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Regular layout is a fundamental concept in VLSI design which can have appli�
cations in custom design for submicron technologies� designing new architectures
for �ne�grain Field Programmable Gate Arrays �FPGAs� and Electrically Pro�
grammable Logic Devices �EPLDs�� and minimization of logic functions for exist�
ing FPGAs� PLAs are well�known examples of regular layouts� Lattice diagrams
are another type of regular layouts that have been recently introduced for layout�
driven logic synthesis ��� In this paper we extend and combine these two ideas�
by introducing the multi�level PLA�like structures� composed from multi�output
�pseudo�symmetrical lattice planes and other planes�multi�input�multi�output reg�
ular blocks�� The main idea is to decompose a non�symmetric general function to
planes� in order to realize as much as possible of the functionwith totally symmetric
and regularly connected planes�

� Introduction�

The concept of a cellular array to realize logic is an old one� but so far� only
the PLA�like structures �including EPLDs and Complex PLDs � CPLDs� have
achieved successful status commercially� In the past� three types of reg�
ular structures have been proposed� ��� PLA�like based on a rectangu�
lar grid ����������������� ��� Based on binary trees ����������� ��� Lattice dia�
grams ��������������

In PLA�like structures� every cell has four neighbors in a rectangular
grid� One can observe that in these structures there are two types of functions
�planes�� ��� the subfunction generators �such as the AND plane in PLAs��
��� the collectors of subfunctions �such as the OR plane in PLAs�� The inves�
tigations of improved PLA�like cellular structures have gone into the following
directions� ��� Replacing the OR gates in the collecting plane with other kind
of gates �for instance an EXOR instead of an OR in ������ ��� Replacing the
AND gates in the subfunction�generating plane with more powerful columns
realizing sequences of arbitrary two�input gates �such as for instance the gen�
eralized Maitra terms ����� or orthogonal functions������� ��� Adding function
generators on the inputs to the generating plane ��� ��� Adding more com�
plex generating planes� or more levels of generating planes with the simplest
possible gates� such as in TANT networks� ��� Combining � and 	� such as
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in Multi�Valued TANT networks ��� �	� Adding vertical and horizontal buses
for cells� as in Concurrent Logic
s �Atmel
s� Architecture ���� �
� Creating
more powerful cells as in Motorola� Atmel or Xilinx ���� architectures ����
��� Adding more connections to neighbors ���� All these ideas proved to be
practically useful and contributed to the concept of the new designs�

Binary tree based regular structures were discussed in ������������ The
disadvantage of these structures is fast growth of tree width for some func�
tions and irregularity of trees in practical problems� Such structures were
investigated for Binary Decision Diagrams� Permuted Reed�Muller Trees� and
Kronecker Decision Diagrams�

A well�known switch realization of symmetric function� presented in the
classical textbook by Kohavi �Fig��a� can be a starting point to derive three
structures� Universal Akers Array�UAA� �� Lattices ��� and the new
Multi�OutputPseudo�SymmetricArray �MOPS� and hierarchical MOPS
PLAs introduced below�

The approach of Akers from ��� was the �rst in the literature to propose
lattices� It can be treated as an attempt to combine the properties of PLA�like
and tree�like structures� Although based on rectangular grid similar to PLAs�
the UAAs used multiplexer cell� allowing to use Shannon expansions� and thus
UAAs were similar to tree expansions� To maintain the regularity of arrays for
non�totally symmetric functions the variables were repeated many times� The
universal construction of Akers basically created trees inside a square array�
by repeating consecutively the same variables� Thus� cancelling all path a �a
transformed a directed acyclic graph to a tree� Aker
s method� however� was
very wasteful� leading to large arrays for all functions� No e�cient procedures
for �nding the order of �repeated� variables were given� and it is easy to show
simple functions that have very large UAAs� Besides� Akers in� presented also
many other interesting symmetry�based properties of non�universal realizations
of single and multi�output functions� that can be utilized to develop new design
methods and e�cient computer algorithms�

Figure � presents the derivation of both UAAs and Lattices from switch
realization of a symmetric function� Figure �a shows the multiplexer subcir�
cuits �oval loops� drawn on the switch realization� Each multiplexer has an
�input� control variable� and two data inputs� selected by a state � or � of
the control variable� For variable b the data inputs � and � correspond to �b
�denoted as b�� and b� respectively� This circuit leads directly to Universal
Akers Array connection structure and layout� but not necessarily to Akers

way of repeating variables and synthesizing functions� The lattice from Fig�
ure �b is derived from the circuit in Figure �a� Circles with � are OR gates�
circles with � are AND gates� Small circles are negations� Observe that every
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Figure �� Derivation of Universal Akers Arrays and Lattice Diagrams from switch realization
of symmetric functions� �a� switch array with multiplexers grouped for UAAs� �b� structure

of UAAs and Lattice Diagrams derived from the switch array in �a��

variable from a diagonal bus goes to one negated AND and one non�negated
AND of a multiplexer with OR gate as its output� Each signal Si� correspond�
ing to a symmetry index of the function� is set to a Boolean constant� Each
multiplexer in the lattice obtains one data input from North and one from
East� and directs its output to South and West� Diagonal lines are used for
inputs �control variables of multiplexers�� UAA has the same structure and
gates� but has a square shape of area ��n�� � �� � ��n�� � �� cells� and a
total of �� � �n�� � �� repeated variables on the diagonal� Thus� for instance
every function of 	 variables can be realized in a � � � square with variables
d�d�c�a�b��a��c� �d� �d on a diagonal� Akers proved that every single�output binary
function can be realized with such a structure� but an exponential number of
levels was necessary �which means� the control variables in diagonal buses are
repeated so many times that the structure becomes completely impractical for
functions with more than � variables��

The remaining of this paper is structured as follows� Section � intro�
duces Lattice Diagrams and illustrates how to realize incomplete multi�output
functions in them� Section � analyzes reasons of ine�ciency of multi�output
lattices� MOPS arrays and new MOPS�based PLAs for symmetric functions
are introduced in section 	� Section � generalizes these architectures for ar�
bitrary incompletely speci�ed multi�output functions� and section � concludes
the paper�
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� Lattice Diagrams� Lattice Arrays and Regular Layouts

Because of the progress in hardware and software technologies since ���� our
approach is quite di�erent from that of Akers� We do not want to design a
universal array for all functions� because such array would be very ine�cient
for nearly all functions� Instead we create layout�driven logic function
generators which give e�cient results for many real�life functions� not only
symmetrical ones� We argue that there is no need to realize the �worst�case�
functions� since it was shown in �� that� in contrast to the randomly generated
�worst�case� functions� �� of functions from real�life are decomposable by
Ashenhurst�Curtis type of decomposition� Therefore� the �other� functions
are either decomposable to the easy realizable functions� or they do not exist
in practice �	����

We assume layout to be a two�dimensional shape such as a trapezoid with
horizontal parallel lines� Let us assume for a moment that outputs go vertically
and input variables come in horizontal buses �as in Fig� �b�� Then the �vertical
growth� of layout is increasing the depth of the circuit� and the �horizontal
growth� increases the circuit area in the other dimension �breadth�� We anal�
ysed vertical and horizontal growth in various realizations of arithmetic� sym�
metric� unate� �tough�� and standard benchmark functions in lattices� PLAs
and trees� Based on investigations of new commercial technologies ��� and dis�
cussions with their designers we established these and other bottlenecks in the
regularly structured designs� Finally� we analysed the cases that Lattice Dia�
grams gave poor solutions� We found that the multi�output lattices �� di�er
signi�cantly from the single�output ones �� Based on all of above� we arrived
at substantially generalized concepts of lattices and related PLAs� Although
for simplicity we will use here mostly the completely speci�ed multi�output
functions� all our new methods are also for incompletely speci�ed functions�
Moreover� the more unspeci�ed is the function� the better are the results� �We
extended the new methods also to the input data speci�ed as multi�output
Boolean relations �	� A function or relation is decomposed to relation blocks�
and next each of the relation blocks is realized in hardware as the simplest
function corresponding to this relation��

De�nition �� The Producted Cofactor fprod of function f is an intersection of
product of literals prod and function f � It is created as follows� ON �fprod� �
ON �f� � prod� OFF �fprod� � OFF �f� � prod�

Observe� that while calculating fprod � all minterms outside prod become
don
t cares� Producted Cofactor fa
b is equivalent to standard cofactor fa
b �
f�a � �� b � �� c� d� ��� inside product a�b� but is unspeci�ed outside a�b� in
contrast to the standard cofactor� Note that although these two concepts are
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Figure �� Creation of Multi�Output Ordered Shannon Lattice for ��input� ��output function
�f�� f�� f	�� �a� the illustration of the method to create the expansions and of joining the
non�isomorphic nodes in �rst three levels of the lattice� �b� the complete lattice diagram
derived using the method from Fig� �a� �c� its realization in �x� Ordered Shannon lattice�
�d� pass�transistor layout realization obtained directly from the lattice in Fig� �c� �e� pass�

transistor layout from �d� after logic	layout simpli�cations and compaction�

similar� they are not the same�

Figure � presents the method to calculate the Ordered �x� Shannon Lattice
Diagram for a multi�output� incomplete function� Ordered means the same
order of variables and one variable per level� �x� means each cell has at most �
predecessors and at most � successors in a regular planar grid� Because func�
tion
s outputs f�� f�� f� are initially placed in the closest proximity ��� we call
this a �Distance�� Lattice� type of realization of a multi�output function� Cre�
ating the lattice is based on calculating the producted cofactors in expansions�
starting from the function outputs� and next joining some nodes together to
produce a regular level of the lattice� Kmaps are used to illustrate calculat�
ing producted cofactors and combining non�isomorphic nodes on the bottom
of the lattice� In Figure �a� only the �rst three levels are shown� The nodes
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are of two types� S type nodes realize the Shannon expansion� S
 nodes realize
the �rotated� Shannon expansion� it means an expansion with negated control
variables� Example of S
 expansion application is in the second from left node
of the second row in Fig� �b� Observe in Fig� �a that this method creates in�
complete subfunctions in lattices� even starting from complete functions� The
�gure shows the nodes of the lattice diagram� and how they are joined to form
next levels of the lattice� As we see� at every level� more and more don
t cares
are introduced� which produces an improved quality of results �The method
for single�output complete functions is in ��� At every node of the diagram�
the subfunction is represented by OFF and ON cube sets� or by pointers to
respective ON� and OFF� BDDs� Kmaps are used here just for an ease of
explanation�� Fig� �b presents the entire lattice diagram� Shannon expansions
have control variable a� and have negated data inputs from left �denoted by a�

or �a�� and positive data inputs from right �denoted by a�� Rotated Shannon
expansions have control variable a�� and have negated data inputs from right
and positive data inputs from left� By writing a � � in a node we denote that
by selecting a constant a � � for control variable a we �x the right direction
�corresponding to the non�negated variable�� so that no expansion with respect
to variable a is actually executed� By writing a � � in a node we denote that
by selecting a constant a � � for control variable a the left direction was �xed�
and no expansion with respect to variable a is executed� Fig� �c presents the
corresponding �x� lattice array realization�

Layout from pass transistors is the future of sub�micron technologies and is
recently investigated by many researchers� but no papers on lattice realizations
with pass transistors have appeared yet� Fig� �d presents the pass�transistor re�
alization obtained directly from Fig� �c �For simpli�cation� technology�speci�c
details such as inverters and�or pullups are not shown� Input buses for vari�
ables and their negations are slightly skewed for better visibility only�� The
bold connections are the actual pass�transistor layout found� We impose this
layout on the standard grid structure of pass�transistor multiplexer cells drawn
with thin lines� just to demonstrate how the layout was mapped directly from
the lattice diagram�

Fig� �e presents the pass�transistor layout after logic simpli�cations aa � a

and horizontal compaction� Such layout model derived directly from Lattice
Diagram data structure can be used in a custom�layout software generator�
In such case� further compaction can be done by shifting in Fig� �e function
f� one cell to the right� Another approach is to use this layout to develop
mask�programmable Lattice�type �building block� �PGA or EPLD type� for
PLA�EPLD technology �such block is a generalization of AND and OR planes
used now in commercial devices��
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CAD tools for lattices and other regular layouts are presented in more
detail elsewhere ����	���������� In short� the Lattice for a multi�output func�
tion is expanded level�by�level� and from left to right in every level� Usually�
this means combining some non�isomorphic nodes of trees� If only one non�
constant successor of a node exists� it is not combined with the neighbor� For
nonsymmetric functions� this procedure means repeating some variables in lat�
tices� The variable and expansion type controlling heuristics serve to avoid too
many repetitions� and also to create as few as possible branches of the lattice�
The e�ort is made to complete every branch of the lattice as soon as possible�
We have implemented a set of algorithms for generating Lattices in the C lan�
guage which runs in the UNIX environment on SPARC workstations ������� It
can be easily seen that for the real�life functions we have generated uniform
and simple Lattices� which are the most restrictive representation from the
family of the regular layouts we will introduce in this paper� with the reason�
able number of nodes and levels� Comparing a number of function variables
and a number of levels it can be seen that for the worst case function in this
set of benchmarks the average number of time a variable is repeated is three�
It is even more important that for the majority of tested function the aver�
age repetition is close to two� Our worst total number of levels was �
�misex�	�esp�� while it would be � ��� in Akers method for the same function�
We have thus demonstrated that the lattice representation of a single�output
function leads to practical solutions and that the size of that representation
could be very attractive especially for technologies limited by the interconnec�
tions delay�

� Partitioning Lattices for Multi�Output Functions

Although every single� and multi� output function can be realized in a sin�
gle lattice with repeated variables� for some functions the solutions are quite
wasteful� It can be shown that even for symmetric multi�output functions it is
necessary to repeat variables when the functions are in �Distance�� Lattices��
�An example of such a �Distance�� Lattice� where functions are realized to�
gether and in the closest geometrical distance is shown in Fig� �b�� So� may
be each function should be realized separately� The problem is this� If out�
put functions are de�ned on only a subset of variables each� especially disjoint
subsets� mixing the positive and negative cofactors of functions� as shown in
Fig� �� can often only worsen the case by creating more complicated subfunc�
tions� Then� it is reasonable to realize the output functions separately� But
now much of the gain of common symmetries can be lost� and big �empty�
subareas are created �as shown between S�� S��� and S��� in Fig� �d� for a
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Figure 	� �a� Symmetric function S��a� b� c� d�� �b� Symmetric function S����
a� b� 
c� d�� �c�
Sum of S��a� b� c� d� and S����
a� b� 
c� d�� �d� multi�output Lattice for 
counter of ones
� �e�

MOPS	OR PLA for the 
counter of ones
�

multi�output Lattice for �counter of ones� function� realized with separate re�
alization of outputs�� While the common realization of functions in Distance��
Lattice or Distance�k lattice with small k leads in general to variable repetition
and in consequence to the �vertical growth� of the layout� their independent
�disjoint� realization leads to the horizontal growth of the layout� Thus� large
area realizations of such functions are an argument against using simple lat�
tices �see example �counter of ones� in Fig� ���

The solution to this problem is o�ered by the theory of functional decom�
position� It was long known that the functional �Ashenhurst�Curtis� decom�
position leads to simpler and thus more manageable functions� In addition�
the decomposition can be controlled to create symmetric �multi�output� pre�
decessor function blocks �	� Thus� �decomposed� �partitioned� regular struc�
tures� and corresponding design methods should be devised� in order to bal�
ance the horizontal and vertical growth and to optimize the area and speed for
�incompletely�speci�ed� multi�output functions�

Assuming that all variables in control inputs of a lattice level are not
negated �which means� all expansions are of S type�� we obtain the simple

totally symmetric functions� Such functions are also called totally symmetric

functions of positive polarity� They group to one level Sk all minterms that
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have k ones in their binary number �see Figure �a�� Because there are n vari�
ables� and each of them can be negated or not� there are �n di�erent polarities
of symmetric functions� each polarity being a binary vector of polarities of
variables� If a variable is negated� the corresponding bit in the vector is ��
otherwise it is �� Fig� �a shows function S��a� b� c� d� of polarity ���������� with
characteristic pattern centered in polarity cell ������� Fig� �b shows function
S����a� b� c� d� of polarity ��������� with characteristic pattern centered in polar�
ity cell ������� Dotted lines demonstrate characteristic patterns for symmetric
functions of various polarities� The polarity cell is always in the center of
the pattern� An incomplete function to be synthesized� realizable as a sum of
symmetric functions S��a� b� c� d� and S�����a� b� �c� d�� is shown in Fig� �c�

The concept of polarity expands thus greatly the power of symmetric func�
tions at a very low price of adding S
 expansions to the diagrams and layoyts�

It can be proved that�
Theorem �� Every multi�outputBoolean function can be decomposed to vector�
OR of symmetric �multi�output� functions of various polarities

By a vector�OR we understand that each output signal is an OR of some
symmetric functions from the MOPS plane� This is illustrated in Fig� �e�
where MOPS�OR PLA for the �counter of ones�� a totally symmetric function
of polarity ������ is realized� In the worst case� the symmetric functions in
this decomposition become prime implicants of a standard AND�OR PLA�

Theorem �� Every multi�output Boolean function can be decomposed to vector
EXOR of symmetric functions of various polarities�
Theorem �� Every multi�output Boolean function can be decomposed to vector
AND of symmetric functions of various polarities�

Theorem �� Every multi�output Boolean function can be decomposed to a
serial composition of MOPS of symmetric functions of various polarities and
AND�OR PLA�
Theorem �� Every multi�output Boolean function with subsets SVi� i � �� ���K
of mutually symmetric variables can be decomposed to a serial composition of
K MOPS arrays� MOPSi� i � �� ����K followed by an AND�OR PLA �Fig�
�d�� Each MOPSi� i � �� ����K realizes symmetric multi�output functions on
set of variables SVi� and feeds its outputs to the AND�OR PLA� Function F is
decomposed as F � H�G��SV��� G��SV��� ����� GK�SVK �� REM �� where REM
are the remaining variables of F that did not occur in any symmetric set SVi�

It results from�� other references� and our tests� that many interesting func�
tions such as counters� threshold� EXOR� parity� and arithmetic have good de�
composed realizations� It can be also shown� that whenever some partial sym�
metries exist in the data �which is often the case�� the number of the MOPS
planes to realize the component symmetric functions in these decompositions
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Figure �� Multi�Output Pseudo�Symmetric Arrays �MOPS� PLAs for symmetric functions�
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with EXOR�plane for totally symmetric functions�

is much smaller than the number of prime implicants in AND�OR decompo�
sition used in PLAs� The results are especially good for strongly unspeci�ed
functions� Thus� the goal of the next sections will be to develop architectures
that will make use of these decompositional properties of real�life functions �in
contrast to the randomly generated functions that are the worst case ����

� MOPS Arrays and Generalized PLAs for Multi�Output Symmet�
ric Functions

In Figure 	a we present another way of grouping switches to the oval loops
representing multiplexers� and the circle loops representing AND gates� This
way� a multi�output function is created� but the same connection structure
as in Fig� �a is basically preserved� Connections from diagonals are exactly
the same� but the direction of signals and location of OR gates is reversed�
The corresponding MOPS is presented in Figure 	b� Observe� that the whole
MOPS can serve as a term generator� with terms being symmetric functions fi�
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corresponding to symmetry indices Si� The �nal output functions are created
by OR�ing function fi �Fig� 	c�� Sometimes better results are obtained when
ORing� EXOR�ing �Fig� 	d�� or AND�ing is done on arbitrary symmetric
functions fI in the collecting plane� where I is an arbitrary set of indices i�

The presented decompositions lead to a Generalized MOPS PLAs in which
MOPS plays the role of a generating plane� and OR� EXOR� or AND plane is
used for collecting ��������� As an example� the single�plane MOPS�OR PLA
has a single�polarity MOPS plane for non�repeated variables� followed by an
OR plane� Such PLA can realize only symmetric functions�

�Counter of ones� is a known totally symmetric function that calculates
in natural binary code the number of bits ��� among its all arguments� For
instance� for four input variables� a� b� c� d� the �counter of ones� is described
by the following output functions h� � S��a� b� c� d�� h� � S����a� b� c� d�� h� �
S����a� b� c� d��

Figure �d�e compares disjoint realization of �counter of ones� function
in an Ordered Shannon Lattice and in MOPS�OR PLA with single MOPS
plane of single polarity� Observe� that because Boolean unions �ORs� of sym�
metric functions are symmetric� only symmetric functions can be realized in
MOPS�OR PLA with single�polarity MOPS� as well as in all other MOS PLAs
with only one single�polarity MOPS plane�

� MOPS PLA Architectures for ArbitraryMulti�Output Functions

To allow realization of arbitrary multi�output functions we have done
further generalizations to MOPS PLA from section 	�
��� OR plane is used for summing outputs from several MOPS planes �see
Fig� �a for an example with � MOPS planes�� Each MOPS plane realizes
a symmetric function of a di�erent polarity� Practically all such planes are
realized as a single plane with the same input buses� possibly inverted inside the
plane to create various polarities� Alternatively� inverters can be parts of the
mux gates� Finally� both a variable and its negation can be used simultaneously
in these input buses�
��� Each MOPS plane can have di�erent input variables �and polarities�� see
Fig� �b� This requires variable folding�
��� Variables in each MOPS can be repeated� as in standard Lattices �see
Fig� �c��
��� Variables in each MOPS can be repeated� and AND�OR PLA is used for
collecting� see Fig� �d� This structure realizes functions decomposed according
to Theorem ��

It can be proved that every function is realizable in a generalized PLA

��
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Figure � MOPS PLA architectures for arbitrary multi�output functions� �a� an example
of a general scheme of MOPS	OR PLA with two MOPS planes of various polarities� �b� a
general scheme of MOPS	EXOR PLA with many MOPS of various polarities� and various
variable sets� �c� MOPS	OR	EXOR	AND PLA with MOPS using repeated variable and
Maitra functions in collecting Maitra plane� �d� MOPS AND	OR PLA with MOPS using
subsets of symmetric variables and collecting AND	OR PLA according to Theorem ��

having only one of these generalizations� thus it is also realizable if more than
one of these generalizations are applied together� Fig� �a is a MOPS�OR
PLA with two MOPS planes� each for di�erent polarity of the same variables�
Such structure can be used to implement function from Fig� �c� decomposed to
two symmetric function from from Fig� �a�b� respectively� The same extension
types as for MOPS�OR PLAs can be done for MOPS�EXOR PLAs �Fig� �b��

A very interesting and general realizations can be obtained using a collect�
ing plane in which each function is a Maitra cascade��� Fig� �c� The collecting
plane is then called a Maitra plane� Every row of the Maitra plane is a Maitra
function� i�e� a sequence of arbitrary two�input gates�

Another powerful decomposition is based on Theorem � �Fig� �d� drawn
in CPLD�like form�� Each MOPS is created for a maximum group of totally
symmetric variables in a function� For instance in Fig� �d� the maximum
groups were� fa� b� c� dg� fe� f� g� hg��� etc� Variables x�� ��xi were not in any
group of symmetric variables�

In conclusion� we can state that the Generalized MOPS�based PLAs unify
two former concepts of regular arrays� PLAs and Lattices� and borrow from
CPLDs the concept of partitioning�

��



	 Conclusions

The idea of partitioned lattices is very captivating from the point of view of
submicron technologies� because� ��� connections are short� ��� delays
are equal and predictable� ��� late�arriving variables can be given closer to the
output� and ��� logic synthesis can be combined with layout� so that no special
stage of placement and routing is necessary �similarly as in PLAs�EPLDs��

We showed new extensions to the concept of lattice layout developed pre�
viously� These extensions produce better results� especially for multi�output
symmetric functions with many outputs� Although presented examples used
non�repeated input variables to MOPS� we generalized also the decomposition
algorithms to arbitrary functions realized in any MOPS plane� which requires
repeating variables in them� Thus� our algorithms for repeating variables in
lattices ����	��� are still useful for the most general MOPS PLAs� However� the
number of repetitions is smaller than in standard lattices� thus leading in most
cases to more e�cient function realizations with MOPS PLAs�
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