
MINIMIZATION OF EXCLUSIVE SUMS OF MULTI-VALUED

COMPLEX TERMS FOR LOGIC CELL ARRAYS

Ning Song and Marek Perkowski,

Portland State University, Dept. of Electr. Engn., Portland, Oregon 97207,

Tel: 503-725-5411, Fax: 503-725-4882, mperkows@ee.pdx.edu

Abstract| The paper proposes a new layout-driven

multi-level logic factorization methodology for reg-

ular arrays of two-input cells, that can �nd practi-

cal applications in �ne-grain FPGA design, standard

cell, gate matrix layout and sub-micron technologies.

A new factorization algorithm for AND/OR/EXOR

logic with multi-valued literals is introduced, that has

application to minimization of Logic Cell Arrays, and

improves on previous results [1, 2]. It is shown that

an extended cube representation and e�cient mini-

mization rules can be used, that generalize the ESOP

minimization approach from [3]. Results of program

MINICT demonstrate big area savings for several

functions.

1. Introduction

A new methodology for designing Logic Cell Arrays
(LCA) has been introduced in [1, 2]. LCA is a rectangu-
lar array of AND, OR and XOR cells with negated inputs
and outputs, and vertical and horizontal buses, similar to
Fine Grain Field Programmable Gate Arrays. Such ar-
ray realizes an Exclusive Sum of Complex Terms (ESCT),
where complex terms are cascade combinations of two-
input AND, OR and XOR gates with possible negated
inputs, and assuming the same order of input variables
in them. Thus, LCA is a generalization of an EXOR
PLA. When input decoders to the PLA are also available
and decoders' outputs are represented as multi-valued lit-
erals (mv literals, for short), the problem of LCA area
minimization becomes that of multi-valued ESCT mini-
mization, presented here. Our approach introduces a new
logic representation for factorization of multi-level func-
tions realized in a regular form.

A. An Example of LCA Implementation

The following example of a two bit adder illustrates
the procedure of LCA minimization. This function has 4
inputs and 3 outputs and has been minimized as an ESOP
of 8 product terms:
f0 = ac� �abd� b�cd, f1 = b� d, f2 = c� bd� a

Thus the initial solution requires 8 rows and 7 columns.
Each product term is mapped into one row. There are
4 columns needed for inputs and 3 columns needed for

outputs. The order of input variables is (a; b; c; d). The
initial implementation is shown in Figure 1. Since we
assume that there are two buses in each column, only 6
columns are needed in this implementation.
By setting the order of the input variables as (b, d,

a, c) the two product terms in f1 and the three product
terms in f2 can be combined to one complex term respec-
tively. Three product terms in f0 can be factorized to two
complex terms. The result from the factorization is:
f0 = (bd+ a)c+ bda, which requires two rows;
f1 = b� d, which requires one row;
f2 = bd� a� c, which requires one row.
The implementation is shown in Figure 2, which takes

4 rows and 6 columns. After the output folding, the �nal
result is shown in Figure 3. In this case, horizontal buses
are used for outputs, and the number of output columns
is reduced to 0.

ff f0 1 2a b c d

Figure 1: Initial implementation of the two-bit adder

De�nition 1.1 A complex term is a string of literals
connected by a set of Boolean operators, and no literal
can appear in the string more than once. The operators
in the complex term can be any combinations of AND,
OR, XOR, NAND, NOR, XNOR (denoted by �, +, �, �,
+ and � respectively). All operators have the same prior-
ity. All operations must be performed in a sequence from

left to right.

Example 1.1 Each of the following rows represents a
complex term: (a�b)+c, (a+b)c, (a�b)+�c), ((c�b)+a)�d.

Example 1.2 ((ab) + �b)c is not a complex term, because
the variable b appears twice.

Example 1.3 a+(b�c)+ d is not a complex term because
the operations are not in a sequence from left to right.
However, if the order of variables is changed to b; c; a; d,
then (b�c) + a+ d becomes a complex term.

ffb d a c f0 1 2

Figure 2: Implementation of the two-bit adder after row
optimization b d a c

f 0

f 1

f 2

Figure 3: Final implementation of the two-bit adder

De�nition 1.2 An multi-level cube (m-cube for short)
is a cube notation to present complex terms. Given a
complex term, each literal of the complex term as well
as each operator of the complex term is represented by a
vector as shown below.

c01c
1
1:::c

(p1�1)
1 � d02d

1
2:::d

(m�1)
2 c02c

1
2:::c

(p2�1)
2 � :::�

d0nd
1
n:::d

(m�1)
n � c0nc

1
n:::c

(pn�1)
n

where c0i c
1
i :::c

(pi�1)
i is a pi bit vector representing an pi-

valued literal, and d0id
1
i :::d

(m�1)
i is a m bit vector repre-

senting an operator.

B. Basic De�nitions.

The operators can be encoded in many di�erent ways.
One encoding scheme, which is referred to as standard
cording, is: 00 - not used, 01 - AND, 10 - OR, 11 - XOR.
In this coding scheme, Assume three types of operators
are assumed to be used in a complex term: AND, OR and
XOR. So two bits are needed to store each operator.

Example 1.4 Given a complex term T = X
f001g
1 �

X
f110g
2 +Xf101g

3 � X
f011g
4 . By using the standard coding,

the complex term is presented by the m-cube as follows.

X1 � X2 + X3 � X4

001 01 110 10 101 11 011.

De�nition 1.3 The negation of a complex term is as-
signed the value 1 if the complex term has the value 0;
and is assigned the value 0 if the complex term has the
value 1;

De�nition 1.4 The operators in the complex terms are
referred to as literal operators. The operators applied on
a pair of complex terms are referred to as term operators.

All the term operators and literal operators are listed as
follows:

AND OR XOR NAND NOR XNOR

Term
Term Operator ^ _] ^ _]

Term

Literal Operator � + � � + �

Note, that each literal operator has its counterpart of term
operator, and they have the same logic meaning. For
instance, ^ = �. The di�erence is their priority. The
literal operators are evaluated before the term operators.
Example 1.5 a + b � c � d _ �a � �b+ d] ��c+ d = [(((a+
b) � c)� d) _ ((�a � �b) + d)]] ((��c) + d).

De�nition 1.5 The tail literal of a complex term (tail
literal for short), is the last literal of the complex term.
The tail operator of a complex term (tail operator for
short), is the last operator of the complex term. The tail
literal and the tail operator together is referred to as the
tail of the complex term (tail for short). The head of a
complex term, (head term or head for short), are all the
literals and operators of the complex term except its tail.

Example 1.6 a � b+ c� d � �e is a complex term. The tail
literal is e, the tail operator is AND. The tail is ��e and
a � b+ c� d.

When a complex term has only one literal, e.g. a, the
literal is referred to as the tail. In this case, the complex
term has no head.
De�nition 1.6 If the number of non-universal literals in
a complex term is 1, the complex term is referred to as a
single literal complex term.

De�nition 1.7 A subterm of a complex term is de�ned
as (1) the head of the complex term; or (2) the head of a
subterm of the complex term.

Example 1.7 In example 1.6, the following are sub-
terms: a � b+ c� d, a � b+ c, a � b, a.

Please note that b is not a subterm of a complex term
a � b + c, because it is not the head of the complex term
nor the head of any subterms of the complex term. In
sequel, P , Q, or P1, P2 will be used to denote complex
terms. Pn will be used to denote the complex term P
has n input variables. Some of the literals in P may be
universal, denoted by I. Consequently P i will be used to
denote a subterm of the complex term Pn, (i < n).

Example 1.8 Given a complex term P = XS1
1 �XS2

2 �
� � � �XSn

n . It can be presented by its subterms as

P = Pn�1 �XSn
n

= Pn�2 �X
Sn�1
n�1 �XSn

n

...

= P 1 �XS2
2 � � � � �XSn

n :

Since programmable inverters at each cell input are as-

sumed to be available, not only P (i�1)�X
Si

i can be im-

plemented, but also P (i� 1)�X
Si

i . In other words, the
head of the complex term can be negated or non-negated.

Example 1.9 P = (a � b) + �c is a complex term, Q =
a � b+ �c is also a complex term.

Lemma 1.1 All the Boolean properties, de�ned on two
complex terms, can be applied on the head and the tail of
a complex term.

De�nition 1.8 A positive complex term is a complex
term without NAND, NOR and XNOR operators. An
ESCT contains only positive terms are referred to as in
positive term form.

By the above de�nition, no literal operators are negated
in a positive complex term. Please note that the negations
on input variables are allowed.

Example 1.10 a � �b is a positive complex term. a�b is
not a positive complex term, because there is a NAND
operator in the term.

De�nition 1.9 An or-free complex term is a complex
term without OR and NOR operators. An ESCT contains
only or-free complex terms are referred to as in or-free
form.

In an or-free complex term, its literal operators may be
any combinations of AND, NAND and XOR operators.
XNOR operators will be normalized to XOR, as discussed
in more detail in [4].

Example 1.11 a� b � c is an or-free complex term. a+
b � c is not a or-free complex term, because it contains an
OR operator.

C. The ESCT Minimization Problem.

The starting point to ESCT minimization is a mini-
mized Exclusive Sum of Products (ESOP) expression. The
main idea of the ESOP minimization, as implemented
in programs EXORCISM-MV-2 and EXORCISM-MV-3,
[3, 4], is to link (reshape) a pair of product terms. This is
done using exorlink operations [3, 4]. The product terms,
after reshaping, may be able to merge with other prod-
uct terms. Thus the total number of product terms in an
ESOP is minimized. The same idea is used in the ESCT
minimization proposed below. The key operation in the
ESCT minimization is to link (reshape) a pair of complex
terms. We found that the complex term linking could be
done is a way similar to the product term (exor)linking.
As shown in [4], any two product terms in an ESOP can
be linked and can generate a number of resultant product
terms. The number of resultant product terms depends
on the distance of two product terms. We discovered that
this property exists in the ESCT as well. We �rst show
in section 2 that any two complex terms in an ESCT can
be linked just like the exorlink of two product terms in an
ESOP.

2. Multiple Level EXOR Linking

A. Linking Two Complex Terms

Given two complex terms P1 = Pn�1
1 �XSn

n and P2 =
Pn�1
2 �XRn

n , the following properties hold.
Property 2.1. (Pn�1

1 �XSn
n)] (Pn�1

2 �XRn
n)

= [(Pn�1
1] Pn�1

2) �XSn
n]](Pn�1

2 �XSn]Rn
n)

= [(Pn�1
1] Pn�1

2) �XRn
n]](Pn�1

1 �XSn]Rn
n)

Property 2.1 shows that two complex terms can be linked
just like two product terms.
Property 2.2. (Pn�1

1 �XSn
n)] (Pn�1

2 �XRn
n)

= [(Pn�1
1] Pn�1

2) �XSn
n]] (Pn�1

2 �XSn]Rn
n)

= [(Pn�1
1] Pn�1

2) �XRn
n]] (Pn�1

1 �XSn]Rn
n)

Property 2.2 shows that if the term operator is XNOR, we
can link the two complex terms just like in the Property
2.1, and keep the term operator as XNOR. This prop-
erty has no direct application on two complex terms, be-
cause in ESCT, the term operators are always XOR gates.
However, when we apply the linking on two subterms, the
property is useful.

Theorem 2.1 Any two complex terms in a ESCT can be
linked.

The following example shows the linking of two complex
terms with di�erent combinations of tail operators.

Example 2.1 Given two complex terms P1 = Pn�1
1 +

XSn
n and P2 = Pn�1

2 �XRn
n . (Pn�1

1 +XSn
n)](Pn�1

2 �XRn
n)

= Pn�1
1 �XSn

n]Pn�1
2]XRn

n = Pn�1
1 �XSn

n]Pn�1
2]XRn

n

= [(Pn�1
1]Pn�1

2) � I]] (Pn�1
1 �XSn]I

n)]XRn
n = [(Pn�1

1]

Pn�1
2)]] (Pn�1

1 �XSn
n)]XRn

n = (Pn�1
1]Pn�1

2)]XRn
n]

(Pn�1
1 �XSn

n) = [(Pn�1
1] Pn�1

2)�XRn
n]] (Pn�1

1 �XSn
n).

In general case, Property 2.1 generates three complex
terms: (Pn�1

1] Pn�1
2) � XSn

n are a pair of two complex
terms, and Pn�1

2 �XSn]Rn
n is a single complex term. If we

continue to apply this property to the subterms (Pn�1
1

and Pn�1
2), we may generate three subterms from two

subterms. This process could continue until the subterms
are single literal terms.

Example 2.2 Given are two complex terms P1 = a+b�
c � d and P2 = a � b � c + d. The linking of P1 and P2
consists of the following steps:

(1) Linking P1 and P2, the heads are P 3
1 = a + b � c

and P 3
2 = a � b � c, the tails are �d and +d. P1] P2

= (P 3
1 � d)] (P 3

2 + d) = (P 3
1 � d)](P

3
2 � d)

(by Property2:2)
=====

[(P 3
1] P 3

2) � d]][P
3
2 � (d� d)] = [(P 3

1] P 3
2) � d]][P

3
2 � I] =

[(P 3
1]P

3
2) � d]]P

3
2 = [(P 3

1] P 3
2) � d]]P

3
2 . [(P

3
1] P 3

2) � d]
is a pair of complex terms which will be linked in the next
step. P 3

2 is a single complex term. P 3
2 = a� b � c = �a �

b+ �c. There are three resultant complex terms after step
1: P 3

1 � d, P 3
2 � d, and �a� b+ �c.

(2) Linking two subterms P 3
1 = a+b�c and P 3

2 = a�b�c,
the heads are P 2

1 = a+ b and P 2
2 = a� b, the tails are �c

and �c. P 3
1] P 3

2 = (P 2
1 � c)] (P 2

2 � c) = P 2
1] c] (P 2

2 � c)

= (P 2
1 � I)] (P 2

2 � c)] c = (by Property2:2)
=====

= [(P 2
1] P 2

2) �
c]] [P 2

1 � (I] c)]] c = [(P 2
1] P 2

2) � c]] c] (P 2
1 � �c)

= (P 2
1] P 2

2) � c] (P 2
1 � �c) = (P 2

1] P 2
2) � c] (P 2

1 + c).

(P 2
1] P 2

2) � c will be linked at the next step. (P 2
1 + c) is a

single complex term. (P 2
1 +c) = a+ b+c = �a ��b+c. There

are four resultant complex terms after step 2: P 2
1 � c � d;

P 2
2 �c�d; �a��b+c�d; �a�b+�c. Note, that the last resultant

complex term, �a� b+ �c, is generated by the previous step.
The other resultant complex terms all have a tail �d, also
found in the previous step.
(3) Linking two subterms P 2

1 = a + b and P 2
2 = a � b,

the heads are P 1
1 = a and P 1

2 = a, the tails are +b and

�b. P 2
1]P

2
2 = (P 1

1 + b)] (P 1
2 � b) = (P 1

1 �
�b)] P 1

2] b =

(P 1
1]P 1

2)] [P 1
1 � (I]

�b)]] b = (P 1
1] P 1

2)] (P 1
1 � b)] b =

(P 1
1]P

1
2)]b] (P

1
1 �b) = [(P 1

1]P
1
2)�b]] (�a �b). There are

�ve resultant complex terms after step 3: P 1
1 � b � c � d;

P2 � b � c � d; �a � b � c � d; �a � �b+ c � d; �a� b+ �c.

(4) In the last step, both P 1
1 and P 1

2 are single literals.

P 1
1 = a. P 1

2 = a. P 1
1]P

1
2 = �a]a = I. (P 1

1]P
1
2)�b =

I� b = �b. The �nal results are the following four complex
terms: �b � c � d; �a � b � c � d; �a � �b+ c � d; �a � b+ �c.

De�nition 2.1 If a head of a complex term is an univer-
sal subterm, then the head is referred to as an universal
head. If a tail literal is universal, then the tail is referred
to as an universal tail.

An universal head with i literals will be denoted as Ii.
An universal tail literal will be denoted as I. We found
that the following conditions may reduce the number of
resultant complex terms.

1. identical literals or identical literal operators,

2. complement heads (P1 = P2) or complement tails

(XSn
n = XRn

n),

3. universal literals,

4. one tail operator is AND or OR, the other tail oper-
ator is XOR.

Comparing with the product term linking, there is only
one condition, identical literals, that has impact on the
number of resultant product terms. The principle is: we
try to �nd those pairs of complex terms which generate a
small number of resultant complex terms by linking.

B. Di�erent Linking Cases

The previous subsection shows that linking of two com-
plex terms can be done step-by-step linking the heads and
tails of the complex terms and their subterms. In this sec-
tion, linking of heads and tails of two complex terms is
discussed. In general the two complex terms can be writ-
ten in the form: P1 = Pn�1

1 �1 X
Sn
n , P2 = Pn�1

2 �2 X
Rn
n

where �1 and �2 are two tail operators in P1 and P2
respectively. There are four cases to be investigated for
heads:
[1] Pn�1

1 = Pn�1
2 ;

[2] Pn�1
1 = Pn�1

2 ;
[3] Pn�1

1 6= Pn�1
2 , Pn�1

1 = In�1;
[4] Pn�1

1 6= Pn�1
2 , Pn�1

1 6= In�1, Pn�1
2 6= In�1;

Note that case 1 includes the case that both heads are uni-
versal. The case 2 is that one of the heads is the negation
of the other. Case 3 is the case that one of the heads is
universal. Since the commutative law holds, when either
one of the heads is universal, belongs to this case. The
last case is that the two heads are di�erent and none of
them is universal. Thus all the di�erent cases are included
in the above four cases.
Similarly, there are four di�erent cases for tail literals:
[1] XSn

n = XRn
n ;

[2] XSn
n = XRn

n ;
[3] XSn

n 6= XRn
n , XRn

n = I;
[4] XSn

n 6= XRn
n , XSn

n 6= I, XRn
n 6= I.

Please note that in case 3, one of the tail literals is univer-
sal. If the head is also in case 3, the universal head and
the universal tail literal are in di�erent complex terms. In
other words, the case is either Pn�1

1 and XRn
n are univer-

sal, or Pn�1
2 and XSn

n are universal. If both Pn�1
1 and

XSn
n are universal, or both Pn�1

2 and XRn
n are universal,

the case should be taken care of at a previous stage by

evaluating Pn
1 �X

Sn+1
n+1 and Pn

2 �X
Rn+1
n+1 . So at the current

stage, if both the head and the tail are in case 3, we only
need to consider the case that the universal head and the
universal tail are in di�erent complex terms.
There are six cases of positive literal operators: (1) both
operators are AND; (2) both operators are OR; (3) both
operators are XOR; (4) one operator is AND and the
other is OR; (5) one operator is AND and the other is
XOR; (6) one operator is OR and the other is XOR. There
are also the cases that the literal operators are negative.

Table 1: Linking Cases for the Positive Term Form

X
Si+1
i+1

= X
Si+1
i+1

= X
Si+1
i+1

= X
Si+1
i+1

6=

X
Ri+1
i+1

Ii X
Ri+1
i+1

X
Ri+1
i+1

(�, �) (�, �) (�, �) (�, �)

Pi
1
= Pi

2
(+, +) (+, +) (+, +)

(�, �) (�, �) (�, �)
(�, +) (�, +) (�, +) (�, +)
(�, �) (�, �) (�, �) (�, �)
(+, �) (+, �) (+, �)
(�, �) (�, �) (�, �) (�, �)

Pi
2
= I (�, +) (�, +) (�, +)

(�, �) (�, �) (�, �)
(�, �) (�, �) (�, �) (�, �)

Pi
1
= Pi

1
(+, +) (+, +) (+, +)

(�, �) (�, �) (�, �)
(�, +) (�, +) (�, +) (�, +)
(�, �) (�, �) (�, �) (�, �)
(+, �) (+, �) (+, �)
(�, �) (�, �) (�, �) (�, �)

Pi
1
6= Pi

2
(+, +) (+, +) (+, +)

(�, �) (�, �) (�, �)
(�, +) (�, +) (�, +) (�, +)
(�, �) (�, �) (�, �) (�, �)
(+, �) (+, �) (+, �)

Table 2: Linking Cases for the Or-Free Form

X
Si+1
i+1

= X
Si+1
i+1

= X
Si+1
i+1

= X
Si+1
i+1

6=

X
Ri+1
i+1

Ii X
Ri+1
i+1

X
Ri+1
i+1

(�, �) (�, �) (�, �) (�, �)

Pi
1
= Pi

2
(�, �) (�, �) (�, �)

(�, �) (�, �) (�, �) (�, �)
(�, �) (�, �) (�, �) (�, �)

Pi2 = I (�, �) (�, �) (�, �)

(�, �) (�, �) (�, �) (�, �)

Pi
1
= Pi

1
(�, �) (�, �) (�, �)

(�, �) (�, �) (�, �) (�, �)
(�, �) (�, �) (�, �) (�, �)

Pi1 6= Pi2 (�, �) (�, �) (�, �)

(�, �) (�, �) (�, �) (�, �)

However, all the negative operators can be converted to
the positive operators without increasing the number of
complex terms. So only the positive operators are consid-
ered here. There are totally 4 (case on heads) � 4 (case
on tail literals) � 6 (cases on tail operators) = 96 di�erent
cases.

In [4], the concept of simpli�ed complex terms is intro-
duced. In a simpli�ed complex term, some of the above
conditions would not occur. For instance, Pn�1�I is not
a simpli�ed complex term. Table 1 lists all the di�erent
linking cases. Since the simpli�ed complex terms are as-
sumed, the tail operators adjacent to universal literals are
AND only, there are 23 cases which do not exist. So there
are 73 cases listed in Table 1.

In Table 1, the top left block shows the cases that the
two complex terms have the identical heads and identical
tails. There are six cases in this block, which are all com-
binations of tail operators. In the �rst row, the second
block from the left has three cases: (1) both operators
are AND, (2) one operator is AND and the other is OR,
(3) one operator is AND and the other is XOR. This
block includes the cases that the two complex terms have
the identical heads but di�erent tail literals, and one of
the tail literal is universal. According to the simpli�ca-

tion rules from [4], if the tail literal is universal, the tail
operator is AND. So only three cases instead of six cases
are in this block.
The above discussion is based on the positive term form.

Comparing with the or-free form, we found that the lat-
ter one has two advantages: (1) If the or-free form is
used, the number of linking cases is less than in the pos-
itive term form. This is because the OR operators are
eliminated from the ESCT. The combinations of literal
operators are reduced. (2) P i

1 = P i
2 is one of the con-

ditions to be checked before the linking. Checking this
condition is more convenient by using the or-free form
than the positive term form.
There are 40 cases in Table 2. This number is signi�cantly
smaller than in the positive form, which is 73. All these
cases were proved in [4].
Two Complex Terms with Identical Tails We con-
sider here the case that the tails of the two complex terms
are the same, and the two heads are di�erent. In this case,
the tail operators can be AND, OR or XOR. The linking
of such two complex terms are shown by the following
three equations:
(Pn�1

1 �XSn
n)] (Pn�1

2 �XSn
n) = (Pn�1

1] Pn�1
2) �XSn

n (1)

(Pn�1
1 +XSn

n)] (Pn�1
2 +XSn

n) = (Pn�1
1]Pn�1

2) �XSn
n (2)

(Pn�1
1 �XSn

n)] (Pn�1
2 �XSn

n) = Pn�1
1] Pn�1

2 (3)
Above three equations show that if the tails of two pos-
itive terms are the same, then the tail can be extracted
out. To extract an identical tail, the following operations
are performed: (1) if the tail operator is AND, the tail
remains the same; (2) if the tail operator is OR, the tail is
negated; (3) if the tail operator is XOR, the tail becomes
an universal tail.
As proved in [4], the above three equations can be then
applied on the subterms if the tails of the two subterms are
also the same. Note that if the or-free form is used, then
the OR operators have been converted to AND operators
and Equation (2) above : B is not needed. However,
converting to or-free form does not change the linking
results.

3. Outline of MINICT program

Since the linking rules for complex terms are much more
complicated than the linking rules for product terms, all
the di�erent linking cases are discussed in [4], as well as
several special cases. The new cube operation, m-link,
which is an extension of exorlink, has been next intro-
duced. Just like for the exorlink, we proved in [4] that the
m-link operation can be applied on any two complex terms
in a ESCT, and the number of resultant complex terms
depends on the distance of two complex terms. Then the
distance of two complex terms is de�ned with a thorough
analysis of all di�erent linking cases, the approach very
similar in principle to one from [5], and being an extension
from [3]. Finally, program MINICT, the ESCT minimizer
has been created based on look-ahead search using m-link
operations of di�erent distances, the ideas generalizing

those presented in [5].

4. Experimental Results of MINICT

The presented algorithm has been implemented in pro-
gramMINICT. The experimental results are shown in Ta-
ble 3. The inputs of the program are minimized ESOPs.
The outputs are ESCTs with minimized number of com-
plex terms and minimized number of output columns. In
Table 3, the columns In and Out are number of input vari-
ables and number of output variables, respectively. CT0

is the number of product terms in the ESOPs. Cin is the
initial cost. According to the cost function de�ned in Sec-
tion 5 the initial cost; Cin = CT0�(In+Out). In Table 3,
the column CT is the number of complex terms after com-
plex terms minimization. The column CCO is the number
of output columns after column folding [1,2,4]. ColumnC
is the cost of minimized ESCTs. C = CT � (In + CCO).
Column C=Cin gives the ratio of the costs after the min-
imization and before the minimization. T ime is cpu sec-
onds on a Pentium 133 MHz PC. For instance, the �rst
test case, 5xp1, has 7 inputs, 10 outputs, and 32 product
terms. The initial cost is 32 � (7 + 10) = 544. It has been
minimized to 8 complex terms and 7 output columns. The
cost is 8 � (7 + 7) = 112. The run time is 0.10 seconds.
The cost ratio is 112 / 544 = 0.21.
Table 3 shows that for some test cases, the costs are sig-

ni�cantly reduced. While for others, there is little or no
reductions. Our suggestion is that we could try also SCT
(sum of complex terms) minimizations. If both SCT min-
imizations and ESCT minimizations are performed and
the better results between the two are selected, the over-
all results could be improved.
Observe also, that MINICT starts from an already op-

timized ESOP form, so comparing the areas and delay
times of initial SOP or ESOP PLAs and the �nal LCAs
produced, would be even much more advantageous for the
Exorcism-mv/MINICT/folding combination used by us.

5. Conclusions

The main contribution of this paper is the proposi-
tion of a comprehensive logic design representation and
corresponding minimization algorithms for both ASICs
and FPGAs. While connection oriented synthesis tools
are highly needed by both ASIC and FPGA designers,
the current methodologies have been facing di�culties to
meet the demand. Based on complex term theorems [4],
we developed minimization algorithms for logic cell ar-
ray optimization. It is for the �rst time that multi-level
factorization method was given that applies to AND, OR
and EXOR gates and addresses concurrently the issues
of space, delay times and regularity. Although our theo-
rems play a fundamental role to create linking subroutine
for MINICT, they are of the value by themselves, and
can be used for a more general tree factorization, and
also extended to SCT factorization that starts from SOP
rather than ESOP form. All presented ESCT methods

Table 3: MINICT on MCNC Test Cases

In Out CT0 Cin CT CCO C C=Cin Time

5xp1 7 10 32 544 8 7 112 0.21 0.10
9sym 9 1 51 510 45 1 450 0.88 0.86
adr4 8 5 31 403 16 1 144 0.36 0.06
b12 15 9 28 672 27 3 486 0.72 374.42
bw 5 28 22 726 22 19 528 0.73 4.06
clip 9 5 63 882 62 5 868 0.98 6.79
con1 7 2 9 81 8 1 64 0.79 0.02
f51m 8 8 31 496 30 7 450 0.91 0.39
inc 7 9 26 416 25 9 400 0.96 1.10
log8 8 8 83 1328 82 8 1312 0.99 16.98
misex1 8 7 12 180 12 7 180 1 0.19
misex2 25 8 27 891 26 4 754 0.85 0.69
mlp4 8 8 60 960 57 5 741 0.77 2.82
nrm4 8 5 67 871 66 5 858 0.99 6.72
rd53 5 3 14 112 9 1 54 0.48 0.03
rd73 7 4 35 385 25 1 200 0.52 0.28
rd84 8 4 59 708 46 1 414 0.58 0.48
rdm8 8 8 31 496 29 7 435 0.88 0.43
rot8 8 5 35 455 34 5 442 0.97 0.95
sao2 10 4 28 392 28 4 392 1 0.60
squar5 5 8 19 247 17 5 170 0.69 0.05
t481 16 1 13 221 12 1 204 0.92 0.05
wgt8 8 4 56 672 36 2 360 0.54 0.34
xor5 5 1 5 30 1 1 6 0.2 0.01

Total 212 155 837 12678 723 110 10024 0.79 418.42

have their counterparts in corresponding new SCT meth-
ods. Finally, some output functions can be realized by
SCT and some by ESCT, which will further improve the
results.
Our methodology provides a new concept and an alter-

native approach to meet the challenge. The proposed logic
representation and optimization algebra has several im-
portant advantages over the existing logic representations
and methodologies: (1) The logic representation and de-
sign implementation are consistent. (2) The stages of
logic synthesis and physical design are e�ectively merged
into a single stage. (3) The structure of the mapping so-
lution is a regular rectangle. (4) Since the connections
are mainly between neighbor cells, the wire delay is re-
duced comparing to other design methods. (5) Since the
structure is regular, the creation of the high-performance
tools will be signi�cantly easier.

References

[1] A. Sarabi, N. Song, M. Chrzanowska-Jeske and M. Perkowski,
"A Comprehensive Approach to Logic synthesis and Phys-
ical Design for two-dimensional Logic Arrays," Proc. 31th
ACM/IEEE Design Automation Conference, pp. 321-326,
June, 1994.

[2] N. Song, M. Perkowski, M. Chrzanowska-Jeske and A. Sarabi,
"A New Design Methodology for Two-Dimensional Logic Ar-
rays," VLSI Design, 1995, Vol. 3, Nos. 3-4, pp. 315-332.

[3] N. Song and M. Perkowski, "Minimizationof Exclusive Sum of
Products Expressions for Multiple-Valued Input Incompletely
Speci�ed Functions," IEEE Trans. on CAD, Vol. 15, no. 4,
pp. 385-395, 1996.

[4] N. Song, \A New Design Methodology for Two-Dimensional
Logic Cell Arrays," Ph.D. Thesis, November 14, 1997, PSU.

[5] N. Song, M. Perkowski, \A New Fast Approach to Approx-
imate ESOP Minimization for Incompletely Speci�ed Multi-
Output Functions," Proc. RM'97, pp. 61 - 72.

