
An Error Reducing Approach to Machine Learning Using Multi-Valued
Functional Decomposition

Craig M. Files Marek A. Perkowski
Department of Electrical Engineering

Portland State University
Portland, OR 97207-0751, USA

email: cfiles@ee.pdx.edu

Abstract

This paper considers minimization of incompletely spec-
ified multi-valued functions using functional decomposition.
While functional decomposition was originally created for
the minimization of logic circuits, this paper uses the de-
composition process for both machine learning and logic
synthesis of multi-valued functions. As it turns out, the min-
imization of logic circuits can be used in the concept of
”learning” in machine learning, by reducing the complex-
ity of a given data set. A main difference is that machine
learning problems normally have a large number of output
don’t cares. Thus, the decomposition technique presented
in this paper is focused on functions with a large number
of don’t cares. There have been several papers that have
discussed the topic of using multi-valued functional decom-
position for functions with a large number of don’t cares.
The novelty brought with this paper is that the proposed
method is structured to reduce the resulting ”error” of the
functional decomposer, where ”error” is a measure of how
well a machine learning algorithm approximates the actual,
or true function.

1. Introduction

In the 1950s, Ashenhurst presented a Boolean multi-
level logic minimization method called functional decom-
position [3]. From the 1950s until the late 1980s, not much
was done in the area of creating efficient programs for func-
tional decomposition primarily because of the large com-
putational procedures that are required in the decomposi-
tion process. In the late 1980s, functional decomposition
was re-introduced as an application to the synthesis of Field
Programmable Gate Arrays (FPGAs) [10].

Since then decomposition has been applied to many as-
pects of Boolean and multi-valued logic synthesis. Several

papers written on decomposition of multi-valued networks
have shown an interest in using their decomposers in the
field of machine learning [7, 16, 14, 13]. Each of these
papers had a slight twist to the decomposition process and
the type of data that they were able to handle. The motiva-
tion was always the same: given some measure of complex-
ity, find the solution with the minimum complexity. This is
analogous to reducing the size, structure, number of gates,
or number of terms in a logic circuit. The first ideas to apply
decomposition to machine learning appeared in [12] and the
first successful machine learning programs based on logic
synthesis were reported in [15].

The main goal of using a multi-valued functional decom-
poser is to reduce the complexity (smaller circuit size, sim-
pler description) of a given problem. This is analogous to
the assumption in machine learning that the simplest for-
mula derived from the data is the best formula. This is
thought of as a natural constraint given that our own brains
think in terms of reduced complexity. For example, a child
might be given a ”connect the dot problem”, and from dot
to dot, the child will draw straight lines. A straight line
in this instance is the simplest way of connecting the dots,
and very rarely will the child use lines of large complexities
(e.g., sinusoids, circles, crossing over the same line).

This paper explores multi-valued functional decomposi-
tion as a logic synthesis method and as a machine learning
tool. The decomposition algorithms for these two methods
are similar, but there are some significant differences. The
biggest difference is that most circuit-related multi-valued
logic problems are nearly completely specified, while func-
tions in machine learning tend to be 99.9% unspecified in
their respective learning domains.

The paper is structured as follows. In Section two, a
background of machine learning is given. In Section three,
multi-valued decomposition is discussed. In Section four,
the concept of building anerror reducingmulti-valued de-
composer is presented. In Section five, an algorithm is pre-



sented that is based on the concepts of low complexity. In
Section six, results of the algorithm are given. Section seven
concludes the paper by remarking on the results of the algo-
rithm.

2. Machine Learning

The similarities between machine learning and logic syn-
thesis are based on minimizing circuit designs for size,
number of gates, or product terms, and is equivalent to the
machine learning concept of reducing complexity. In ma-
chine learning the idea is to find patterns in the data, such
that the data can be partitioned into smaller concepts (data
blocks), which correspond to the sub-blocks of the decom-
position. The principle of using decomposition in machine
learning is to reduce a given function specified by a set of
care minterms (samplesor examples) to a composition of
smaller functions (concepts). The result is a set of expres-
sions that describe suitableintermediate concepts. Each of
theseintermediate conceptscan then be decomposed fur-
ther, leading to expressions that form a more comprehensi-
ble description of thelearnedconcepts. The advantage of
using decomposition to obtain usefulintermediate concepts
is that it leads to a result specified as a hierarchy of composi-
tions. This produces the description of the original function
as a hierarchy of sub-functions and variables, which leads
to learning that is faster, involves smaller error and gives
better explanation of thelearnedconcepts.

The central idea in machine learning is tolearn or gain
information from a given data set. This is done by using the
care terms (examples) in the data to set the values that are
not given in the data (outputdon’t cares). The objective is
to set thedon’t caresto values that follow the same patterns
as the care terms. In terms of logic synthesis, this setting of
don’t caresis done by creating a network of multi-valued
input, multi-valued output blocks by decomposing the orig-
inal function into multi-leveled blocks. A machine learning
algorithm is evaluated on it effectiveness of learning by how
it reduces theerror of the resulting network.Error is how
well the algorithm in question setdon’t careterms to care
terms. This evaluation is done by selecting atraining set,
which is a random sampling of the originaltest function.
The result of learning thetraining setis then compared to
the test function. If the resulting expression has a high er-
ror then it does not approximate thetestfunction well and,
thus, is not a useful way of describing the function.

This can be a very difficult task given that practical
databases that machine learning algorithms are used on are
usually very large. To help handle this difficulty, the as-
sumption of Occam’s Razor and the introduction of explicit
domain knowledge are used to reduce the search space [4].
Thus, machine learning is not an exact methodology for
solving certain problems, but is an attempt atlearningbased

f=F (�(B;C); A; C)

�

F

B

C

A

Figure 1. Basic Decomposition

on heuristics and probabilities. The hope is that theselearn-
ing algorithms perform better than using chance, i.e, a re-
sultingerror that is less than 50%.

To help solve some of the problems in machine learn-
ing, methods have been proposed to involve logic synthesis.
This includes creating complexity measures that are general
enough to be used in minimizing both circuits and concepts.

3. Multi-Valued Functional Decomposition

This section presents the basic principles of the decom-
position of multi-valued functions. Note that the decompo-
sition of multi-valued functions is just an extension of the
decomposition of Boolean functions. See [3, 6, 18] for more
information on Boolean based decomposition.

Definition 1 Given a multiple-valued variablexi, the set of
values thatxi may assume isCj = f0; 1; : : : ; cj�1g. Then
an n-input, m-output, multi-valued function is defined as
the mapping:f(x0; x1; : : : ; xn�1) = C0 � C1 � : : : �
Cn�1 ! D0�D1�: : :�Dm�1, whereDj=f0; 1; : : : ; (p�
1);�g, with p equal to the number of output values repre-
sented in thep-valued logic and ”-” represents adon’t care
value.

Definition 2 A functionf(x0; x1; : : : ; xn�1) is decompos-
able underbound setfx0; : : : ; xi�1g and free setfxi�l;
: : : ; xn�1g , 0 < i < n; 0 � l if and only if f can be repre-
sented as the composite functionF (G0(x0; : : : ; xi�1) ; : : : ;
Gj�1(x0; : : : ; xi�1); xi�l; : : : ; xn�1), where0 < j < i�l.
If l equals0 thenf is said to bedisjunctively decomposable,
otherwise, it is known asnon-disjunctively decomposable
[6, 18].

The principle idea of the decomposition using the nota-
tions from Definition 2 is shown in Figure 1. Given that
a function is decomposable under a given bound set, the
function may be separated into two newly created functions.
This is known as a simple decomposition because one de-
composition was done on the function. To fully decompose



the function, an iterative process is used. First the func-
tion is decomposed, then the sub-functions that are created
from the initial decomposition are decomposed. This itera-
tive process continues until a given function cannot be de-
composed further under given complexity measures.

Note, that for ann-input function, the number of sim-
ple disjunctive decompositionsis 2n, while the number of
simplenon-disjunctive decompositionsis 3n. Thus, eval-
uating all possible partitions is an NP-complete problem
when trying to fully decompose a function. Because of the
exponential size of simplenon-disjunctive decomposition,
most heuristic methods only attempt at findingdisjunctive
decompositions. This reduces the search complexities of
finding partitions in decomposition, but this still does not
mean that the problem of findingnon-disjunctive decompo-
sitionsbecomes trivial, since it is still an exponential search
problem.

Definition 3 Given ak-valued, completely specified func-
tion f , with a bound setB, and free setA, then for the
partitionAjB, a partition matrix representation off is de-
fined as a rectangular array, where thecolumnscorrespond
to the variables in thebound set, and therowscorrespond to
the variables in thefree set.

Using Definition 2 and 3 the following is found:
1. The array haskjBj columns andkjAj rows.

2. Given ak-valued functionf , with a bound setB, then
the corresponding partition matrix hasl distinct columns,
wherel is known as theColumn Multiplicityof a partition.

3. The Column Multiplicity for the function can be
reduced if the function is incompletely specified, by
finding columns that arecompatibleand combining the two
columns by settingdon’t carevalues. By compatible, for
every row, the possible output value-sets of the first column
(a number or adon’t care) intersect the non-empty sets of
the corresponding output value-sets of the second column.

4. Thus, to representf as a composite function in the form:
f = F (G0(); : : : ; Gj�1(); xi; : : : ; xn�1), where each G
function has inputs(x0; : : : ; xi�1) then j = dlogkle, G
functions are needed.

The concept of decomposition is fairly general, and be-
cause of this generality it can be applied to any type of logic
structures or elements, and takes into account various con-
straints and requirements. Of course, this might be a dif-
ficult task, but none-the-less, it is possible. Further, multi-
valued network decomposition has the advantage that it is
not based on any pre-specified set of operators or gates.

4. Reducing Error Through Partition Selection

The biggest difference between logic synthesis and ma-
chine learning is the difference in the number of care terms
in logic synthesis versus the number of care terms in ma-
chine learning problems. There is another factor to this that
must be noted. Thedon’t caresin machine learning prob-
lems should actually be thought of asdon’t knows. By don’t
knowswe mean that the value is not known and that caution
must be used in setting adon’t knowto a value.

With the concept of adon’t knowin mind, this section
presents a methodology for selecting partitions for machine
learning based decompositions. The formulation for finding
partitions and evaluating is based ondon’t knowsand the
complexity issues found in trying to decompose functions
with many variables.

Observation 1 From the Section 3, given that the function
is completely specified, the only way that two columns can
be compatible is if for every row, the output value of the first
column is equal to the output value of the second column
(in the same row). Obviously, if the function isp-valued,
completely specified, and each value is equally likely, then
for every row the probability of matching one column to
another is1p .

From Observation 1, for a column withB rows, the
probability of finding a pair ofcompatiblecolumns is�
1
p

�B
= 1
pB

. The result is that the more rows in a column, the

less likely it is to find acompatibilitybetween two columns.
The problem with Observation 1 is that it doesn’t takedon’t
caresinto consideration and the fact that machine learning
data sets are 99% unspecified.

Observation 2 Assume the probability of having adon’t
care is P (X) = 0:99, then the probability of having any
other value in the function isP (care)=1�0:99

p =0:01
p , given

that the function isp-valued and each value is equally
likely. The only way to have an incompatibility between
two columns occurs only when, for a given row, the first col-
umn’s value is some value and the second column’s value is
a value that is not equal to the first column’s value. Thus,
the probability of having an incompatibility between two
columns is0:01p�1

p .

It results from this observation that evaluating small
bound sets (small number of columns and a large number
of rows in a partition table) should result in a larger proba-
bility of incompatible columns. The premise of this paper is
that by increasing the probability of incompatible columns
we have decreased the amount oferror in the resulting net-
work. This premise is true because the possibility of com-
bining adon’t carewith an incorrect care term is reduced.
This is based on the probability of combining two columns



is much smaller, and thus, the probability of combining a
don’t carewith a value is also smaller.

For example, given a 3-valued function with 100 inputs
(each input is also 3-valued), if the bound set has 2 vari-
ables then there are983 rows in partition table. Whereas,
if the bound set has 50-variables then there are503 rows in
the partition table. From Observation 2, the probability of
having incompatible columns isP (incomp) and the proba-
bility of having compatible columns is1� P (incomp). In
comparison, the probability of finding compatible columns
with 2-variables,(1�P (incomp))98

3

, is much smaller than
the probability of finding compatible comlumns with 50-
variables,(1 � P (incomp))50

3

. The results show that it is
highly unlikely that two columns will be found to be com-
patible in the case of 2-variable bound sets. The only way
that they will be compatible is if there is some pattern in the
data that allows the combination of the two columns. As for
the case of the 50-variable bound set, the probability seems
like a small enough , but note that there are503 columns for
this partition.

Another complexity issue that comes up is determining
column compatibility. One of the most promoted methods
for finding column compatibilities with manydon’t caresis
the use of graph coloring. Since graph coloring is an NP-
complete problem (exponential in complexity) itself, then
the more columns then the longer the computation time.
Thus, it is reasonable to assume that small bound sets with
a small number of columns will have a much faster run time
than medium-sized (half the variables in the bound set, the
other half in the free set) bound sets. In the case of medium
or large bound sets, the probability of two columns being in-
compatible is much smaller than in the case of small bound
sets. Hence, the number of compatible columns can be very
large. In fact, because there are so many possible color-
ing in the graph coloring algorithm, selecting compatible
columns becomes a random process. Thus, the combination
of columns is done randomly with no basis on probabilities.
This also shows that having bound sets that are medium or
large will result in greatererror.

What does this mean in terms of complexity. From the
Section 3, we know that for ann-input function there are
2n partitions that can be evaluated or O(2n). If we restrict
the size of partitions, then there are(n2 ) =

n�(n�2)
2 parti-

tions that can be evaluated or O(n2). In the case of medium

sized bound sets there are
�

n
n=2

�
� 2n

10 partitions that can

be evaluated or O(2n). For instance, given that there are 100
input variables, then there are� 1�1029, 50-variable bound
sets. This is a very large search space, much too large to go
through all of the partitions with 50 bound set variables. If
the bound set is small, then search becomes much smaller.
Given 100 input variables there are

�
100
2

�
= 4950, 2 vari-

able bound sets. Therefore, based on complexity, it is much

easier to evaluate all the small bound sets.
In fact, in terms of logic synthesis (recall the small per-

cent ofdon’t cares), the possibility of finding a good decom-
position with small bound sets would probably not work.
But, from the analysis above, the algorithm presented here
is based on the premise that small bound sets are the best
way to decompose machine learning problems.

5. Algorithm Implementation

This section presents an algorithm that uses multi-valued
functional decomposition as a machine learning algorithm.
The section is broken down into subsections which describe
some of the important aspects of the presented algorithm.

5.1. Machine Learning Complexity Measure

The complexity measure selected is a measure proposed
in [1]. For more on complexity measures see [7, 8, 16, 17].
This complexity measure, called Decomposed Functional
Cardinality (DFC) is the sum of the cardinalities of the com-
ponent functions in a combinational representation, when
the sum has been minimized. Any function is allowed
as a component, but its cost goes up with itscardinality.
Thecardinality of ann-input,m-output binary function is
2n � m. Thus, anyn-input gate has the same cardinality
as any othern-input gate, regardless of the functionality of
that function.

Definition 4 A function f(x0; x1; : : : ; xn�1) with k-
valued logic andm-outputs, hascardinality kn �m. DFC
is defined as the sum of the function cardinality of each de-
composed partial block. A non-decomposable function is
defined as a function that has a DFC> kn �m.

5.2. Data Structure of the Decomposer

The representation of a function can sometimes make
or break the algorithms that are applied to it. The impor-
tance of data structure has been shown in [10] in which a
Binary Decision Diagram (BDD) [11, 5, 2] based decom-
position proved very efficient in the decomposition of logic
functions for FPGAs. The use of Multi-value Decision Dia-
grams (MDD) was also shown to be effective in the decom-
position of multi-valued functions with manydon’t cares
[7]. The problem with the MDD package is that it does
not allow variables of different valued-ness. Also, it was
found that when the function implemented in the MDD has
many values, the MDD package acted more like a decision
tree than a BDD, that is, there was very little compression
within the nodes of the MDD.

Taking the ideas from [19] of mapping a MDD onto a
BDD, we created a new MDD package that is built on top



of our existing BDD package1. By mapping a MDD onto a
BDD package, the MDD now has the ability to have vari-
ables of different sizes.

5.3. Inessential Variables

One of the most important procedures in a machine
learning algorithm is the removal of non-essential(vacuous)
variables from the function. There are actually three dif-
ferent classes of variables as defined in [9]. A variable is
eitheressential, inessentialor vacuous. Essentialandvacu-
ousvariables are easily defined as variables that either have
an impact on the output, or do not have an impact on the
output. An inessentialis a variable that by settingdon’t
caresin a certain way, the variable either becomesessen-
tial or vacuous. Because of the structure of the MDD, if a
variable is vacuous it is no longer included in the database,
so they are automatically removed from the function. For
eachinessentialvariable,don’t caresare forced to make the
variable vacuous.

To determine which variables can be made vacuous a
compatibility graph algorithm is used. Each node in the
graph represents aninessentialvariable, and each vertex
between two nodes designates that both variables can be
forced vacuous at the same time. From this graph a maxi-
mum clique algorithm is used to determine the largest clique
of inessentialvariables that can be forced to becomevacu-
ous.

5.4. The Decomposition Algorithm

The algorithm is broken down into the following steps:
1. Run graph algorithm to find allinessentialvariable
cliques. Evaluate the resulting maximal cliques by calling
the decomposer on each of the resulting functions.

2. Decomposer algorithms:
2a. Determine if the current function’s DFC is larger
than the best DFC found so far. If it is, then return (this
is a method of pruning, such that not all functions are
decomposed).
2b. Evaluate all two-variable bound sets.
2c. Determine which partitions could lead to a decomposi-
tion. This is done by evaluating the column multiplicity of
each of the partitions and selecting those with higher ranks.
The partitions with the smallest column multiplicity are
ranked higher than those with higher column multiplicities.
2d. From the list of possible partitions from 2b, systemati-
cally decompose each functionf into sub-blocksF and�.
Recursively call step 2 withF and�, separately.

1See: http://www.ee.pdx.edu/˜cfiles/bdd/

3. Done. Return the function with the best DFC.

6. Results

The results obtained demonstrate how the algorithm can
reduce the complexity of a given problem while keeping the
error low. The testing of the algorithm was done on com-
pletely specified functions with eight input variables. There
are several reasons for using these small functions: the func-
tions are completely specified which makes the comparison
of error exact, the smallest DFC of the functions are known,
so analysis of the decomposers heuristics can be performed,
and many training samples may be run.

The training sets are made from randomly selecting care
terms from a given function. The selection is done in steps
of 8 in the range [8,248]. At each step, 20 different data
sets were found by randomly selectingP care terms, where
P is equal to the current step. The reason for selecting 20
different data sets is to get a good distribution so the output
could be fully analyzed.

The test functions that were used come from the Wright
Patterson’s Pattern Theory Group set of benchmarks2. Of
course, this is just a measure to see how well a function
can handle data which is highly unspecified. But, notice
that the minimum number of care terms evaluated is 8 care
terms and 248don’t cares, which means that the function is
96.875% incompletely specified.

The results are shown in the Figures 2, 3 and 4. For
each function the following are shown in the figures: theer-
ror of the training output to the original KDD function, the
DFC that was found on the training function, and the time
that it took for the algorithm to find a solution. The title
of each graph designates what is actually being displayed
on theY � axis (error, DFC, Time), while theX � axis

is the number of training samples. For each function, there
is some error when the number of training samples is quite
small, but as the number of training samples gets larger, the
amount of error goes to zero. Also note that the algorithm
usually finds the correct function once it finds the DFC of
the original function. That is, as the number of training sam-
ples grows the algorithm is able to find the original function,
and the DFC of the original function. The last thing to note
is the time to a solution. We found it quite interesting that
the time to find a solution was much longer for small train-
ing samples. The reason for this is the number of possibili-
ties that exist with a large number ofdon’t knows.

Each of the Figures 2, 3 and 4 was selected out of the 54
possible functions in the benchmark set. These three func-
tions, in general, show the execution of the decomposer.
The first two functions are small examples of Knowledge

2benchmarks available at http://www.ee.pdx.edu/polo/function/



Discovery in Databases, while the third is a character recog-
nition function.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
Number of Training Samples

Error

0

20

40

60

80

100

120

140

0 50 100 150 200 250
Number of Training Samples

DFC

0

20

40

60

80

100

120

0 50 100 150 200 250
Number of Training Samples

Time(sec)

Figure 2. Finding the error, DFC, and time of
the decomposer on the function KDD5

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
Number of Training Samples

Error

0

5

10

15

20

25

0 50 100 150 200 250
Number of Training Samples

DFC

0

10

20

30

40

50

60

0 50 100 150 200 250
Number of Training Samples

Time(sec)

Figure 3. Finding the error, DFC, and time of
the decomposer on the function KDD10

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250
Number of Training Samples

Error

0

50

100

150

200

250

300

0 50 100 150 200 250
Number of Training Samples

DFC

0

50

100

150

200

250

0 50 100 150 200 250
Number of Training Samples

Time(sec)

Figure 4. Finding the error, DFC, and time of
the decomposer on the function CH52f4

7. Conclusion

This paper presented a new method for the decompo-
sition of highly unspecified multi-valued output functions.
The main goal of this paper was to present a new method of
decomposition that is focused on reducing the error in a so-
lution. Finding error is actually a test of an algorithm to see
how well it will behave on real-world data. In this paper, the
proposed algorithm was tested on a KDD based benchmark
test set. From this data analysis, the program did very well
on reducing the error between the original function and the
solution.

References

[1] Y. Abu-Mostafa. Complexity in Information Theory.
Springer-Verlag, New York, 1988.

[2] S. Akers. Binary decision diagrams.IEEE Trans. on Com-
puters, 6:509–516, June 1978.

[3] R. L. Ashenhurst. The decomposition of switching func-
tions. International Symposium on Theory Switching Func-
tions, pages 74–116, 1959.

[4] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. War-
muth. Occam’s razor.Information Processing Letters, pages
377–80, 1987.

[5] R. Bryant. Graph-based algorithms for Boolean function
manipulation. IEEE Trans. on Computer, 8:677–691, Au-
gust 1986.

[6] H. A. Curtis. A new approach to the design of switching
circuits. Van Nostrand, Princeton, NJ, 1962.

[7] C. Files, R. Drechsler, and M. Perkowski. Functional de-
composition of MVL functions using multi-valued decision
diagram. International Symposium on Multi-Valued Logic,
pages 27–32, May 1997.

[8] C. Files and M. Perkowski. Multi-valued functional decom-
position as a machine learning method.International Sym-
posium on Multi-Valued Logic, May 1998.

[9] S. Hight. Complex disjunctive decomposition of incom-
pletely specified boolean functions.Transactions on Com-
puters, pages 103–110, 1973.

[10] Y. T. Lai, M. Pedram, and S. B. K. Vrudhula. BDD based
decomposition of logic functions with application to FPGA
synthesis.Design Automation Conference, pages 642–647,
1993.

[11] C. Y. Lee. Binary decision programs.Bell System Technical
Journal, 4:985–999, July 1959.

[12] G. G. Lendaris and G. Stanley. On the structure-dependent
prperties of adaptive logic networks. Technical report, GM
Defense Research Laboratories, Sata Barbara, California,
July 1963.

[13] T. Luba. Decomposition of multiple-valued functions.Inter-
national Symposium on Multi-Valued Logic, pages 256–261,
1995.

[14] T. Luba and R. Lasocki. Decomposition of multiple-valued
boolean functions.Applied Math and Computer Science,
4(1):125–138, 1994.

[15] R. Michalski. Discovering classification rules using
variable-valued logic system vl1. InThird International
Conference on Artifical Intelligence, pages 162–172, Stan-
ford University, 1973.

[16] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba,
S. Grygiel, M. Nowicka, R. Malvi, Z. Wang, and J. S. Zhang.
Decomposition of multiple-valued relations.International
Symposium on Multi-Valued Logic, May 1997.

[17] T. Ross, M. Axtell, M. Noviskey, and D. Gadd. Pattern the-
ory paradigm for system design.Midwest Symposium on
Circuits and Systems, 1993.

[18] J. P. Roth and R. M. Karp. Minimization over boolean
graphs. IBM Journal of Research and Development, pages
227–38, 1962.

[19] A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Al-
gorithms for discrete function manipulation.International
Conference on CAD, pages 92–95, 1990.


