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Abstract: We introduce a concept in VLSI layout

which can �nd applications in submicron design, quan-

tum devices, and designing new �ne-grain FPGAs. This

concept is called Lattice Structure and it extends the

concepts from [8] and [1,13,14,17,18]. In the regular

arrangement of cells, every cell is connected to 4, 6

or 8 neighbors and to vertical, horizontal and diago-

nal buses. Methods for expanding arbitrary binary and

multi-valued combinational functions to this layout are

illustrated.

1. INTRODUCTION

This paper introduces a new approach to layout-driven

logic synthesis of combinational functions. The fun-

dament of our approach are expansions of functions,

i.e. operators that transform a function to a few simpler

functions. For instance, in canonical Shannon expansion

function f is expanded with respect to input variable

a as follows: f = afa + �af�a, where fa = f ja=1,

and f�a = f ja=0 are positive and negative cofactors

of function f with respect to variable a, respectively.

Tautological cofactor functions are combined to single

nodes. Nodes for functions fa and f�a and bus for vari-

able a are mapped to layout, and procedure is repeated

for the next input variable. This way, any single-output

symmetrical binary function can be directly mapped to

regular layout with 1,2,3,4,... nodes in successive levels

corresponding to input variables. In our previous papers

we showed how to extend this approach to arbitrary bi-

nary functions, not necessarily symmetrical. As shown

below, other expansions of functions can also be used,

and the expansion nodes are mapped to neighborhood

structures which are more powerful than those investi-

gated theoretically in the past [1,4], but similar to those

from commercial Fine Grain FPGAs [2].

The concept of a lattice diagram involves three com-

ponents: expansion, joining and geometry. (1) Expan-

sion of a node function creates several successor nodes

of this node. Function f corresponds to the initial node

in the lattice, initially a tree. (2) Joining operation

joins several nodes of a bottom of the lattice (this level

before joinings looks like a tree). This is in a sense a re-

verse operation to expansion. (3) Regular geometry,

to which the nodes are mapped, guides which nodes of

the level are to be joined. Every signal in the Lattice can

be treated as multi-valued (particularly, binary). A mul-

tivalued (MV) connection for logic with 2k values can be

realized by k binary wires which comprise a bus (mak-
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Figure 1: Expansions and Joinings: (a) Shannon, (b)

Ternary Post.

ing the lattice "fat") and encode the multi-valued sig-

nal to binary. The well-known: Fat Trees, Generalized

PLAs, Maitra cascades, and Akers Arrays [1,4,18] struc-

tures are only a few special cases of this powerful con-

cept. Our regular structure concept extends also some

structures that are described in several patents of �ne

grain FPGAs (Motorola, Atmel [2], Plessey, Pilkington),

but in addition we show constructive and e�cient meth-

ods of designing discrete and continuous functions in

these structures [16,17]. We showed on many examples

[8,10,13,14,17,18,21] that this geometry is very power-

ful and more universal than the previously investigated

general cellular structures. Here we will further extend

and unify these notions to expansions with more than

2 successor functions, and geometries with more

than 4 neighbors. In theory the lattices can be ex-

tended to any number of neighbors of a cell, but 8 is

practically enough.

2. EXPANSIONS AND JOININGS

The investigated by us types of expansions can be

characterized as of maximum-type, or of Linearly-

Independent (LI) type. Maximum-type expansions

use the MAX gate (in binary logic - OR), and disjoint

literals or subfunctions for cofactors. They include bi-

nary Shannon (S) [19] and Sum-of-Products (SOP) [15]

expansions and their multiple-valued logic generaliza-

tions, such as in Post logic [10].

Below we will present only the maximum-type expan-

sions: Shannon, SOP, and Post (MV Shannon). We

assume that each binary function f is represented by



a pair [ON(f),OFF(f)]. Thus all cofactors fa for the

product of literals a, are pairs: fa = [ON(fa),OFF(fa)].

Fig. 1a explains the principle of creating a Shannon Lat-

tice based on ordered Shannon expansions for a multi-

output function (functions f ,g). Direction of arrows

shows the expansion 
ow. Observe that every cofac-

tor fa of the product a of an (in)complete function f

can be interpreted as intersecting f with a and replac-

ing all K-map cells outside product a with don't cares.

A standard cofactor fx where x is a variable does not

depend on this variable. In our interpretation, though,

fx is still a function of all variables including x, but as

a result of cofactoring the variable x becomes vacuous.

We will call this a vacuous cofactor, and denote by

v-cofactor. Thus, for any two disjoint products a1 and

a2, the v-cofactors fa1 and ga2 are disjoint (observe that

standard cofactors are in general not disjoint), Therefore

functions fa1 and ga2 are in an incomplete tautology re-

lation, and functions f and g are not changed when fa1
and ga2 are joined (OR-ed) to create a new function:

a1fa1 + a2ga2 , as in Fig. 1a (where: a1 = a2 = a, and

�a is denoted as a0). This way, the entire lattice is created

level-by-level, only three levels shown in Fig. 1a. Ob-

serve that functions in lattice nodes become more and

more unspeci�ed when variables in levels are repeated,

and ultimately nodes become constants, which termi-

nates the lattice creation process. This way, because

every variable cuts a Kmap into two disjoint parts, ar-

bitrary two functions f and g can always be expanded

together to a Shannon lattice, with OR-ing as a join op-

eration, provided that the same variable xi is used in

the level, and all expansions use negated literal �xi in the

left, and positive literal xi of the variable in the right.

As seen in Fig. 2, arbitrary functions of the same ar-

guments are cut in half by expansion of each variable

and new functions in levels are created by rearranging

the cofactors in joinings. This process can lead to a

slight increase of the number of nodes in comparison

with a shared OBDD of these functions. But a regular

structure is created, thus simplifying layout and making

delays predictable. In case when the products a1 and a2
are not disjoint, the v-cofactors fa1 and ga2 can, in some

cases, still form an incomplete tautology of functions.

When these two cofactors satisfy a tautology relation,

then functions fa1 and ga2 can be joined (OR-ed) with-

out changing functions f and g. Obviously, the same

method works for arbitrary number of output functions.

The method to create Shannon Lattices can be eas-

ily expanded to MV Shannon expansions and associated

Post Lattices for multi-output incomplete functions (see

Fig. 1b). In ternary logic, each single-variable expansion

cuts a function's map to three v-cofactors, and any two

of them can be next recombined by a joining operation

MAX - Fig. 1b. MAX is the maximum operation de-

noted by +. Let us observe that disjointness of literals

a0; a1; a2 is the fundamental condition that must be

satis�ed to create maximum-type lattices. It is a spe-

cial case of Linear Independence of functions used in

LI expansions [14,16]. In binary SOP expansions [15]
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Figure 2: Examples of regular lattices.

a branching from node f is for any subset of literals lj
that their union covers the node function f . The SOP

expansion is: f = ljflj + lrflr :::: + lsfls . The method

to create ordered Shannon lattices presented above can

be expanded to free (non-ordered) Shannon Lattices and

SOP Lattices. Any two nodes from the expansion that

form an incomplete tautology can be joined as shown

above. S and SOP expansion types can be mixed in

levels, thus creating "pseudo" [19] type of lattices.

Linearly Independent expansions for binary case use

EXOR gate, and are generalizations of Davio expansions

[19]. For �nite multiple-valued logic they are based on

Galois Field Addition gate, and in general, for arbitrary

algebras, they should have at least one linear (group)

operation. But most often they are based on the alge-

braic structure of an arbitrary �eld [6,7,8,9,10,11,13,14]

In particular, they include S (OR can be replaced with

EXOR in Shannon expansion), Positive and Negative

Davio (pD and nD, respectively), general Linearly Inde-

pendent (binary and MV) [10], and EXOR Ternary ex-

pansions [9,20]. Joining operations for these expansions

are more complicated and are presented in [5,8,14].

The lattice is created for each (multi-output) block ob-

tained fromCurtis-like functional decomposer [12] as fol-

lows. One level of function f is expanded to an assumed

type of the Lattice for a selected variable (or a group of

variables in case of LI expansion [16]. Then, the level

of the tree is mapped to the assumed type of Lattice.

This means joining together some nodes of the tree-like

lower part of the lattice. The procedure requires repeat-

ing some variables in the lattice, the key point was thus

to �nd good methods of variable and expansion types

selections. One approach to the variable order and ex-

pansion types selection is based on generalized partial

symmetries for cofactors [5]. We demonstrated that for

real-life binary benchmark functions, and starting from

the decompositional hierarchy of partitioning variables

[12], the overhead of variable repeating in planary lat-

tices was not excessive in each decomposed block [5,14].

This is because symmetric and nearly symmetric blocks

are preferred by our decomposer [12]. We believe that

good results will also be obtained for MV logic and non-
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Figure 3: Other regular lattices.

planar lattices.

3. LAYOUT GEOMETRIES

In case of 4 neighbors, 2x2 cells, Fig. 2a,c,d and Fig.

3a, the lattice is planar and it is based on a rectangu-

lar grid. Each cell has two inputs (from N and E) and

two outputs (to S and W) [1,4,18,21]. Our structure

generalizes the known switch realizations of symmetric

binary functions [1,4], based on Shannon expansion, but

it allows also for Positive and Negative Davio expansions

[19], negated variables and constants as control variables

of the nodes, nodes controlled not by variables but by

functions, and inverted edges between nodes. Lattice di-

agram counterparts of Kronecker [7], Pseudo-Kronecker

[19] and Free Diagrams can be realized. It can be shown

[8] that every function that is not symmetric can be

symmetrized by repeating variables in the lattice lay-

ers, and the selection of the next variable is done using

the Repeated Variable Maps from [12]. With respect to

possible technological realization, the condition of only

a single control variable in a level [4,14] is no longer

required, and all three types of buses (vertical, horizon-

tal and diagonal) are used to lead any variable to the

circuit's levels. Similarly we do not always require the

existence of the diagonal buses, as well as the condition

of having only constant values on the envelope of the cir-

cuit, or having the outputs only on the envelope. Now,

arbitrary variables can occur on the envelope, and out-

puts can be taken from the middle by use of buses (this

is an approach from commercial Fine Grain FPGAs [2]).

Moreover, pairs or triplets of binary control variables can

be used in nodes for arbitrary Linearly-Independent ex-

pansions [10]. Or equivalently, multivalued controls are

used. In short, for a 4-neighbor lattice geometry, any

canonical form of Reed-Muller logic and its Linearly In-

dependent generalizations can be realized (recall that

the Reed-Muller logic is a special case of Galois Field

logic, the GF(2)). Also, any MV logic (for instance in

GF(4), [6]) can also be realized in the 4-neighbor lat-

tice, but this would often require many repetitions of

variables. Continuous and fuzzy functions can also be

realized: in one example we realized an arbitrary piece-

wise continuous function with a generalized Shannon ex-

pansion [18]. Ternary and quaternary lattices for binary,

multiple-valued and continuous functions are discussed

in more detail in [16].

In case of 6 neighbors, 3x3 cells, Fig. 2b,f and Fig.

3b,f,e, the rectangular grid is enhanced with one diago-

nal connection, thus every cell has three inputs (from N,

NE and E) and three outputs (to W, SW and S). This

allows a realization of the generalized ternary diagrams

(for binary EXOR logic) introduced in [9], as well as

realizations of arbitrary expansion-based Post logic or

GF(3) logic functions [10]. Finally, any binary, or MV

logic can be mapped as in the case of the 4-neighbor lat-

tice, but now larger full trees are mappable to subsets

of lattices.

In case of 8 neighbors, 4x4 cells, Fig. 2e, and Fig.

3c,d, the rectangular grid is enhanced with one more

diagonal connection, so that every cell has four inputs

(from N,NE,NW, and E), and four outputs (to S, SW,

SE, and W). This allows a realization of the generalized

quaternary diagrams (for GF(4)), as well as arbitrary

expansion-based Post or GF(k), k < 4 functions. Again,

any binary or MV logic can be mapped, and more e�-

ciently so. In other geometry variant, the neighborhoods

are: NWW, NW, NE, NEE for inputs, SWW,SW SE,

and SEE for outputs.

Good results were found for new ternary diagrams

[9,20] and Galois(4) expansions for multi-output incom-

pletely speci�ed functions. Lattice Kronecker Decision

Diagrams (LKDDNEs) with negated edges are based on

three orthogonal expansions (Shannon, Positive Davio,

Negative Davio) [16]. Many other new families of

functional decision diagrams were created, including:

Pseudo Kronecker Lattice DDs, Free Kronecker Lattice

KDDs, Boolean Ternary Lattice DDs, and others [13].

The Boolean Ternary Lattice DDs introduce nodes with

three edges and requires AND, OR and EXOR gates for

expansion circuit realizations [14,20]. Galois GF(3) and

GF(4) diagrams require three and four neighbors on in-

puts, respectively. The families of lattice diagrams we

introduced are counterparts and generalizations of sev-

eral diagrams known from the literature (BDDs, FDDs,

KFDDs). Due to this property, our diagrams can pro-

vide a more compact representation of functions than

either of the standard decision diagrams, because they

do not require any placement or routing. Placement

and routing come as a side-e�ect of logic synthesis. Our

methods are very e�cient especially for strongly unspec-



i�ed functions, the more unspeci�ed the function, the

better the results.

4. APPLICATION EXAMPLES

Figs. 1a, 2a present the standard lattice structure in-

vestigated in [1,4,18]. Arrows show the signal 
ow. Fig.

2b presents this structure expanded with NE/SW diag-

onal connections, and Fig. 2e presents this structure

expanded with NE/SW and NW/SE diagonal connec-

tions. Fig. 2c illustrates that standard vertical and hor-

izontal buses can be used instead of diagonal buses for

small functions. Fig. 2d shows a symmetric function of

7 variables realized in a standard lattice structure with

diagonal buses (no repeated variables). Fig. 2f shows

a non-symmetric function realized in a standard lattice

structure with control input run from diagonal, vertical

and horizontal buses (buses not shown, observe the con-

stants 0 and 1 inside the lattice, as well as the folded

and repeated variables). Fig. 3a shows another view

of a standard lattice for symmetricized non-symmetric

function (variables b and c are repeated). Fig. 3b shows

3x3 lattice with S, pD and nD expansions for a 3-output

function with generalized (but no standard) symmetries.

Fig. 3f presents a lattice with 3x3 neighborhood and re-

peated and folded variables. All expansions are S and

variable names are in nodes. Small circle on input to

�rst from left node c in the third level corresponds to an

inverted edge. Figs. 3c,d are two lattice geometries with

4x4 neighborhood. Fig. 3e presents a lattice with 3x3

neighborhood drawn to emphasize ternary symmetries

in 3-dimensional space. For each node, its expansion

variable is shown. Some edges show variables' values.

Bold edges in the �gure correspond to three values of

variable b expanded for a = 0. Observe, that the same

�gure can also be viewed as a 
at connection plan and

diagonal NW/SE buses can be added (interrupted lines).

Observe also, that in this �gure the number of nodes in

the layers is 1,3,6,9,... while in the regular lattice from

Fig. 3f the numbers were 1,3,5,7... so that not all partial

ternary symmetries could be realized there in one level.

This is an example of a trade-o� between regular geome-

tries and the logic, that must be solved in selecting the

type of lattice for a given type of function.

5. CONCLUSION

The main idea of the presented approach can be summa-

rized as follows: starting from all possible neighbor ge-

ometries in two and three dimensional spaces, we create

all possible regular structures. This is more power-

ful than in the previous structures [1,4] which considered

limited planar geometries. Next we design arbitrary

expansions for any of the structures. New expansions

can be constructed based on the Linearly-Independent

function theory, or any other canonical or non-canonical

function expansions. There exists a very high number

of various new expansions, in contrast to only Shannon

expansion types used in lattice diagrams from [1,4,5].

This way, the same, in principle, layout-driven synthesis

approaches are created for binary, multivalued, linearly-

independent, Galois and continuous functions [8,16,18].

Thus, the presented approach generalizes and uni�es

many known expansions, decision diagrams, and regular

layout geometries. These methods are of special inter-

est to deep sub-micron technology and pass-transistor

design for binary and MV gates.
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