
AN EFFICIENT APPROACH TO DECOMPOSITION

WITH LARGE SETS OF BOUND VARIABLES
OF MULTI-OUTPUT BOOLEAN FUNCTIONS

Michael Burns, Marek Perkowski Lech Jozwiak

Department of Electrical Engineering
Portland State University
Portland, OR 97207, USA

Faculty of Electronics Engineering
Technical University of Eindhoven

MB 5600 Eindhoven, The Netherlands

Abstract

Finding appropriate bound sets of variables is the most
zmportant task of functional decomposition. When soh-
ing some problems the bound sets need to be large: for
instance in decomposition to symmetric subfunctions real-
ized in MOPS arrays for submicron technologaes, or when,
no good small bound sets exist. In such cases the creation
of the incompatibility graph, that is necessary to evalu-
ate good variable partationings, becomes very inefficient.
Therefore an algorithm is proposed here, that can speed
up this process by orders of magnitude without sacrifying
the quality of the decomposation, because the same graph
coloring algorithms (exact or approximate) is still applied
to the created graph:

1 Introduction

Modern microelectronic technology has created oppor-
tunities to build systems on chip and reconfigurable cus-
tom computing machines. However, these opportunities
cannot be effectively exploited due to the weakness of
the traditional architectures and logic synthesis meth-
ods and tools. One of the most promising approaches
of modern logic synthesis is general functional decompo-
sition [5, 6, 7, lo]. The most important problem of the
functional decomposition is finding sets of input variables
for sub-functions that result in high-quality decomposi-
tions. For solving this problem the column incompati-
blity or compatibility graph is used in the Curtis-style
functional decomposition [la, 7, lo]. Column compatibil-
ity checking is the process of constructing a compatibility
or incompatibility graph. The nodes of the graph rep-
resent columns(or groups of columns) of the Kmap and
edges represent the compatibility relationship between the
columns. The graph is used in the major step of the de-
composition process, i.e. the column minimization (for

instance, by node coloring of this graph). The graph must
be constructed many times for various set,s of bound vari-
ables in order to find the best set of bound variables: i.e.:
the set leading to a decomposition that, minimizes certain
circuit-related cost function. such as the number of ga.tes.
total delay, area, etc..

This paper presents a new approach which can signif-
icantly decrease the time required for column compati-
bility checking over the other approaches to Curtis-style
decomposition, especially in the cases where large graphs
are constructed. Our approach preserves the quality of
the decomposition, because the same data is ob ta ined
for column compatibil i ty, but m u c h faster . Large
graphs are often created for symmetry-based decomposi-
tion in layout-driven logic synthesis for submicron tech-
nologies [ll] and some other applications, such as general-
ized PLA partitioning for CPLDs, FPGAs mapping, and
other. Also, some of the highest quality decompositions of
standard types may require large graphs, especially, when
no good small bound sets exist. Typically, the number of
nodes in a compatibility or incompatibility graph grows
with the number of variables in the bound set. Unfortu-
nately, little is published about the use of large bound sets
in Curtis-style decompositions. This is most likely due to
the application of the functional decomposition to the FP-
GAS with lookup tables of not more than 5 inputs, and
the increased computation time required for partitioning,
column compatibility checking, column minimization and
encoding when bound sets are large.

Previously, column compatibility checking was per-
formed in a pairwise fashion referred to here as the Pair
CompatibilityApproach(PCA) [7, 8, 12, 10, 41. The basic
idea behind the PCA is to check the compatibility rela-
tionship of each column with every other column one pair
at a time. The new approach presented in this paper is
referred to as the Group Compatibility Approach(GCA).
The basic idea behind bhe GCA is to check the com-
patibility relationship between the pairs of groups of

16
1089-6503/98 $10.00 0 1998 IEEE

of the free set are treated the same way in the algorithms
as rows and columns. The another reason is the graphi-
cal explanation of the approaches (it is much simpler to
visualize rows and columns in a Kmap than blocks of the
free set or bound set).

The organization of this paper is as follows: In Sect. 3,
the algorithm for the classical approach(PCA) to the col-
umn compatibility checking problem is briefly reviewed
for comparison. In Sect. 4, the algorithms for the new ap-
proach(GCA) to the column compatibility checking prob-
lem are introduced. Also presented in Sections 3 and 4 is
an example illustrating differences between the P C A and
G C A approaches. In Sect. 5 we compare the P C A and
G C A approaches. In Sect. 6 comparisons of results are
given, and Sect. 7 concludes the paper.

2 Definitions and Notations

Definition 1. Repeated cubes are care cubes which
are elements of more than one output class.
Example:

1 0111 00
2 0001 01
3 0110 0-
4 I010 10
5 0010 11

There are four output classes corresponding to output vec-
tors 00, 01, 10, and 11. From these vectors, cubes are
classified: P(F) = {(1,3);(2,3);(4);(5)}. Since cube num-
ber 3 is an element of more than one output class, it is
referred t o as a repeated cube.
Definit ion 2. Classes of cubes are groups of cubes
that have compatible output values.
Definit ion 3. Classes of columns are groups of
columns which have compatible outputs within some sub-
set of rows of the Kmap. However, unless otherwise speci-
fied, this does not imply that the all columns in a class are
compatible with each other within all rows of the Kmap.
Definition 4. Incompat ib le classes are classes which
are incompatible with some other class.
Definition 5. Incompat ib le classes of cubes are
classes in which some or all cubes in one class are in-
compatible with some or all cubes in some other class.
Definition 6. Incompatible classes of columns are
classes in which all columns in one class are incompatible
with all columns in some other class.

co lumns instead of checking the compatibility between
each pair of single columns . Note that the columns and
the blocks of the bound set [7] are referred to in this pa-
per simply as columns. Similarly, rows and blocks of the A 2 0 1

free set are referred to in this paper simply as rows. One
reason to do it is that blocks of the bound set and blocks

P(F)={F, .F2)

= (4,6,12.14,23,24.30, 2,7,16,20,22,25,26)

A a 1 0 b) All cubes wulL the 18me output valuer are
laafed m L e p”mm b l a k For

17

a) Kamauga Map showing two s o l m s selected Io
~IIusImle PairCmptihiliry Chaking. Columns
am incompatible if, within any row. eilher

two edumnr 10 he incompatible implies
that not all cubes in AB are conmined
m one offhe output p a r l ? k blaks.

m IS round. Otherwise they are eompalthle

Figure 1: Diagram illustrating P C A approach to Column
Compatibility Checking for Single Output Function F2.

Definit ion 7. Pairs of i ncompa t ib l e classes of cubes
are two specific classes of cubes in which some or all cubes
in one class are incompatible with some or all cubes in
the other class. Unless otherwise specified, the pairs of
incompatible classes of cubes are rough partitions [7] of
cubes which are elements of the same row but not of the
same output class.
Definit ion 8. Pa i r s of i ncompa t ib l e classes of
columns are t8wo specific classes of columns in which all
columns in one class are incompatible with all columns in
the other class.
Definit ion 9. O u t p u t classes are the individual parti-
tion blocks within the output partition. The cubes which
belong to each output class have compatible output val-
ues.
Ai = i t h partition block in partition P(4) of the set of
cubes. In simpler terms, Ai is a set of cubes corresponding
to a row(or rows) in the Kmap. A is a f r ee set of vari-
ables, free variables corresponding to rows of the Kmap.
Bi = i t h partition block in P (B) . In simpler terms, Bi
is a set of cubes corresponding to a column(or columns)
in the Kmap. B is a bound set of variables, bound
variables corresponding to columns of the Kmap.
Fi = i t h partition block in P (F) . In simpler terms, Fi is
a set of cubes which have compatible output values.
Bij denotes an edge between columns Bi and Bj when
referring to a compatibility/incompatibility graph.
ABijk = ABijk = (Bi U Bj) f l Ak = The set of all cubes
that are elements of blocks B; or Bj that are also elements
of the same block ilk of the free set.
ICij denotes the class of cubes from row Ai that are el-
ements of the same output class Fj . Cubes are elements

Shown circled with dashed lines are the classes chosen for the final cover set.

a) Compatibility Graph b) Incompatibility Graph

Figure 2:
function F2 from Fig.1.

Compatibility and Incompatibility Graphs for

of the same output class Fj if they have compatible out-
put values. For single output binary functions, one of the
classes will have output. value 0 while the other will have
output value 1.
IC is the set of pairs of incompatible classes of cubes;
(ICij . I C i k) . All classes ICij are incompatible with all
classes ICik for all pairs in row i, and for all rows i.
IR;, is the class of cubes that are incompatible with re-
peated cube r in row i.
IR is the set of pairs of incompatible classes of cubes of
the form (r , I&,.).
IB is the set of pairs of incompatible classes of columns of
the form (IB i j , I&) . All classes IBij are incompatible
with all classes IBik for all pairs.
IBij denotes the set of columns(B,) which have at least
one cube in common with the class of cubes ICij. Ex-
pressed in simpler terms, IBij denotes a set of columns
which have the same output values for a particular cofac-
tor(or row) of the Kmap.
SR; denotes the set of repeated cubes that are found in
row i of the Kmap.
R;, is the set of cubes which belong to at least one class
ICij which cube r also belongs to. (Ri, represents the
set of all "care" cubes compatible with cube r in row i).

3 Classical Approach To Column Com-
patibility Checking: PCA

The following is a brief explanation of the PCA ap-
proach to column compatibility checking. The goal of this
algorithm is to obtain either an incompatibility graph or
a compatibility graph. Recall that a compatibility graph
is simply the complement of the incompatibility graph.
Fig. la shows the Kmap used to illustrate the PCA algo-
rithm. In general, this algorithm checks the compatibility
of each pair of columns and if compatible, then assigns an
edge in the compatibility graph between the two nodes
corresponding to the two columns. The method used for
checking the compatibility of two columns is straightfor-
ward and requires little explanation.

To determine if two columns are compatible, the output
values of the columns are checked to see if they are com-

patible for each combination of the free set variables(i.e.,
each row). The order that each pair of columns are
checked for compatibility is arbitrary. Begin by arbitrarily
selecting the two columns highlighted in Fig. l a (columns
B1 and BG). Fig. l b shows the output partition P (F)
with cubes classified according t,o their output values. In
Fig. lc-f shown are the compatibility checks within each
row necessary to determine if the two columns are com-
patible. Columns B1 and BG are compatible within rows
1 thru 3, but are incompatible in row 4. Therefore, col-
umn B1 is incompatible with column & . The remaining
pairs of columns in Fig. 2a are checked in the same man-
ner. This results in the compatibility graph (Fig. 2b)
with edges between nodes in the graph indicating that
two columns are compatible.

4 New Approach To Column Compatibil-
ity Checking: GCA

The new algorithms presented in the following sub-
sections can greatly reduce the number of calculat,ions
required to create the compatibility or incompatibilitj.
graph when there is a large number of blocks in the bound
set.

The basic idea of this algorithm is to find pairs of iii-
compatible classes of minterms for each row and then re-
place these incompatible classes of minterms with incom-
patible classes of columns(b1ocks of P(B)) which contain
those minterms. These incompatible classes of columns
are used to form the set of pairs of incompatible columns.
Each pair of incompatible columns is represented by an
edge in the incompatibility graph. We created two GCA
algorithms, one for single output functions and one for
multiple output functions; they share many steps. Multi-
output GCA Algorithm has additional steps so that all
columns are correctly classified for multiple output func-
tions.

GCA Algori thm for Single O u t p u t Funct ions
The desired result of this algorithm is either an incom-

patibility graph or a compatibility graph. Fig. 3a shows
the result of the first step in the algorithm. Here the
cubes which are elements of each row are separated into
classes based on the output value of the cubes. For single
output functions, there are two output classes(0 and 1).
For row 1, find two cubes which are elements of each out-
put class(i.e., cubes 2 and 7 both have output value 1 and
cubes 4 and 6 both have output value 0). Similarly, sep-
arate cubes in other rows into classes based on their out-
put values. From these classes of cubes within each row,
the observation can be made that columns which contain
cubes in one class are incompatible with the columns that
contain cubes in the opposite class. Therefore. with this

18

Kamaugh Map . cde

Row I

Row 2

Raw 3

Row 4

bl Foreachclassofcubcr. formael~sofcolumns
by mcluding all columns which contain at I c m one
cobs from the clsss of cubes. Note that Faeh c o l u m

from om class(wil1un each mu) i s incompat~ble
with cvcry column in he other class. For example.
Forrow I . B2 ~sinconipatiblcwilh B4
Aim, E, is mcompatible with 64 8: B6

&Rs

81 Kamwgh map showing cubes in each mw classified
according 10 thsiroutpu, values.

Figure 3: Daagram illustrating GCA approach to Column
Compatibilzty Checking for Single Output Punctzons

observation in mind, perform the next step in the algo-
rithm by forming a class of columns for each class of cubes.
This is accomplished by including all columns which have
at least one cube in common with a specific class of cubes
to a new class of columns. The result of this step is shown
in Fig. 3b. As shown in Fig. 3b, for classes within each
row, all columns in one class are mutually incompatible
with all columns in the opposite class. From these pairs
of incompatible classes of columns! construct either an
incompatibility graph or a compatibility graph.

For simplicity, first construct the incompatibilit,y graph
by adding an edge between nodes (columns) in the graph
which are incompatible. This is done for each row as
follows: for each column in one class, add an edge be-
tween the node that corresponds to that column. to ev-
ery node corresponding to the columns in the other class.
This results in the incompatibility graph shown in Fig. 3c.
The complement of the incompatibility graph is shown in
Fig. 3d.

I l lustrat ion Of GCA Approach O n Funct ion F2
Given is the function described by the Kmap in Fig. 3

and repeated again in Fig. 4, with the bound and free
sets {c,d,e} and {a,b}, respectively. The following are
the rough partitions for the bound set, free set, and out-
put set, respectively. Commas separate minterm num-
t>ers(or cube numbers) within each rough partition and
semicolons separate partition blocks. Don't cares are not
enumerated in the partitions(i.e., they are not used in
the partition operations) and @(empty set) indicates no

a

J\

Figure 4: IiMap f o r functzon F 2 showzng zncompatzblc
classes of columns

specified values in a particular partition. The goal is t,o
construct the compatibilit,y graph and perform coluniri
minimization to obtain a cover set & [7] .

P (B) = (25; 2.26; 0; -I. 12,20: 8; 6,14 ,22; 30: 7 , 2 3 : 16\24)

z z (Bl,BZ.BQ.BqrB5,Bs.B7,Bs); (1)

= (Ai , Az, A3, Aq 1; (2)

= (F1,F2); (3)

P (A) = (2 , 4 , 6 , 7 ; 12. 14.16; 20 .22 ,23 ,24 ; 25,26 .30)

P (F) = (4 ,6 ,12 ,14 .23 .24 ,30; 2,7 ,16 ,20 ,22 ,25 ,26)

Execut ion of the Single-Output GCA Algori thm.

S t e p (a). Generate set IC using function
FORM-SET-OF-PAZRSJC(A, F, i = 4, j = 2) . This
function performs the following calculations:

The first class to be formed is ZC11.
It is formed as follows:

V i V j : ICij = Ai n F i .

ICll = (A l n F l) = ((2.4,6,7)n(4,6,12,14.23,24.30)) =
(4 ,6) .
Similarly, the remaining ICij are found. This results in
the following classes of cubes; IC11 = (4:6) , IC12 =
(2 ,7) , IC21 = (12,14), IC22 = (16). IC31 =
(23,24),
The following is IC expressed as the set of pairs of incom-
patible classes of the form (ZCil, ICi2):

(20,22), IC41 = (30), IC42 = (25,26).

IC = (((4>6) , (2,711, ((1% 141, (1611,
((23,24), (20,2211, ((301, (25,2611).

S t e p (b). Generate I B using function
FORM-SET-OF-PAIRS_lB(IC, B , i = 4. n = 8). I B
is found accordingly: ZBij = { n 1 V i V j Z C i j n B, # 0 }

For simplicity, only the column number is used to denote
each column (i.e., Bi is shown as number i) . The first class
in ZB to generate is IB11. ZBll is found incrementally as
follows(initial1y IBll = (0)):

19

[i)] ICl1 n B1 = (4,6) n (25) = 0,
therefore IBll remains unchanged,
[ii)] ICl1 n B3 = (4 ,6) r l (2, 26) = 0,
therefore IBll remains unchanged,
[iii)] ICll n B3 = (4,6) n (0) = 0,
therefore IBll remains unchanged,
[iv)] ICll n B4 = (4,6) n (4,12,20) = (4),
therefore IBll = (4),
[v)] ICl1 n B~ = (4,6) n (0) = 0,
therefore IBll remains unchanged,

therefore IB11 = (4 ,6) ,
[vi;)] ICl1 n B7 = (4 ,6)
therefore IBll remains unchanged,
[viii)] IC1l n Bg = (4,6) n (16,24) = 0,
therefore the resulting class for IBll = (4,6).
Similarly, the remaining IBij classes are found. This
results in the following classes of columns: IBll =

(8), IB31 = (7,8). IB32 = (4 ,6) , IB41 = (G) , IB42 =

Therefore

Note: Each column in a pair of classes is incompatible
with all columns in the opposite class. Each of these pairs
represents the sets of columns which have a conflicting
output in a particular row and therefore cannot be com-
bined in the column minimization step.
S t e p (c). Construct the desired graph using function
FORM-GRAPHTROM-IB(IB, i = 4, B, n = 8). This
function performs the following calculations:

For each row index i , assign all columns in class IBil
as pairwise incompatible with all columns in class IBi2.
For row 1: (IB11 = (4,6)) # (IB12 = (2 , i)) . Therefore
columns 4 and 6 are incompatible with columns 2 and 7.
This forms t,he incompatible pairs B24, B26, B47, and B67.

For row 2: (IBzl = (4 ,6)) + (I & = (8)) . Therefore
columns 4 and 6 are incompatible with column 8. This
forms the incompatible pairs B48 and B68.

For row 3: (IB31 = (7,8)) # (IB32 = (4 ,6)) . Therefore
columns 4 and 6 are incompatible with columns 7 and 8.
This forms the incompatible pairs B47, B48, B67, and Beg.
For row 4: (IB41 = (6)) f (IB42 = (1 , 2)) . Therefore
column 6 is incompatible with columns 1 and 2. This
forms the incompatible pairs B16 and Bas.
The sets of incompatible pairs for rows results in the set.
of pairwise incompatible columns
IB = (Bis , B24, Bas, B47, B48, B67, B68).
The set IB of pairwise incompatible columns is used to
form the incompatibility graph in Fig. 3c. The set of
pairwise compatible columns (78 can be obtained simply
by removing set I s from the set of all pairs of columns:
CE = (BizrBi3,Bi4,Bi5,Bi7, Bis,Bz3,B25,B27,Bz8!B34,

B35. B ~ E , B37, B3arB45, B46, B56. B57, Bss, B7s)

[vi)] IC11 n B6 = (4 ,6) n (6,14,22,30) = (6),

(7,23) = 0,

(4 ,6) , IB12 = (2,7), IB21 = (4,6). IB22 =

(1,2).

I B = (((4,6)1(217))1 ((4,6),(8)), ((7,8),(4,6))? ((Ql(1J))) .

This set of pairwise compatible columns forms the coni-
patibility graph shown previously in Fig. 3d. Covering of
graph creates the cover set IIG [7].

Applicat ion To Mul t ip l e O u t p u t Funct ions

The fundamental distinction between G C A algorithms
for single output vs. multiple output functions is that
cubes may be compatible with more than one output
class(output partition block) in multiple output functions.
These cubes are referred t.0 as repeated cubes. In sin-
gle output functions, disjoint subsets of cubes are classi-
fied in each row according to output classes they belong
to. When this is done. then pairs of classes of cubes are
formed(1C;j; I C i k) . In each of these pairs of classes, all
cubes in one class are incompatible with all cubes in the
other class. However, in multiple output functions. cubes
classified in the same manner may result in pairs of classes
of cubes which are not disjoint. When t.his occurs, then
all cubes in one class are not incompat.ible wit,h all cubes
in the other class. To solve this problem. the set of pairs
of classes of incompatible cubes. denoted a.s IR . is formed
first for the set of repeat,ed cubes only. Then the repeat>ed
cubes are removed from all classes within set IC,' to form
the new set IC of non-repeated cubes. The set. I R is
appended to IC and t.he remainder of t.he algorithm is
identical to the single output algorithm [3]

5 Analysis Of The New Approach Versus
The Classical Approach

In this section an analysis of the new approa.ch(G C A)
introduced in Sect. 4 versus the classical approach(PCA)
introduced in Sect. 3 is presented. To determine the
number of calculations (int,ersection and union opera-
tions) required by each approach the following formulas
were used:
For the P C A approach of Luba et a1[8]. the expression
for finding pair-wise column compatibility is: P (i l) . (Bi U
Bj) C P (F) or more specifically, A k n (B i u B j) E Fnl. The
number of required calculations is: P C A = R x 0 x (F),
where (:) = 6,. For the new approach(GCA),
the expression for finding pairs of incompatible classes
of columns is: P (i l) . P (F) . P(B) or more specifically,
4 k n F, n Bi. The number of calculations required is:
GCA = R x V x C .
Variables are defined as follows: P C A = ''Pair Compat-
ibility Approach" ~ G C A = "Group Conipat,ibility Ap-
proach", -4k = individual blocks of the free set P(,4), B,

'The following analysis is done only for single output functions.
The reasons for this are:(1) because any multiple output function
are replaced by multiple single output functions. (2) because the
formula for single output functions for the new approach is much
simpler t o express mathematically.

20

N=40

h 8 J i I N

Figure 5 : Plots of the two approaches represented by the
formulas P C A and G C A f o r a constant total number of
uarzables(N) and varyzng numbers of varzables an the free
set(A) and bound set(B).

Figure 6: Plots of the two approaches represented by the
formulas P C A and GCA when the number of varaables
zn the bound set are much greater than the number of uarz-
ables zn the free set

= individual blocks of the bound set P (B) , F, = indi-
vidual blocks of the output set PF, I A I = number of
variables in the free set, I B I = number of variables in
the bound set, C = 21BI = number of columns in the
bound set, R = 21Al = number of rows in the free set,
1- = number of output variables. 0 = 21'1 = number of
blocks in the out,put partition.

Fig. 5 presents plots of the two approaches represented
by the formulas P C A and GCA for a constant total nun-
ber of variables (N) with varying numbers of variables in
the bound and free sets. Note that when the number of
variables in the bound set is much larger than the number
of variables in the free set. there exists a several orders of
magnitude difference in the number of calculations (inter-
sections and unions) required. Similarly, one can observe
several orders of magnitude difference in the number of
calculations when the number of variables in the bound
set are much greater than the number of variables in the
free set (Fig. 6) .

Table 1: User tzme spent calculatzng column compatzbzlzty
on MCNC benchmarks using dzfferent approaches(PCA
us GCA) wzth uaryzng s u e s of bound sets, smaller than
12, usually 2, 3 or 4.

Table 2 : Summary of Results f o r Table 1

Categories (in all Summmary of Results tables): A-Total Time(al1
benchmarks). B-Average Time per benchmark. C-Maximum Time
for any benchmark. D-&umber of times an algorithm had the lowest
user time(inc1uding ties). E-F-Number of times an algorithm had
a user time which was at least one order of magnitude(xl0) faster
than the competingalgorithm. inp - number of inputs, out - number
of outputs, cub - number of cubes, t (s) - time in seconds.

The analysis of the two approaches illustrates dramatic
differences in the number of calculations required by each
of the approaches when the number of variables in the
bound set is large. This suggests a potential for significant
savings using the new approach.

6 Experimental Results

This section compares the execution times for both al-
gorithms. In Sect. 6.1, results of complete decompositions
on the MCNC benchmarks are compared for P C A and
G C A algorithms. In Sect. 6.2, comparison resu1t.s are
shown on the partial decompositions of FLASH bench-
marks from Wright Labs with fixed bound set sizes. Ver-
sions of program GLD used for decomposition in the com-
parisons are:
G U D (G C A) : Version of GUD using the new GCA algo-
rithm to calculate the column compatibility.
G U D (P C A) : Version of GUD using a cominoiily used
PCA algorithm to calculate the column compatibility.
PCA is used in the program DEMAIN [7].

21

3: Tzme 'pent calculatzng compatzbzlzty On Table 5

us G C A) wzth five uarzables zn the bound set

Tame spent calcirlatzng column compatzbzlzty on
FLASH two dzfferelzf methodspCA FLASH benchmarks using two dzfferent niethods(PCA
us GCA) wzth two varzables zn the bound set

Table 4: Summary of Results f o r Table 3

6.1 Comparison Between the PCA and GCA
Algorithms in the General Decompos-
tions of the MCNC Benchmarks

From the results in Tables 1 and 2 it can be observed
that the G C A approach clearly outperforms the P C A
approach in terms of execution time, on nearly every
benchmark example. The execution time for each ap-
proach is the total time spent on calculation of the col-
umn compatibility throughout the complete decomposi-
tion process on each benchmark. A benchmark may re-
quire several subfunctions to be computed in the decom-
position process and each subfunction may require many
graphs to be constructed by either approach before a
bound set is selected which yields an acceptable decom-
position. I t is important to note that each approach con-
structs identical graphs on each benchmark. The only
difference in the whole decomposition process is which
approach is used to construct the graphs. The partition-
ing strategy always tries small bound sets first and if no
decomposition is found then the number of variables in
the bound set is increased by one. The bound set size was
limited to twelve. However, the size of the most bound
sets which resulted in an acceptable decomposition were
either two or three variables. This is a significant point
to make in the comparison of the different approaches
because the new approach(GCA) was expected to have
a significant advantage when bound sets are large. The
results show, however, that the new approach is substan-
tially faster even for small bound sets.

For a number of examples. the highest quality decom-
position is for large bound sets. Therefore, the G C A
requires less computation execution time even on small

Table 6: Summary of Results for Table 5

bound sets and provides t.he capability required to check
large bound sets which can't, be feasibly checked by thr
P C A approach.

6.2 Comparison Between PGA and GGA Al-
gorithms on FLASH Benchmarks with
Fixed Bound Set Sizes

This section compares the results of the PCA and
G C A algorithms when the number of variables in the
bound set is fixed. For example, if the number of variables
in the bound set is specified to be 10, then only the bound
sets of size 10 are used. In Tables 3-7, only two graphs
were constructed for each benchmark. The purpose was
to control the decompositions so that comparisons could
be made, not only between the each algorithm used. but.
also between execution times for various bound set sizes.

Observe that there is very little difference in execution
times when the number of variables in the bound set is 2
(Table 3). However, there is a substantial difference in ex-
ecution times (Table 5). The GCA approach consistent,ly
outperforms the P C A approach when the number of vari-
ables in the bound set is 5. In fact, the G C A approach
outperforms the P C A approach by mare t.han an order of
magnitude in execution time on every benchmark. In Ta-
ble 7, an even more dramatic difference can be observed
between the execution times of the two approaches. When
the number of variables in the bound set. is equal to 10.
the G C A approach outperforms the PCA approach b>-
more than two orders of magnitude on every benchmark!
A Summa.ry information on the comparisons made can be
found in the corresponding Tables 4, 6. and 8.

22

Table 7: T i m e spent calculatzng column computabzlzty on
FLASH benchmarks usang two dzfferent methods(PCA
vs G C A) wath ten varzables an the bound set.

Table 8: Summary of Results for Table 7

7 Conclusions

The results from Tables 3-8 clearly show that the G C A
approach strongly outperforms the P C A approach in ex-
ecution time without sacrifying the result,’s qualit,y. The
G C A algorithm performs much better than the P C A
algorithm when larger bound sets are used in the decom-
position process. When the bound set is large enough(five
variables or more), the G C A approach outperforms the
P C A approach by orders of magnitude in execution time.
We expected that the G C A algorithm will be faster than
the P C A algorithm when larger bound sets were used,
but did not expect such dramatic differences and such
high consistency with the pre-testing analysis (Figs. G
and 7).

Much more efficient column compatibility checking re-
sults in much faster decomposition process. However, it
is even more important that the G C A algorithm can be
used to create the compatibility graph for larger bound
sets with little or no increase in the execution time. By
being able to use larger bound sets. the search space of
feasible decompositions is increased, thereby making it
possible to find better decompositions. Large bound sets
create on average more overlaps when multi-coloring
is used instead of coloring of the incompatibility graphs.
Thus, as demonstrated in [9], they lead more often to de-
composition of both blocks G and H of the decomposition
being relations, when the relational decomposition is ap-
plied [lo, 41. In addition to saving time when the bound
sets are large, this new approach can be used to search a
significant part of the search space on large functions not
feasible using previous approaches due to the large com-
putational requirements. The new approach can be inte-
grated into a modified graph coloring algorithm to speed

up column minimization as well. Our future research in-
volves experimental comparison of decomposition quality
with large and small bound sets.

Refer en ce s

[I] R . L. Ashenhurst. ”The Decomposition of Sait,ching
Functions.” Proc. Intern. Conf. Conip. .-lid. Des. , pp.

[2] H A . Curtis. ”A New Approach to the Design of
Switching Circuits,” D. Van Nostrand Company,
19G2.

84-87, NOV. 1959.

[3] hI . Burns. M.S. Thesis, PSU, 1997.
[4] S. Grygiel, M . Perkowski. hiI. Marek-Sadowska.

T. Luba, and L. Jozwiak, “Cube Diagram Bun-
dles: A New Representation of St,rongly Unspecified
Rlult.iple-Valued Functions and Relations.” Proc. 1.7-

[5] L. Jozwiak, .General Decomposit,ion and Its Use in
Digital Circuit Synt,hesis,” VLSI Design: A n Interii.
J . of Custom Chip Design, Simulation and Testing,
Vol. 3. ; No. 3-4, 1995.

[GI F.A.M. Volf, L. Jozwiak. and M.P.J. Stevens.
“Division-Based versus General Decomposit8ioii-
Based Multiple-Level Logic Syiit,hesis.” VLSI Design:
An Intern. J . of Custom Chip Design, Siiiiulat,ion and
Testing, Vol. 3., No. 3-4, 1995.

[7] T. Luba, M. Mochocki, J . Rybnik, “Decomposition
of Information Systems Using Decision Tables.” Bull.
Pol. Ac. Sci. Vol. 41, No.3, 1993.

[8] T. Luba, R. Lasocki, “Decomposition of h‘lultiple-
valued Boolean Functions.” Applied Mathe.matzcs
and Computer Sczence, Vo1.4. No.1, pp. 125-138.
1993.

[9] R. Malvi, “Efficient, Xlgorithiiis for Column Com-
patibility Problem in Boolean Decomposition“. M.S.
Thesis. PSU, 1997.

1101 M. Perkowski, TUI. Marek-Sadowska, L. Jozwiak. T .
Luba, S. Grygiel, M . Nowicka, R. Malvi. Z,. Wang.
and J.S. Zhang. “Decomposition of Multiple-Valued
Relations,” Proc. IShilVL ’97, pp. 13-18.

[ll] M. Perkowski, M. Chrzanowska-Jeske, and Y.
Xu, “Mult#i-Level Programmable Arrays for Sub-
Micron Technology Based on Symmetries.“ Yroc. IC-
ClMA ’98, pp. 707-720, Febr. 1998. World Scientific.
Signapure.

[la] W. IVan, M.A. Perkowski. “ A Kew Approach to
the Decomposition of Incompletely Specified Func-
tions based on Graph-Coloring and Local Transfor-
mations and Its Application to FPGA Mapping”.
Proc. EURO-DAC‘92. Sept. 7-10, Hamburg. 1992.

M\,Z ’97. pp. 287-292.

pp. 230 - 235.

23

