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Abstract

This paper introduces a basic concept in VLSI layout which

can �nd applications to submicron design, quantum devices,

and designing new �ne-grain digital, analog and mixed FP-

GAs. This concept is called Lattice Structure and it extends

the concepts from [8] and [1, 13, 14, 16, 17]. In a regular ar-

rangement of cells, every cell is connected to 4, 6 or 8 neigh-

bors and to a number of vertical, horizontal and diagonal

buses. Methods for expanding arbitrary binary, multivalued,

and analog functions to this layout are illustrated.

Introduction.

Every signal in our layout, a Lattice, can be treated as con-

tinuous or multi-valued (particularly, binary). A multivalued

connection for logic with 2k values can be realized by k bi-

nary wires that go together (making the lattice "fat") and

encode the multi-valued signal to binary. The well-known:

Fat Trees, Generalized PLAs, Maitra cascades, and Akers

Arrays [1, 4, 17] structures are only few special cases of this

powerful concept. Our regular structure concept extends

also some structures that exist in several patents of �ne grain

FPGAs (Motorola, Atmel [2], Plessey, Pilkington), but in

addition we show constructive and e�cient methods of de-

signing discrete and continuous functions in these structures.

We showed on many examples, [8, 10, 13, 14, 16, 17, 20] that

this geometry is very powerful and better than the previ-

ously investigated general cellular structures. Here we will

further extend and unify these notions to expansions with

more than 2 successor functions, and geometries with more

than 4 neighbors. In theory the lattices can be extended

to any number of neighbors of a cell, but 8 is practically

enough.

The fundament of our approach are expansions of func-

tions, i.e. operators that transform a function to few sim-

pler functions. There are two types of expansions: canoni-

cal (such as Shannon) and noncanonical (such as Sum-of-

Products expansion). Also, the expansions can be character-

ized as of maximum-type, or of Linearly-Independent

type. Maximum type expansions are generalizations of

Shannon (S) [18], Post [10], and Sum-of-Products (SOP)

[15] expansions. Linearly Independent expansions are gen-

eralizations of Davio expansions [18], and are for arbi-

trary algebras that have at least one linear operation, but

most often are based on the algebraic structure of a �eld

[6, 7, 8, 9, 10, 11, 13, 14].

These expansions are next mapped to neighborhood struc-

tures that are more powerful than those investigated theoret-

ically in the past [1, 4], but similar to those from commercial

Fine Grain FPGAs, [2].

The concept of a lattice diagram involves three compo-

nents: (1) expansion of a function (the function corre-

sponds to the initial node in the lattice), which creates sev-

eral successor nodes of this node, (2) joining of several nodes

of a tree's level to a single node, which is in a sense a re-

verse operation to the expansion, (3) a regular geome-

try to which the nodes are mapped, this geometry guides

which nodes of the level are to be joined. Below, we will

present new geometries, expansions, and joinings operations

on nodes. We will illustrate these concepts with just few

simple examples of applications.

Layout Geometries.

In case of 4 neighbors (Fig. 1a,c,d,g) the lattice is planar

and based on a rectangular grid. Each cell has two inputs

(from N and E) and two outputs (to S and W), [1, 4, 17, 20].

Our structure generalizes the known switch realizations of

symmetric binary functions [1, 4], based on Shannon ex-

pansion, but it allows also for Positive and Negative Davio

expansions [18], negated variables and constants as control

variables of the nodes, nodes controlled by not variables but

functions, and inverted edges between nodes. Lattice dia-

gram counterparts of Kronecker [7], Pseudo-Kronecker [18]

and Free Diagrams can be realized for functions. It can be

shown [8] that every function that is not symmetric can be

symmetrized by repeating variables in the lattice layers, and

the selection of the next variable is done using the Repeated

Variable Maps from [12]. With respect to possible technolog-

ical realization, the condition of only a single control variable

in a level [4, 14] is no longer required, and all three types of

buses (vertical, horizontal and diagonal) are used to lead any

variable to the circuit's levels. Similarly we do not always

require the existence of the diagonal buses, as well as the

condition of having only constant values on the envelope of

the circuit, or having the outputs only on the envelope. Now,

arbitrary variables can occur on the envelope, and outputs

can be taken from the middle by use of buses (this is an

approach from commercial Fine Grain FPGAs [2]). More-

over, pairs or triplets of binary control variables can be used

in nodes for arbitrary Linearly-Independent expansions [10].

Or equivalently, multivalued controls are used. In short, for

a 4-neighbor lattice geometry, any canonical form of Reed-

Muller logic and its Linearly Independent generalizations can
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Figure 1: Examples of regular lattices.

be realized (recall that the Reed-Muller logic is a special case

of Galois Field logic, the GF(2)). Also, any MV logic (for

instance in GF(4), [6]) can be also realized in the 4-neighbor

lattice, but this would often require many repetitions of vari-

ables. Continuous and fuzzy functions can be also realized:

in one example we realized an arbitrary piece-wise continu-

ous function with a generalized Shannon expansion, [17].

In case of 6 neighbors (Fig. 1b,f,h,j,k) the rectangular

grid is enhanced with one diagonal connection, thus every

cell has three inputs (from N, NE and E) and three outputs

(to W, SW and S). This allows to realize the generalized

ternary diagrams (for binary EXOR logic) introduced in [9],

as well as realizations of arbitrary expansion-based Post logic

or GF(3) logic functions, [10] Finally, any binary, or MV logic

can be mapped as in the case of the 4-neighbor lattice.

In case of 8 neighbors (Fig. 1e,i,l) the rectangular grid

is enhanced with one more diagonal connection, so that ev-

ery cell has four inputs (from N,NE,NW, and E), and four

outputs (to S, SW, SE, and W). This allows to realize the

generalized quaternary diagrams (for GF(4)), as well as re-

alizations of arbitrary expansion-based Post or GF(k), k < 4

functions. Again, any binary or MV logic can be mapped,

but more e�ciently. In other variant, the neighborhoods are:

NWW, NW, NE, NEE for inputs, SWW,SW SE, and SEE

for outputs.

Especially practical among our examples are new ternary

diagrams [9, 19] and Galois(4) expansions for multi-output

incompletely speci�ed functions. Our methods are very ef-

�cient for strongly unspeci�ed functions. The introduced

by us families of lattice diagrams are counterparts and gen-

eralizations of several diagrams known from the literature

(BDDs, FDDs, KFDDs) as their subsets. Due to this prop-

erty, our diagrams can provide a more compact represen-

tation of functions than either of the standard decision dia-

grams, because they do not require any routing or placement.

Logic synthesis performs placement and routing as well. Lat-

tice Kronecker Decision Diagrams (LKDDNEs) with negated

edges are based on three orthogonal expansions (Shannon,

Positive Davio, Negative Davio), and are created for incom-

pletely speci�ed Boolean functions as well. Many other new

families of functional decision diagrams were created, includ-

ing: Pseudo Kronecker Lattice DDs, Free Kronecker Lattice

KDDs, Boolean Ternary Lattice DDs, and other [13]. The

Boolean Ternary Lattice DDs introduce nodes with three

edges and requires AND, OR and EXOR gates for expan-

sion circuit realizations [14, 19]. Galois GF(3) and GF(4)

diagrams require three and four neighbors on inputs, respec-

tively.

Expansions and Joinings Operations on nodes.

There are two types of expansions: maximum-type, and

Linearly-Independent (LI) type. Linearly Independent

expansions are generalizations of Positive (pD) and Negative

Davio (nD) expansions [18], and are for arbitrary algebras

that have at least one linear operation, but most often are

based on �elds. They include S, pD, nD, Linearly Indepen-

dent (binary, MV) [10], and EXOR Ternary [9, 19]. Joinings
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operations for these expansions are more complicated and

are presented in [8, 14].

Below we will brie
y present only the maximum-type op-

erations: Shannon, SOP, and Post (MV Shannon). We as-

sume that each binary function f is represented by a pair

[ON(f),OFF(f)]. Thus all cofactors fa for product of liter-

als a, are pairs: fa = [ON(fa),OFF(fa)]. Fig. 2a explains

the principle of creating a Shannon Lattice based on ordered

Shannon expansions for two functions, f and g. Observe that

every cofactor fa of product a of an (in)complete function

f can be interpreted as intersecting f with a and replac-

ing all Kmap cells outside product a with don't cares. A

standard cofactor fx where x is a variable does not depend

on this variable. In our interpretation, though, fx is still a

function of all variables including x, but as a result of co-

factoring the variable x becomes vacuous. We will call this

a vacuous cofactor, and denote by v-cofactor. Thus, for

any two disjoint products a1 and a2, the v-cofactors fa1 and

ga2 are disjoint (observe that standard cofactors are in gen-

eral not disjoint), Therefore functions fa1 and ga2 are an

incomplete tautology and functions f and g are not changed

when fa1 and ga2 are joined (OR-ed) to create a new func-

tion. a1fa1 + a2ga2 , as in Fig. 2a (where a1 = a2 = a).

This way, the entire lattice is created level-by-level, only two

levels shown in Fig. 2a. Observe that functions inside the

lattice become more and more unspeci�ed when variables in

levels are repeated, and ultimately they become constants,

which terminates the expansion process.

In case when the products a1 and a2 are not disjoint, the v-

cofactors fa1 and ga2 can be still in some cases an incomplete

tautology. When they are a tautology, then functions fa1
and ga2 can be joined (OR-ed) without changing functions

f and g. This way, because every variable cuts a Kmap

into two disjoint parts, arbitrary two functions f and g can

be always expanded together to a Shannon lattice, with OR-

ing as a join operation. provided that the same variable xi is

used in the level, and all expansions use negated literal �xi in

the left, and positive literal xi of the variable in the right. As

seen in Fig. 2, arbitrary functions of the same arguments are

cut in half by expansion of each variable and new functions

in levels are created by rearranging the cofactors in joinings.

This process can lead to a slight increase of the number of

nodes in comparison with a shared OBDD of these functions.

But a regular structure is created, thus simplifying layout

and making delays predictable.

The method to create Shannon Lattices can be easily ex-

panded to MV Shannon expansions and associated Post Lat-

tices for mult-output incomplete functions (see Fig. 2b). In

ternary logic, each single-variable expansion cuts a function's

map to three v-cofactors, and any two of them can be next

recombined by a joining operation MAX - Fig. 2b. MAX is

the maximum operation denoted by +.

In binary SOP expansions [15] a branching from node

f is for any subset of literals lj that their union cov-

ers the node function f . The SOP expansion is:

f = ljflj + lrflr :::: + lsfls . Of course, trees, diagrams

and lattices based on SOP (binary and MV) expansions are

not ordered, and are not canonical.

The method to create ordered Shannon lattices presented

above can be expanded to free (non-ordered) Shannon Lat-

tices and SOP Lattices. Any two nodes from the expansion

that form an incomplete tautology can be joined as shown

above.

The presented methods can be used for various kinds of

ordered Shannon, and their generalizations can be used for

arbitrary maximum-type and LI-type lattices. In case of

fuzzy lattices, xi \ �xi 6= 0 so the cofactors are not disjoint,

but the method can be still used provided that special fuzzy

literals fflxi are assumed that are disjoint.

Design methodology.

One level of multi-output function is expanded to an as-

sumed type of a Decision Tree (Shannon, SOP, Post, etc).

The selection of a good order of variables and expansion

nodes is based on generalized partial symmetries for cofac-

tors (there are for instance as many as 81 generalized sym-

metries for Galois Field(2)) and thousands of symmetries

for GF(3)) [5]. In the next phase, the level of the tree is

mapped to the assumed type of Lattice. This means joining

together some nodes of the tree-like lower part of the lat-

tice. The procedure requires repeating some variables in the

lattice. We show that for real-life benchmark functions, and

starting from the decompositional hierarchy of partitioning

variables [12], the overhead of variable repeating is not ex-

cessive in each decomposed block [5, 14]. This is because

symmetric and nearly symmetric blocks are preferred by our

decomposer [12].

Calculation of data input functions to lattice nodes is done

using a technique very similar to the one based on Lin-

early Independent logic from [11]). Selection of the order

of (repeated) variables [5] is done using the concept of best

minterm separation using the Repeated Variable Maps from

[12].

Examples of structures and expansions.

Few �gures brie
y illustrate various applications of our ap-



proach. Figure 1a presents the standard lattice structure

investigated in [1, 4, 17]. Figure 1b presents this structure

expanded with NE/SW diagonal connections, and Figure 1e

presents this structure expanded with NE/SW and NW/SE

diagonal connections. Figure 1c illustrates that standard

vertical and horizontal buses can be used instead of diago-

nal buses for small functions. Figure 1d shows a symmetric

function of 7 variables realized in a standard lattice struc-

ture with diagonal buses (no repeated variables). Figure 1f

shows a non-symmetric function realized in a standard lat-

tice structure with control input run from diagonal, vertical

and horizontal buses (buses not shown, please observe the

constants 0 and 1 inside the lattice, as well as the folded and

repeated variables).

Figure 1g shows another view of a standard lattice for sym-

metricized non-symmetric function (variables b and c are re-

peated). Figure 1h presents a lattice with 3x3 neighbor-

hood and repeated and folded variables. Figure 1i presents

a lattice with 4x4 neighborhood. Another 4x4 lattice is

shown in Figure 1d. Figure 1j presents a lattice with 3x3

neighborhood drawn to emphasize ternary symmetries in 3-

dimensional space. For each node, its expansion variable is

shown. Some edges show variables' values. Bold edges in the

�gure correspond to three values of variable b expanded for

a = 0. Observe, that the same �gure can be also looked at

as a 
at connection plan and diagonal NW/SE buses can be

added (interrupted lines). Observe also, that in this �gure

the number of nodes in the layers is 1,3,6,9,... while in the

regular lattice from Figure 1h the numbers were 1,3,5,7...

so that not all partial ternary symmetries could be realized

there in one level. This is an example of a trade-o� between

the geometry and logic, that must be solved in selecting the

type of lattice for a type of function.

Figure 3 presents a comparison of sizes of a standard Shan-

non lattice and our lattices. Figure 3a presents a solution

that would be obtained using the method from [4]. The

shape is a trapezoid and the size is 14 nodes. Connectivity

pattern is 2x2. The Akers Array would have (5 * 5) * 2

nodes (it realizes each of two functions separately, and uses

a 5 * 5 �xed rectangle for a 4 variable function). Figure 3b

presents our solution with 4x4 connectivity pattern array of

multiplexers. It is linear in shape and has 2 * 4 = 8 nodes. In

addition to Shannon, the Shannon expansions with negated

control variables are now used. Figure 3c presents our so-

lution with 2x2 connectivity pattern array of positive Davio

nodes. It is nearly linear in shape and has 5 nodes. Pre-

dictability and equality of delays should be appreciated in

all lattices.

Figure 4 presents di�erent expansion nodes for various

kinds of expansions for binary, multi-valued, fuzzy and con-

tinuous analog functions: (a) two views of a cell, a mul-

tiplexer, and a general 2x2 cell in a Lattice that may be

realized by this mux (the notation of inputs and outputs is

preserved in next examples); (b) positive Davio expansion

node, (c) negative Davio expansion node, (d) fuzzy logic ex-

pansion node, (e) Shannon node for ternary logic, (f) Shan-

non node for quaternary logic, (g) realization of the Shannon

node from (f) with binary logic, (h) expansion node for fuzzy

logic with arbitrary literal functions.

Iterative Circuits, Circuits with Memory, and Ana-

log Design.

Hierarchical design is possible of iterative one- and two-

dimensional structures, which are cellular connections of

blocks, each block realized as a lattice. This can be done

also for discrete circuits with memory. Analog counterparts

use sample-hold analog memories, which play the same role

as 
ip-
ops in discrete technologies. The introduced Lat-

tice Structures allow therefore to realize cellular memory-less

functions, �nite state machines, and in�nite state machines,

realized in analog, binary, or multivalued logic. For instance,

the digital and analog: �lters, pipelined image processors,

or systolic processors can be the examples. We showed how

an elliptic �lter in OTA technology can be mapped to this

structure [16]. Fuzzy memory-less arrays are presented in

[17]. Fig. 4a shows a basic circuit with analog compara-

tor and analog multiplexer, and Fig. 4b a full cell with

SRAM-controlled muxes to switch the inputs. Two simple

lattices for analog functions are shown in Figure 5c,d. Fig.

4c presents a lattice realization of the piecewise continuous

function if ((c > d) and (a > b)) then y else if ((a � b

and (c � d)) then cos(y) else sin(y). Fig. 4d shows a

lattice realization of analog function max(h1; h2; h3; h4; h5).

Similar realizations can be created for rank and median �l-

ters, cellular neural nets, equation solvers, and (analog and

digital) image processing circuits.

Conclusion.

In conclusion, the main idea of the presented approach can

be summarized as follows: starting from all possible neigh-

bor geometries in two and three dimensional spaces, we cre-

ate all possible regular structures. This is more pow-

erful than in the previous structures [1, 4] which considered

limited planar geometries. Next we design arbitrary ex-

pansions for any of the structures. New expansions can

be constructed based on the Linearly-Independent function

theory, or any other canonical or non-canonical function ex-

pansions. There is a very high number of various new ex-

pansions, in contrast to only Shannon expansion types used

in lattice diagrams from [1, 4, 5]. This way, the same, in

principle, layout-driven synthesis approaches are created for

binary, multivalued, linearly-independent, Galois, fuzzy and

analog functions,[8, 17]. Thus, the presented approach gen-

eralizes and uni�es many known expansions, decision dia-

grams, and regular layout geometries. These methods are

of special interest to deep sub-micron technology and binary

and MV pass-transistor design as well as OTA design.
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