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Abstract— The paper presents an improvement to Exorlink op-
erations, and a new approach to their use for Exclusive Sum
of Products (ESOP) minimization. A new approach based on
look-ahead search strategies is also introduced. Our program,
EXORCISM-MV-3, is the successor to EXORCISM-MV-2, and
can minimize multi-valued input, binary-output, incompletely spec-
ified, multi-output functions with different and arbitrary numbers
of values in every variable. This makes it also useful in many ap-
plications, such as Machine Learning, and optimization of PLAs
with input decoders. We observed that the new program is ex-
tremely fast; the speed-ups of up to 141 times were observed on

large functions.

[. INTRODUCTION.

Although a classic in EXOR Logic, the ESOP minimization problem is far

from being solved, and numerous results [7, 24, 32] point to various possible



improvements of the existing ESOP minimizers. For instance, GRM or
FPRM minimizers find, for some benchmark functions, the solutions that
are better than the best known solutions of ESOP minimizers. Thus, despite
many important works in recent years [5, 6, 7, 21, 22, 24, 31], the ESOP
minimization problem still remains an open research area.

The work presented here is an extension and improvement to the approach
from [28], implemented in program EXORCISM-MV-2. Here the applica-
tion of the Exorlink operation was further improved by use of look-ahead
ideas. As EXORCISM-MV-2, our new program, EXORCISM-MV-3, is able
to find high quality solutions to incomplete multi-output functions with ar-
bitrary number of values for each variable (which allows to run it with input
decoders having more than two binary inputs).

Its main advantage is, however, that EXORCISM-MV-3 is very fast. In
many practical applications such as: the minimization of regular arrays [27],
the minimization of Generalized Reed Muller Forms [32], the minimization
of arithmetic functions and functions specified with initial AND/EXOR
descriptions [29], the multi-method logical approaches to Machine Learning
[10], the array realizations of linearly independent logic [11], the multi-level
realizations of linearly independent logic [13, 14], and the lattice realizations
of functions [15, 16, 17] the ESOP minimization program must be very fast,
because it is used in a loop of another minimization program. EXORCISM-

MV-3 satisfies this requirement.

II. BACKGROUND ON MULTPLE-VALUED EXORLINK OPERATIONS.

We review here the basic definitions of Exorlink for multiple-valued func-

tions [28].



Definition 1. A multiple-valued input, two-valued output, incompletely
specified switching function f (multiple-valued function, for short) is a map-
ping f(X1, Xy, ..., X,,): P, X P» X ...P, = B, where X; is a multiple-valued
variable, P, = {0,1,...,p;— 1} is a set of admissible values that this variable
may assume, and B = {0, 1, x} ( x denotes a don't care value).

Definition 2. For any subset S; C F;, XZSZ is a literal of X; representing the

function such that

1 it X; eS5;

0 if X;¢59;.

Definition 3. A product of literals, Xlegz...X;fn, is referred to as a product
term (denoted by PT, and also called term or product for short). A minterm
is a product term that there exists only one value in each S; for: = 1,2, ..., n.
Definition 4. The Ezclusive-OR (EXOR for short) of two products is as-
signed the value 1 if and only if the two products have different values.
An EXOR of products is called an Ezclusive Sum of Products Expression (
ESOP for short ). It is also called a Multiple- Valued Input Exclusive Sum of
Products Ezxpression ( MIESOP for short ) if one wants to emphasize that
the input variables are multiple valued.

Erample 1a. In binary logic, given three terms 177 = xyz, Ty = Zyz, and T}
= ryz. T & T5 B Ty is an ESOP. Since the binary logic is a special case of
multiple-valued, the above three product terms can be written in multiple-
valued form as T) = XYy 10 Z10 1, = x {0yt 70} 7 = x{0y{0} z{1},
Ezample 1b. In 4-valued logic, given three terms T} = X2y 23 1, =
X3y 2 and Ty = XOUY U3 T T, @ Ty is a MIESOP. We can also
call it an ESOP.

In cube notation, a term is represented by a cube, and each literal in the



term is represented by a vector:

et ™ — bV — L= el
where
- 1 ifj€585;
C? =
0 if j €5;.

For example, X% is denoted by 100...000, X} is denoted by 010...000,
X102} ig denoted by 101...000, and X {5} is denoted by 111...111, which
represents the Boolean universe. A cube is a null cube, if one or more
variables contain all Os.

Erxample 2. The ESOP in example 1a can be written in the following cube

notation:
[01 - 10 - 10] 4 [01 - 10 - 10] 4 [10 - 10 - 01].
The ESOP in example 1b can be written in cube notation as follows:

(0110 - 0011] & [0011 - 0110] & [1100 - 0101].

Definition 5. The distance of two terms is the number of variables for which
the corresponding literals have different sets of values.
Ezample 3a. The distance of T} = abd and Ty = abc is 3, because three
literals have different sets of values:

for a: {01} = {01}, for b: {01} # {10},

for e: {11} # {01}, for d: {01} # {11}.
Ezample 3b. Given three terms T} = X0yt 7, = XUy {02 and Ty
= Xy The distance of Ty and Ty is 2, because two literals have

different sets of values:



for X: {0} # {1}, for Y: {1} # {0,2}.
The distance of Ty, and T3 is 1, because only one literal has different sets of
values:

for X: {1} = {1}, for Y: {0,2} # {0,1}.
We write distance(1;,T;) = d to indicate that the distance of two terms T;
and Tj is d.
The objective of logic minimization is to find a realization that reduces
certain cost function. Our primary goal of ESOP synthesis is to minimize
the number of terms in the ESOP expression. For the expression with
the minimum number of terms our secondary goal is to minimize the total
number of inputs to the AND and EXOR gates. Following the notation
in [28], we use Cr to indicate the number of terms and C, to indicate the
number of literals.
Let Tg = X' X5 and Ty = X{"... X" be two terms. The ezorlink [28]
of terms Ts and Ty is defined by the following formula:

TsTr =P {Xfl...Xf_ﬁl Z-(Si@Ri)Xﬁ:fl...Xf” | for such i =1,...,n, that S; # Ri} :

Here @ denotes the exorlink operation and & denotes the EXOR operation.
Definition 6. Given terms Ts and Ty, if the distance of two terms is d, then
Ts @ Tgis a distance d exorlink. It was proved in [26] that the exorlink can
be applied to any two cubes in an array, without regard to their distance.
According to the above formula, we can observe that distance d exorlink
generates d resultant terms.

In the remainder of this section, distance 0, distance 1, distance 2, and

distance 3 exorlink operations will be discussed.



Distance 0 Exorlink.
If the distance of two terms is 0, exorlink of the terms generates no resultant

terms. These two terms are then removed from the ESOP description.

Distance 1 Exorlink.

Given two terms T and Tx. let X° and X% be a pair of literals in terms Ty
and Tg, respectively, such that X> # X% and the other pairs of literals in
the two terms are equal. Therefore, these two terms will be called ”Distance
1 Exorlinkable.” The Distance 1 Exorlink operation of the terms generates

a single resultant term.

Ezxample 4. Let Ty = X123y {23} and T, = X0y {23}
Te & Tp = X 12310001y {23} _ y{02.3}y{23),

Distance 2 Exorlink.

Given two terms, if the distance of these two terms is 2 (assume X # X1t
and Y # Y1) then distance 2 exorlink operation can be performed on
them, and two resultant terms will be generated. Please note that when
distance > 2, exorlink operation is not symmetric, which means Tg @ T, is
different from Tr @ T.

Ezample 5. Given two terms Tg = X 1013y 13} and T = X231y {01},

Ts @ Ty = X{0’1’3}Y{1’3} ® X{2’3}Y{0’1} — X{O,l,?}y{o,l} @ X{0’1’3}Y{0’3}

TR ® TS — X{2’3}Y{0’1} ® X{0’1’3}Y{1’3} — X{O,l,?}y{l,3} D X{2’3}Y{0’3}.

Distance 2 operations do not directly reduce the number of terms in an

ESOP. However, these operations reshape two terms to two different terms,
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Figure 1: ESOP minimization corresponding to Example 6

thus provide opportunities for reducing the cost of ESOPs at some later
stages. The non-symmetry property of the Distance 2 Exorlink gives us
two ways to reshape the two terms, which increases the opportunity for
searching a better result. Our method on how to apply Distance 2 and
Distance 3 Exorlink in ESOP minimization is discussed in sections 3 and 4.
Ezample 6. Given is an ESOP with three terms: 77 = X {02y 23 1, =
XYy and Ty = X1y 3 In Figure 1, the three terms Ty, T and Ty
are represented by three cubes A, B and C', respectively. A ® B generates
A" and B'; A’ @ C generates A”. The ESOP with three cubes is minimized
to an ESOP with two cubes, B’ corresponding to term Ty = X {13y {12}
and A” corresponding to term Ty = X {012y {13},

Distance 3 Exorlink.

Distance 3 Exorlink generates three resultant terms from two given terms.
Distance 3 Exorlink increases the number of terms in the ESOP. However,
increasing the number of terms may help to reduce the number of terms at
some later stage, and subsequently lead to better results.

Ezrample 7. In binary logic, a given ESOP with 4 cubes is as follows:

0002, 0211, #11x, 1010.



The distances between any pair of cubes from the above set is 3. So, there
are no distance 1 or distance 2 operations that can be applied to this set of
cubes. Performing Distance 3 Exorlink on the first two cubes leads to three

cubes:
000x © 0x11 = 0111 @ 0021 & 0000.

Replacing the first two cubes by these three cubes, a new ESOP with five

cubes 1s obtained:

0111, 00«1, 0000, 11z, 1010.

Since the distance of two cubes: 0000 and 1010 is 2, a distance 2 exorlink

can be performed on them:
0000 @ 1010 = 2010 & 00x0.
After this operation, the ESOP contains five cubes:

0111, 0021, 2010, x11x, 0020.

Now, the distance of cubes 00x1 and 00z0 is 1, a Distance 1 Exorlink can

be performed on them:
0021 @ 0020 = 00xx.
The ESOP now contains four cubes:

0111, 00zz, 2010, x11x.

Performing Distance 2 Exorlink on cubes 2010 and x11x, we obtain:



2010 ® z1lax = 2210 ¢ «111.
The ESOP is
0111, 00zz, 2210, 2111.
Cubes 0111 and 2111 can be combined into one cube:
0111 ® 2111 = 1111.
The final result is an ESOP with three cubes:
00xx, x210, 1111.

By using Distance 3 Exorlink, the number of cubes in the ESOP is tem-
porarily increased from 4 to 5, but this increase helps to jump out of a local
minimum of the cost function, and achieve ultimately a better result of 3

cubes.

III. THE NEW EXORLINK OPERATIONS.

This section presents the description of the new exorlink operations used
in EXORCISM-MV-3. Distance 0, 1 and 2 exorlink are the same as those

defined in previous section and [28].

Distance 2 Exorlink. Please note that Distance 2 Exorlink operation
generates 4 resultant cubes:

Given are cubes: A = X; Xy, and B = Y; Y, (for simplification of
notation, we avoid here writing in cubes the parts that are the same in

cubes A and B).
Applying Distance 2 Exorlink to A and B, the resultant cubes are:



cuber: Xy (X9 @ Y3), cubey: Yy (Xy @ Y3),

cubes: (X1 DY) Yo, cubey: (X7 @Y7) Xo.
Cubes cube; and cubeg form one group and cubey and cubey form another
group. After the Distance 2 Exorlink operation, either Group 1 or Group 2
is selected. But only the entire group can be selected, not a part of it. For

instance, cubes cube; and cubes cannot be selected together as the result.

Distance 3 exorlink. Here we extend the Distance 3 Exorlink, as com-
pared to [28]. Previously, in EXORCISM-MV-2, the Distance 3 Exorlink
would generate two groups of 6 cubes.
Given the cubes: A = X; Xy X3, and B = Y; Y, Y3, the resultant cubes
are:
Group 1:

cuber: (X10Y1) Yo Ys,  cubes: X1 (XoDY2)Ys,  cubes: X; Xo (X3DY3).
Group 2:

cubey: (XqDY1) X9 X3, cubes: Y (Xo®DY2) X5, cubeg: Y1Ys (XsDY3).
By performing the Distance 2 Exorlink operation on above cube; and cubes,
the cubes cube; and cubeg are obtained:

cuber: Y1 (Xo @ Y3) Vi, cubeg: (X1@Y7) Xy Vs,
Cubes cuber, cubeg and cubes form a new group of resultant cubes for Dis-
tance 3 Exorlink. By doing all the permutations, the new Distance 3 Ex-
orlink operation generates the following 12 resultant cubes (note the new
enumeration of cubes):

cuber: Xy Xy (X5DY3),  cubey: Y1 Yy (X3DY3),  cubes: (X70Y7) Yy Vi,

cubes: (X70Y1) Xy X3, cubes: X (XoDY2) X3, cubeg: Yy (XoDYs) Vi,

cuber: Xy (Xo®Ys) Ys,  cubeg: (X10Y)) XoYs,  cubeg: XY, (X5DY3),

10



cubejp: Y7 (Xy BY5) X, cubej: (X;8Y)) Yy X,

cubeyy: Y1 Xo (X3 D Y3).
which form 6 groups: Group 1: cube;, cubes, cuber; Group 2: cube;, cubeg,
cubeg; Group 3: cubes, cubes, cubeg; Group 4: cubesy, cubey, cube;y; Group 5:
cubes, cubes, cubeir; and Group 6: cubey, cubeg, cubeis. Concluding, after

the Distance 3 Exorlink, there are as many as 6 groups to be selected from,

instead of only 2 groups that were used in EXORCISM-MV-2.

IV. LOOK AHEAD STRATEGIES.

In this section, we define several look-ahead strategies for searching best

ESOPs.

One step look ahead.

Give an array of cubes, {p1, ps, .., p }, if distance of p; and py is 2, a Distance
2 Exorlink operation can be performed. After this operation, there are two
groups, one of them to be selected. For each of the 4 resultant cubes, q;, g,
g3 and qu, the distance between ¢; (i = 1,2,3,4) and p; (j # 1land j # 2)
is checked. If it is found that there is a distance < 1, the corresponding
group of resultant cubes is selected, so the total number of cubes in the

array can be reduced. This is called a one-step-look-ahead method.

Two step look ahead.

After one-step-look-ahead, if there are no Distance 0 or Distance 1 Exorlink
operations possible, then if the distance of ¢; and p; is 2, the Distance 2
Exorlink can be performed again and 4 resultant cubes ri, r9, r3 and r4 are
generated. Now it can be checked whether the distance of r; (i = 1,2,3,4)
and pp (K # 1,2,j) is < 1. This is called a two-step-look-ahead method.

11



Consequently, we can perform multi-step-look-ahead. Multi-step means
2 or more steps. Look-ahead means looking for Distance 0 and Distance
1 Exorlink operations. Look-ahead on Distance 3 Eexorlink can be also
applied. The Distance 3 Exorlink increases the number of cubes by 1, the
Distance 0 Exorlink will reduce the number of cubes by 2, the Distance 1
Exorlink will reduce the number of cubes by 1, and the Distance 2 Exorlink
will keep the number of cubes unchanged. But Distance 2, and 3 Exorlinks
will bring the ESOP expression to a different point, so they may also lead

to better results of subsequent operations.

Multi-step look ahead with full backtracking.
Assume distance(py, p2) = 2, and 4 resultant cubes ¢y, ¢2, ¢3 and ¢4 are
generated. Assume p;;, Pisy ..y Piyy; Were found, there are m cubes which
are of distance 2 with ¢;. So for q;, there are m; ways to go. Accordingly,
there are my,mg and my ways to go for ¢y, q3 and ¢4 respectively. So, at this
step, there are m; + my + mg 4+ my ways to go. For each of these ways,
at the next step, there are (n; + ny + ns + n4) ways to go. Let’s assume
the maximum search depth step is set to the value of k'. When the K _th
step is reached, the algorithm goes back one step and tries other ways. If
all the possible ways at each step are tried, it is called a full backtracking
method.

The searching space for a full backtracking is huge, when the value of K
is big. (The searching space depends also on how many Distance-2 cubes
can be found at each step, which in turn depends on the number of cubes

currently in the array).

Multi-step look ahead with limited backtracking.

12



Since the full backtracking is very expensive, there are two alternatives to
be investigated: the small K strategy, and the limited backtracking strategy.
Small K means setting parameter I\ to a small value, like 2 or 3. Limited
backtracking means at each step only a few ways to go are selected based
on some method (random selection is used in our current implementation).
Practically, we found experimentally that the method of large ' with a
small number of backtracks is much faster and usually gives better results
than the method of small A’ with a large number of backtracks. Although
the second one is also sometimes very helpful.

Concluding, there are two basic strategies:

1. small K and large number of backtracks.

2. large I and small number of backtracks.

Practically, we found that the first strategy leads to the very rapid reduc-
tion, and then the cost (number of PTs) remains stable for many loops
(local minimum). While the second strategy leads to very slow reductions,

but better reductions are found if the loop continues.

V. THE ALGORITHM OF EXORCISM-MV-3.

A. The loops.

The first method is used to obtain a local minimum quickly. Then the sec-
ond method is used to get out of the local minimum. The main operations
in our algorithm are distance checking and exorlink. Both operations have
worst case complexity of n (number of variables), which is linear. Since
these operations are performed in many loops, so the run time depends

mainly on the number of loop repetitions, which relates to the number of

13



cubes in the array (the more cubes, the more loop repetitions). The stop-
ping criteria are the following: during the look ahead, we stop if we reach
the number of loops, or complete the backtracking, or find the reduction.

Below are the loop strategies.

Distance 2 Look Ahead.

At each step, find if Distance 0 or 1 Exorlink is possible.

If yes, execute it and quit the look ahead.

else perform the Distance 2 Erorlink when possible, and mowve to the next
step.

else if no Distance 2 Exorlink is possible, quit the look ahead.

Distance 2 Loop.
For each pair of cubes in the array,
of the distance is 0 or 1, perform FExorlink, quit the loop.
else if the distance is 2, perform Erorlink, generate qi, qo, q3, Q4.
if (distance(q;, p;) < 2) perform Exorlink, quit the loop.
else pick one group of the resultant cubes, continue to loop.
The Distance 2 Loop is equivalent to N-step Look Ahead without back-

tracking (/V is the number of Distance-2 pairs in the array).

Distance 2 Loop2. Distance 2 Loop2 is the same as the Distance 2 Loop,
except that at each step, 3 groups of cubes are picked (the two resultant

groups and the original group), which have the smallest literal count.

Distance 3 Look Ahead.
At each step, find if Distance 3 Erorlink is possible.
If Distance 3 Erxorlink is not possible, quit the Distance 3 Look Ahead.

14



else, for each of the 12 resultant cubes, check if
Distance 0 or Distance 1 Erorlinks are possible.
If yes, execute the Exorlink and move to the next step.

else do not execute the Erorlink, looking for the next pair.

Distance 3 Loopl.
Perform an N step Distance-3 Look Ahead without backtracking.

Distance 3 Loop2.
Perform an N step Distance-3 Look Ahead with maximum M backtrack-

ing.

B. The algorithm of EXORCISM-MV-3.

(1) Distance 2 Loop.

(2) Distance 3 Loopl.

(3) Loop steps (1) and (2), until no improvements.
(4) Distance 3 Loop2.

(5) Loop steps (1) to (4), until no improvements.
(6) Distance 2 Loop2.

(7) If no improvements on the number of cubes, stop; else go back to step

1.

VI. EXPERIMENTAL RESULTS OF EXORCISM-MV-3.

We compared our new program, EXORCISM-MV-3 to our previous pro-
gram, EXORCISM-MV-2. Both programs are run on the same machine.
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We collect all the test cases from literature on ESOP minimization. By
small examples we characterize those that satisfy the formula:

(number of input variables + number of output variables) x Initial number
of PTs < 20,000
Table 1 presents comparison on small examples. Table 2 presents compar-
ison on large examples. As seen in Table 2, speedup of up to 141 can be
achieved on large benchmark functions. Results generated by ESPRESSO
are also put into the same tables for comparison. Please note that the out-
puts of EXORCISM are ESOPs and the outputs of ESPRESSO are SOPs,
although the definitions for their cost functions are the same. From the
tables we can see that ESOP minimization is significantly slower than SOP
minimization. This is partially due to the fact that ESOP minimization is
a more difficult problem than its counterpart; partially due to the nature

of our algorithm, which needs a large number of iterations.

VII. CONCLUSIONS.

One approach to minimize ESOPs is to apply a set of cube operations
iteratively on each pair of cubes in the array [4, 8, 20, 28, 23, 24, 6].
The Exorlink operation is the most powerful operation in this approach,
which can link any two cubes in an array of cubes of an arbitrary distance.
The superiority of the new cube operation [28] ensures better results than
the previous operations shown in the literature. Here, the application of
the Exorlink operation was further improved by use of look-ahead ideas.
Our program EXORCISM-MV-3 was tested on many benchmark functions,
and compared to EXORCISM-MV-2. As EXORCISM-MV-2, new program
EXORCISM-MV-3 is able to minimize efficiently incomplete multi-output
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functions with arbitrary number of values for each variable, which allows to
run it with arbitrary input decoders (which is equivalent to AND/EXOR
PLA decomposition to AND/EXOR PLA and several standard PLAs that
realize the decoders).

By increasing the look-ahead step to infinity one can in theory obtain the
exact ESOP. But increasing the step means increase of the searching space,
and full backtracking means do all the permutation inside that space. The
run time becomes exponential, but one can obtain exact solutions, as well
as solutions as close to exact as desired by setting the values of K. In
conclusion, this approach can be used to obtain exact solutions for smaller
functions.

In many practical applications the ESOP minimization program must be
very fast because it is used in a loop of another minimization program.
The EXORCISM-MV-3 program presented here in most cases maintains or
improves on the quality of EXORCISM-MV-2, but it is orders of magnitude
faster on large benchmark functions.

As pointed in [10], further work is needed to minimize efficiently very
weakly specified functions, such as those that have more than 95% don’t
cares and occur in the area of Machine Learning. It can be, however, ob-
served, that the ideas of EXORCISM-DC for strongly unspecified functions
from [10] can be also generalized to multi-output Boolean relations [12],
and next combined with EXORCISM-MV-3 to create an efficient ESOP
minimizer for binary and MV-input, binary-output relations.

We found also, that the look-ahead strategies can be used successfully to

many other applications in logic minimization. In placement and routing
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algorithms, look-ahead is used for small K (usually 2 or 3) only. Our idea

here is large ' with small number of backtracks.
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Table 1: Comparison on Small Examples

EXORCISM-MV-3 || EXORCISM-MV-2 ESPRESSO

Inputs | Outputs || Cr ‘ Cr ‘ Time || Cp ‘ Cr ‘ Time Cr ‘ Cr ‘ Time
conl 7 2 9o | 37| o1 [ o] 37 ] 00 o 32 | o0
misexl | 8 7 12 82 [ o2 [ 12] 85 [ 02 || 12 ] 9 | o001
xorb 5 1 5 010 o1 || 5] 0] 00 | 6] 9 | 00
bw 5 28 22 | 319 | 1.1 |[ 22 | 300 | 06 || 22 | 349 | 020
squarh || 5 8 19 ] 87 [ o8 [19] 92 [ 03 | 25 | 119 | 0.04
misex?2 || 25 8 27 | 210 | 15 |[ 27 | 200 | 25 || 28 | 213 | 0.03
rd53 5 3 14 ] 57 [ 04 [1a] 57 [ 03 | 31 ] 175 | 00
inc 7 9 26 | 176 | 1.7 |[ 26 | 176 | 1.7 || 30 | 198 | 0.05
rot8 8 5 35 | 257 | 35 |[ 35 | 257 | 39 || 57 | 385 | 019
5xpl 7 10 32 | 170 | 22 [[ 33 | 182 | 15 || 65 | 347 | 0.09
rdm8 8 8 31 | 157 | 19 [ 31 | 57| 18 || 77 | 309 | om1
f51m 8 8 31 | 156 | 22 |31 | 160 | 34 || 77 | 400 | 036
5802 10 4 28 | 288 | 26 || 28 | 285 | 15 || 58 | 496 | 0.07
b12 15 9 98 | 169 | 12 || 28 | 163 ] 16 || 43 | 207 | 025
adr4 8 5 31 | 144 | 17 [[ 31 | 150 | 1.8 || 69 | 383 | 0.08
rd73 7 4 35 | 188 | 42 || 38 | 186 | 30 || 127 | 903 | 015
nrmd 8 5 67 | 501 | 120 || 67 | 503 | 183 || 123 | 877 | 0.32
9sym 9 1 51 | 426 | 43 || 51 | 423 | 7 86 | 602 | 0.18
clip 9 5 63 | 412 | 74 | 64 | 297 | 81 || 120 | 793 | 052
mlp4 8 8 60 | 305 | 16.1 || 61 | 389 | 104 || 128 | 891 | 0.74
log® 8 8 83 | 615 | 48.7 || 80 | 675 | 20.7 || 131 | 990 | 0.79
wet8 8 4 56 | 306 | 206 || 55 | 307 | 144 || 255 | 2070 | 0.61
rdg4 8 4 59 | 322 | 202 || 57 | 317 | 199 || 255 | 2070 | 0.56
1481 16 1 13 53 | 501 || 13 ] 53 | 412 | a81 | 5233 | 1.22
Total | 212 | 155 | 837 | 5507 | 2138 || 846 | 5671 [ 173.1 || 2325 | 18324 | 6.59
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Table 2: Comparison on Large Examples

EXORCISM-MV-3 EXORCISM-MV-2 ESPRESSO

Inputs | Outputs Cr ‘ Cr ‘ Time Cr ‘ Cr ‘ Time Cr ‘ Cr ‘ Time
o64 65 65 65 | 2272 | 124 | 65 | 2210 | 787 || 65 | 2210 | 0.26
duke? 29 29 78 | 909 | 118 | 79 | 920 | 723 || 86 | 996 | 038
ex5 8 63 72 | 704 | 104 || 72 | 920 | 618 || 74 | 1903 | 0.8
ex4 128 28 316 | 3140 | 1214 | 316 | 3136 | 17122.2 || 279 | 1928 | 6.67
tables 17 15 156 | 2449 | 32.6 || 156 | 2453 | 1494 || 158 | 2501 | 1.07
table3 14 14 166 | 2491 | 242 || 166 | 2491 | 189.7 || 175 | 2644 | 1.68
cps 24 100 | 135 | 2625 | 374 | 135 | 2462 | 4670 || 163 | 2836 | 5.08
Va2 25 8 184 | 1988 | 29.4 || 184 | 1993 | 2247 || 110 | 914 | 022
pde 16 40 184 | 1646 | 56.1 || 187 | 1678 | 455.9 || 145 | 1432 | 22.03
sqrd 8 16 106 | 704 | 50.1 || 108 | 703 | 1742 || 188 | 1419 | 1.64
apex3 54 50 268 | 4155 | 53.2 || 270 | 3916 | 2562.9 || 280 | 3202 | 5.12
add6 12 7 127 | 800 | 244 || 127 | 819 | 1046 || 355 | 2551 | 141
seq 41 35 248 | 4822 | 77.0 || 245 | 4833 | 29965 || 336 | 6245 | 1045
spla 16 46 262 | 3393 | 82.6 | 260 | 3420 | 12234 | 254 | 3208 | 2.29
apexd 9 19 439 | 6181 | 124.2 | 438 | 6292 | 7556.6 || 436 | 5419 | 10.82
apexl 45 45 286 | 3820 | 108.9 || 285 | 3796 | 4696.8 || 206 | 2842 | 247
misex3c || 14 14 226 | 2134 | 534 | 227 | 2123 | 13972 | 197 | 1561 | 481
ex1010 10 10 670 | 7466 | 1141.5 || 695 | 7928 | 16506.3 || 302 | 2895 | 5.87
alud 14 8 422 | 4430 | 506.3 | 447 | 4816 | 6827.9 || 575 | 5087 | 11.09
misex3 14 14 535 | 6632 | 669.8 || 545 | 6837 | 18896.5 || 690 | 7784 | 17.39
apex5 17 88 399 | 4027 | 457.6 || 400 | 4038 | 20156.8 || 1088 | 7281 | 59.35
Total || 673 | 723 | 5344 | 66788 | 3684.7 || 5407 | 67784 | 101921 | 5063 | 56875 | 159.77 |
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