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Abstract- The  proposed factorization methods for 
regular arrays of two-input cells have several impor- 
tant advantages over the existing logic representations 
and methodologies: (1) The logic representation and 
design implementation are consistent. (2) The stages 
of logic synthesis and physical design are effectively 
merged into a single stage. (3) The structure of the  
mapping solution is a regular rectangle. (4) Since the 
connections are mainly between neighbor cells. the  
wire delay is reduced comparing to other design meth- 
ods. ( 5 )  Since the structure is regular, the creation of 
the high-performance tools is significantly easier. (6) 
The methods can be applied to  fine-grain FPGA de- 
sign, standard cell, gate matrix layout and sub-micron 
technologies. 

1. INTRODUCTION 

A new methodology for designing Logic Cell Arrays 
(LCA) has been introduced in [l,  21 and extended in [7]. 
LCA is a rectangular array of AND, OR and EXOR cells 
with negated inputs and outputs, and vertical and hori- 
zontal buses. similar to Fine Grain Field Programmable 
Gate Arrays. Such array realizes an Exclusive S u m  of 
Complex Terms (ESCT), where complex terms are cas- 
cade combinations of two-input AND, OR and EXOR 
gates with possible negated inputs, and assuming the 
same order of input variables in them. Thus! LCA is 
a generalization of an EXOR PLA. 

The problem of LCA minimization becomes that of 
ESCT minimization. Our approach introduces a new 
logic representation for AND/OR/EXOR factorization of 
multi-level functions realized in a regular form. It was 
shown in [6] that an extended cube representation and 
efficient minimization algorithms can be used that gener- 
alize the ESOP minimization approach from [3, 51. This 
paper is a follow-up to our previous papers, especially [6]. 
We present in more detail the theorems and methods of 
multi-level regular factorization to two-input cells. 

2.  BASIC DEFINITIONS 

Definit ion 1. A complex term is a string of literals 
connected by a set of Boolean operators, and no literal 
can appear in the string more than once. The operators 
in the complex term can be any combinations of AND, 

OR, XOR, NAND, NOR, XNOR (denoted by ., +, e, 
: 9  + and respectively). .411 operators have the same 
priority. All operations must be performed in a sequence 
from left to right. 
Example 1. Each of the following rows represents a com- 
plex term: (ab)  + c,  ( a  + b ) ~ ,  ( ( a  @ b)  + F ) ,  ( ( c b )  + a )  @ d .  
Expression ( ( a b )  + & ) e )  is not a complex term. because 
the variable b appears twice. Expression a + (b? )  + d is 
not a complex term because the operations are not in a 
sequence from left to right. However. if the order of vari- 
ables is changed to b ,  e, a ,  d.  then ( b F )  + a + d becomes a 
complex term. 
Definit ion 2 .  An multi-level c u b e  (m-cube for short) 
is a cube notation to present complex terms. Given a 
complex term, each literal of the complex term as well as 
each operator of the complex term is represented by the 
vector: 

- 

where ~ p c f . . . c { ~ ' - ~ )  is a pi bit vector representing an pi- 

valued literal. and dfd: . . .d{m- l )  is a m bit, vector repre- 
senting an operator. 

The operators can be encoded in many different, ways. 
In this coding scheme. three types of operators are as- 
sumed to be used in a complex term: AND, OR and XOR. 
So two bits are needed to store each operator. One en- 
coding scheme, which is referred to as standard cordzng. 
is: 00 - not used, 01 - AND, 10 - OR, 11 - XOR. 
Example 2 .  Given a complex term T = Xioo1' . 

11 0' +xi 10 11 @ Xjoll'. By using the standard coding. 
the complex term is presented by the m-cube as follows. 

x1 . x2 + x3 6 x4 
001 01 110 10 101 11 011 

Definit ion 3. The negation of a complex term is as- 
signed the value 1 if the complex term has the value 0 ;  
and is assigned the value 0 if the complex term has the 
value 1. 
Definit ion 4. The operators in the complex terms are 
referred to as l i teral  opera tors .  The operators applied 
on a pair of complex terms are referred to  as term op- 
era tors .  
All the term operators and literal operators are: 
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Term 
Term Operator 
Term 
Literal o p c r a t o r  

= P’ @ x,s” 0.. .a x;., 
Since programmable inverters at each cell input are as- 
sumed to  be available, not only P ( i  - 1) 0S;’Is’ can be im- 
plemented, but also P( i  - 1) 0z:’. In other words, the 
head of the complex term can be negated or non-negated. 
Example 7. P = (a.b)+Fis acomplex term, Q = ab+? 
is also a complex term. 
Lemma 1. All the Boolean properties, defined on two 
complex terms, can be applied on the head and the tail 
of a complex term. 

A N D  OR X O R  N A N D  NOR XNOR 
- - 

A V 121 
- 
A V w 

- - 
+ e €  - + e  

Definition 8. A positive complex term is a complex 
term without NAND, NOR and XNOR operators. An 
ESCT contains only positive terms are referred to as in 
positive term form. 
By the above definition, no literal operators are negated 
in a positive complex term. Please note that the negations 
on input variables are allowed. 
Example 8. a .  b is a positive complex term. a-b is not a 
posit,ive complex term, because there is a NAND operator 
in the term. 
Definition 9. An or-free complex term is a complex 
term without OR and NOR operators. An ESCT that 
contains only or-free complex terms is called an or-free 
form. 
In an or-free complex term, its literal operators may be 
any combinations of AND, NAND and XOR operators. 
XNOR operators will be normalized to XOR. as discussed 
in more detail in [4]. 
Example 9. a @ b c is an or-free complex term. a + b 7 c 
is not a or-free complex term: it contains an OR. 

3.  THE ESCT MINIMIZATION PROBLEM. 
The starting point to ESCT minimization is a mini- 

mized Exclusive S u m  of Products (ESOP) expression. The 
main idea of the ESOP minimization. as iinplenient,ed 
in programs EXORCISM-MV-2 and EXORCISILI-M\’-3. 
[ 3 ,  41. is to link (reshape) a pair of product terms. This is 
done using exorlink operations [3 ,  41. The product terms. 
after reshaping, may be able to merge with other prod- 
uct terms. Thus the total number of product, terms in 
an ESOP is minimized. The same idea is used in the 
ESCT minimization [6]. The key operation in the ESCT 
minimization is to link (reshape) a pair of complex terms. 
We found that the complex term lanking could be done 
is a way similar to the product term (exor)linking. As 
shown in [4]. any two product terms in an ESOP can be 
linked and can generate a number of resultant product 
terms. The number of resultant product terms depends 
on the dzstance of two product terms. We found that this 
property exists also in ESCTs. Since the linking rules 
for complex terms are much more complicated than the 
linking rules for product terms, all the different linking 
cases are discussed [6]. Several special cases are also dis- 
cussed [6!. In section 4 a new cube operation, m-lznk. 
which is an extension of exorlink, is introduced. Just like 
for the exorlink, we proved that the m-link operation can 
be applied on any two complex terms in a ESCT, and 
the number of resultant complex terms depends on the 
distance of two complex terms [4]. Then in section 5 the 
distance of two complex terms is defined with a thorough 
analysis of all different linking cases. Section 6 presents 
briefly our experimental results on MCNC benchmarks. 
Section 7 concludes the paper. 

A. Different Linking Cases 
It was shown in [6] that linking of two complex terms 

can be done step-by-step linking the heads and tails of the 

270 



complex terms and their subterms. In this section, linking 
of heads and tails of two complex terms is discussed. In 
general the two complex terms can be written in the form: 
PI = P;-'@1 X:., P2 = P2n-l @a -'ifn where 01 and 0 2  

are two tail operators in PI and P2 respectively. There 
are four cases to be investigated for heads: 
[l] Pr-'= pp-1; 

[2] P;"-'= pt-1; 
- 

[3] 
[4] 
Note that case 1 includes the case that both heads are uni- 
versal. The case 2 is that one of the heads is the negation 
of the other. Case 3 is the case that one of the heads is 
universal. Since the commutative law holds, when either 
one of the heads is universal, belongs to this case. The 
last case is that the two heads are different and none of 
them is universal. Thus all the different cases are included 
in the above four cases. 
Similarly, there are four different cases for tail literals: 

pr-1 # p;-', pr-l = 1"-1; 

P;"-' # P;-', Pr-' # In- ' ,  P;-' # In - ' ;  

[l] x , s n  = Xf" ; 
[2] x,sn = x2n; 

- 

[3] 
[4] 
Please note that in case 3 ,  one of the tail literals is univer- 
sal. If the head is also in case 3 ,  the universal head and 
t,he universal tail literal are in different complex terms. In 
other words, the case is either Pi"-' and Xfn  are univer- 
sal, or P2n-l and XZn are universal. If both Pi"-' and 
x,Sn are universal, or both P;-' and X f n  are universal, 
the case should be taken care of at a previous stage by 
evaluating P;" @X,";:' and PT @ Xf;T1 . So at the current 
stage, if both the head and the tail are in case 3 ,  we only 
need to  consider the case that the universal head and the 
universal tail are in different complex terms. 
There are six cases of positive literal operators: (1)  both 
operators are AND; (2) both operators are OR; (3)  both 
operators are XOR; (4) one operator is AND and the 
other is OR; ( 5 )  one operator is AND and the other is 
XOR; (6) one operator is OR and the ot.her is XOR. There 
are also the cases that the literal operators are negative. 
However, all the negative operators can be converted to 
the positive operators without increasing the number of 
complex terms. So only the positive operators are consid- 
ered here. There are totally 4 (case on heads) x 4 (case 
on tail literals) x 6 (cases on tail operators) = 96 different 
cases. 

In [4], the concept of simplified complex terms is 
introduced. In a simplified complex term, some of the 
above conditions would not occur. For instance, Pn-' 8 I 
is not a simplified complex term. Table 1 lists all the dif- 
ferent linking cases. Since the simplified complex terms 
are assumed. the tail operators adjacent to universal lit- 
erals are AND only. there are 23 cases which do not exist. 
So there are 93 - 23 = 73 cases listed in Table 1. 

In Table 1: the top left block shows the cases that the 
two complex terms have the identical heads and identical 

,Y:- # X f n ,  ?ifn = I :  
X 2 n  # Xfn, .'i,"" # I ,  Xfn # I .  

I p: = p: II (+. +I I I ( + . + I  I i + .  + I  

tails. There are six cases in this block, which are all con-  
binations of tail operators. J n  the first row. the second 
block from the left has three cases: (1) both operators 
are AND! (2 )  one operator is AND and t,he other is OR,  
(3) one operator is AND and the other is -\;OR. This block 
includes the cases that the two complex terms have the 
identical heads but different, tail literals. and one of the 
t.ail literals is universal. According to t,he simplification 
rules from [4], if the tail literal is universal. the tail oper- 
ator is AND. So only three cases instead of six cases are 
in this block 

The above discussion is based on the positzve term form.  
Comparing with the or-free form.  we found t,hat the lat- 
ter one has two advantages: (1) If t,he or-free form is 
used, the number of linking cases is less than in the pos- 
itive term form. This is because the OR operators are 
eliminated from the ESCT. The coAibinations of literal 
operators are reduced. (2 )  P; = Pj is one of the con- 
ditions to be checked before the linking. Checking this 
condition is more convenient by using the or-free form 
than the positive term form. 
There are 40 cases in Table 2 .  This number is significantly 
smaller than in the positive form, which is 73.  All these 
cases were proved in [4] and discussed also in [6]. 

Two Complex Terms with Identical Tails. We con- 
sider here the case that the tails of the t,wo complex terms 
are the same, and the two heads are different. In this case: 
tBhe tail operators can be AND. OR or XOR. The linking 
of such two complex terms are shown by the following 
three equations: 
(Pr-' ' X,".) kJ ( P y  ' X,".) = (Pr-1 Id q - 1 )  . x,"- (1) 

(pi"-'+ x , s n  ) Id ( q - 1  + x,s- ) = (Pi"-' kl P:"-') . ( 2 )  
(p2'-l$x,s.)Id((P,"-l~?.ri,s~) = p2'-1ldPj-' ( 3 )  

- 

Above three equations show that if the tails of t,wo pos- 
itive terms are the same, then the tail can be extracted 
out. To extract an identical tail, the following operations 
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are performed: (1) if the tail opera.tor is AND, the tail 
remains the same; ( 2 )  if the tail operator is OR. the tail is 
negated; (3) if the tail operahor is XOR, the tail becomes 
an universal tail. 
As proved in [4], the above three equations can be then 
applied on the subterms if the tails of the two subterms 
are also the same. Note that if the or-free form is used. 
then the OR operators have been converted to AND op- 
erators and Equation (2)  above is not needed. However! 
converting to or-free form does not, change the linking re- 
sults, as shown below. 
Example 10. Given are two complex terms P1 = P;"-'+ 
X:n and P2 = P2n-l +X:. . The two complex terms have 
identical tails. Applying Equation ( 2 )  on the t,wo complex 
terms generates: 

If the two complex terms have been converted to or-free 
form before hand. then PI = P;"-'. and P. = P3n-l. 
X,Sn. Applying Equation (1): on the two complex terms 
generates: 

- 
Pl"-'+ x,s. U P;-' + x,s- = ( P y  kJ Pp-1) ' x,". 

-- - 
- 

- - ~  ---- 
p;-l.x,snUp;-l.AY;n =(P;-lNP;-1) ..ri.,sn= (P?-lw 

P;-') . .U,".. 
- 

For both the positive term form and or-free form. the 
results are the same 
Theorem 1. The identical trailing part. of two complex 
terms does not increase the number of resultant complex 
terms in complex term linking. 

x * l + l  = 
:+I 

is determined by the number of different literals in the 
product terms. A pair of identical literals in the prod- 
uct terms do not increase the resultant cubes. Theorem 1 
shows that the complex term linking has a similar prop- 
erty. The number of resultant complex terms is deter- 
mined by the difference between the two complex terms, 
not the identical portion. 

Two Complex Terms with Identical Heads and 
Identical Tail Operators. In these cases, the differ- 
ences between the two complex terms are in the tail l i t-  
erals. There are three cases on tail operators; AND, OR 
and XOR, as in the following three equations. 
(1 )  (pn--l . ( P - ~  . x',"-) ( p - 1  AX,".) 
(pn--l AX,".) = pn-1. ( s S n  U -  - R n )  = pn-1 , ,y;,uR, 

n + E n  

xs'+' = x%+' = xs,+l 
T t l  .+I 1+1 

Above three equations show that if both the heads and 
the tail operators are identical, the heads can be factored 
out. 

Two Complex Terms with Identical Heads and 
Identical Tail Literals. Two complex terms differ by 
the literal operators. There are t.hree such cases: i\ND to 
OR, .4ND t,o XOR and OR t,o XOR. 
(1 )  ( P - 1  ' x;., (P7'-1+ x:., = Pn-1 I3 x;n 
(2)  ( P - 1  . A-,".) U (P-1 X,".) = p"-l+ x,s- 
(3)  (p7~-1+ (pn-13 x S ~  = p - 1  . au2n 
Two Complex Terms with different Tails. Thp 
hea.ds of the t,wo complex terms are the same. and both 
tail operators and tail literals are different. 
(1)  ( P - 1  ' x:,) U (P"- l  + -ri.,"-) = ( p - 1  . - 
-yS-)  (pn-1+ = ( ~ 7 1 - 1  . )u(p"-'. x c n )  I 

- -  - 
(pn-1 , -u,"n"Rn)@x,Pn = (pn-1 , Ay:" u R n )  U x,Rn, 
( 2 )  (pn-1 (pn-1 ) = (pn -1 .  x2n ~ n - l u  

__ 
X,R. p - 1 .  (X,". N I ) ]  U S,R" pr-1 . ;U:,) N X , R n  

( 3 )  ( P - 1  + X,".) U ( P - 1  63 X , " n )  = ( P n - l +  Xn"-) N 
p n - l w  X,R,< = - S " ) ~ P l ' - l ~ . Y , R ,  = [pn-1. (Pn-1 ' x, 
(Xn"- U I ) ]  U X,R" = (pn-1' s:.) U x;". - 

Linking of heads and tails of a pair of complex terms is one 
step of the complex term linking. Based on this discus- 
sion. the multi-level cube linking will be now presented. 

4. MULTI-LEVEL CUBE LINKING 

In Table 3 t,he top row lists the condit.ions of tail l i t -  
erals. The left column lists the conditions of heads. (.; 
.) indicates both the tail operators are AND. There are 
40 linking cases listed in the table. Most. of linking cases 
have one linking rule to apply. In these cases. one group 
of complex terms is generated by the rule. For some link- 
ing cases, like case 17. tmhere are t,wo linking rules, 17-1 
and 17-2. which generate two groups of resultant com- 
plex terms. There is one special case. case 40. which has 
four linking rules. thus generates four groups of resultant 
complex terms. 

Given two complex t,erms in an ESCT, their identical 
tails, if any. are first extracted out. Then one of the link- 
ing rules is applied on the two complex terms (or sub- 
ternis, if the identical tails are removed). The linking 
rules usually generate a single complex term plus a pair 
of complex terms with identical tails. The single complex 
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term is saved for the final result. The complex term pair 
will be processed by the above procedure - remove iden- 
tical tails and perform linking rules. In this procedure. 
which linking rule to apply depends on the type of heads, 
tail literals and tail operators. The following example is 
given to show this procedure. 
Example 12. Given are two complex terms PI = a . b d 
and P? = ti . F .  d. Linking of PI and P2 consists of the 
following steps. 
[l.] Move out identical tail AND d 
(a . b .  d )  kJ (ti . F .  d )  = [ ( a  . b )  kJ (ti . E ) ]  . d .  
[2.] The linking is on two subterms a .  b and 6 . F .  In this 
case. the heads are different ( a .  b # I ) ) ,  one of the tail 
literals is I :  and both the tail operators are AND. We can 
see that case 17 in Table 3 meets these conditions, so link- 
ing rule 17 in Table 3 could be applied: which generates 
two groups of resultant complex terms. 
Rule 17-1: 

The single subterm a .  b .  C plus its tail AND d is one of the 
resultant complex terms in group 1. The subterm pair 
( a .  b )  (0.  I )  will be carried over to the next linking step. 
Rule 17-2: 

The single subterm 5 . C plus the identical tail AND d is 
in the group 2.  
[3.] Check identical tails on the pairs of subterms. For 
the first pair, (a . b W Q . I )  . E .  the tail is generated at 
the previous step, and has been moved out. The heads. 
a . b and ti . I have no identical tails. The second pair. 
( a  . b ti . I )  is always the same as the heads of the first 
pair. and there are no identical tails either. 
[4.] Apply linking rules on the subterm pairs. Since P; = 
a: pi = 6, PI = P2. one of the tail literals is universal and 
both tail operators are AND. linking rule 15 is applied; 
which generates one complex term: a b kJ ti . I = a h 
[5.] The final results are two groups of complex terms: 
Group 1 = { a ' 6  . d (from step 2) .  
ii . b '2 . d (from step 4)) 
and Group 2 = { Q . E .  d (from step 2 ) .  

b .  d (from step 4)). 
Above example showed that the whole procedure contains 
iterations of extracting the identical tail and applying the 
linking rules. 

Next the linking operation is defined. The two complex 
terms are written in the following forms: 

( a .  b)  W (ti . E )  = [ ( a  . b )  W (6  . I )  . E ]  kJ [U . b .  Z]. 

( U  6) kJ (Q . F )  = [ ( U  . b )  W (ti I ) ]  W [Q '51. 

- 

- 

- 

p;" = X,Sl ,?p E,; .  . .a; >y:l . . .,3;+1 xt?y a",+' . . .@?X,s.. 
p; = x,R1(3x;2;3;)':. -_ . .@;A-,Rr . . .,&'x.,R,,:'@;+L.. .@2"X,R,, 

In the equation, 5; indicates the j t h  literal operator of 
the ith complex term. Each 83; can be AND. OR or XOR. 
Definition 10. Given two complex terms P;' and P; in 
an ESCT. the tail. Tail(PT.  Pg) .  is an m-cube operation 
defined by the following formula: 
Tail(PF. P;) = 

TcLZ~(P~-',~T-'). A':" 
~ a i l ( ~ : - ' ,  P,-'  . x , S ,  

Tail(Pp-',PT-') 

if X; = .Y; and ,?: = 
if S; = .Y; and 8 ~ ;  = F,; are OH 
if X; = -YF and (?;l,= tz: are XOR 

are AND - 

P;".PT if SF # A'; or t;. 

The Tail operation can be applied on a pair of complex 
terms or a pair of subterms. If the tails of the two complex 
terms are different, t,hen t,he the t,ail operat,ion has no 
effect, and the outputs are the t,wo input. complex terms. 
Example 13. Given t,wo complex terms. PI = a.D+c+d. 
P 2 = a . b + c + d t h e T a i l ( P l , P ? ) =  Pl u p 2 .  
Please note that the two complex ternis P I  and P? are 
in an ESCT, the term operator between P I  and Pz is 
XOR: PI UP. remains the same before and after the Tail 
operation. 

If the two complex terms have the same tail. the tail 
can be extracted out. Since the Tail operattion is defined 
recursively, if the last k literals and last k operarors are all 
the same, in a pair of complex terms, then t,hose k literals 
and operat.ors can be extracted by the Tai l  operation. 
Example 14. Given two complex t,erms. PI = a . b + e + 
Tail( a .  b + c + de e ,  f. a .  6 + c + d-+ F , f) = Tail( a .  h + c + 
d@e,a.h+c+d@e).f = T a i l ( a . D + c + d ,  a . b + c + d ) . , f  = 
T a i l ( a .  6 + c, a .  b + c) . d .  ,f =?.il(a b ,  U 6) . c .  d .  f = 
T a i l ( a  b ,  a ' 6 )  . c . d .  f = [ ( a .  b )  
In the last step of the example) a '6 and a . b are t'wo suh- 
terms. Since b # b. the tails of the subterms are different, 
the Tuil operation stops. After the Tai l  operation. t'he 
complex terms (or subterms) have different tails. 
Definition 11. Given two complex terms P;' and P? i n  
an ESCT, the Link(Pp,  PT) is an m-cube operation which 
applies one of the linking rules based on the conditions 
from Table 3. 

Based on the above discussion. the main n-cube oper- 
ation can be defined below: 
Definition 12. The multi-level cube linking (ni-link 
for short), denoted as $,:cT. is an in-cube operation on two 
complex (sub) t,erins defined by the following procedure: 

1. Tail(P;, PT), 

d e . f. P? = U . 6  + c + d .i; e , f 

( a  . 6)] . c . d .  .f. 

2. Link( Pp , Pz"); 

3. TUil(P;:> P j ) ,  

4. Link(P,i, P i ) :  
5 .  repeat steps 3 and 4 until no more subterm pairs 

Compare this new operation to exorlink operation on two 
product terms. Section 3 listed 4 cases on literals. \Ye 
found that in exorlink. only t,wo cases for each pair of lit- 
erals are considered, case 1 and case 4. In other words. we 
only need to check if a pair of literals are the same or the:- 
are different. Case 2 does not exist in exorlink because 
there are no negations on a subterm of a product. Non. 
turning to operations on complex terms. case 3 is sepa- 
rated from case 4. because the universal subterm or the 
universal literal may reduce the distance of two complex 
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Table 3: The Linking Rules of Two Conidex Terms 

P' = P' I 1  25 (8,  e )  25 36 (8.  &i) 36 
26 ( . ,  el 26 37 (., e1 37 
27 ( , . )  27-1 and 38 (., ) 38-1 

and 27-2 and 38-2 

II I I I I and 40-4  

terms. While in exorlink. the universal literals do not re- 
duce the distance. Also. the concept of subterm is not 
used in exorlink. because the variables are ordered inde- 
pendently in product terms. While in complex terms, the 
concept of subterm is introduced mainly for the purpose 
of protecting the variable orders. There is one more differ- 
ence between the complex term linking and the product 
term linking: in product terms. the operators are AND 
only, so the operators of the two corresponding literals are 
always equal. On the other hand. in  complex term. the 
operators may be different. 

5. DISTANCE O F  T W O  COMPLEX TERMS 

Like the case of exorlink [3]. the distance of two com- 
plex terms is a measurement of the differences of these 
terms. The distance of two complex terms is related to 
the number of resultant complex terms to be generated by 
linking, which is important information for the ESCT op- 
timization. In product term linking, the distance checking 
is simple: comparing each pair of literals in the two prod- 
uct terms. In complex terms linking, the situation is much 
more complicated. Counting the number of different lit- 
erals or the number of different operators is not enough 
to determine the distance. It has to be taken into account 
different types of heads. tail literals and tail operators. 
Definition 13. The distance. denoted as Sx(n) .  of two 
complex terms is a measurement of the differences of these 
terms in an ESCT. Here n means that each of the complex 
t,erms has n literals. The distances are determined in 
Table 4. 

Table 4: The Distance of Two Complex Terms 
I I, I , 

Table 4 is similar to Table 3. except t,he colunin "Rule" 
is replaced by "Sx (n)"  (distance). Colunin's caption c 
denotes a case. On the column of distance. there are 
either a constant value 0,  1 or 2,  or a formula 6~ ( n  - 1). 
or 6 ~ .  (17  - 1) + 1. There are three cases in Table 4. case 
1, case 2 and case 25. in which the distance are 0. The 
conditions to apply cases 1. 2 and 25 have been discussed 
in t.he previous section. As shown in [4]. in these three 
cases, the number of resultant complex terms is 0. There 
are 22 cases in the table which have distance value 1. For 
instance. in case 3.  the heads and tail literals are identical. 
t,he tail operators are AND and XOR respectively. the two 
complex terms can be merged into one complex term. as 
shown in [4]. The distance in this case is 1. There are 
8 cases. in which the distance is 2. Among these ca.ses. 
some of the cases generate one group of two resultant 
complex terms. These cases are case 11. case 28. case 29. 
case 32 and case 37. In all these cases. at least one of 
the tail operators is XOR. Some other cases are similar 
to the distance 2 exorlink. They generatme two groups of 
resultant complex terms. Each group has two complex 
terms. These cases include case 33 and case 3.5. There 
is a special case, case 40, which generates 4 groups of 
resultant complex terms. The smallest group is the group 
4. which has two complex terms. In Table 4,  the dist,ance 
value for case 40 is 2 .  which is the smallest value for this 
case. 
Definition 14. The terminated cases for checking the 
distance of complex terms are those cases in Table 4 .  
in which the distance values are constant. The non- 
terminated cases are those in which t,he distance values 
are not constant. 
Those cases discussed above. which have distance values 
of 0. 1 or 2. are terminated cases. During the process of 
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checking the distance of two complex terms. if any of the 
terminated cases is encountered, the distance of the two 
complex terms is determined. And the checking process 
stops. For the non-terminated cases, the distance cannot 
be determined at the current step. the process continues 
to check the subternis, until a terminated case is encoun- 
tered. Among the non-terminated cases, the distance val- 
ues for case 9, case 10, case 18 and case 39 are 6x ( n  - l ) ,  
which means at current, step, the distance value remains 
the same. For the remaining cases, case 17. case 27 and 
case 38, the distance values are b x ( n - l ) + l .  which means 
the distance value at t,he current step is increased by 1. 
Example 15. Given are two complex terms; PI = z1 
52 + e3 .24 @ 2 5 ,  P? = 51 + x? . 53.54 . 26. The distance 
checking procedure is shown below. 
(1) The heads are: P: = 11 . 52 + 23 . 4 4  @ 2 5 ,  P: = 
51 + 22 . 53 .14. Pf # P:, the heads are different. The 
tail literals are I and 26. Both the t,ail operat,ors are 
AND. This is case 17 (see Table 4) .  The distance value is 
6 ~ ( 5 )  + 1. The distance at this st,ep is increased by 1 (the 
initial value of distance is 0).  This is a non-terminat#ed 
case. 6 ~ ( 5 )  is checked at next step. 

The tails are XOR. z5 and AND I .  This is case 18. The 
distance value is 6 ~ ( 4 ) .  The distance at this step remains 
the same. This is a non-terminated case. 6x (4) is checked 
at next step. 
(3) P: = 2 . 5 2  + 23; P; = 11 + 2 2  . 23. Please note 
that P: = P;. The tails are .z4 and .?4. This is case 24. 
The distance value is 1. This is a terminated case. The 
distance value at the previous steps is 1 and at this step 
is also 1. The final distance value is 2.  
The above example shows that the distance of the two 
given complex terms is 2. Thus two resultant, complex 
terms will be generated by linking them. Below, examples 
of distance 0, 1. 2 and 3 ni-links are presented. 

( 2) P;' = 2 1  . i? + 23 ,324, P; = 5 1 + 22 .53 ,54. P; # P;. 

-4. Distance 0 Af-Link 

If the distance of two complex terms is O ?  no resultant 
term is generated. The two complex terms are removed. 
For both the exorlink and in-link, if the two product terms 
or the two complex terms are equal, their distance is 0. 
There is one more case of distance 0 for m-link. the case 
25 in Table 4. 
Example 16. Given are two complex terms: PI = a '6 + 
c e d ,  P2 = i i + b . F & J .  In this example, - head Pf = a .b+c  
and head P: = ii + b .  C. Since P: = ii + b .  F = a '6 + c. 

P: P:. According to linking rule 25, [4], PI kJ P2 = 
( a  . b + c 8 d )  kJ (ti + b .  ? @ 2) = 0. No resultant complex 
t.erm is generated in this example. 

- 

B. Distance 1 AI-Link 

Distance 1 m-link of two complex terms generat.es one 
resultant complex term. In other words. the two complex 
terms can be merged to one complex term. There are 22 

such cases in Table 4 .  One of these cases is shown in t.he 
following example. 
Example 17. Given are t,wo complex terms: PI = a .  i+ 
c .d ,  P2 = ii+b.?.d. This example is similar to the previous 
example. The only difference from the previous one is that 
the tail operat,ors are .4ND instea.d of XOR. By checking 
Table 4. this example is in case 24. the dist.ance is 1. By 
performing linking rule 24, ( P ~ - ' . ~ 7 i ~ ~ ) k J ( P ~ - ' . . ~ ; ~ . j  = 
P2n-l is? Xzn, the result is: PI 

C. Distance 2 AI-Link 

P2 = ii + b . F 6 d. 

There are two situations in which the distance of t,wo 
complex terms is 2: a distance 2 terminated case. or a 
non-terminated case followed by a terminated case 
Example 18. Given are two complex terms: PI = s1 
22 @ 2 3 . 2 5  '26, P2 = 51 gi 1 2  . 5 4  65 26. From the product 
term linking point of view. these two complex terms are 
different by nearly all the literals and operators. Actually. 
only the tail lit,erals are the same in these t.wo complex 
terms. However, according to Table 4. this is case 11. 
which is a terminated case and the distance of the two 
complex terms is 2.  According bo Rule 11: (PY-' ,-7i,sn)kJ 
(P3n-l x , " ~ L )  = ' w P!-'. the result. is: PI U 

P2 = (21 .x2 5 73 + 55 ' I g )  kJ (21 'I. .E? ' 5 4 ) .  

Example 19. Given are two complex terms: PI = 2 1  . 

x2 + %2 g? 33 . 54 61 2 6 .  In this 
example, the t,wo heads are different, one of the tail literals 
is universal. the ot,her tail operator is XOR. By checking 
Table 4,  this is case 18. The corresponding linking rule is: 

At this step. the distance does not increase. V\;e continue 
to check the distance of the two subterms: Pi = 2 1  2 2  E- 
z3 @ z4 . z5. P? = F1 + 52 @ x3 . x 4 .  ,4t this step. case 
17 is encountered. From Table 4. case 17 increases the 
distance by 1. and we continue to check the subternis Pi = 
z1 . +? g? x3 g? ?4. P2 = + S? g? 23. i4. N0t.e that at t.his 
step, P," = PL;". Now a terminated case is encount,ered. 
case 8. of which the distance is 1. The dist.ance of thr two 
complex t,erms PI and Pz is 2.  

- 

23 @ 34 . 25, Pz = 

(Pr-1 . x;., kJ ( P y  @A-;") = (PT-1 P;-') kJ X,R" 

- 

D. Distance 3 M-Link 

Example 20. Given are two complex terms: PI = si 
x2 @ z3 @ f4. 2 5 ,  P2 = z1 6 x 2  . e4 @ x6.  In this example. 
the first two steps are t,he same as the previous example. 
The accumulated value of distance is 1. and we continue to 
check the subternis: PI = 1 ~ 1 . ~ ~ 8 ~ 3 6 5 4 4 ,  Pz = 31%'T?..U+ 
At this step, case 11 is encountered. This is a terminated 
case and its value of distance is 2.  The disbance of the 
two complex terms PI and P2 is 3 .  

6. EXPERIMENTAL RESULTS 
Look ahead strategy is applied in ESCT optimization 

program MINICT [e] .  It starts from an ESOP minimized 
by EXORCISM-MV, and its operation is followed by out- 
put folding. The time of folding is negligible and is in- 
cluded in the total times given in the table. MINICT i t -  
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Table 5: Some results of MINICT 

erates M-link operations of distance 3 and next distance 2,  
executing distance I and distance 0 operations whenever 
possible. It is very similar to ESOP minimization strat.- 
egy from [5]. Therefore, because of this general similarity, 
our method can be easily adapted to any rule-based ap- 
proach to ESOP minimization, for instance the simulated 
annealing approach from [8]. The goal of LCA synthe- 
sis is to minimize the total area, which is measured by 
the number of rows multiplied by the number of columns. 
The number of rows corresponding to the number of coni- 
plex terms. The number of columns consists of two parts. 
The input part corresponding to the number of input vari- 
ables, which is fixed. The output part corresponding to 
the output columns, which can be minimized. The goal of 
ESCT optimization is to minimize the number of complex 
terms in the ESCT expressions. Some results of MINICT 
starting from minimized ESOPs [5] are shown in Table 5 ,  
The inputs of the program are minimized ESOPs. The 
outputs are ESCTs with minimized number of complex 
terms and minimized number of output columns. In Table 
5. the columns In and Out are number of input variables 
and number of output variables, respectively. CTO is the 
number of product terms in the ESOPs. Ci, is the initial 
cost. According to the cost function defined in Section 5 
the initial cost; C,, = CTO x ( I n  + Out). In Table 5. the 
column CT is the number of complex terms after complex 
terms minimization. The column Cco is the number of 
output, columns after column folding [1,2,4]. Column C 
is the cost of minimized ESCTs. C = CT x ( I n  + Cco).  
Column C/Ci, gives the ratio of the costs after the min- 
imization and before the minimization. Time is CPU sec- 
onds on a Pentium 133 MHz PC. For instance, the first 
test case, 5xp1, has 7 inputs, 10 outputs, and 32 product 
terms. The initial cost is 32 x (7 + 10) = 544. It has been 
minimized to 8 complex terms and 7 output columns. The 
ccst is 8 x (7 4- ‘7) = 112. The cost ratio is 112 / 544 = 
0.21. 

7. CONCLUSIONS 

We proposed a new representation and based on it fac- 
torization algorithms for AND/OR/EXOR circuits. Our 
theory can find applications for both ASICs and FPGAs. 
Based on complex term theorems [4, 61. we developed 
here minimization algorithms for logic cell array optimiza- 
tion. The advantages of our approach are the following: 

(1) Multi-level factorization method was given that ap- 
plies uniformly to AND. OR and EXOR gates. (2)  The 
factorization method addresses concurrently t,he issues of 
space, delay times and regularity. (3) The approach can 
be used not only to the kind of regularity as addressed 
by MINICT, but also for a more general tree factoriza- 
tion. ( 4 )  It can be also extended to SCT factorizatioii 
that starts from SOP rather than ESOP form. (5) .411 
presented ESCT methods have their counterparts in cor- 
responding new SCT methods. (6) A mixed array is pos- 
sible in which some output functions can be realized by 
SCT and some by ESCT, which will further improve the 
results. (7) If both SCT minimizations and ESCT min- 
imizations are performed and the bett,er results between 
the two are selected, the overall results could be improved. 
(8) Mixed OR and EXOR term operators can be applied 
in t.he collecting plane of LCA, thus creating MSCT, a 
mixed sum of complex terms 121. MSCT minimht ion  
problem combines those of ESCT and SCT minimization. 
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