espe�

cially there is recently a very strong interest in Haar transform for video

compression�
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Recently� the techniques developed in the area of logic circuit synthesis �nd

applications not only for circuit design� but also in Machine Learning� image

processing� compression� pattern recognition and other areas ��� �� �� ��� This

also applies speci�cally to spectral approaches to logic �Walsh� Reed�Muller�

Haar� arithmetic� adding� nonsingular� Christenson� �	� 
� �� ��� ��� ��� ���

��� �� ��� ��� �	� �
��

The Arithmetic� Walsh� and Reed�Muller transforms �to lesser degree Haar�

are fundaments of the most important spectral approaches to logic synthesis�

These transforms are faster� since multiplications are not required and only

addition�subtraction�shift�logic operations are used� Haar is a special kind

of wavelet transforms� and therefore a question arises� what are the mutual

relationships of spectral logic transforms and wavelet approaches�

Among hundreds of papers on Reed�Muller and nonsingular transforms� we

were able to �nd just one related to signal processing and compression� an

approach to obtain a fast method for image compression has been proposed

by Reddy and Pai ��� who used the positive polarity Reed�Muller transform

for this purpose� In their method the pixel matrix of an image is divided

into eight matrices from the Most Signi�cant Bit �MSB� plane to the Least

Signi�cant Bit �LSB� plane� On each plane the Reed�Muller transform is

performed� and �nally the run�length coding ���� ��� is used to compress the

data�

The approach of Reddy and Pai would be potentially a very fast and in�

expensive method because only Exclusive�OR operations would be executed
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on bits� and adders�subtractors of Walsh or Haar transforms are not used�

Because of existance of Butter�y�like structures similar to other �fast� trans�

forms for Reed�Muller� such a method would also allow for very fast and

inexpensive realization in hardware�

But despite the fact that Reddy and Pai have claimed this method to have

a good compression factor� we will show that this method does not have it for

lossless images� They have claimed that with compression factor of ���� i�e�

��� bits per pixel� the quality of the reconstructed image is very good� We

will also demonstrate that the paper published by Reddy and Pai contains

several mistakes which� unfortunately� make their particular results and con�

clusions unacceptable� without� however� negating the general innovativeness

and potentials of the originated by them approach�

It has been the purpose of this paper to improve the Reed�Muller image

compression using the Fixed�Polarity Reed�Muller transform �
� �
� ���� which

is a more general case� It will be shown that the results are still poor and a

good compression factor cannot be obtained�

In this paper� �rst the Reed�Muller expansion of a switching function is

brie�y reviewed �section II�� then the Fixed�Polarity Reed�Muller form will

be introduced �section III�� Section IV explains butterly method for soft�

ware�hardware realization of transform algorithms� In section V� image com�

pression using Fixed�Polarity Reed�Muller form will be discussed� Experi�

mental results are given in section VI� Then the paper by Reddy and Pai will

be investigated and criticized in section VII� Section VIII concludes the paper
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and outlines future work�

II� REED�MULLER TRANSFORM

Any switching function of n variables can be de�ned by �n coe�cients in a

sum of product �SOP� form as in Eq� �


f�x�� x�� ���xn��� � d�xn�� xn�����x� � ���

d�xn�� xn�����x�x� � ��� � d�n��xn��xn�����x�

where �d�� d�� ���� d�n��� are the coe�cients of the products which represent

the values in the output column of the truth table of the function� These

coe�cients can be represented in vector form D� called truth vector�

The function can also be represented by the Positive Polarity Reed�Muller

�PPRM� canonical form over Galois �eld ��� as in Eq� �


f�x�� x�� ���xn��� � a� � a�x� �

a�x�x� � ��� � a�n��x�x�xn�� ���

where � denotes modulo�� addition and �a�� a�� ���� a�n��� are the coe�cients

of the expansion� These coe�cients can be represented in vector form A�

called the function vector�

These two representations are related to each other by a transform matrix

as in Eq� �
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A � TD ���

where T can be written in a recursive form as in Eqs�����

T� � �� ���

T � Tn �

�
����
Tn�� �

Tn�� Tn��

�
���� for n � �

���

III� FIXED POLARITY REED�MULLER FORM

In the previous section the Reed�Muller expansion form was shown as in

Eq� �� In that form all the variables are in the positive form� while any variable

xi can be substituted with its negation �xi� and still retain the canonical form�

In the case that each variable is restricted to retain the same polarity in all

terms� i�e� either positive or negative but not both� the canonical form is

called the Fixed Polarity Reed�Muller form�

For a function with n variables the number of possible polarities is �n� so

there are �n possible �xed polarity Reed�Muller forms� For a speci�c function

the number of terms �i�e� non�zero coe�cients of the transform� varies based

on the polarity of the variables� For instance� if the Reed�Muller form of a

function is f�x�� x�� x�� � x� � x�x� � x�x� � x�x�x�� and the polarity of

the variables is selected as �x� �x�x�� the result will be �x� �x�x��

Therefore by �nding appropriate polarities� one can reduce the number of
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terms of a function in �xed polarity Reed�Muller form� The best polarity

gives the least number of terms in a speci�c function�

IV� BUTTERFLIES FOR FAST FPRM TRANSFORMS

The advantage of all �fast� transforms� Fourier� Cosine� Walsh� Hadamard�

Slant� and Haar is that Butter�y structures can be developed for them� which

next leads to e�cient combinational� pipelined� systolic� memory�based �Ping�

Pong�etc�� and parallel or distributed hardware or software realizations� Much

information about the properties of an uderlying transform can be gained by

analysis of such butter�ies� For instance� it can be observed that Fourier and

Walsh are global transforms� thus any point of the image space has the same

importance and a�ects all coe�cients� In contrast� Haar is a local transform�

which means that local data di�erences in image space are used� and some

coe�cients depend only on some �in a sense geometrically local� image data�

Binary Reed�Muller transforms are similar to Haar in their locality� but their

realizations are simpler because none of them involves adding�subtracting�

Instead� basically only EXOR operations are used� which are very fast both

in hardware and in software�

We will illustrate a Butter�y for the PPRM transform� but very similar

butter�ies for FPRM and higher order nonsingular �polynomial� transforms

can be created ���� �� ���� Assume that the image of letter A from Fig� �a is

represented by a Karnaugh Map of function f�a� b� c� d� from Fig� �b� Using

of a Butter�y to calculate the PPRM transform of the function from Fig� �b
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is shown in Figure �� The rows in the �rst column correspond to all minterms

of four variables in natural binary ordering� Each minterm corresponds to

one of inputs to the butter�y� Minterms with value � �ones� true minterms�

are denoted by black bullets� Minterms with value � �zeros� false minterms�

are denoted by lack of bullets� Every next column corresponds to the �folding

operation� with respect to one of input variables� d�c�b� and a� The Butter�y

should be interpreted �evaluated� from left to right by synchronized moving

of the bullets from a column to the next column� Each joining of a horizontal

and diagonal arrows represents an EXOR operation� Using rules � � � � ��

� � � � �� � � � � �� � � � � �� the bullets are moved from left to

right and they become PPRM coe�cients when they reach the last column

in the right� For instance� if the two input to EXOR element are bullets�

the output is no bullet� If only one input is a bullet� the output is also a

bullet� Propagation of values through the butter�y reveals that the PPRM

for function f�a� b� c� d� �
P
��� �� �� �� �� �� 
� ��� ��� ��� ��� ������ from Fig�� is

f � � � bd � ad� as shown in the last column�

This Butter�y structure can be interpreted as a combinational network of

EXOR gates� and thus all the coe�cients can be calculated in one pulse of the

clock� Conversely� a D�type �ip��op can be associated with every intersection

of a row and a column of the butter�y� thus leading to a pipelined structure

giving �rst set of transform coe�cients after n � � pulses� and in every next

pulse �assuming one pulse to load all �ip��ops in the �rst column�� Similarly�

the memory�based architectures �Ping�Pong and other�� based on Address
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Generators� can be developed from this butter�y� Design methods well�known

from DSP architectures based on FFT� DCT� WT or HT transforms can be

used to develop them�

It can be seen in Figure � that minterm ���� � �a �b �c �d �denoted by a�b�c�d�

in the �gure�� in�uences �globally� the values of all coe�cients� because there

are arrows going from it to all points in the last column that includes PPRM

coe�cients� Similarly� minterm abcd in�uences only the value of coe�cient

abcd and minterm abc �d in�uences only the value of coe�cients abc and abcd�

Thus every minterm has some local scope of coe�cients in�uenced by it�

Observe� that for positive polarity of variables� ����� the coe�cients are all

sets of non�negated variables �constant � corresponds to an empty set�� We

call ���� the polarity minterm of PPRM� Its opposite polarity minterm�

����� is the most sensitive to value changes in pixels� because it propagetes

its value to all coe�cients� Similarly cell ���� is the least sensitive� Thus�

in Negative Polarity RM� ����� the polarity minterm is ���� and the ����

is the opposite polarity minterm� Similarly� all �n �xed polarity FPRMs can

be created� each with its polarity minterm and opposite polarity minterm� In

our case� there are �n � �� � �� polarities� thus �� possible most sensitive

to changes minterms in the Kmap� thus� every pixel of the initial image can

be made most important for the transform� Therefore� transforms for certain

image regions can be created� A Grey�coded Kmap from Fig� �b is only an

example� and binary�coded �Marquand� or other encodings of k�dimensional

images are possible�
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Comparison of all Haar functions to all Reed�Muller functions reveals their

similarity� Both transforms represent local behavior and both can be gener�

alized to �n di�erent polarities �����

An interesting modi�cation of this method can be used for image reconstruc�

tion ���� Assume noise in a transmitted bit changes this bit to unknown value�

which we will represent by a don�t care in the map� Thus FPRM transform

on an incomplete function leads to simple FPRM forms that assign values to

don�t cares in such a way that the maximum number of coe�cients becomes

zero ���� ���� Using Occam�s Razor principle� the particular FPRM transform

polarity and one of its possible assignments of values to don�t cares are se�

lected that minimize the number of non�zero coe�cients� Similarly� the lowest

order coe�cients can be discarded� Then a butter�y�based inverse transform

is done from coe�cients back to the image space� with noise removed and

the image smoothed� This way lossles transmission of high performance in

presence of noise can be achieved for limited black and white images�

Binary Reed�Muller logic is the same as Galois Field with � elements and

Galois multiplication and addition� This logic can be generalized to a Ga�

lois Field�k�� where k � pr� p�prime� r � � � and most of the impor�

tant properties from GF��� are inherited in GF�k�� including the existence

of Butter�ies� Galois Field�k� Butter�ies require GF�k��addition and GF�k��

multiplication operations� which however can be easily built with look�up

tables� multivalued� or binary�logic elements� and thus realized e�ciently in

hardware� or in software� For instance� it can be proved that only k two�input
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EXOR gates and no other gates are su�cient to realize Galois addition in Ga�

lois Field��k� ����� Thus� while binary images are naturally good for PPRM�

FPRM and all binary nonsingular transforms� two approaches can be used

for grey�scale and color images� One is a separate coding of image planes�

as in Reddy and Pai� and in this paper� The other is to use higher�order

Galois Fields and nonsingular transforms in them� which we are presently

investigating �����

V� FIXED POLARITY REED�MULLER IMAGE COMPRESSION

METHOD

In last sections it was explained that if the best polarities for the variables

are selected� the number of terms of each function can be reduced� Using this

fact we are going to investigate if it can be used to compress the data of a

still image�

Every image consists of a set of pixels� In a grey�level picture� each pixel

is usually represented by one byte� Therefore an image can be modeled by a

matrix of pixel values� where each pixel value can vary in the range of � to

��� ���� levels of grey�� In other words each pixel value consists of 
 bits�

and each bit can be either � or �� The picture matrix can be converted to 


matrices from the most signi�cant bit plane to the least signi�cant bit plane�

and each element of these matrices is either � or ��

The algorithm to compress the image is as follows


for�i�Most significant bit plane to least signif� bit plane�
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�

for � each plane �

�

�a� fetch a block of size �N x N�

�b� find the best polarity of the variables

�c� Compute Reed�Muller transform of the block

�d� employ run�length coding on the resultant

transform domain bit plane

��

��

In this method each block of size N x N is considered as a Karnaugh map�

so the number of �s in each block corresponds to the number of true minterms�

After �nding its �xed polarity Reed�Muller form with the minimum number

of terms �
� �
� ���� the new map �in transform space� usually contains fewer

number of �s than the image space map�

For run�length coding three methods are being used
 One dimensional Run�

Length Coding �RLC� ����� Relative Address Coding �RAC� ���� and Relative

Element Address Designate �READ� ����� RAC and READ give almost the

same result� and both of them are better than RLC� Since READ is more

complicated than RAC but has almost the same e�ect on compression� RAC

has been considered to be the best method of coding for this purpose� To

determine the relative address distance codes in RAC� Hu�man coding was

used which gives the best compression factor�
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As it will be shown later� our simulation results did not show a good com�

pression factor �compression factor is the ratio of the size of the original image

to the size of the image after being compressed�� In fact assuming that the

Reddy and Pai�s simulation results were correct� we expected to obtain a much

better compression factor than what we really obtained� After doing more re�

search it has been understood that there exist some crucial errors in Reddy

and Pai�s work which make their simulation results totally unacceptable �these

errors will be explained in detail later��

We cannot get a good result because of the following important point�

When Run�Length Coding is used� the compression ratio mostly depends on

the number of transition elements �a transition element is the element which

is di�erent from its previous element in the same line� in a bit plane matrix�

and not on the number of nonzero elements� For example in a �� bit row

of a block� it is possible to have 
 zeros and 
 ones with just one transition

element as in Fig� �a� alternatively it is possible to have �� zeros and � ones

with � transition elements as in Fig� �b� Obviously the latter one will be

less compressed while the number of nonzero elements in it is much smaller�

Therefore the pattern of the elements is also important� and just reducing

the number of nonzero elements might not be su�cient to obtain a higher

compression ratio�
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VI� EXPERIMENTAL RESULTS

In this section the simulation results of the compression method based on

Fixed�Polarity Reed�Muller form are discussed� For this method the size of

the blocks has been taken to be �� x ��� in order to be comparable with Reddy

and Pai�s simulation results�

In Table � compression factors of the four MSB planes are shown� These

factors have been calculated based on �� di�erent pictures of natural scenes�

Also the average numbers of transition elements for these images are shown�

As it can be seen� the number of transition elements is high which causes the

compression factor to be low�

The data in this table are based on the fact that there is no information

loss after compressing the bit planes�

As we know� the Least Signi�cant Bit planes do not have as much e�ect

on the values of pixels as the MSB planes� Therefore loss of information can

be allowed in these planes� The simplest way to compress the data based on

losing information is to consider some speci�c area� and calculate the number

of �s� If there are more ones than zeros� we change all the elements to one�

otherwise all the elements are changed to zero�

The simulation results showed that to obtain a good quality of reconstructed

images� we should not lose information in the four MSB planes� and in this

the case compression ratio is usually more than � bits per pixel� In other

words the compression factor is usually less than �� which is low compared to

other commercially used compression techniques such as JPEG�
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Fig� � shows the original image of a lady� and Fig� � shows the reconstructed

image with compression factor of �� i�e� � bits per pixel� It can be observed

that with this compression factor the quality of the reconstructed image is

good� Fig� 	 and Fig� 
 also show the original and reconstructed image of a

house� and we can see that the reconstructed image has a good quality� But

compression factor of � is too low to make this method a good candidate for

image compression techniques�

VII� A critique of the Reddy and Pai�s paper on Reed�Muller

Image Compression

Reddy and Pai�s algorithm to compress the image is as follows


for�i�Most significant bit plane to least signif� bit plane�

begin

for � each plane � do

begin

�a� fetch a block of size � �

�b� Compute the Reed�Muller transform of this block

�c� employ runlength coding on the

resultant transform domain bit plane

end�

end�

The idea here is to decrease the number of �s by taking Reed�Muller trans�

form� so that runlength coding results in a lower number of bits per pixel� The
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type of Run�Length coding which has been used� is Relative Address Coding

�RAC�� For their experimental results they have chosen blocks of size ��� x

���� and they have used RAC method with relative address distance code as

in Table ��

They have also suggested that� since in Reed�Muller transform all coe��

cients except the last one� are locally sensitive� a permutation of the input

sequence will alter the number of non�zero coe�cients ��s� in the Reed�Muller

domain� Therefore an optimum permutation of the given input sequence re�

sults in a minimum number of non�zero coe�cients in the Reed�Muller do�

main�

In the following the above method will be investigated�

As it can be seen� the body of the inner loop consists of three steps� There is

nothing wrong with step �a�� but the problems with steps �b� and �c� cannot

be ignored�

The problems with step �b�

In paper ��� the authors have not clearly explained what they have done� but

from what they have written� it is obvious that it must be one of the following

cases


�� The authors have just simply computed the positive polarity Reed�Muller

transform of the block�

�� The authors have performed a permutation on the input sequence� and

then computed the positive polarity Reed�Muller transform�
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In the �rst case we cannot obtain a good compression factor by just com�

puting the Reed�Muller transform of the block� In this case even for the MSB

plane the compression factor on the average is less than ���� which is not

good at all� We can get a better compression factor even if we don�t use a

transformation� and just directly encode the plane �we have developed a new

EXOR�based method by EXOR�ing the adjacent lines and adjacent planes

���� with a much better compression factor and much simpler hardware�� In

addition to that� we used �xed polarity RM transform� and although it is more

general than the �positive polarity� RM transform and should further decrease

the number of terms� still the result is not that good� and the compression

factor for the MSB plane is less than ��

In the second case although the authors have mentioned something about

permutation� they have not found any method to �nd the best permutation�

and still this problem remains unsolved� The authors have clearly suggested

this problem for those who are interested in this issue� and want to work on

it in the future� Therefore if they have applied a permutation� it has been

done exhaustively which is not acceptable� It is obvious that �nding the best

permuted input sequence exhaustively cannot be realized by any hardware�

because it requires too many cases for checking to be a practical method�

In addition to that� it is also needed to send a large amount of information

with each compressed block to make it possible to reconstruct the permuted

matrix� which would further decrease the compression factor�

The Problems with step �c�
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In this step there are some obvious mistakes� and in the following these mis�

takes are discussed


The authors have used Relative Address Coding �RAC� to code the data

after performing the Reed�Muller transform� The code used by Reddy and

Pai is in Table �� These codes are short� and it seems that the reason for

obtaining a good compression factor was to use such short codes� But these

codes are all wrong and if these codes are used to code the data� the data

cannot be reconstructed� In the following� four problems with the data in this

table have been explained in the order of their importance�

�� In Relative Address Coding ���� the relative address is computed either

with respect to the transition elements in the current line or those in the

previous line� And then for all runlengths a method of coding must be used�

For example Hu�man Coding can be used which is the best method for coding�

In the paper by Yamazaki ���� about RAC� other codes have been used which

are not as good as Hu�man from the point of view of compression� but they

take less memory space� In any case� all of these coding methods must satisfy

the following condition


�Each code must not be equal to a �rst part of another code��

Hu�man ���� coding satisfy this condition and also the method used by Ya�

mazaki satis�es them ����� Otherwise the codes cannot be detected�

Obviously the codes in Table � do not satisfy this condition� therefore they

cannot be used to code the data� To make the problem clear� assume a part of
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a block after Reed�Muller coding as in Fig� �� According to Table � the code

for element A must be �� because the relative distance is ��� and the same

code will be chosen for element B because the relative distance for B is �� as

well� Since A and B are adjacent transition elements� the code for them will

be ����� Now if the receiver receives the code ����� it cannot identify if it is

the code for the relative distance �� or it is the code for two relative distance

��� This problem can be found in all of the codes in this table�

�� The authors have mentioned that depending on the probability of the

occurrence� the RAC distances ��� ��� ��� are given special code words� Ac�

cording to Table � the authors have de�ned the codewords for �� and �� but

not for �� In any case the obvious thing is that all the codes must be prede�

�ned� It would be impractical to �rst �nd the probability of the occurrence

of the runlengths for every single matrix of an image� and then according to

that� �nd the codewords for them�

Another important problem is that usually the most common relative dis�

tance is �� so it should have the shortest codeword� which in most cases consists

of just one bit� i�e� either � or �� or two bits� But according to Table � it is

impossible to have a short codeword for relative distance �� because in this

case the condition explained previously cannot be satis�ed�

�� Since the size of the blocks has been chosen to be �� x ��� when the RAC

method is used� there is a need to de�ne the codes for �� positive relative

distances� and not just for 
� From Table � it seems that the authors have not
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understood the RAC method su�ciently well� Probably they have thought

that since the distance of each transition element from one of the row ends is

less or equal than 
� it is enough to just de�ne 
 positive relative distances�

But it is impossible to decode the data this way� and �� positive relative

distances have to be de�ned� although for negative relative distances 
 codes

are needed�

�� In RAC sometimes we need to compute the relative distance with respect

to the transition elements in the current line� But according to Table � it

seems that the authors of this paper have not de�ned them� In any case there

are two possibilities


a� They have de�ned relative distances and used them but they just did

not mention it in the paper� In this case� either their codes are all wrong

like those in Table �� or the authors use very long codewords� because the

condition mentioned for the coding must not be contradicted at least for the

rest of the codewords� But with such long codewords it is impossible to obtain

a good compression factor�

b� They have not de�ned the relative distances� and therefore have not used

any codewords for the relative distances in the current line� In this case the

coding will not be optimum� and the method is not the RAC method anymore�

Some modi�cations have to be done to make the method work at the price of

a decreased compression factor� From the above discussion it is obvious that

the reconstruction of the image is impossible with this type of coding�

��



VIII� CONCLUSIONS AND FUTURE WORK

An image compression method based on Fixed Polarity Reed�Muller trans�

form was created and analyzed in order to improve the method introduced by

Reddy and Pai ���� Despite our several attempts and various variants tested�

we were not able to �nd a good compression factor� Therefore we believe that

our paper demonstrates that FPRM transform cannot be a good candidate

for lossless compression of still images� although the method is very fast� We

have also clearly demonstrated that the paper published by Reddy and Pai on

Reed�Muller image compression contains several errors which unfortunately

make their results totally unacceptable�

Although the experimental results presented here exclude the positive po�

larity Reed�Muller transform and the Fixed�Polarity Reed�Muller transform

from being used directly in lossless image compression� PPRMs and FPRMs

can be still useful for lossy image compression� video coding� image recogni�

tion �feature creation� ��� �� ��� and image reconstruction ���� We believe that

the theories and algorithms developed in nonsingular logic may be useful in

some areas of image compression and image processing� especially when local

features are important� similarly to the applications of Haar transform and

wavelets� These research and application areas should be further identi�ed

and investigated�

One of possibilities is to use FPRM�based lossy image compression for fea�

ture creation in Machine Learning method with supervision� In ��� Exclusive

Sum of Products �ESOP� expressions were minimized with good results for

��



this task� Observe� that an FPRM minimizer that could deal with incom�

pletely speci�ed functions can be used for this task� instead of the ESOP

minimizer� in features domain� Moreover� FPRM minimizer could be �rst

used also in image domain� to create features from the Karnaugh Map image

representation discussed above� Then some high�order coe�cients or their

functions become feature values to be used in supervised learning�
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Figure �
 Encoding of a binary image with a Karnaugh map�

Bit �nd �rd �th

Plane MSB MSB MSB MSB

Compression Factor ��� ��� � �

Average number

of transition elements

for images of size

��� x ��� ����� ����� ����� �����

Table �
 Compression factor and the number of transition elements for typical images

Relative Positive Negative

distance distance distance

� �� ��

� �� ��

� ���� ����

� ���� ����

� ���� ����

� ���� ����

	 ������ ������

Table �
 Codes used by Reddy and Pai for relative distances�
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 Using a Butter�y structure with only EXOR gates to calculate the PPRM transform

for function from Fig� �b�
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Figure �
 Example to Run�Length Coding� The number of �s in �b� is smaller� but the number

of transition elements is larger�
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Figure �
 An example showing contradiction in Reddy and Pai coding�
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Figure �
 Original image of Lena� � bits�pixel�
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Figure �
 Compressed image Lena� 	�
 bits�pixel�

Figure �
 Original image of House� � bits�pixel�
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Figure �
 Compressed image of House� 	�
 bits�pixel�
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