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Abstract

This paper introduces a basic concept in VLSI layout which
can �nd applications to submicron design� quantum devices�
and designing new �ne�grain digital� analog and mixed FP�
GAs� This concept is called Lattice Structure and it extends
the concepts from ��� and ��� ��� �	� �
� ���� In a regular ar�
rangement of cells� every cell is connected to 	� 
 or � neigh�
bors and to a number of vertical� horizontal and diagonal
buses� Methods for expanding arbitrary binary� multivalued�
and analog functions to this layout are illustrated�

Introduction�
Every signal in our layout� a Lattice� can be treated as con�
tinuous or multi�valued �particularly� binary�� A multivalued
connection for logic with �k values can be realized by k bi�
nary wires that go together �making the lattice �fat�� and
encode the multi�valued signal to binary� The well�known�
Fat Trees� Generalized PLAs� Maitra cascades� and Akers
Arrays �	� 
� 	�� structures are only few special cases of this
powerful concept� Our regular structure concept extends
also some structures that exist in several patents of ne grain
FPGAs �Motorola� Atmel ���� Plessey� Pilkington�� but in
addition we show constructive and e�cient methods of de�
signing discrete and continuous functions in these structures�
We showed on many examples� ��� 	�� 	�� 	
� 	�� 	�� ��� that
this geometry is very powerful and better than the previ�
ously investigated general cellular structures� Here we will
further extend and unify these notions to expansions with
more than � successor functions� and geometries with more
than 
 neighbors� In theory the lattices can be extended
to any number of neighbors of a cell� but � is practically
enough�
The fundament of our approach are expansions of func�

tions� i�e� operators that transform a function to few sim�
pler functions� There are two types of expansions� canoni�
cal �such as Shannon� and noncanonical �such as Sum�of�
Products expansion�� Also� the expansions can be character�
ized as of maximum�type� or of Linearly�Independent
type� Maximum type expansions are generalizations of
Shannon �S� �	��� Post �	��� and Sum�of�Products �SOP�
�	�� expansions� Linearly Independent expansions are gen�
eralizations of Davio expansions �	��� and are for arbi�
trary algebras that have at least one linear operation� but
most often are based on the algebraic structure of a �eld
��� �� �� �� 	�� 		� 	�� 	
��
These expansions are next mapped to neighborhood struc�

tures that are more powerful than those investigated theoret�
ically in the past �	� 
�� but similar to those from commercial
Fine Grain FPGAs� ����

The concept of a lattice diagram involves three compo�
nents� ��� expansion of a function �the function corre�
sponds to the initial node in the lattice�� which creates sev�
eral successor nodes of this node� ��� joining of several nodes
of a tree�s level to a single node� which is in a sense a re�
verse operation to the expansion� ��� a regular geome�
try to which the nodes are mapped� this geometry guides
which nodes of the level are to be joined� Below� we will
present new geometries� expansions� and joinings operations
on nodes� We will illustrate these concepts with just few
simple examples of applications�

Layout Geometries�

In case of � neighbors �Fig� 	a�c�d�g� the lattice is planar
and based on a rectangular grid� Each cell has two inputs
�from N and E� and two outputs �to S and W�� �	� 
� 	�� ����
Our structure generalizes the known switch realizations of
symmetric binary functions �	� 
�� based on Shannon ex�
pansion� but it allows also for Positive and Negative Davio
expansions �	��� negated variables and constants as control
variables of the nodes� nodes controlled by not variables but
functions� and inverted edges between nodes� Lattice dia�
gram counterparts of Kronecker ���� Pseudo�Kronecker �	��
and Free Diagrams can be realized for functions� It can be
shown ��� that every function that is not symmetric can be
symmetrized by repeating variables in the lattice layers� and
the selection of the next variable is done using the Repeated
Variable Maps from �	��� With respect to possible technolog�
ical realization� the condition of only a single control variable
in a level �
� 	
� is no longer required� and all three types of
buses �vertical� horizontal and diagonal� are used to lead any
variable to the circuit�s levels� Similarly we do not always
require the existence of the diagonal buses� as well as the
condition of having only constant values on the envelope of
the circuit� or having the outputs only on the envelope� Now�
arbitrary variables can occur on the envelope� and outputs
can be taken from the middle by use of buses �this is an
approach from commercial Fine Grain FPGAs ����� More�
over� pairs or triplets of binary control variables can be used
in nodes for arbitrary Linearly�Independent expansions �	���
Or equivalently� multivalued controls are used� In short� for
a 
�neighbor lattice geometry� any canonical form of Reed�
Muller logic and its Linearly Independent generalizations can
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Figure 	� Examples of regular lattices�

be realized �recall that the Reed�Muller logic is a special case
of Galois Field logic� the GF����� Also� any MV logic �for
instance in GF�
�� ���� can be also realized in the 
�neighbor
lattice� but this would often require many repetitions of vari�
ables� Continuous and fuzzy functions can be also realized�
in one example we realized an arbitrary piece�wise continu�
ous function with a generalized Shannon expansion� �	���

In case of � neighbors �Fig� 	b�f�h�j�k� the rectangular
grid is enhanced with one diagonal connection� thus every
cell has three inputs �from N� NE and E� and three outputs
�to W� SW and S�� This allows to realize the generalized
ternary diagrams �for binary EXOR logic� introduced in ����
as well as realizations of arbitrary expansion�based Post logic
or GF��� logic functions� �	�� Finally� any binary� or MV logic
can be mapped as in the case of the 
�neighbor lattice�

In case of � neighbors �Fig� 	e�i�l� the rectangular grid
is enhanced with one more diagonal connection� so that ev�
ery cell has four inputs �from N�NE�NW� and E�� and four
outputs �to S� SW� SE� and W�� This allows to realize the
generalized quaternary diagrams �for GF�
��� as well as re�
alizations of arbitrary expansion�based Post or GF�k�� k � 

functions� Again� any binary or MV logic can be mapped�
but more e�ciently� In other variant� the neighborhoods are�
NWW� NW� NE� NEE for inputs� SWW�SW SE� and SEE
for outputs�

Especially practical among our examples are new ternary
diagrams ��� 	�� and Galois�
� expansions for multi�output
incompletely specied functions� Our methods are very ef�
cient for strongly unspecied functions� The introduced
by us families of lattice diagrams are counterparts and gen�
eralizations of several diagrams known from the literature
�BDDs� FDDs� KFDDs� as their subsets� Due to this prop�
erty� our diagrams can provide a more compact represen�
tation of functions than either of the standard decision dia�
grams� because they do not require any routing or placement�
Logic synthesis performs placement and routing as well� Lat�
tice Kronecker Decision Diagrams �LKDDNEs� with negated
edges are based on three orthogonal expansions �Shannon�
Positive Davio� Negative Davio�� and are created for incom�
pletely specied Boolean functions as well� Many other new
families of functional decision diagrams were created� includ�
ing� Pseudo Kronecker Lattice DDs� Free Kronecker Lattice
KDDs� Boolean Ternary Lattice DDs� and other �	��� The
Boolean Ternary Lattice DDs introduce nodes with three
edges and requires AND� OR and EXOR gates for expan�
sion circuit realizations �	
� 	��� Galois GF��� and GF�
�
diagrams require three and four neighbors on inputs� respec�
tively�

Expansions and Joinings Operations on nodes�

There are two types of expansions� maximum�type� and
Linearly�Independent �LI� type� Linearly Independent
expansions are generalizations of Positive �pD� and Negative
Davio �nD� expansions �	��� and are for arbitrary algebras
that have at least one linear operation� but most often are
based on elds� They include S� pD� nD� Linearly Indepen�
dent �binary� MV� �	��� and EXOR Ternary ��� 	��� Joinings
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Figure �� Expansions and Joinings� a� Shannon� b�
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operations for these expansions are more complicated and
are presented in ��� 	
��
Below we will brie�y present only the maximum�type op�

erations� Shannon� SOP� and Post �MV Shannon�� We as�
sume that each binary function f is represented by a pair
�ON�f��OFF�f��� Thus all cofactors fa for product of liter�
als a� are pairs� fa � �ON�fa��OFF�fa��� Fig� �a explains
the principle of creating a Shannon Lattice based on ordered
Shannon expansions for two functions� f and g� Observe that
every cofactor fa of product a of an �in�complete function
f can be interpreted as intersecting f with a and replac�
ing all Kmap cells outside product a with don�t cares� A
standard cofactor fx where x is a variable does not depend
on this variable� In our interpretation� though� fx is still a
function of all variables including x� but as a result of co�
factoring the variable x becomes vacuous� We will call this
a vacuous cofactor� and denote by v�cofactor� Thus� for
any two disjoint products a� and a�� the v�cofactors fa� and
ga� are disjoint �observe that standard cofactors are in gen�
eral not disjoint�� Therefore functions fa� and ga� are an
incomplete tautology and functions f and g are not changed
when fa� and ga� are joined �OR�ed� to create a new func�
tion� a�fa� � a�ga� � as in Fig� �a �where a� � a� � a��
This way� the entire lattice is created level�by�level� only two
levels shown in Fig� �a� Observe that functions inside the
lattice become more and more unspecied when variables in
levels are repeated� and ultimately they become constants�
which terminates the expansion process�
In case when the products a� and a� are not disjoint� the v�

cofactors fa� and ga� can be still in some cases an incomplete
tautology� When they are a tautology� then functions fa�
and ga� can be joined �OR�ed� without changing functions
f and g� This way� because every variable cuts a Kmap
into two disjoint parts� arbitrary two functions f and g can
be always expanded together to a Shannon lattice� with OR�
ing as a join operation� provided that the same variable xi is
used in the level� and all expansions use negated literal �xi in
the left� and positive literal xi of the variable in the right� As

seen in Fig� �� arbitrary functions of the same arguments are
cut in half by expansion of each variable and new functions
in levels are created by rearranging the cofactors in joinings�
This process can lead to a slight increase of the number of
nodes in comparison with a shared OBDD of these functions�
But a regular structure is created� thus simplifying layout
and making delays predictable�
The method to create Shannon Lattices can be easily ex�

panded to MV Shannon expansions and associated Post Lat�
tices for mult�output incomplete functions �see Fig� �b�� In
ternary logic� each single�variable expansion cuts a function�s
map to three v�cofactors� and any two of them can be next
recombined by a joining operation MAX � Fig� �b� MAX is
the maximum operation denoted by ��
In binary SOP expansions �	�� a branching from node

f is for any subset of literals lj that their union cov�
ers the node function f � The SOP expansion is�
f � ljflj � lrflr ���� � lsfls � Of course� trees� diagrams
and lattices based on SOP �binary and MV� expansions are
not ordered� and are not canonical�
The method to create ordered Shannon lattices presented

above can be expanded to free �non�ordered� Shannon Lat�
tices and SOP Lattices� Any two nodes from the expansion
that form an incomplete tautology can be joined as shown
above�
The presented methods can be used for various kinds of

ordered Shannon� and their generalizations can be used for
arbitrary maximum�type and LI�type lattices� In case of
fuzzy lattices� xi � �xi �� � so the cofactors are not disjoint�
but the method can be still used provided that special fuzzy
literals fflxi are assumed that are disjoint�

Design methodology�
One level of multi�output function is expanded to an as�
sumed type of a Decision Tree �Shannon� SOP� Post� etc��
The selection of a good order of variables and expansion
nodes is based on generalized partial symmetries for cofac�
tors �there are for instance as many as �	 generalized sym�
metries for Galois Field���� and thousands of symmetries
for GF���� ���� In the next phase� the level of the tree is
mapped to the assumed type of Lattice� This means joining
together some nodes of the tree�like lower part of the lat�
tice� The procedure requires repeating some variables in the
lattice� We show that for real�life benchmark functions� and
starting from the decompositional hierarchy of partitioning
variables �	��� the overhead of variable repeating is not ex�
cessive in each decomposed block ��� 	
�� This is because
symmetric and nearly symmetric blocks are preferred by our
decomposer �	���
Calculation of data input functions to lattice nodes is done

using a technique very similar to the one based on Lin�
early Independent logic from �		��� Selection of the order
of �repeated� variables ��� is done using the concept of best
minterm separation using the Repeated Variable Maps from
�	���

Examples of structures and expansions�

Few gures brie�y illustrate various applications of our ap�



proach� Figure 	a presents the standard lattice structure
investigated in �	� 
� 	��� Figure 	b presents this structure
expanded with NE�SW diagonal connections� and Figure 	e
presents this structure expanded with NE�SW and NW�SE
diagonal connections� Figure 	c illustrates that standard
vertical and horizontal buses can be used instead of diago�
nal buses for small functions� Figure 	d shows a symmetric
function of � variables realized in a standard lattice struc�
ture with diagonal buses �no repeated variables�� Figure 	f
shows a non�symmetric function realized in a standard lat�
tice structure with control input run from diagonal� vertical
and horizontal buses �buses not shown� please observe the
constants � and 	 inside the lattice� as well as the folded and
repeated variables��

Figure 	g shows another view of a standard lattice for sym�
metricized non�symmetric function �variables b and c are re�
peated�� Figure 	h presents a lattice with �x� neighbor�
hood and repeated and folded variables� Figure 	i presents
a lattice with 
x
 neighborhood� Another 
x
 lattice is
shown in Figure 	d� Figure 	j presents a lattice with �x�
neighborhood drawn to emphasize ternary symmetries in ��
dimensional space� For each node� its expansion variable is
shown� Some edges show variables� values� Bold edges in the
gure correspond to three values of variable b expanded for
a � �� Observe� that the same gure can be also looked at
as a �at connection plan and diagonal NW�SE buses can be
added �interrupted lines�� Observe also� that in this gure
the number of nodes in the layers is 	���������� while in the
regular lattice from Figure 	h the numbers were 	���������
so that not all partial ternary symmetries could be realized
there in one level� This is an example of a trade�o� between
the geometry and logic� that must be solved in selecting the
type of lattice for a type of function�

Figure � presents a comparison of sizes of a standard Shan�
non lattice and our lattices� Figure �a presents a solution
that would be obtained using the method from �
�� The
shape is a trapezoid and the size is 	
 nodes� Connectivity
pattern is �x�� The Akers Array would have �� � �� � �
nodes �it realizes each of two functions separately� and uses
a � � � xed rectangle for a 
 variable function�� Figure �b
presents our solution with 
x
 connectivity pattern array of
multiplexers� It is linear in shape and has � � 
 � � nodes� In
addition to Shannon� the Shannon expansions with negated
control variables are now used� Figure �c presents our so�
lution with �x� connectivity pattern array of positive Davio
nodes� It is nearly linear in shape and has � nodes� Pre�
dictability and equality of delays should be appreciated in
all lattices�

Figure 
 presents di�erent expansion nodes for various
kinds of expansions for binary� multi�valued� fuzzy and con�
tinuous analog functions� �a� two views of a cell� a mul�
tiplexer� and a general �x� cell in a Lattice that may be
realized by this mux �the notation of inputs and outputs is
preserved in next examples�� �b� positive Davio expansion
node� �c� negative Davio expansion node� �d� fuzzy logic ex�
pansion node� �e� Shannon node for ternary logic� �f� Shan�
non node for quaternary logic� �g� realization of the Shannon

node from �f� with binary logic� �h� expansion node for fuzzy
logic with arbitrary literal functions�

Iterative Circuits	 Circuits with Memory	 and Ana�
log Design�

Hierarchical design is possible of iterative one� and two�
dimensional structures� which are cellular connections of
blocks� each block realized as a lattice� This can be done
also for discrete circuits with memory� Analog counterparts
use sample�hold analog memories� which play the same role
as �ip��ops in discrete technologies� The introduced Lat�
tice Structures allow therefore to realize cellular memory�less
functions� nite state machines� and innite state machines�
realized in analog� binary� or multivalued logic� For instance�
the digital and analog� lters� pipelined image processors�
or systolic processors can be the examples� We showed how
an elliptic lter in OTA technology can be mapped to this
structure �	��� Fuzzy memory�less arrays are presented in
�	��� Fig� 
a shows a basic circuit with analog compara�
tor and analog multiplexer� and Fig� 
b a full cell with
SRAM�controlled muxes to switch the inputs� Two simple
lattices for analog functions are shown in Figure �c�d� Fig�

c presents a lattice realization of the piecewise continuous
function if ��c � d� and �a � b�� then y else if ��a � b

and �c � d�� then cos�y� else sin�y�� Fig� 
d shows a
lattice realization of analog function max�h�� h�� h�� h�� h���
Similar realizations can be created for rank and median l�
ters� cellular neural nets� equation solvers� and �analog and
digital� image processing circuits�

Conclusion�

In conclusion� the main idea of the presented approach can
be summarized as follows� starting from all possible neigh�
bor geometries in two and three dimensional spaces� we cre�
ate all possible regular structures� This is more pow�
erful than in the previous structures �	� 
� which considered
limited planar geometries� Next we design arbitrary ex�
pansions for any of the structures� New expansions can
be constructed based on the Linearly�Independent function
theory� or any other canonical or non�canonical function ex�
pansions� There is a very high number of various new ex�
pansions� in contrast to only Shannon expansion types used
in lattice diagrams from �	� 
� ��� This way� the same� in
principle� layout�driven synthesis approaches are created for
binary� multivalued� linearly�independent� Galois� fuzzy and
analog functions���� 	��� Thus� the presented approach gen�
eralizes and unies many known expansions� decision dia�
grams� and regular layout geometries� These methods are
of special interest to deep sub�micron technology and binary
and MV pass�transistor design as well as OTA design�
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