
THE PSU�EUT RECONFIGURABLE

COMPUTING PROJECT� THE

UNIVERSAL LOGIC MACHINE

Marek Perkowski� and Lech Jozwiak

Portland State University�

Dept� of Electr� Engn�

Portland� Oregon �����

Tel� ���	���	�
��� Fax� ���	���	
���

e	mail� mperkows
ee�pdx�edu

Faculty of Electronics Engineering�

Eindhoven University of Technology�

���� MB Eindhoven� The Netherlands

e	mail� lech
eb�ele�tue�nl

March ��� ����

Contents

� GENERAL INTRODUCTION AND WHAT IS IN THIS
REPORT ��
��� COMPUTERS FOR LOGIC � � � � � � � � � � � � � � � � � ��
��� WHAT IS IN THIS REPORT � � � � � � � � � � � � � � � � � ��

� THE CONCEPT OF THE UNIVERSAL LOGICMACHINE ��
��� ULM AND ITS SIMPLIFIED VERSIONS � � � � � � � � � � ��
��� CUBE CALCULUS� ITS VARIANTS AND MACHINES � � ��
��� ULMVERSUS FPGACOMPUTERAND STANDARDCOM�

PUTERS ��
��� FORMAL SYSTEMS ANDCURRENTCOMPUTERMETHOD�

OLOGY� �	
��
 REDUCIBILITY APPROACH TO SOLVE NP�HARDCOM�

BINATORIAL PROBLEMS � � � � � � � � � � � � � � � � � � ��
��	 THE HOST AND THE MASSIVE MICRO�PARALLELISM ��
��� CONCULSION ON ULM PHILOSPHY � � � � � � � � � � � ��
��� QUESTIONS FOR SELF�EVALUATION � � � � � � � � � � ��

� FPGA TECHNOLOGY ��
��� SELECTING THE RIGHT DEVICE � � � � � � � � � � � � �

��� LCA ARCHITECTURE �	

� FPGA COMPUTERS ��

��� IS THERE A FUTURE FOR FPGA RECONFIGURABLE
COMPUTING
 �

��� UNIVERSAL VERSUS SPECIALIZED ARCHITECTURES�
��
����� THE GENERALIZED COMPUTER � � � � � � � �
�

��� THE REQUIREMENTS FOR A SUCCESSFUL COMMER�
CIALLY PRODUCT�
�

�

� CONTENTS

��� SO� WHAT TO DO
 �

� HISTORY OF LOGIC COMPUTERS ��

� THE SATISFIABILITY MACHINE ��

	�� REDUCING COMBINATORIAL PROBLEMS TO GEN�
ERALIZED SATISFIABILITY � � � � � � � � � � � � � � � � 	

	�� QUESTIONS FOR SELF�EVALUATION � � � � � � � � � � 	�

	�� TREE OF CUBE PROCESSORS WITH PIPELINING � � ��

	�� The �GPF SOLVER ARCHITECTURE � � � � � � � � � � � ��
	�
 The �PRODUCT MANAGEMENT UNIT ��PMU�� � � � � ��

	�	 �SORTING AND ABSORBING PROCESSOR � � � � � � � ��
	�� EVALUATION OF SIMULATION RESULTS OF SATISFI�

ABILITY MACHINE �

� CURTIS MACHINE ��

��� THE GENERALIZED PETRICK FUNCTION � SATISFI�
ABILITY PROBLEM ��

��� THE IDEA OF THE MONTE CARLO CONSTRAINTS
COMPUTER ��

��� MACHINE FORMACHINE LEARNING BY CONSTRUC�
TIVE INDUCTION APPROACH BASED ON DECOMPO�
SITION OF MULTI�VALUED FUNCTIONS AND RELA�
TIONS �	

����� Machine Learning by Decomposition � � � � � � � � � �	
����� Simple Decomposition Algorithm for Functions � � � ��

��� OTHER APPLICATIONS OF THE CURTIS MACHINE � ��

��
 WHY CUBE CALCULUS AND NOT BINARY DECISION
DIAGRAMS
 ��

� CUBE CALCULUS MACHINE ��

��� A SHORT REVIEW OF CUBE CALCULUS � � � � � � � � ��

��� THE IDEA OF THE MAIN ALGORITHM � � � � � � � � � ��
����� Simple combinational operations � � � � � � � � � � � ��

����� Complex combinational operations � � � � � � � � � � ��
����� Sequential cube calculus operations � � � � � � � � � ��

����� Similarities in the formulas � � � � � � � � � � � � � ���

��� FORMALISM FORTHEMAIN ALGORITHMFORCUBE
CALCULUS OPERATIONS � � � � � � � � � � � � � � � � � ���

����� Simple and complex combinational operations � � � ���

����� The general programmable patterns � � � � � � � � � ���

CONTENTS �

� THE CCM �	
 ARCHITECTURE ���
��� THE MAIN IDEA OF CCM�� � � � � � � � � � � � � � � � � ���
��� THE GENERAL ARCHITECTURIAL CONCEPTS OF

RINGOF PROCESSORS AND INTERLOCKMECHANISM�
���

��� THE BLOCK LEVEL DESCRIPTION OF THE CCM ���
PROCESSOR ARCHITECTURE � � � � � � � � � � � � � � � ���
����� The processing unit � � � � � � � � � � � � � � � � � � ���
����� The iterative cell �IT� � � � � � � � � � � � � � � � � � ���
����� The Control Unit �CU� and the Bus Interface Unit

�BIU� ���
����� The data register �le � � � � � � � � � � � � � � � � � ���

��� EXAMPLES OF THE EXECUTION OF A SEQUENTIAL
INSTRUCTION ���
����� The crosslink operation � � � � � � � � � � � � � � � � ���
����� Complementation of a single multi�valued cube � � � ��

��
 TIMING DESCRIPTION OF THE COLLABORATION
OF THE ILU AND THE CU � � � � � � � � � � � � � � � � � ���

��	 THE DETAILED DESCRIPTION OF THE IMPLEMEN�
TATION OF THE ITERATIVE CELL �IT� � � � � � � � � ���
��	�� Iterative signals in the block structure of it cells � � ���
��	�� The structure of a single it cell � � � � � � � � � � � � ���
��	�� The block STATE�i� � � � � � � � � � � � � � � � � � � �
�
��	�� ���� Example of state transitions � � � � � � � � � � � �
�

��� AN OVERVIEW OF CUBE CALCULUS OPERATIONS � �	�
��� EXAMPLE OF STATE TRANSITIONS � � � � � � � � � � �	�
��� THE IMPLEMENTATION OF THE CONTROL UNIT OF

THE CCM� �	�
����� THE IR SIGNALS AND THEIR MEANING � � � � �	�

���� DESCRIPTION OF THE SEQUENTIAL CUBE CALCU�
LUS OPERATIONS ���

���� THE GENERAL ALGORITHM � � � � � � � � � � � � � � ���
���� INPUT AND OUTPUT SIGNALS OF THE CU � � � � � � ���
���� OUTPUT SIGNALS OF THE CU � � � � � � � � � � � � � ���

������ STABLE OUTPUT SIGNALS OF THE CU � � � � ���
���� THE SINGLE PULSE OUTPUT SIGNALS OF THE CU ���
���
 INPUT SIGNALS TO THE CU � � � � � � � � � � � � � � � ���
���	 THE ALGORITHMS OF THE CU � � � � � � � � � � � � � ��

���	�� THE PIPELINE MODE � � � � � � � � � � � � � � � ��

���� THE MAIN ALGORITHM � � � � � � � � � � � � � � � � � ���

������ COMPLETE ALGORITHM AND FLOW�CHART
OF THE CONTROL UNIT � � � � � � � � � � � � � ���

� CONTENTS

���� UPDATE OF CU FLOWCHART � � � � � � � � � � � � � � ���
���� COMMUNICATION�BASED OPERATIONS� � � � � � � � ���
���� INDEX OF TERMS AND SIGNAL NAMES � � � � � � � ���
���� DESIGN EVALUATION AND COMPARISON OF CCM� ���
���� TIMING ANALYSIS ���
���� BDD COMPARISON ���

�
 THE CCM �	� PROCESSOR ���
���� CCM��� VERSUS CCM��
 � � � � � � � � � � � � � � � � � � ���
���� TRADE�OFFS IN THE DESIGN OF THE CCM ��
 PRO�

CESSOR ���
������ The block RELATION�i� � � � � � � � � � � � � � � � ���
������ The block IDENT MAIN�i� � � � � � � � � � � � � � � ��

������ The block STATE�i� � � � � � � � � � � � � � � � � � � ��	
������ The block OPERATION�i� � � � � � � � � � � � � � � ���
�����
 The block COUNT�i� � � � � � � � � � � � � � � � � � ���
�����	 The CCM ��
 IT ���

���� MAPPING A CCM ��
 IT TO A XILINX FPGA � � � � � ���

�� CURRENT AND FUTURE WORK ���

�� BOOLEAN FUNCTION PROCESSINGAND ARCHITEC�
TURES ���
���� INTRODUCTION ���
���� BOOLEAN FUNCTION PROCESSORS � � � � � � � � � � � ��	
���� DSP ARCHITECTURES ���
���� PRINCIPLES OF DATA�FLOW ARCHITECTURES � � � ���
���
 CUBE CALCULUS ARCHITECTURES � � � � � � � � � � ���

���
�� GENERALIZEDMULTIPLE�VALUED CUBE CAL�
CULUS� ���

���	 THE TUPLE PROCESSOR� � � � � � � � � � � � � � � � � ��

���� TUPPLE PROCESSOR� AREAS OF INTEREST AND

FUTURE APPLICATIONS � � � � � � � � � � � � � � � � � � ��

���� AN EXPANDABLE� FOUR�DIMENSIONAL FPGA COM�

PUTER FOR NON�NUMERICAL PROGRAMMING � � � ���
������ INTRODUCTION � � � � � � � � � � � � � � � � � � ���

���� EXPANDABLE FIELD�PROGRAMMABLE CELLULARTIS�
SUE AND MAPPING OF VIRTUAL ARCHITECTURES
TO IT �
�

�����MECHANIZATION OF GENERALIZEDMULTI�VALUED
CUBE CALCULUS �
�

����� CONCLUSION �
�

CONTENTS

�� COMMUNICATION�BASED OPERATIONS	 ���

���� COMMUNICATIONS IN DSP APPLICATIONS� � � � � � �
�
���� COMMUNICATION BASED OPERATIONS IN ULM � � � �	�

�� PROBLEMS FOR SELF�EVALUATION RELATED TO
UNIVERSAL LOGIC MACHINE	 ���

�� LITERATURE ���

�� APPENDIX �� XACT DEVELOPMENT SYSTEM TU�
TORIAL ���
�	�� CREATING THE DESIGN � � � � � � � � � � � � � � � � � ��	
�	�� CONVERTING THE DRAWING FILES � � � � � � � � � � ���
�	�� CREATING THE LOGIC CELL ARRAY FILE � � � � � � ���
�	�� VIEWING THE LOGIC CELL ARRAY FILE � � � � � � � ���
�	�
 DOWNLOADING THE LOGIC CELL ARRAY FILE � � � ���

�� APPENDIX �� VHDL CODE OF CCM�	 ���

�� APPENDIX �� SYSTEMATIC LISTING OF CLASSES
OF APPLICATIONS OF UNIVERSAL LOGICMACHINE���
���� TAUTOLOGY PROBLEMS� � � � � � � � � � � � � � � � � � ���
���� SATISFIABILITY PROBLEMS� � � � � � � � � � � � � � � ���
���� FIND SATISFIABLE SOLUTION TO DECISION FUNC�

TION� ��

���� FIND BEST SATISFIABLE SOLUTION TO DECISION

FUNCTION� ��	
���
 FIND ALL SATISFIABLE SOLUTIONS TO DECISION

FUNCTION� ���
���	 FIND ALL SATISFIABLE SOLUTIONS TO DECISION

RELATION� ���
���� COVERING PROBLEMS� � � � � � � � � � � � � � � � � � � ���
���� GRAPH THEORY PROBLEMS� � � � � � � � � � � � � � � � ���
���� GAMES AND LOGIC PUZZLES� � � � � � � � � � � � � � ���
�����SWITCHING FUNCTION MANIPULATION AND LOGIC

SYNTHESIS PROBLEMS� � � � � � � � � � � � � � � � � � � ���
�����PROBLEMS RELATED TO FINITE STATE MACHINES

AND MICROPROGRAMMING� � � � � � � � � � � � � � � � ���
�����PROBLEMS RELATED TO HIGH�LEVEL SYNTHESIS�

SCHEDULING AND ALLOCATION� � � � � � � � � � � � � ���
�����PROBLEMS RELATED TO TESTING� VERIFICATION

AND ANALYSIS� ���

	 CONTENTS

����� PROBLEMS RELATED TO PHYSICAL SYNTHESIS� � ���
����
 BOOLEAN EQUATIONS ANDMULTIPLE�VALUED EQUA�

TIONS� ���
����	 BOOLEAN RELATIONS AND MULTIPLE�VALUED RE�

LATIONS� ���
�����GENERAL PURPOSE CONSISTENT LABELING PROB�

LEMS� ���
����� DATA�BASE PROBLEMS� � � � � � � � � � � � � � � � � � ���
�����CRYPTOGRAPHY PROBLEMS� � � � � � � � � � � � � � � ���
����� MORPHOLOGICAL IMAGE PROCESSING PROBLEMS� ���
����� HIGH�LEVEL COMPUTER VISION PROBLEMS� � � � � ���
����� AUTOMATIC THEOREM PROVING� � � � � � � � � � � � ���
����� APPLICATIONS OF LOGIC IN HUMANITIES� � � � � � ���
����� INTEGER PROGRAMMING� � � � � � � � � � � � � � � � ���
����
 PSEUDO�BOOLEAN PROGRAMMING� � � � � � � � � � ���
����	APPLICATIONS REQUIRINGLONGWORDARITHMETIC

OPERATIONS� ���
�����FUZZY LOGIC ���
����� THE TUPLE PROCESSOR� � � � � � � � � � � � � � � � � � ��	
����� MULTI�DIMENSIONAL SOLID ALGEBRAS� � � � � � � � ���
����� TRULY MULTIPLE�VALUED LOGICS� � � � � � � � � � � ���
����� TUPPLE PROCESSOR� AREAS OF INTEREST AND

FUTURE APPLICATIONS � � � � � � � � � � � � � � � � � � ���
�����CELLULAR AUTOMATA� � � � � � � � � � � � � � � � � � � ���
�����COMPRESSION AND DECOMPRESSION� IMAGE PRO�

CESSING� ���

List of Figures

��� Standard Con�gurable Logic Block of Xilinx ���� series� � � ��
��� Figure �� Design �ow for merging functional blocks� � � � � ��

��� Con�guration of the linear MCC computer � � � � � � � � � � ��
��� Another con�guration of the linear MCC computer � � � � � ��
��� Another con�guration of the linear MCC computer � � � � � ��
��� First decomposition of the decision table from Table � � � � ��
��
 Second decomposition of the decision table from Table � � � ��

��� The multi�valued cube X�
f���g

X�
f���g

X�
�

� � � � � � � � � � �

��� The intersection of cubes A and B in positional notation

���X � ��XX u X��X � � � � � � � � � � � � � � � � � �	
��� The supercube of cubes A and B X�XX � ��XX t X��� ��
��� ESOP minimization with a crosslink	 and SOP minimiza�

tion
 a� F � �X�� �
���� � ����� � ���X	 b� F �
�X��
� �X��� �
���X � ���X� � � � � � � � � � � � � � � � � � � ��

��
 ESOP minimization with a crosslink	 and SOP minimiza�
tion
 a� F � XX�� � ��XX	 b� F � ���X � ��X� � �X��
� X��� ��

��	 A method to create crosslinx by union and rewriting � � � � ���
��� The nondisjoint sharp of cubes A and B
 A�B � A u B � d�

abc � d�a� b � c� � da � db � dc � � � � � � � � � � � ���
��� The disjoint sharp of cubes A and B � � � � � � � � � � � � � ���
��� Standard and Asymmetric Consensus with equal result � � � ��	
���� Standard	 Symmetric and Asymmetric Consensus with dif�

ferent results ���
���� The secondary crosslink of two multi�valued cubes a and B ���
���� An explanation of creating an arbitrary �programmable� func�

tion of two binary variables ai and bi using multiplexers � � ���

��� The three architectural models of a general�purpose computer� ���

�

� LIST OF FIGURES

��� The block diagram of the CCM� processor architecture� � � ��

��� The signals in the IT ��	
��� Signals from the data register �le to the IT�s � � � � � � � � ���
��
 An example of the crosslink operation inversion on two multi�

valued cubes A and B ���
��	 Deo ���
��� The numbers of the iterative signals CARRY
i��� and CONF
i�

�� ���
��� An example of operation complementation on a cube with

multi�valued variables� ��	
��� An example of a sequential operation� � � � � � � � � � � � � ���
���� Details of IT and interconnections of ITs in the ILU� Only

the most important signals are shown � � � � � � � � � � � � ���
���� The numbers of iterative signals � � � � � � � � � � � � � � � ���
���� A single IT ���
���� The iterative counter ��	
���� State transitions of the IT� All transitions are performed syn�

chronously on the active edge of the clock REQUEST� � � � �
�
���
 The internal realization of the block STATE
i� � � � � � � � � �

���	 The Iterative Logic Unit �ILU� � � � � � � � � � � � � � � � � �
�
���� Transitions of states in IT chains � � � � � � � � � � � � � � � �
�
���� Propagation of the NEXT �i� signal in parallel with the cal�

culation of output cubes� �	�
���� Example of Pseudo Generalized Kronecker Tree �so Figg��pic �		
���� The three architectural models of a general�purpose computer�

�	�
���� Example of Pseudo Generalized Kronecker Tree �so ccm block�pic

�	�
���� Fig� ���� The block diagram of CCM architecture� � � � � � ���
���� Example of Pseudo Generalized Kronecker Tree �so AFSM eg��pic

���
���� �so inversion��pic ���
���
 �so module�pic ���
���	 �so �ggg��pic ���
���� �so �gg��pic ��

���� �so �g��pic ��	
���� �so �gg��pic ���
���� �so f��pic ���
���� Fig� ����� ��	
���� Input cube A � X�� Y �������� � � � � � � � � � � � � � � � � ���
���� Resultant cube C � �f � X������ Y �������� � � � � � � � ���
���� f�a� b� c� � �a �c � �a �b c � bc � ab�c � a�b � � � � � � � � ���

���
 Tautology Veri�cation ���
���	 �Continued�� Tautology Veri�cation � � � � � � � � � � � � � � ���
���� Function F � A � �AC in BDD representation� � � � � � ��

���� Implementing functions of � or � inputs � � � � � � � � � � � ���
���� Fig� ���� Block diagram of the CCM��� processor � � � � � ���

�� LIST OF FIGURES

Example ���� Intersection of cubes A � Xf�����g Y f�����g � ���������
�������� and B � Xf�������g Y f�����g � ����������������� is cube C �
Xf���g Y � � ������������������

The second group of operations� the complex combinational operations
produce one cube whose literals are calculated by conditional operations
on the literals of the operands� For instance� the prime operation �used in
Exclusive Sum of Products synthesis� is de�ned as follows�

A prime B � X�
A� � � � Xj

Aj�Bj Xi��
Ai�� Xi

Ai�Bi

Xi��
Ai�� � � � Xk

Ak�Bk XN
AN

where Ak �Bk is calculated for all those variables Xk for which the
relation Ak � Bk �� � is satis�ed�

Example ���� Prime of binary cubes A � X� Y � Z� V � � �������������
and B � X� Y � Z� V ��� � ������������� is cube C � X� Y � Z� V ��� �
��������������

Example ���� XXX� � ���X � f �XX�� X�X�� XX��g� Let us ob�
serve that simple symbol �� shifted from left to right in the above cubes�
corresponds to all values of i for which relation ���Bi 	 Ai� � � � is
satis�ed�

Examples�

For binary logic� x� � �x� x� � x�

For four�valued input logic� Xf�����g � � if X
 f�����g� which means�
Xf�����g � � if �X��� or �X��� or �X���� Otherwise Xf�����g � ��

For �X���� Xf�����g � ��

A product of literals� X�
S� X�

S� ��� Xn
SN � is referred to as a product

term �also called term or product for short�� Such term is represented as
a cube� A product term that includes literals for all function variables X��
X�� ���� XN is called a full term� Any literal of the formXi

Pi is identically
equal �� Hence� we often write Xi

Pi Xj
Sj as Xj

Sj � A sum of products is
denoted as a sum�of�products expression �SOPE� while a product of sums is
called a product�of�sums expression �POSE�� An EXOR of products will be
called a Exclusive Sum of Products Form �ESOP�� A product of EXORs will
be called a Product of Exclusive Sums expression �POES�� SOPE� POSE�
ESOP and POES are all represented as arrays of cubes� One uses also
products of SOPEs �PSOPEs� as the Generalized Propositional Formulas
from �
�� They are represented as arrays of arrays of cubes�

��� EXAMPLE OF STATE TRANSITIONS

���� EXAMPLE OF STATE TRANSITIONS ��

$\(bu^\(bu^\(bu$

DPDPDP

CUCUCU

CU

c)

$\(bu^\(bu^\(bu$

instruction

initiate

FSM[n]FSM[2]FSM[1]

CU

b)

a)

predicates

instructions

DPCU

Figure ���� Example of Pseudo Generalized Kronecker Tree �so Figg��pic

�� LIST OF FIGURES

before�bef� active�act� after�aft� before�bef� active�act� after�aft�
sharp A�B �B � A A �B �A A

disjoint sharp A�dB � � �B � A� A �B �A A �B
asymmetric consensus A � aB ��B � A� A �B A �B A �B
symmetric consensus A � sB � A �B A �B A �B
crosslink A �B A �B � � A A �B B

Table ���� Table ���� Sequential Cube Calculus Operations�

operation before active after relation
sharp �Bj�i� �Aj�i� Aj�i� �Bj�i� �Aj�i� Aj�i�
hline disjoint sharp �Bj�i� �Aj�i� Aj�i� �Bj�i� �Aj�i� Aj�i� �Bj�i�
asymmetric consensus �Bj�i� �Aj�i� Aj�i� �Bj�i� Aj�i� � Bj�i� Aj�i� �Bj�i�
symmetric consensus � Aj�i� �Bj�i� Aj�i� � Bj�i� Aj�i� �Bj�i�
crosslink �Aj�i� � �Bj�i� Aj�i� Aj�i� � Bj�i� Bj�i�

Table ���� Table ���� Sequential Cube Calculus Operations on bits�

��� THE IMPLEMENTATION OF THE CONTROL

UNIT OF THE CCM�

The task of the Control Unit CU is to provide the ILU with the necessary
control signals� The operations being directly provided by the instruction
from the host computer do not have to be determined by the CU� The only
exception is the setting of the relation in the pipeline mode�
Therefore the CU has only to perform the algorithms for sequential

cube calculus operations and provide signals to the ILU according to the
di�erent modes�

����� THE IR SIGNALS AND THEIR MEANING

All signals described below are without the connections with the signals
coming from another CCMwhile using the chain mode� Therefore all signals
from the CU have to be OR�ed with the matching input pin that helds the
signal from another CCM� This means that all input and output signals
from the CU have to be available on pins of the CCM�
The instructions coming from the host computer are stored in the in�

struction register IR� Instructions concerning the Control Unit are�
IR��� � sequential or combinational cube calculus operation

���� THE IMPLEMENTATION OF THE CONTROL UNIT OF THE CCM� ��

y

x c y

lo 1 lo

22

lo 2 lo
lo 3 me
lo 4 me
lo 5 hi
me 1 lo
me 2 me
me 3 me
me 4 me
me 5 hi
hi 1 lo
hi 2 hi
hi 3 me
hi 4 hi
hi 5 hi

c2

x2

c1

x2 x3

x 2 x 3 c 1
lo lo 1
lo hi 1
me lo 1
me hi 2
hi lo 1
hi hi 3

x1 y

y

x1 2 x3

lo lo lo lo
lo lo hi lo
lo me lo lo
lo me hi me
lo hi lo lo
lo hi hi hi

(c)
me lo lo me
me lo hi me
me me lo me
me me hi me

(a)
hi hi hi hi
hi hi lo hi
hi me hi hi
hi me lo hi
hi lo hi hi
hi lo lo hi
me hi hi hi
me hi lo me

x1 c 1 y

lo 1 lo
lo 2 me
lo 3 hi
me 1 me
me 2 me
me 3 hi
hi 1 hi
hi 2 hi
hi 3 hi

y

x x 3 c

lo lo 1

x
x3

1

1

2

lo hi 2
me lo 3
me hi 4
hi lo 5

(b)
x 3 lo hi lo hi lo hi

lo lo me me hi hi 2x

1x

lo lo lo lo me lo hi

hi hi hi hi hi hi hi
c 1 1 1 2 1 3

x1

(d)

x
x

x
1

3 2 lo me hi lo me hi lo me hi

lo lo lo lo me me me hi hi hi
lo lo me hi me me hi hi hi hi

lo lo lo me me me hi hi hi

x 3

x
x

1
2

c 1 2 3 4 5 5
hi lo hi me hi hi hi
me lo me me me hi hi

lo hi lo hi lo hi
lo lo me me hi hi

lo lo lo me me hi hi

c 1 2 3 4 4 5 6 6 6

me me me me me me hi

hi hi 5

(f)(e)

Figure ���� The three architectural models of a general�purpose computer�

IR��� � � for sequential operation�
IR��� � � for combinational operation�

IR��� � chain or stand�alone mode�
IR��� � � for stand�alone mode�
IR��� � � for chain mode�

IR��� � counter mode

IR��� � � for counter mode cnt� which means counting in
all ITs �Equation ��������

IR��� � � for counter mode cnt� which means counting all
the variables that are satis�ed �Equation ��������

IR��� � AND�OR type relation for the sequential part of a Cube Cal�
culus Operation �RELATION��

IR��� � � for OR type relation for RELATION�
IR��� � � for AND type relation for RELATION�

IR��� � AND�OR type relation for the condition �the combinational
part � PRERELATION� of a sequential cube calculus operation�

IR��� � � for OR type relation for PRERELATION�
IR��� � � for AND type relation for PRERELATION�

IR�
� 	� � determines the kind of sequential algorithm
IR��� � prime operation� not for control unit

See also Table

 how sequential CC operations are speci�ed�

�� LIST OF FIGURES

DATA REGISTER FILE

DATA REGISTER FILE

WATER

STATUS REG.

MULTI-VALUE

IT[1] IT[2] IT[3] IT[4] CONTROL UNIT

INSTRUCTION REG.
MODE REG.

C.U.

BUS INTERFACE UNIT(BIU)

BIU

C.U.

Figure ���� Example of Pseudo Generalized Kronecker Tree �so
ccm block�pic

���� THE IMPLEMENTATION OF THE CONTROL UNIT OF THE CCM� �

y

x c y

lo 1 lo

22

lo 2 lo
lo 3 me
lo 4 me
lo 5 hi
me 1 lo
me 2 me
me 3 me
me 4 me
me 5 hi
hi 1 lo
hi 2 hi
hi 3 me
hi 4 hi
hi 5 hi

c2

x2

c1

x2 x3

x 2 x 3 c 1
lo lo 1
lo hi 1
me lo 1
me hi 2
hi lo 1
hi hi 3

x1 y

y

x1 2 x3

lo lo lo lo
lo lo hi lo
lo me lo lo
lo me hi me
lo hi lo lo
lo hi hi hi

(c)
me lo lo me
me lo hi me
me me lo me
me me hi me

(a)
hi hi hi hi
hi hi lo hi
hi me hi hi
hi me lo hi
hi lo hi hi
hi lo lo hi
me hi hi hi
me hi lo me

x1 c 1 y

lo 1 lo
lo 2 me
lo 3 hi
me 1 me
me 2 me
me 3 hi
hi 1 hi
hi 2 hi
hi 3 hi

y

x x 3 c

lo lo 1

x
x3

1

1

2

lo hi 2
me lo 3
me hi 4
hi lo 5

(b)
x 3 lo hi lo hi lo hi

lo lo me me hi hi 2x

1x

lo lo lo lo me lo hi

hi hi hi hi hi hi hi
c 1 1 1 2 1 3

x1

(d)

x
x

x
1

3 2 lo me hi lo me hi lo me hi

lo lo lo lo me me me hi hi hi
lo lo me hi me me hi hi hi hi

lo lo lo me me me hi hi hi

x 3

x
x

1
2

c 1 2 3 4 5 5
hi lo hi me hi hi hi
me lo me me me hi hi

lo hi lo hi lo hi
lo lo me me hi hi

lo lo lo me me hi hi

c 1 2 3 4 4 5 6 6 6

me me me me me me hi

hi hi 5

(f)(e)

Figure ���� Fig� ���� The block diagram of CCM architecture�

There are two di�erent kinds of instructions for the CU� One type deter�
mines if the CU has to perform an algorithm for a sequential cube calculus
operations �Table

�� where the cube calculus operations given only repre�
sent the type of performed algorithm �� The second determines the di�erent
operations modes of the CU�

� stand alone mode �

the CCM is used either as a stand alone CCM or is the rightmost CCM
in a chain of CCM�s�

� chain mode �

several CCM�s are connected in a chain� therefore only the rightmost
CU has to provide the signals for all CCM�s� All CU�s except this rightmost
have to be overridden�

� pipeline �

if several CCM�s are ordered in a certain structure for pipelining� the
CU has to check if there are contradictory cubes as input before performing
the chosen cube calculus operation� This �ag is set in the BIU register�

� combinational �

the CCM has to perform a combinational cube calculus operation� There�
fore it has only to generate the VALID and BUSY signals�

� sequential �

the CU performs the algorithm for the chosen sequential cube calculus

�	 LIST OF FIGURES

IT[5]IT[4]IT[3]IT[2]IT[1]

false

true

REQUEST
g)

f)REQUEST
bef

e)
false

ACTIVATE[0]

true
ACTIVATE[0]

false

true

INITIALIZE

INITIALIZE

(VARIABLE)

aft befbefaft

aft act befbefbef

bef bef befactaft

? ? ? ? ?

bef bef bef bef bef

bef bef bef bef bef

act bef bef bef bef

A,B,M,W
a)

b)

c)

d.1)

d.2)

aft befbefactaft

Figure ��
� Example of Pseudo Generalized Kronecker Tree �so
AFSM eg��pic

�

���� THE IMPLEMENTATION OF THE CONTROL UNIT OF THE CCM� ��

zvu

u
z

v

1

1

1

1

1

1

1

1

1

0

0

0

0

0 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11 11 11 11 11 11

1111111111111

0

0REQUEST

1

0

0REQUEST

REQUEST

111111111111

ACTIVATE

ACTIVATE

ACTIVATE

ACTIVATE

REQUEST

REQUEST

ACTIVATE

111111111111

0 11111ACTIVATE

aftaftaftaftaftaft
0000000

aft aft aft aft aft aft

011011111111

0111111

0000000

actactaftaftaftaft

aftaftaft befbefbef

0010 11111111
actactact

0000111
befbefbef

0000000
befbefbefbefbefbef

1 1 1 1 1 1 1

end of operation

i

i i

i i

i i

i i

i i

i i

i i

i

iiiiiiii

I

I

II

I

II

I

II

I

I

I

I I

I I

I

I

I

IIII

AA

A A

AAA

A

AA

A

A

0 1 2 3

0

1

2

3

4

5

0123
0 1

C

state

VARIABLE

Figure ��	� �so inversion��pic

�� LIST OF FIGURES

c
c

c
c

C
[i

-1
]

C
[i

+
1]

2
2

2

rre
l_

co
de

C
[i

]

B
[i

+
1]

B
[i

-1
]

B
[i

-1
]

B
[i

+
1]

A
[i

+
1]

A
[i

-1
]

B
[i

]
A

[i
] B

[i
]

A
[i

+
1]

A
[i

-1
]

A
[i

]

M
[n

+
1]

M
[i

+
1]

M
[i

]
M

[i
-1

]
M

[0
]

W
[i

+
1]

W
[i

]
W

[i
-1

]

W
[i

+
1]

W
[i

-1
]

ÿÿ
þ˝

ÿÿ
ÿÁ

W
[i

]
W

[i
-1

]
IN

IT
IA

L
IZ

E

R
E

Q
U

E
ST

R
IG

H
T

[i
-1

]
R

IG
H

T
[i

]
R

IG
H

T
[i

+
1]

L
E

FT
[i

]
L

E
FT

[i
-1

]
L

E
FT

[0
]

po
si

tio
n[

i+
1]

po
si

tio
n[

i]
po

si
tio

n[
i-

1]

st
at

e[
i+

1]
st

at
e[

i]
st

at
e[

i-
1]

A
C

T
IV

A
T

E
[i

]
A

C
T

IV
A

T
E

[i
-1

]
A

C
T

IV
A

T
E

[0
]

s Si

C
O

U
N

T
[i

]
C

O
U

N
T

[i
-1

]
C

O
U

N
T

[0
]

SI
G

N
A

L
IZ

E
SI

G
N

A
L

IZ
E

SI
G

N
A

L
IZ

E

A
FS

M
A

FS
M

A
FS

M

ID
E

N
T

IF
Y

ID
E

N
T

IF
Y

ID
E

N
T

IF
Y

C
O

U
N

T
[i

+
1]

A
C

T
IV

A
T

E
[i

+
1]

L
E

FT
[i

+
1]

R
IG

T
H

[n
+

1]

W
[i

]

W
[i

+
1]

2
2

2
2

2
2

V
A

R
IA

B
L

E
[i

-1
]

V
A

R
IA

B
L

E
[i

]
V

A
R

IA
B

L
E

[i
+

1]

Figure ���� �so module�pic

���� THE IMPLEMENTATION OF THE CONTROL UNIT OF THE CCM� ��

Figure ���� �so �ggg��pic

�� LIST OF FIGURES

Figure ���� �so �gg��pic

���� THE IMPLEMENTATION OF THE CONTROL UNIT OF THE CCM� ��

Figure ����� �so �g��pic

�� LIST OF FIGURES

...

...

...

next6

next6

next6

next5

next5

next5

next4

next4

next4

next3

next3

next3

next2

next2

next2

next1

next1

next1

next0

next0

next0

...

...

...

0000

Figure 9. Transitions of states in IT chain.

000000

00

1

11111

111

afterafterafterafterafter active

activeactiveactive beforebeforebefore

beforebeforebeforebeforebeforebefore

right_ed

right_ed

c)

b)

a)

right_ed

D Q

clk

clear

request

variable

STATE0 STATE1 STATE2 STATE3 STATE4 STATE5

0 0 0 0 01 1 1 1 1 1 1

1111111 00000

STATE5STATE4STATE3STATE2STATE1STATE0

variable

request

clear

clk

QD

D Q

clk

clear

request

variable

STATE0 STATE1 STATE2 STATE3 STATE4 STATE5

0 0 0 0 01 1 1 1 1 1 1

Figure ����� �so �gg��pic

���� DESCRIPTIONOF THE SEQUENTIAL CUBE CALCULUS OPERATIONS ��

U���� U���� U��
� V���� Z���� Z���� CU�IT�n���
� i � � � � �
 	
�
� IT�i� IT��� IT��� IT��� IT��� IT�
� IT�	�
� A�i� �� �� �� �� �� ��
� RELATION�i� � � � � � � �A� � X�

hline
 CARRY�i� ��� � � � � � �

	 CONF�i� �� � � � � � � ���
� VARIABLE�i� � � � � � � �A� � X�
� COUNT�i� ��� � � � � � �
�� �� resultant cubes�
� s�i� �� �� �� �� �� ��
�� S�i� �� �� �� �� ��a ��

Table ���� Table ����

IR�
� IR�	� sequential operation
� � only main loop
� � sharp
� � consensus
� � crosslink

Table ���� Table �����

operation�

��� DESCRIPTION OF THE SEQUENTIAL CUBE

CALCULUS OPERATIONS

This section will describe only the basic instructions� Because of the
freedom of the use of the instruction register one can generate a lot of
additional operations�
Each of this sequential operations has the same main algorithm � de�

scribed in the sequel � which generates the signals to generate all output
cubes for the operation�
To perform the operations shown in Table

 there are di�erent pre�

conditions for each function to be ful�lled�
The main algorithm has to perform the generation of the resultant

cubes� The number of the resultant cubes is determined by the number

�� LIST OF FIGURES

calculation.

with output cubes

propagation in parallel

Figure 10. $Next$ signal

active edge

delay

$ready sub 5$

$next sub 5$

$next sub 0$

$request$

Figure ����� �so f��pic

RELATION� RELATION� chosen relation
� � relation
� � prerelation
� � A � �
� � B � �

Table ��
� Table �����

of literals which match a certain relation � the speci�c literals� These rela�
tions � rel are shown in Table ��� �page ����
The relations that have to be performed on the literals are determined

by their position to the speci�c literals	 According to their position left
� after � or right � before � of the speci�c literals itself � active � the
performed operation has to be determined� This output operations are also
shown in Table ����
Doing this for each speci�c literal one obtains as many resultant cubes

as there are speci�c literals	 The coding which uses signalsRELATION�
and RELATION� is shown in Table

�

��� THE GENERAL ALGORITHM

The general algorithm contains the main algorithm which generates
the signals to generate all solution cubes and the part to perform certain
operations according to the chosen type of algorithm� The possible four
algorithms are described in Table

�
For example� if IR�
� 	� � ����� then the PRERELATION with the

���� THE GENERAL ALGORITHM �

Cube Prerelation Preoperation Relation Condition Operation
Operations bef act aft
Intersection Ai �Bi � � count� Ai �Bi

section �count� C��

Supercube Ai �Bi

Prime

hline Crosslink Ai � Bi � � count� Ai
Ai �Bi Bi

count� C��
heightSharp Ai �Bi � � �count� Ai � �Bi �count�

Ai Ai � �Bi Ai
C�A count� C��

Disjoint Ai �Bi � � �count� Ai � �Bi �count� Ai
Ai � �Bi Ai �Bi Sharp C�A count�

C��
Symmetric Ai �Bi � � count��Ai �Bi � Ai �Bi

Ai �Bi Ai �Bi
Consensus count��C�� Ai �Bi

Ai �Bi Ai �Bi
Asymmetric Ai �Bi � � count��Ai �Bi Ai � �Bi �count� Ai �Bi

Ai � �Bi Ai �Bi
Consensus count��C�� count� C��

Table ��	� Table �����

and�or type selected by AND OR from the instruction register will be per�
formed at �rst� The result of the relation will be checked according to
the signal COUNT� which means that the relation was true for more than
� literal� If the condition is true than the operation determined by BE�
FORE	 ACTIVE	 AFTER	 and RELATION with AND OR selected type
given also in the instruction register will be performed� If the condition is
not ful�lled then the operation determined in the PREOPERATION �eld
will be performed�

�	 LIST OF FIGURES

��� INPUT AND OUTPUT SIGNALS OF THE CU

FLAGS All �ags are determined by two states� � or �� To set and reset
these �ags two di�erent signals are necessary�
VALID � result in output register is valid
BUSY � CU is busy� performing an algorithm
GO � signal from BIU to CU to start chosen instruction
DEL START � tell delay counter to start
DEL END � signal from delay counter that �nished

��� OUTPUT SIGNALS OF THE CU

����� STABLE OUTPUT SIGNALS OF THE CU

The CU has to provide the ILU and the Bus Interface Unit �BIU� with
stable control signals� Stable signals that have to be set and reset from
the CU are described below� A �ip��op to keep a stable signal is shown in
Figure �����
Figure �����
A �ip��op to keep a stable signal for the CU�
One can observe that for setting the latch the signal SET��� and the

signal VALUE��� have to be ���� To reset the latch the signal SET��� has
to be ���� and the signal VALUE has to be ����

Stable Signals �SET ���	 VALUE ����

BUSY
The signal BUSY is set while the CU is �busy�� performing an algo�

rithm�
SET BUSY is a signal from CU to �ip��op
BUSY VALUE is a signal from �ip��op to

OPERATION
If the conditions for a sequential cube calculus operation are nor ful�lled�

a combinational cube calculus operation can be performed� To distinguish
between these two types of cube calculus operations the signal OPERA�
TION is used�

OPERATION � � when operation is to be performed�
OPERATION � � when preoperation has to be performed�
It determines if PREOPERATION or BEFORE �eld has to be used�
REL�	 REL� The two signals REL� and REL� determine the di�erent

types of relations on A and B that have to be checked� In Table

 the
code for these signals is shown�
The relation A�� of the third row is ����� the relation B�� is described

by �����

���� THE SINGLE PULSE OUTPUT SIGNALS OF THE CU ��

REL� REL� RELATION
� � RELATION
� � PRERELATION
� � A � �
� � B � �

Table ���� Table �����

The values of the signals PRERELATION
�
�� and RELATION
�
��
are taken directly from the IR register� The relations A��� and B�� are
used to determine the contradictory cubes in the pipeline mode�
Because REL�	 and REL� are always set together� only one SET signal

SET RELATION is used�
AND OR
The signalAND OR is directly taken from the Instruction Register �IR��

The bit IR��� determines if the relation that has to be ful�lled for the
sequential cube calculus operation is of the AND�type or OR�type� Bit
IR��� determines the type of the relation that has to be used to calculate
the speci�c positions�

AND OR � � when AND�type relation is checked�

��� THE SINGLE PULSE OUTPUT SIGNALS OF

THE CU

Several signals have to be stable for only one clock pulse� Thus� they
don�t have to be kept in �ip��ops�
The Pulse Signals are�
CLEAR
Resets the PSMs in the ILU�
NEXT�ILU
This signal is the initial NEXT from CU to ILU� It activates the Inter�

lock Mechanism of the PSMs in the ILU�
REQUEST
The clock signal only for the PSMs in the ILU� Do not confuse with the

global clock of the CCM��
RESET GO
Resets the GO signal ��ip��op� from the BIU�
SET VALID
When a resultant cube is calculated by the ILU the VALID signal is set

to ��
VALID � � means �do not disturb the ILU and the CU��

�� LIST OF FIGURES

DELAY START
If a result of the iterative COUNT counter is necessary� a delay time

has to be inserted to be sure that the result is stable� This signal starts the
Delay Counter�

C TO OUT
The result of the ILU �denoted as combinational signal C� is copied to

the Output Register�
RESET OUTPUT
Resets the Output Register� This is done for contradictory cubes in the

pipeline mode�
The following signals are not provided by the CU but necessary for the

ILU� The signals CARRY and COMPARE do not have to be set by the
CU� because they are only used inside of multivalued literals� The �rst and
last bit of the Water register W being bits W� and Wn��

 or W� and Wn

do not necessarily have to be generated from the CU� The four signals

to determine the relation for the pipeline mode do not have to be generated
from the CU� They can directly be generated by setting the matching input
lines of the multiplexer to ground or Vdd� With this approach one more
multiplexer is necessary� The signals RELATION� and RELATION� are
still su!cient for the multiplexing of four di�erent relation operations �
PRERELATION	 RELATION	 A��	 and B�� ��
CARRY � left signal that comes either form the next CCM or �goes to

ground�
COMPARE � similar to the
CARRY signal W ����
W �n� ��

��	 INPUT SIGNALS TO THE CU

GO
Signal from the BIU �through a �ip��op� to start the CU with a selected

instruction�
VALID
Signal from the BIU �through a �ip��op� if the resultant cube has been

read from the host computer�
VALID � � when it has been succesfully read�
READYCU
Signal from the ILU to tell that a resultant cube has been calculated�

This corresponds to the sum of all READY
i� signals�
NEXTI � NEXT��

���� THE ALGORITHMS OF THE CU ��

Signal form the ILU to tell that the last resultant cube has been calcu�
lated� This is the last signal from the Interlock Mechanism�

COUNT�
This signal is equal � when the result of counter COUNT is � ��
COUNT�
This signal is equal � when the result of counter COUNT is � ��
COUNT�
This signal is equal � when the result of counter COUNT is � ��
PIPELINE
The signal from BIU to indicate that the CU has to operate in a pipeline

mode� PIPELINE � � for the pipeline mode�
DELAY END
Signal from the Delay Counter to tell that the delay time is over� DE�

LAY END � � means that all signals are now stable and new action can
be initialized by CU�

GLOBAL RESET Signal from input pin to CCM chip� Resets every�
thing� like a �reset� key in a personal computer�

��
 THE ALGORITHMS OF THE CU

As mentioned in the Introduction the CU has two tasks�
�� providing the signals to generate sequential cube calculus operations�
�� checking for contradictory cubes in the pipeline mode�
These two parts of the CU will be explained with algorithms in the next

two sections�

����� THE PIPELINE MODE

To use the CCM in certain structures for pipelining it is necessary to
detect contradictory cubes in the input� A special preprocessing algorithm
was added to the CU which is only used if the pipline mode �ag PIPELINE
is set� A contradictory cube means an empty cube� therefore in this prepro�
cessing algorithm the both input cubes have to be checked for contradiction
�inclusion of ��� If there is a contradictory cube in the input the output has
to be an empty cube �no cube generated at all��
The pipeline mode is the only mode in which the CU directly has to

set the relation that should be performed from the ILU� It has to set the
relations A �� � and B �� �� In Figure ����� the Karnaugh maps and the
resulting code for these operations is shown�
In the pipeline mode� the two input cubes� A and B� have to be checked

for contradictory input cubes� Thus� the CU has to provide the ILU with
the signals to compare if register A or B is empty �see states � � 	 in the
�owchart��

�� LIST OF FIGURES

calculation.

with output cubes

propagation in parallel

Figure 10. $Next$ signal

active edge

delay

$ready sub 5$

$next sub 5$

$next sub 0$

$request$

Figure ����� Fig� �����

The pipeline algorithm is as follows�

if � PIPELINE �

�

if � A �� � �� B �� � � �� contradictory cube � ��

RESET	OUTPUT
 �� set output register to zero ��

goto END
 �� state �� in the flowchart ��

else if � IR� �

goto START
 �� state � in the flowchart ��

���� THE MAIN ALGORITHM

The main algorithm has to provide the ILU with the signals for the
generation of the resultant cubes for the sequential cube calculus opera�
tions� The number of the resultant cubes is determined by the number of
the speci�c positions� Those positions are speci�ed by relations shown in
Section

 �in Table �����

����� THE MAIN ALGORITHM ��

The algorithm shown below is re�ected in the states ���� in the �owchart�
The main algorithm is as follows�

CLEAR
 �� reset the FSMs of the ILU ��

NEXT� �

true

�� activate the ILU for the sequential operation ��

LOOP � if � �READYCU �� VALID �

goto LOOP
 �� state �� in the flowchart ��

else �

C	TO 	OUT
 �� copy the resultant cube to the output register��

SET	VALID

 �� indicate that the resultant cube is valid

��

if � NEXTI � �� all resultant cubes have been calculated ��

goto END

else �

REQUEST
 �� clock the ILU to generate the next resultant cube ��

goto LOOP

������ COMPLETE ALGORITHMANDFLOW�CHART
OF THE CONTROL UNIT

In this section the �owchart of the Control Unit will be described brie�y�
�� State �
The Initialization of the Control Unit is done by the GLOBAL RESET

signal� which resets the CU fromany random state to State �� The CU stays

�� LIST OF FIGURES

always in State � if the CCM is operated in the chain mode �IR��� � ��� If a
sequential operation is chosen �GO � IR��� � IR����� or a pipeline mode and
combinational operation is chosen �GO � IR��� � IR��� � PIPELINE��
it will transit to State ��
State � �� State � �� State �
State � is only an intermediate state� because for the transition State � ��

State � the signal em GO which is changed during State � �� State ��
is used� The GO signal is resetted and the BUSY �ip��op is set to tell
the BIU that it is not allowed to interrupt the CU� Signals CLEAR and
REQUESTILU clear all PSMs in ILU to states before�
State � �� State � �� State
 �� State 	
The CU will transit into State � if the pipeline mode is set	 In the

following states the two input cubes A and B are checked if they
are contradictory	 Because the result of the successor counter is
needed the Delay Counter is invoked	 If an contradictory input
cube occurs� the output will be resetted and the CU will transit
to State ��	
In the transit State
 �� State 	 the same operation as in tran�

sit State � �� State 	 has to be performed� the relation is selected
to
� �REL� � �� REL
 �
� which means prerelation	
�State � �� State 	�
If the CCM is not operated in the pipelinemode it will directly

transit from State � to State �	 During the transition the relation
determined by the �eld prerelation in the instruction register is
set	
State 	 �� State �
This path is for the combinational operation	

State 	 �� State �� State 	 �� State �
The chosen conditions � AND OR	 COUNT�	 COUNT�	 COUNT��

for the main algorithm have to be checked	 Because we use in
this step the result of the iterative COUNT Counter� the Delay
Counter is invoked	 If there is no condition the CU will transit
immediately from State � to State �	
State � �� State �
State � �� State �

If the conditions are not ful�lled� the alternative combina�

tional cube calculus operation has to be performed in transit
State � �� State �	 This operation is determined by the �eld
PREOPERATION in the IR	 Execution of the combinational op�
eration is done by setting the OPERATION �ip��op to � �which
means SET OPERATION � �� VALUE OPERATION � ��	
�State � �� State ��

����� UPDATE OF CU FLOWCHART ��

The and�or type �ip��op is set� according to IR���	 If IR��� �
�� it is set to �� else to
	 Also the operations�relation for the
basic sequential cube calculus operation are set	
�State � �� State ���
Necessary timing of the signal REQUESTILU and NEXT�ILU to

calculate the �rst resultant cube	 This corresponds to the D�type
�ip��op circuit that was explained in Figure �	�

�State � �� State ��
For crosslink� if there is no speci�c position then send empty

cube to output	
�State �� �� State �� �� State ���
If the ILU is ready with the calculation of the resultant cube

� READYCU � �� and the �ip��op VALID is zero �either the �rst
resultant cube� or the last resultant cube has been read from the
host computer� the CU transits to State ��	 Because the VALID
�ip��op� beeing the input to transition State �� �� State �� has
to be set to one� an additional transition �State �� �� State ��� is
necessary	 In the transition State �� �� State �� also the signal to
copy the resultant cube from C of ILU to the output register is
given	
�State �� �� State ���
If the calculated resultant cube was not the last one �NEXTI �

��	 the next resultant cube has to be calculated	 Thus� the ILU
has to be clocked with the REQUESTILU signal	
�State �� �� State �� The last resultant cube has been generated
�NEXTI � ��	 thus the CU has only to wait until this cube is read
�VALID � ��� Then the BUSY signal is resetted	

���� UPDATE OF CU FLOWCHART

We observed in the previous �ow�chart that some optimization
can be done be shifting output signals and combining states	
The new meg	�le obtained as the result of those transforma�

tions is as follows�
INPUTS�

IR� IR� IR� IR� IR� IR�

NEXT� GO READYCU COUNT� COUNT� COUNT� PIPELINE VALID DELAY	END

�noindent

��bf OUTPUTS�

�� LIST OF FIGURES

SET	BUSY RESET	BUSY RESET	GO REQUESTILU DELAY	START CLEAR NEXT�ILU

SET	AND	OR VALUE	AND	OR C	TO	OUTPUT SET	VALID SET	RELATION

RESET	OUTPUT VALUE	REL� VALUE	REL� VALUE	OPER SET	OPERATION

st�� case � GO IR� IR� PIPELINE�

� � � ��� st��REQUESTILU CLEAR�

� � � ��� st��REQUESTILU CLEAR�

endcase �� st�

st�� goto st� � SET	BUSY RESET	GO CLEAR�

st�� if PIPELINE then st�� SET	RELATION VALUE	REL� DELAY	START �

else st� � SET	RELATION VALUE	REL� �

st�� case � DELAY	END COUNT� �

� � �� st� � SET	RELATION VALUE	REL� VALUE	REL� DELAY	START �

� � �� st� � RESET	OUTPUT RESET	BUSY�

endcase �� LOOP

st�� case � DELAY	END COUNT� �

� � �� st� � RESET	OUTPUT RESET	BUSY�

� � �� st� � SET	RELATION VALUE	REL� �

endcase �� LOOP

st�� case � IR� IR� IR� IR� �

� � � � �� st�

� � � � �� st� � SET	AND	OR VALUE	AND	OR�

����� UPDATE OF CU FLOWCHART �

� � � � �� st� � SET	AND	OR �

� � � � �� st� � SET	AND	OR DELAY	START �

� � � � �� st� � SET	AND	OR DELAY	START �

� � � � �� st� � SET	AND	OR VALUE	AND	OR DELAY	START �

� � � � �� st� � SET	AND	OR VALUE	AND	OR DELAY	START �

endcase �� ANY

st�� case � DELAY	END IR� IR� COUNT� COUNT� COUNT� �

� � � � � � �� st�

� � � � � � �� st�

� � � � � � �� st�

� � � � � � �� st�

endcase �� st� � VALUE	OPER SET	OPERATION SET	VALID RESET	BUSY�

st�� if IR� then st� � SET	AND	OR VALUE	AND	OR NEXT�ILU REQUESTILU SET	RELATION SET	OPERATION �

else st� � SET	AND	OR NEXT�ILU REQUESTILU SET	RELATION SET	OPERATION �

st�� goto st�� � NEXT�ILU �

st��� case � READYCU VALID �

� � �� st��

endcase �� LOOP

st��� goto st�� � C	TO	OUTPUT SET	VALID �

st��� if NEXT� then st��RESET	BUSY�

else st�� � REQUESTILU �

�	 LIST OF FIGURES

�section� EXAMPLES OF OPERATION

Disjoint sharp operation�

This is an or	type operation� The preset REL signals are as follows�

A B REL

� � �

� � �

� � �

� � �

Disjoint sharp operation is described with the following Table�

� CU�IT��� U���� U���� U���� V���� Z���� Z���� CU�IT�n���

� i � � � � � �

� IT�i� IT��� IT��� IT��� IT��� IT���

� A�i� �� �� �� �� ��

� B�i� �� �� �� �� ��

� REL��i��REL��i� � � � � �

� RIGHT	ED�i� � � � � � �

� CARRY�i��� � � � � � �

� CONF�i��� � � � � �

� VARIABLE�i� � � � � �

Table

���� COMMUNICATION�BASED OPERATIONS�

Just as the DSP or AI architectures can be build from regular
structures of few kinds of blocks through which data vectors are
transmitted� the principle of CCM is to allow for pipelined�systolic
execution of the most common operations on clists and cclists	
Those operations include for instance the Cartesian Products�
the dot products� the permutations� and the generations of all
subsets or combinations of a clist	 Micro�Programming of CCM
consists then in assigning values to two kinds of control �elds�

����� COMMUNICATION�BASED OPERATIONS� ��

�	 Those that describe the processing inside the CCM� for ex�
ample� the operations on cubes and short clists described in
section

	

�	 Those that describe the communication of the CCM with
other processors and memories	

There are currently two styles of communication�

�	 Address Generator based	

�	 Data Flow based	

Address Generators are used to send out the address of the
desired operand in Dual�Port Memories	 The data �ow style is
based on FIFOs	 In this case the CCM chip �CCM processor
�
sends a signal to a FIFO to get the next cube	 A Ping�Pong com�
munication mechanism is used to transfer the data from Memory
A to Memory B while the processing	 Possibly� the the data��ow
in the processor can be changed for every change of direction	
and this is controlled as well	

There are three main types of communication�based opera�
tions�

�	 simple operations on a clist�

�	 simple operations on two clists�

�	 ��� complex operations on a clist	

Ad	 ���	

Simple operations on a clist include Global Reduction	 Mapping	 Pair�
ing	 Selection	 Inversion	 Mapping with Insertion	 Inversion with Insertion	
Replacement	 All Pairs with Reduction	 All Ordered Pairs	 and other
operations	 Examples of some of those operations on clist A � f
a�� a�� a� g are as follows	
NOTE�

In the following� f g denotes a clist� ff gg a cclist�

a cube� agroupofvariables� kkaset�� asymbol�OPERandOP CLISTaretwo�
operandcubeoperations�

�� LIST OF FIGURES

Global Reduction � in which a cube is created from a clist�

REDUCTION �A� OPER� � �a� OPER a� OPER a��

Examples of such operations in cube calculus are the super�
cube of all cubes from the clist� and the intersection of all
cubes from the clist	

Mapping � for which the clist produces a new clist of the same size�

MAPPING�A� OPER� � f OPER�a��� OPER�a��� OPER�a��
g

Pairing � where the operation is repeated on subsequent pairs of
arguments and the results are directly inserted in a new
clist�

PAIRING�A� OPER� OPCLIST � � fOPER � a�� a�� OPCLIST OPER�a�� ��
g

Sorting � can be realized as repeated pairing	

Sorting with Absorption can be realized as repeated pairing	

Reducing Operations such as�

ab � a �
 a�

a � a �
 a�

ab� a �
 a�b�

or

a� � �
 a�

can be used as OP CLIST	 Repetitive Ping�Pong transfer of
a clist through a CCM with an exchange of neighbor cubes
�based on a speci�ed ordering relation between them� leads
to sorting the clist	 When the compare�exchange operation
also executes cube absorption� algorithms such as POS �

SOP transformation by multiplication can be executed �
�	

�item� Inversion �� for which the clist creates a new clist of
the same size�

INVERSION�A� OPER� � f OPER�a��� OPER�a��� OPER�a��
g

All Pairs of a Clist�

ALL PAIRS�A� OPER� � f OPER�a�� a��� OPER�a�� a��� OPER� a�� a��
g	

����� COMMUNICATION�BASED OPERATIONS� ��

Selection � is an operation known from CAM�based and associative
processing	 It selects cube�s� for which a certain Boolean
function of literal�related predicates is satis�ed	 For instance
the operation�

�age � ��� AND character � "good� OR properties �
fkgwealth� good� contactsromanfkg�

operates on cubes with numeric variable �age�	 symbol vari�
able �character�	 and set variable �properties� and selects all
people who either are older than �� and have good character�
or have wealth and good contacts among their properties	

Replacement � is a similar operation	 It does some cube operation on
selected cubes such as adding � �

 to the numeric variable
�salary� or adding set value �good�contacts� to the variable
�properties�	

The following operations of Cube Pairing and Cube Pairing
with Reduction are executed on a clist and a cube�

CUBECLIST PAIR�A� cube�OPER� � fOPER � a�� cube�� OPER�a�� cube�� OPER�a�� cube�
g

CUBECLISTREDUCE�A� cube�OPER�OPCLIST � �

f OPER�a�� cube� OP CLIST OPER�a�� cube� OP CLIST OPER�a�� cube�
g

Ad ���
Simple operations on two lists include Dot Product	 Vector Product	 Sim�
ple Cartesian Product	 Sequential Cartesian Product	 Convolution	 Vector
Product with Insertion	 Vector Product with Reduction	 and other	 Some
of those operations on clists A � f a�� a�� a� g and B � f b�� b�� b�
g are the following�

Dot Product � for which two clists create a cube�

DOT PRODUCT�A� B� OPER� OP CLIST� �

�OPER�a�� b�� OP CLIST OPER�a�� b�� OP CLIST OPER�a�� b���

As an example� OPER can be a cube intersection operation�
and OP CLIST can be a cube supercube operation	

Vector Product � for which two clists create a clist�

VECTOR PRODUCT�A� B� OPER� � f OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b��
g

�� LIST OF FIGURES

Simple Cartesian Product � where two clists create a clist �in particular representing a
matrix� or a set of pairs��

SIMPLE CARTESIAN PRODUCT�A� B� OPER� � f OPER�a�� b�� � OPER�a�� b��
OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b�� � OPER�
g

This matrix is returned row by row� from left to right	

Sequential Cartesian Product � where two clists create a clist	 In this operation the OPER
is applied sequentially to the result of the operation of A with
the �rst cube of B� the second cube of B� etc� as follows�

SEQUENTIAL CARTESIAN PRODUCT�A� B� OPER� OP CLIST�
� fCUBE CLIST REDUCE� �CUBE CLIST REDUCE� �CUBE CLIST REDUC
b�� OPER� OP CLIST� b�� OPER� OP CLIST�� b�� OPER�
OP CLIST�� g

This is applied in sharp� intersection and union of clists	

Convolution 	 A new clist of length �n� � is created according to a con�
volution algorithm such as that used in polynomial multipli�
cation	 This operation is a base of many image�processing
operations	

Ad	 ��� Complex operations on a single clist include the following�
All permutations	 All subsets	 All combinations	 and other	 Such oper�
ations� which are in fact the mappings of tree�search algorithms
to pipes� are based on two coordinated pipes	 For instance� All
Subsets Operation uses the method from �
� to generate all subsets
of a set	 This operation can be used to generate all cubes that
include a speci�ed cube	

Many other pipelined�systolic�data��owMVCC operations can
be created that are especially useful for problem�solving and spec�
tral applications	

�	 CONCLUSION	

The paper presented our new Generalized Multiple�Valued
Cube Calculus and the basic features of our Cube Calculus Ma�
chine CCM�� the �rst universal multiple�valued logic machine	
The CCM� bit�slice chip and CCM� processor board are cur�
rently under development at PSU	 We are also working on micro�
programming� development of a high�level Lisp�based program�
ming environment� and a next generation CCM to implement an
even more general multiple�valued logic	

����� INDEX OF TERMS AND SIGNAL NAMES ��

���� INDEX OF TERMS AND SIGNAL NAMES

AAAAAAAAAAAAA
AND OR determines if the AND� or the OR�type relation

shall be performed
ACTIVE�i� AFTER�i�
ACT function
Active literal
Additional Control Logic of ILU
AFT function
AND�type relation
Asymmetric consenus
BBBBBBBBBBB
BUSY VALUE
BUSY CU is busy� performing an algorithm
BEFORE�i�
Basic sharp
BEF function	
Before active
Binary consensus
BIU
CCCCCCCCCCCC
CARRY�i�
C�i�
CC operation
Chain mode
CLEAR
COMPARE
CON�i�
CONF�i�
COUNT
 result of counter COUNT is

COUNT� result of counter COUNT is larger than �
COUNT� result of counter COUNT is larger than �
COUNT���c� counter
C TO OUPTUT content of the result register is copied to the

output register
CNT�i�
Combinational CC operations C TO OUTPUT
Complex combinational operations
Contradiction in cube
Control Unit CU
Crosslink

�� LIST OF FIGURES

Cube Calculus
Cube Calculus Operations
DDDDDDDDDDDDD
DELAY END� Del end� signal from Delay Counter that �n�

ished
DELAY START Del start� tells delay counter to start
Data Path �DP�
Delay Counter
Disjoint sharp
Double Prime Operation
EEEEEEEEEEEE
EX
�i�
EX��i�
Exclusive Sum of Products Form ESOP
FFFFFFFFFFF
Finite State Machine �FSM�
Frontier between variables
Full term
GGGGGGGGGGGGG
GLOBAL RESET
GO signal from BIU to CU to start chosen instruction
HHHHHHHHHHHHHH
IIIIIIIIIIII
IDENTIFY�i�
Instruction Register �IR�
Interlock mechanism
Intersection
IR��� � sequential �
� or combinational ��� cube calculus oper�

ation
IR��� � chain or single mode
IR��� � counter mode
�� Zamiast IR��� wstaw count �co zliczamy �
� bit by bit ��

speci�c literals� ��
IR��� � and�or type relation for relation
IR��� � and�or type relation for prerelation
IR�
� 	� � determines the kind of sequential algorithm
IR��� � prime operation� not for control unit � � for operation

prime	
Iterative Cell IT
Iterative Logic Block �ILU�
JJJJJJJJJJJJJJJJ
KKKKKKKKKKKKKkk

����� INDEX OF TERMS AND SIGNAL NAMES ��

LLLLLLLLLLLLLL
Literal
Logic Between BIU and CU
MMMMMMMMMMMMMMMMMM
Main Algorithm
Micro�programming of CCM�
Multiple�valued input logic
Multiplexers
Multi�value �M� Register
NNNNNNNNNNNNNNNNNN
NEXT enables the ILU to perform the main algorithm
NEXTI � NEXT�� � NEXT�n�
NEXT
ILU � NEXT�
�
OOOOOOOOOOOOOOOO
OPERATION operation determines if PREOPERATION or BE�

FORE operation has to be used
Operand cubes
Operation
OR�type relation
PPPPPPPPPPPPPPPPPPPPPPPP
PIPELINE to indicate that the CU has to operate in pipeline

mode
Pipeline mode
POSE
Positional notation
Position State Machine �PSM�
Position in a cube
Position Counter
PREOPERATION
PRERELATION
Prime
Product of Exclusive Sums expression �POES�
Product term
RRRRRRRRRRRRRRR
READY�i�
READYCU
ready� the ILU performed the operation
Register File
REQUEST
RESET GO
RESET OUTPUT to reset the output register� necessary in

pipeline mode

�� LIST OF FIGURES

Relation of set inclusion�
RELATION �i�
Relation �rel�
REL��
relation�
relation

REL� togetherwiht REL determines if CU�relation for pipelin�

ing has to be used
Remainder Logic
Resultant cube
RIGHT ED�i�
Ring of Processors
SSSSSSSSSSSSSS
Sequential instructions Sequential operations	
SET BUSY
SET RELATION
SET VALID
Set theory operations� intersection� sum
Sharp �non�disjoint�
SIGNALIZE�i�
Si������
SIGNALIZE�i�	
SLCT�i�
SLC��i�
Simple combinational operations	
SOPE
Speci�c position�
Speci�c literal
STATE�i�
Status �S� Register
Supercube
Symmetric consenus
TTTTTTTTTTTTTT
TESTSTATE�i�
UUUUUUUUUUUUU
VVVVVVVVVVV
VALID result in output register is valid
VARIABLE�i�

����� DESIGN EVALUATION AND COMPARISON OF CCM� �

���� DESIGN EVALUATION AND COMPARISON

OF CCM�

Now that the ILU has been veri�ed in its operation� a proper
timing analysis must be done to complete the evaluation of the
CCM� hardware	 By analyzing the CCM��s timing characteris�
tics� both the internal delays of the logic devices and the amount
of time it takes to process data received at the inputs and produce
the results at the outputs must be taken into account	 Since only
the ILU has been investigated in this thesis� all external delays
to the hardware will not be considered	

���� TIMING ANALYSIS

When determining the internal timing of the ILU� there are
three types of delays that must be investigated� vertical signals
received from the host computer at the inputs and leaving the
ILUs outputs� horizontal signals received from the CU at the
inputs of the �rst IT and returned from the outputs of the last
IT back to the CU� and lastly the delays incurred from executing
sequential and complex combinational operations upon the input
cubes	
The vertical signals include input� output� prerelation� relation

and instruction register signals	 The delay of concern here is the
time it takes to compute a combinational operation once the input
cube values have been received� then passed to the outputs of the
device	 For simple combinational operations such as intersection
and supercube� the CU is not needed� so the time involved in
calculating the output cubes is determined by the delay of the
signals through the RELATION subsection of each IT	 With the
most recent placement and routing of the CCM� design� it was
found that the greatest delay was in the �rst IT of each device	
The delay of ���	� nanoseconds was the greatest delay found�
while a delay of ��	� nanoseconds was the smallest delay found in
the last IT of each Xilinx device	 All ITs within the ILU have the
identical design� so the reason for the ��	� nanoseconds di�erence
in delays is caused by the placement and routing of the design	
Thus� these delays are likely to vary each time the automatic
placement and routing routine is run	
The horizontal signals includeNEXT� READY� CLEAR� PRIME

and REQUEST� and are the signals used in the generation of
cubes from sequential and complex combinational operations	 All

�	 LIST OF FIGURES

of these signals are received by or returned to the CU� however�
only the NEXT and READY signals will be considered here� since
they are critical for the generation of output cubes	 CLEAR�
PRIME and REQUEST are received at each IT at approximately
the same time and do not get passed to adjacent cells during op�
eration	 The NEXT and READY signals are used to coordinate
the states at which speci�c ITs of the ILU should be for the gener�
ation of multiple output cubes	 These signals ripple through the
chain of ITs under the control of the CU	 Obviously the delay is
dependent upon the size of the input cubes and the number of
output cubes produced� so the delay times are based upon all ITs
being used� and the ILU producing a single resultant cube	 The
signal NEXT has a delay of ���	� nanoseconds while READY has
a delay of ���	� nanoseconds	 It will be shown in the following
section that these two signals are the limiting factor in the speed
of my design	 The attached timing sheets found in Appendix B�
show the delays of the two signals found for a single device	 It
can be seen that a major source of delay is from the signal en�
tering and exiting the device to the I�O pins	 Once the design is
�t into a single programmable device� these delays will decrease
signi�cantly since the signals must currently pass through two
devices	
To justify the need for special hardware to accelerate the pro�

cessing of logic functions� we must �rst evaluate existing logic
minimization programs and determine which software routines
might bene�t from this hardware	 Many logic minimization soft�
ware tools such as ESPRESSO �
�
�
� MINI �
�� and MIS II �
�
�
may bene�t from the addition of the CCM�	 In ESPRESSO�
there is no direct relation between any one measure of problem
size �inputs� outputs� literals� terms� and so forth� and the com�
puting time	 If a routine is detected that would greatly bene�t
from the addition of the CCM�� it may then justify the additional
cost depending upon the frequency that the routine is called dur�
ing typical operation	
It was found that one essential algorithm used in ESPRESSO�

II could have its processing time signi�cantly reduced with the
addition of the CCM�	 The COMPLEMENT procedure is exe�
cuted exactly once during typical operation� and consumes ���
of the total CPU time on average�
�	 It is second in time con�
sumption to the EXPAND procedure which on average requires
��� of the CPU time	 The EXPAND procedure uses the results
of the complement to quickly determine primes covering a given

���	� TIMING ANALYSIS ��

cube and to help guide which of the primes will be chosen to
produce the best cover	 One might chose to eliminate the COM�
PLEMENT algorithm� however� the initial cost of the procedure
is o�set by the increase in computing time needed by EXPAND	
In addition� the quality of the cover obtained after each expand
step would be reduced	
On the CCM�� a combinational operation such as complement

�
�
�
�
� may be executed in six clock cycles of the CU for a
single resulting output cube	 Assuming an Intel �
��� or equiv�
alent clone processor with a system clock of �� MHz� giving a
period of �
	�
 nanoseconds per clock cycle� the result of a single
cube output from the complement of an input function may be
calculated in ���	�
 nanoseconds	 This may be seen in Figure ��
on page ��� showing the single resultant cube being calculated
after � clock cycles	 For multiple resultant cubes� the �rst cube
is produced after � clock cycles� then the subsequent output val�
ues are produced after every additional three clock pulses� until
the NEXT signal has been received	 Thus� the complement of a
function producing two resultant cubes will take ���	�
 nanosec�
onds� three resultant cubes will take ���	�
 nanoseconds� and so
on	 These �gures are not entirely true since the calculation can�
not be written to the data bus until the NEXT signal is received	
This takes ���	� nanoseconds to be received� then an additional
�
	�
 nanoseconds to be output to the data bus� for a total of
���	� nanoseconds for one or two resultant cubes	 If three re�
sultant cubes were produced� it would take ���	�
 nanoseconds	
From this data� it can be seen that for cube calculus operations
producing multiple cubes� there is a great speedup bene�t since
only � clock cycles are needed for each additional resultant cube
after the �rst one has been generated	
Assuming that the COMPLEMENT function was sped up by

one thousand times� this still does not justify the addition of spe�
cial hardware since we are essentially speeding up �� percent of
the entire processing operation	 The remaining �� percent will be
calculated in the same amount of time as before	 However� many
software tools and special hardware accelerators are designed to
handle speci�c minimization problems and operations� and this
is where we feel the CCM� will �nd its niche	 Two such possible
problems presented below are satis�ability and tautology �
�
�	
Both of these problems may take advantage of the complement
and sharp ��� operations available on the CCM�	
Satis�ability The satis�ability problem asks the question �for

�� LIST OF FIGURES

what values of arguments is a particular formula satis�ed�	 Basi�
cally� �are there any cells or groups of cells of a Karnaugh map of function
f that equal ��� The satis�ability problem may be reduced to the
tautology problem and vice�versa through the complementation
operation	
If the function f�a�b�c� � �� this implies that �� f�a�b�c� � �	

This may also be written as � � f � � � �f � �f � which is the
complement of the function f 	 Figure �	�� shows the function f
� X�� Y ��������	 for which the complement of the function equals
� � �f � �f 	
The complement of the input cube A is as follows�
�A � fX�

� � � � Xi��
�Xi

�AiXi��
� � � � XN

� j for such i � � � ���� N� that Ai �� �g
The resultant cube of the complement function on input cube

A is equal to X������ Y �������� and may be seen in Figure �	��	
Tautology
The tautology problem is the veri�cation of a logical formula

to see if it is always true such as verifying whether ab � a � a	
If the function f�a�b�c� � �� this implies that � � f�a�b�c� � �	
If f � �a �c � �a �b c � bc � ab�c � a�b� then ��f must equal �	
The sharp of two cubes A and B denoted A�B� is a set of all
of the largest cubes included in A and not included in B	 Given
the function f�a� b� c� � �a �c � �a �b c � bc � ab�c � a�b� we can
see in the Karnaugh map in Figure �	�� that the function equals
one although that is not apparent to us by just looking at the
expression of the function	
In order to verify if the function is equal to one� our method�

ology would be to sharp a cube of the input function from the
function f � �� then take the resultant function f � and sharp the
next cube of the original input function from it� iterate for all
cubes of the input function and check if the �nal result is empty	
This method may be seen in Figure �	��	
Observing the methodology that is used in Figure �	�� to prove

that our input function F is equal to one� the �rst input cube
�a �c� is sharped from a function equal to ���	 The two resultant
cubes from this operation are stored� then they each sharp the
second cube of the input function� storing the resultant cubes
from each nondisjoint sharp operation	 This process is repeated
until there are no further input cubes left	 The �nal result is
checked� and if the �nal resultant cube is equal to zero� then
we have indeed veri�ed that our input function of f�a� b� c� �
�a �c � �a �bc � bc � ab�c � a�b equals �	 From this example
of tautology� I have written a small program that executes the

���	� TIMING ANALYSIS ��

Figure ����� Input cube A � X�� Y ��������

� LIST OF FIGURES

Figure ���
� Resultant cube C � �f � X������ Y ��������

���	� TIMING ANALYSIS
�

Figure ���	� f�a� b� c� � �a �c � �a �b c � bc � ab�c � a�b

� LIST OF FIGURES

Figure ����� Tautology Veri�cation

���	� TIMING ANALYSIS
�

Figure ����� �Continued�� Tautology Veri�cation

� LIST OF FIGURES

tautology algorithm based on these principles	
This program was created in order to determine the speedup

of such a problem using the CCM� hardware instead of using a
software manipulation	 Located in Appendix D� is the C code
program that simulates the above tautology example	 The code
was developed on an Intel ���DX��� platform� using a Microsoft
C version �	
 compiler	 The granularity of the time reported back
from a PC is accurate to approximately ����th of a second� so the
program was placed in a loop that iterated the tautology problem
one million times in order to obtain a reasonable time measure�
ment	 The program was able to compute the tautology example
in approximately ��	�� microseconds	 Using the times that were
calculated earlier for sequential operations to be processed in the
CCM��s ILU� I was then able to determine the processing time
for the same tautology example	
It was found that the nondisjoint sharp operation was per�

formed ten times for this particular example� with each operation
producing anywhere from zero to two resultant cubes per sharp
operation	 This time was determined to take a total of �	�
 mi�
croseconds	 Comparing the software and hardware times shows
that the ILU of the CCM� is able to accelerate the operation
by approximately ��	�� times	 This speedup is based only upon
the ILU functionality� and does not re�ect external signals to the
Xilinx devices such as the host and bus control operations	 These
times will change signi�cantly when the bus control features are
added by future classes	 Once the �nal design� placement and
routing changes are made� the ILU delays will likely decline	 Ad�
ditionally� the LCA design may be ported to an ASIC device� and
the programmable connections will be hardwired� dropping delay
times considerably	
After observing the di�erences in the processing time between

the hardware and software implementations of the three variable
tautology example� I decided to try some examples of other tau�
tology problems with varying numbers of input variables	 Ta�
ble �	�� shows the variation of problems attempted	 There is a
de�nite increase in the speedup ratio between the hardware and
software� however� the smaller problems had two input cube fea�
tures changing� thus I was unable to determine what the true
cause of the speedup was	 I then tried some larger input func�
tions� holding the number of input cubes within each function
to be constant� thus making the additional variable a don�t�care
value in the input function	 By doing this� I was able to see that

���	� TIMING ANALYSIS

Number of Variables � � � � �

Number of Input Cubes � � � � �

Software Sharp Simulation �ms� ��	�� ��	�� ���	�� ���	�� ���	��
CCM� Sharp Operation �ms� �	����	�
 �	�� �	�� �	��

Hardware Speedup �
	�
 ��	�� ��	�� ��	�� ��	��

Table ���� Di�ering variable size sharp comparison�

the CCM� was able to process input functions of �� �� and �
variables at the same amount of time	 The software simulation�
however� steadily increased in time with the addition of extra
variables	 This is due to the software�s need to iterate through
an another loop for each additional variable that is presented in
the input function	 Figure �� shows the speedup comparison of
multi�variable tautology functions that were tested	

The number of variables was then held constant at three� and
we constructed �
 di�erent covers� ranging from one to ten input
cubes	 Table �	�� shows the results obtained from this trial	 As
you can see� the software ramps up at a linear increase in process�
ing time as the variable count rises	 The graphical representation
of this may be seen if Figure

	 A large hit in processing time is
taken on the seven input cube example	 This may be attributed to
the manner in which the algorithm processes the tautology exam�
ple	 If the function were ordered in a slightly di�erent manner�
less resultant cubes would likely result� since the generation of
multiple resultant cubes adds an additional loop of computation	
The CCM� also increases linearly� however� it tends to level o�	
This is attributed to the fact that the tautology has likely been
proven at this point	 With a three variable function� the cover
may be made with eight of the smallest possible input cubes	

It can be noted from the internal delays of the Xilinx devices�
that large functions with many variables will be what fully utilizes
the functionality of the CCM�	 Small functions such as the three
variable tautology example presented in this thesis� don�t nec�
essarily utilize the parallel architecture of the ILU	 These small
functions are crippled by the delays in�icted by the horizontal
signals that are used to control the output of the resultant cubes	
The CCM� must also target logic minimization problems that
are quite repetitive in their structure such as the tautology ex�
ample� or applications that are extremely cube calculus intensive	

	 LIST OF FIGURES

hline
hline Number of Input Cubes � � � � �

Software Sharp Simulation �ms� �	�� �
	�� ��	�� ��	�
 ��	��
CCM� Sharp Operation �ms�
	��
	�� �	�� �	�� �	�

Hardware Speedup ��	
� ��	�
 ��	�� ��	�� ��	��

Number of Input Cubes � � � � �

hline Software Sharp Simulation �ms� �
	�� ���	�� ��	�
 ��	�� ��	��
CCM� Sharp Operation �ms� �	�
 �	�� �	�� �	�� �	
�

Hardware Speedup ��	�
 ��	�� ��	�� ��	�� ��	��

Table ���� ��Variable sharp comparison�

To simply replace a small percentage of cube calculus operations
within an existing logic minimization package would not be worth
the added expense	

���� BDD COMPARISON

An alternative method to Cube Calculus in the minimization
of logical functions is through the use of Binary Decision Dia�
grams �BDDs� �
�
�
�
�
�	 BDDs are a data structure used to
represent boolean functions and an associated set of manipula�
tion algorithms	 BDDs support many common logical operations
including and� or� xor� smoothing� consensus� containment� tau�
tology and satis�ability	 Functions are represented by directed�
acyclic graphs commonly referred to as DAGs	 The resulting
graph is a concise description of a logical function telling the user
how to determine the output value of the function by examining
the values at the inputs	 Considering the function F � A � �BC�
the resulting BDD is created in Figure �	��	

Each node in the diagram refers to a single variable from the
function F� with each branch leading in the direction of the value
of the variable	 A node may have the value of
 or �	 With n
variables� there will be an initial �n � � nodes in such a diagram	
Reducing this number has been the focus of research in BDD
implementations over the past decade	
Nodes may be easily removed by observing the structure of

the diagram and removing ones that lead to identical output val�
ues regardless of the variable value	 In addition� two separate
nodes may both lead to the same output value and are capable of

���
� BDD COMPARISON
�

Figure ����� Function F � A � �AC in BDD representation�

� LIST OF FIGURES

being merged	 These two methodologies provide simpli�cation to
the diagram� however� with the exponential increase in the num�
ber of nodes� large logic functions require signi�cant amounts of
processing time	
The size of the BDD representation for a given function is ex�

tremely sensitive to the selection of variable order	 The problem
of �nding the optimal variable ordering is NP�complete� with all
known exact methods being based upon exhaustive searches	 As
a result of this ordering dependence� poor orderings can limit
the use of BDDs in complex problems due to �nite memory re�
sources	 In addition� optimal CPU times are achieved by good
variable orderings since the time to perform a BDD operation is
proportional to the size of the BDD	 Thus� considerable research
is focusing upon heuristics for �nding good orderings	
Ordered BDDs �OBDDs� are currently being explored for use

in synthesizing and analyzing combinational and sequential cir�
cuits� with the emphasis of their power being directed towards
design veri�cation �
�
�
�	 By developing clever representations
and e cient manipulation algorithms� it is possible to avoid the
time consuming exponential computations of simple BDD struc�
tures	 Reduced Ordered BDDs �ROBDDs� have been used in
di�erent stages of logic design due to their representative form of
Boolean functions and canonical structure �
�
�
�	 ROBDDs have
been proven in signal and fault detection applications since they
may be constructed to represent the detection function	 Modi�ed
BDDs �MBDDs� are simply ROBDDs with a third terminal used
as a don�t�care variable �
�	 The method is based on the replace�
ment of the don�t�care terminal by other subgraphs of theMBDD�
thus leading to the reduction of the graphs size	 This technique
may be used in FPGA synthesis to simplify circuit subfunctions
before mapping the design to the device	
These methodologies are all based upon heuristics which re�

duce the number of possible input variables� which directly e�ect
the size of the graph structure	 These heuristic techniques use
partial simulations which allow the possibility that comparisons
between two functions may not be detected	 Additionally� these
algorithms may require large amounts of memory for their stor�
age� increasing cost and a�ecting the speed of computation	 For
large circuits� this is infeasible since the trade�o� between speed
and cost is so high	 However� it has been determined that BDDs
give much better results than with cube calculus	
The BDD structures have just recently gained researchers at�

���
� BDD COMPARISON
�

tention over the last decade� and due to the before mentioned
problems� not all logic designers have moved away from using
cube calculus	 At this time� it is not known by the author� the
extent of ROBDD or MBDD structures that have been realized
in hardware	 Standard BDDs� have a simplistic structure which
may be easily realized using ��to�� multiplexors	 With this abil�
ity� recent research has focused on multiplexor�based FPGA syn�
thesis	 FPGA architectures such as ACTEL have con�gurable
memory cells that are multiplexor�based� allowing easy mapping
of Boolean functions of the BDD form	 Due to advances in
multiplexor�basedprogrammable logic devices� mapping BDD de�
signs to programmable resources will be quite convenient	
To do a proper comparison between the CCM� design and

a BDD logic minimization package� some comparison between
existing packages using the two methodologies had to be found	
Jacobi and Trullemans �
�� present a logic minimization method
using MBD�s that they determined to perform at a �� percent
e ciency over ESPRESSO �
�
�
�	 This e ciency is measured in
the size of the function after the minimization process	 From our
data in Table �	��� we achieve a speedup of over �� times that of
the software representation	 If I make the assumption that my
particular code is half as optimized as that of the sharp operation
in ESPRESSO� I would be making the statement that the CCM�
is seven to eight times faster than ESPRESSO	 The e ciency in
terms of minimization would be equal since they would both use
the sharp operation to perform the optimization	 I can then make
the statement that the CCM� should be able to out�perform the
MBD optimization by over � times	
If these two methods were available in an o��the�shelf fashion

to perform the same function for the same price� the CCM� would
provide the best performance for the price	 The BDD implemen�
tation might provide better performance in some instances such
as the case seen in Figure

� where the input cube ordering has
a direct e�ect on the number of resultant cubes produced and the
processing time needed	 This appears to happen approximately
�
 percent of time for the examples that have been run	
Due to the programmable resources available� and the progress

already achieved in the CCM� design� cube calculus remained as
the methodology of choice for the design	 Future research should
consider building a BDD�based accelerator board� or the possi�
bility of a combined cube calculus and BDD board	 With a uni�
versal hardware implementation such as this� logic minimization

	� LIST OF FIGURES

programs will be able to take advantage of both methodologies�
adding �exibility and processing power to many applications	

Chapter �

THE CCM ���

PROCESSOR

��� CCM��� VERSUS CCM���

As we have seen in the previous chapter� the CCM �	
 proces�
sor can not execute all existing Cube Calculus operations� even
though its design is based on a general format for these opera�
tions	 One of the restrictions of the CCM �	
 is the fact that
each of the output bits Cj�i� of an IT has only two input bits	
Another restriction is caused by the single CARRY and CONF
lines� which limit the number of relations that can be checked	 In
the CCM �	� processor these points have been improved	 How�
ever�the main di�erence between the CCM �	
 and the CCM
�	� is the way in which the processors implement any possible
Boolean function of a certain number of input bits	
The CCM �	
 processor is largely based on the implementation

of any possible Boolean function by using multiplexers	 These
multiplexers are mapped to the logic blocks of the FPGAs	 A
new function can be programmed by changing the signals to the
data inputs of the multiplexers	 The CCM �	� processor takes a
di�erent approach	 In stead of programming the FPGA�s with
a series of multiplexers� they are programmed with the actual
Boolean functions that need to be implemented	 If the ILU needs
to execute a di�erent CC operation� all the FPGAs that hold the
CCM �	� processor will be reprogrammed	 However� the func�
tions prerelation� relation� before� active and after are all available�
so no reprogramming is necessary to switch between them	

	�

	� CHAPTER �� THE CCM ��	 PROCESSOR

This approach seems to remove the advantage of the large set
of operations that the CCM processor can perform� since the op�
eration that the ILU performs can no longer be changed by simply
changing the input signals for the ILU	 However� this is only a
small disadvantage	 The FPGAs can be easily reprogrammed to
execute a new CC operation� even while the program that is using
the CCM as a coprocessor is running	 The new operation can be
previously mapped to FPGAs and saved in a �le	 When the new
operation is needed� the already available FPGA program needs
only to be loaded into the static RAM of the FPGAs	 Due to
the serial interface of the FPGA� however� this still takes at least
several seconds	
However� a program that uses the CCM as a coprocessor� e	g	

a logic synthesis application� will typically perform the same CCM
operation over and over again� on a large amount of data� before
changing to another CCM operation	 The few seconds that will
then be needed to reprogram the CCM processor will be insignif�
icant to the total runtime of the program and the time saved by
calculating CC operations in hardware rather than software	
There are also advantages in programming the FPGAs with

the actual Boolean functions in stead of multiplexers	 Since the
functions of the di�erent parts of an IT� like the relation and
the operation that generates the bits of the resultant cube C� are
already programmed� the number of signals that the CU needs to
send to the ILU is greatly reduced	 This simpli�es the design of
both the CU and the ILU	 Also� some multiplexers in the CCM
�	
 switch between groups of four bits	 Many logic blocks are
needed to implement this in an FPGA	 The CCM �	� does not
need these multiplexers	
The main advantage of the CCM �	� over the CCM �	
 is

its increased versatility	 The general structure of the parts of
an IT� like IDENT MAIN�i� and STATE�i�� and the signals be�
tween those parts� like CARRY �i � �� and CONF �i � ��� will not
be changed	 In the CCM �	�� the logic inside these blocks can
be programmed to any possible Boolean function with a certain
number of inputs and a certain number of outputs	 For example�
the block IDENT MAIN is not programmable in the CCM �	
�
and the equations for the CARRY �i � �� and CONF �i� �� are the
same for all operations	 In the CCM �	�� CARRY �i � �� can be
any function of the inputs of the block IDENT MAIN� and so can
CONF �i���	 This allows new ways of determining speci�c literals
in the input cubes	 More relations can be checked� and more CC

���� CCM��� VERSUS CCM��	 	�

operations are possible	
The CCM�	
 supports a large number of cube calculus oper�

ations� but is still has some of limitations	 For instance� it can
only check relations and execute operations that can be decom�
posed to a function of two bits Ai and Bi	 In the CCM �	�� the
block SIGNALIZE of the IT consists of a universal logic module
with � inputs A��i�� A��i�� B��i� and B��i�� and two outputs C��i� and
C��i�	 This universal logic module must not be confused with a
Con�gurable Logic Block �CLB� of the Xilinx FPGAs	 A univer�
sal logic module of the CCM can consist of several CLBs	 This
universal logic module can execute any function that can be re�
alized with these four inputs and these two outputs	 This means
that C��i� no longer has to be a function of A��i� and B��i�� but
can now be a function of A��i� and B��i� as well	 This enables the
CCM�	� to execute a bigger set of cube calculus operations than
the CCM�	
	
CCM �	
 processor
Programmable Boolean functions are implemented by multi�

plexers
CCM �	� processor
All Boolean functions are implemented in universal logic blocks�

which are able to calculate any function of a certain number of
inputs and with a certain number of outputs	
CCM �	
 processor
The current operation and cube sizes are indicated by the CU

and can be instantly changed	
CCM �	� processor
The operation and cube sizes can only be changed by re�

programming the FPGAs that hold the CCM	 The functions
prerelation� relation� before� active and after are all available	
CCM �	
 processor�
The relation and operation can be decomposed to single bits	

The output bits Cj �i� are calculated by two separate functions
with one input bit from each argument cube� and one output bit	
CCM �	� processor�
The relation and operation can be decomposed to groups of

two bits	 The output bits Cj�i� are calculated by a universal logic
module with two input bits from each argument cube� and two
output bits	
CCM �	
 processor�
The Boolean functions prerelation� relation� before� active and

after are equal for all ITs	

	� CHAPTER �� THE CCM ��	 PROCESSOR

CCM �	� processor�
The Boolean functions prerelation� relation� before� active and

after can be di�erent for each IT	
CCM �	
 processor
Only the functions prerelation� relation� before� active and after

can be programmed	
CCM �	� processor�
Every function can be programmed� limited only by the avail�

able inputs for the Universal logic module that calculates the
function	
Another limitation of the CCM�	
 processor is the fact that

the prerelation� the relation and the functions before� active and
after are equal for all ITs in the ILU	 In the CCM�	� processor�
each IT can have its own de�nitions of these functions	 In theory�
this could also be achieved with the multiplexer approach of the
CCM �	
� but this would result in a very high number of input
signals for the ILU	 Every IT would need its own set of signals
to de�ne the functions before� active� after and relation	 Including
the bits Aj�i� and Bj �i�� a total of �
 input bits would be needed
to calculate just two output bits� which is not very practical	
Due to the new approach to implementing Boolean functions

in the CCM �	�� several control signals from the CU to the ILU
are no longer necessary	 Signals that are now obsolete include the
� data input signals for each of the � multiplexers that generated
the functions relation� before� active and after	 The large amount
of data on which the same CCM operation will be repeated over
and over again� will typically consist of a series of input cubes of
the same size	 In other words� there will be no changes in the way
the di�erent literals are distributed over the di�erent ITs	 This
makes the signals from the CCM �	
 processor� that are used to
indicate the borders of the di�erent literals� obsolete in the CCM
�	� processor	 These signals are RIGHT EDGE�i� and W�i�	 It is
also no longer necessary for IR��� to indicate that the operation
PRIME will be executed� since it can be simply programmed
as any other function	 The signal AND OR from the CU� which
indicates the type of relation that is to be used� is still necessary	
This is because there are two di�erent relations that need to be
checked in a CC operation� the prerelation and the relation	 Since
these can be of a di�erent type� the CU needs to indicate the
type of the relation by setting the signal AND OR	
The di�erences between the CCM �	
 and the CCM �	� pro�

cessors are summarized in table

	 One major di�erence is not

���� TRADE�OFFS IN THE DESIGNOF THE CCM ��	 PROCESSOR	

mentioned in this table	 The CCM �	� processor is capable of
more operations than the current set of Cube Calculus opera�
tions	 The logic modules� like IDENT MAIN�i� and STATE�i��
are not minimized for just CC operations� but are generally pro�
grammable	 Also� some signals have been added that are not
necessary for CC operations	 The goal was to make the CCM �	�
as generally programmable as possible� within practical limita�
tions of the hardware	 This will be discussed in the next chapter	

��� TRADE�OFFS IN THE DESIGN OF THE CCM

��� PROCESSOR

The goal of the CCM �	� processor is a design that is as gen�
erally programmable as possible	 It not only has to be able to
calculate the current set of Cube Calculus operations� but must
be �t for possible new Cube Calculus operations without the need
to redesign the circuit	 It can also be used to easily implement
other cellular automata	 The CCM �	� has the same basic struc�
ture as the CCM �	
	 Each signal that is generated in an IT has
the same inputs as in the CCM �	
� but the signal can now be
programmed to be any possible Boolean function of these inputs	
Also� a number of extra signals was added� to increase the number
of operations that the CCM �	� can execute	 This chapter de�
scribes the options that were considered to determine what extra
features could be realized within a reasonable hardware limits	
The CCM �	� can be divided into a number of universal logic

modules	 Each module is able to implement any possible Boolean
function of a certain number of inputs and outputs	 The CCM �	�
is to be mapped to FPGAs of the Xilinx XC�

 series	 The Con�
�gurable Logic Blocks �CLBs� of these FPGAs can be con�gured
to � di�erent modes�

�	 Any function of � inputs

�	 Any two functions of � inputs� whith a maximum of �ve
inputs for both functions together	

�	 Any two functions of four inputs� multiplexed by a �fth in�
put	

These functions can either be directly connected to the output
pins of the CLB� or used as the data input of the two �ip��ops of
the CLB	

		 CHAPTER �� THE CCM ��	 PROCESSOR

IN5IN4IN3IN2IN1IN1 IN2 IN3 IN4 IN5IN5IN4IN3IN2IN1IN1 IN2 IN3 IN4 IN5

Signals from

4 more CLBs

IN6

IN7

IN6

of 6 inputs each

of 7 inputs each

2 functions

2 functions

of 5 inputs

1 function

7

65

4321

Figure ���� Implementing functions of � or � inputs

Functions of up to �ve inputs can be calculated by a single
IT� but we also need functions of six or seven inputs	 Fig	 �
	�
shows the most e cient way to implement functions of more than
�ve inputs	 CLBs � to � each calculates a function of the same �
inputs	 To implement a function of � inputs and one output� CLB
� selects between the outputs of CLB � and �	 Many functions
can be realized with just CLB � and CLB �� but the CCM �	�
must be able to calculate any possible function of these inputs�
so all three CLBs are needed	 To implement two functions of the
same � inputs� CLBs � and � can be repeated as CLBs � and
�	 It seems that CLB � now calculates � functions of �ve inputs
each� but it actually calculates two functions of � inputs each	 To
implement a ��input function� CLB � is added	 To implement �
functions of the same � inputs� all CLBs in the �gure are needed	
For more inputs� the number of CLBs that are needed to keep
the circuit fully generally programmable rises very quick	 This
is shown in table �
	�	 In the rest of this chapter� we will not
show the schematics of each logic module that is discussed� but
will simply state the number of CLBs that is needed	

����� The block RELATION�i�

This block calculates the two signals RELj�i� from the � input
bits Aj�i� and Bj �i�	 However� it is necessary to be able to switch

���� TRADE�OFFS IN THE DESIGNOF THE CCM ��	 PROCESSOR	�

� of inputs �of outputs � of CLBs

se
 � �
se
 � �

� � �
� � �
� � �
� � ��
� � ��
� � ��
� � ��
� � ��

Table ���� Number of CLBs for a universal logic module

between the relation and the prerelation without reprogramming
the FPGAs	 Also� two other relations are needed to detect empty
resultant cubes when the processor is operating in the Pipeline
mode	 In the CCM �	
� two signals REL CUj from the CU select
the correct four bits that denote the relation that is to be used	
This is realized with a multiplexer outside the ILU	 The four
output bits of this multiplexer are sent to the data inputs of the
multiplexer that implements the block RELATION in the CCM
�	
	 In the CCM �	�� the block RELATION is a universal logic
module with � inputs� Aj�i�� Bj �i� and REL CUj	 Please observe
that there are only two REL CU signals for the complete ILU	
Since there are two outputs RELj�i�� � CLBs are needed	
We expect that four di�erent relations of four inputs will be

su cient for future operations	 Execpt when the CCM operates
in pipeline mode� only two relations are used	 To add an extra
input would almost double the number of CLBs to �� CLBs	

����� The block IDENT MAIN�i�

For the CCM �	
� the block IDENT MAIN has � inputs�RELj �i��
AND OR� CARRY �i� and CONF �i�	 It has � outputs� CARRY �i����
CONF �i� ��� V ARIABLE�i� and CNT �i�	 It will not be necessary
to use two di�erent methods of counting speci�c positions for
the same operation� so there is only one signal CNT �i�	 We al�
ready observed that the single CARRY and CONF signals were
insu cient for some operations	 To check the realation A � B�
for example� two CARRY signals are necessary	 There are three
possible situations that must be indicated to IT�i��

	� CHAPTER �� THE CCM ��	 PROCESSOR

A � B for the ITs up to IT�i���� the relation is true for the
ITs up to IT�i���	

A � B for the ITs up to IT�i���� the relation is undetermined
for the ITs up to IT�i���	

A � B� the relation is not true	
We want to keep the iterative signals between the ITs sym�

metrical� so we not only add a second CARRY �i� signal� but a
second CONF �i� signal as well	 This brings the totals to � inputs
and � outputs	 This can be realized with �� CLBs	 However�
the signal CNT does not have any iterative signals as inputs in
the CCM �	
	 In the CCM �	�� it is generated by a single CLB�
with RELj �i�� V ARIABLE�i�� one CARRY �i� and one CONF �i� as
inputs	 This saves � CLBs	 Another consideration was the fact
that in the CCM �	
� the signal V ARIABLE�i� equals CONF �i���	
This is su cient only for the speci�c CCM �	
 operations� and
severely limits the number of other applications that can be real�
ized	 Therefore� V ARIABLE in the CCM �	� is a function of all
� inputs of IDENT MAIN� which requires � CLBs	
The possibility of � CARRY and � CONF signals has been

rejected� since it would require to many CLBs	 Each iterative
signal would need to be a function of all inputs of the block
IDENT MAIN	 This would result in � functions of � inputs each
for the iterative signals alone� which would require ��� CLBs!
To realize this we would only be able to program two ITs in the
largest device of the XC�

 series� the XC�
�
 with ��
 CLBs	
If we would implement an asymmetrical circuit with � CARRY

and � CONF signals� still �� CLBs would be needed� with ques�
tionable gain in the number of possible applications	 Other con�
�gurations with some signals as functions of less than all inputs
have been considered� but all resulted in �
 CLBs or more	 It is
quite possible to realize an iterative circuit with � iterative signals
in each direction with less CLBs� but only if it is one speci�c cir�
cuit	 If the circuit should be univerally programmable� � signals
in each direction is the practical limit	

����	 The block STATE�i�

The block STATE�i� has � inputs in the CCM �	
	 Two of
these inputs are the clock signal REQUEST and the reset signal
CLEAR from the CU	 These control the two �ip��ops that hold
the signals STATEj �i�	 The other two inputs are V ARIABLE�i�
and NEXT �i�	 Besides the STATEj �i� signals� there are � outputs�
which are the two signals SLCTj �i�� NEXT �i��� and READY �i�	 To

���� TRADE�OFFS IN THE DESIGNOF THE CCM ��	 PROCESSOR	�

make the iterative circuit symmetrical in the CCM �	�� a signal
PREV IOUS�i � �� was added as the counterpart of NEXT �i�	 We
will see that this did not require an extreme number of CLBs	
Since the signal CLEAR is a global reset signal� it is not necessary
to add it as an input to all functions	 Only the �ip��ops and
READY �i� have it as an input� as is the case in the CCM �	
	

Two CLBs are used to generate the excitation signals EXj �i��
each with the � inputs STATEj �i�� V ARIABLE�i� NEXT �i� and
PREV IOUS�i�	 A third CLB holds the two �ip��ops for STATEj �i��
and has EXj �i� and CLEAR as logical inputs and REQUEST as the
clock input	 Another CLB� with inputsSTATEj �i� and V ARIABLE�i��
generates the signals SLCTj �i� which control the block OPERA�
TION�i�	 The bit IR��� of the instruction register� which indicates
the prime operation� is not used in the CCM �	�� which leaves a
spare input for that CLB	 It would not be very logical to connect
NEXT �i� or PREV IOUS�i� to this input� since these iterative sig�
nals control the changes in STATEj �i�	 The STATEj �i� control the
block OPERATION�i�	 Since it is not likely that iterative signals
will be needed for SLCTj �i�� the extra input is left unconnected	

A singleCLB generatesREADY �i�� which has NEXT �i�� V ARIABLE�i�
and REQUEST as inputs in the CCM �	
	 In the CCM �	��
PREV IOUS�i� has been added� while the �fth input is used for
CLEAR	

Two CLBs are used to generate the iterative signals NEXT �i�
�� and PREV IOUS�i � �� respectively	 They each have STATEj �i��
NEXT �i�� PREV IOUS�i� and V ARIABLE�i� as inputs	 It has been
considered to add extra iterative signals� but this would result
in �� CLBs for EXj �i�� �� for NEXT �i � �� and PREV IOUS�i � ��
combined� and � for READY �i�	 We rejected this option� since it
would mean a total of �� additional CLBs	

����
 The block OPERATION�i�

The block OPERATION�i� is very similar to RELATION�i�	
The only di�erence are the two control signals� which now come
from the block STATE�i� in stead of from the CU	 OPERATION�i�
is therefore a carbon copy of RELATION�i�	 Four di�erent op�
erations can be realized� of which one� for the state test� is not
used at the moment	 We don�t need this extra state to test the
CCM �	�� since it can be tested by normal FPGA programming
hardware and software	

�� CHAPTER �� THE CCM ��	 PROCESSOR

����� The block COUNT�i�

The pseudo�random counter is realized by � CLBs	 The same
number of CLBs can be used to implement a normal binary
counter	 In that case some of the inputs need to be rerouted	
For both the pseudo�random as the binary counter� a sixth count
signal can be added without the need of extra logic	 However� the
advantage of the binary counter is that �

� is also a possible
value	 This makes a binary counter with only � lines su cient
for an ILU with �� ITs� which would require only � CLBs	

����� The CCM ��� IT

Fig	 �
	� shows the block level schematic of the CCM �	� IT	
The total number of CLBs that is needed� is ��	

��� MAPPING A CCM ��� IT TO A XILINX FPGA

When a single IT is mapped to an FPGA in a regular symmet�
rical pattern� it can easily be repeated without the need of auto�
matic place and route software running for days	 Such a mapping
was done on the XC�
�
� the largest device of the Xilinx XC�

series	 The main purpose was to test if the interconnect resources
of the FPGA would be su cient	 Due to the limitations of the
CAD�software that was used� simple copying of this IT to create
an ILU is not yet possible	

The IT was entered in the FutureNet DASH�LCA schematic
capture program� and subsequently mapped by the Xilinx XACT
FPGA software	 The design was entered entirely in the form of
the �CLB� symbol from the XC�

 symbol library	 This symbol
can be con�gured like the actual CLB� by typing equations for
the desired output functions	 Most output functions contain just
a dummy ��input NAND� to save time	 The locations of the sep�
arate CLBs was also entered� to force the CLBs to be mapped to
certain places	 However� the XACT Design Editor �version �	�
�
does not allow manually changing the routing of the circuit	 The
only option was designating nets to be unrouted or �re�routed	
This resulted in some rather interesting detours	 Several signals
were manually designated as �long lines�	 This was done either
because they were clock signals that would have a high fan�out in
a complete ILU� or to minimize the use of interconnect resources
for signals that had to cross a long distance	 One of thee clock
signals� REQUEST � should be routed on a horizontal long line�

���� MAPPING A CCM ��	 IT TO A XILINX FPGA ��

COUNTER[i]
C[i] C[i+1]55

RELATION[i]

SLCT[i]

2

IT[i]

IDENTIFY[i]

B[i]A[i]

2 2

2 REL[i]AND_OR

CNT[i]VARIABLE[i]

2 2

22
IDENT_MAIN[i]

CARRY[i]

CONF[i-1]

CARRY[i+1]

CONF[i]

READY[i]

READY-signals

CNT[i]

C[i]

OP_CU SIGNALIZE[i]

2

2REL_CU

2
2

B[i]A[i]

OPERATION[i]

2

READY_GEN
all ITs

from

READY_CU

PREVIOUS[i-1]

NEXT[i]

PREVIOUS[i]

NEXT[i+1]

STATE[i]

REQUEST

CLEAR

Figure ���� Fig� ���� Block diagram of the CCM��� processor

�� CHAPTER �� THE CCM ��	 PROCESSOR

passing all ITs	 This was achieved� but the signal also travels on
a long line all the way to the bottom edge of the FPGA� and then
all the way up again� apparently without making a new connec�
tion	 One of the B
i� inputs� which was designated to a long line
because it needs to cross the length of the IT between the blocks
RELATION and OPERATION� traveled all the way to the right
edge of the CLB matrix� hopped on a long line to the bottom
edge� and then an yet another long line back to the block OPER�
ATION	 After some rerouting� this was easily resolved� and I am
con�dent that the used mapping leaves enough interconnect to
keep signals within the IT	 The automatic routing program will
probably do better if the empty space is occupied by other ITs	
At the moment� it is not possible to copy ITs with this mapping

to the rest of the FPGA� since every single CLB and output block
has been mapped by hand	 Perhaps better results can be achieved
with a hardware description language such as PALASM or VHDL	
The XC�
�
 FPGA has a matrix of �
 by �� CLBs� while the IT
occupies� by �� CLBs	 Thus� there is room for � IT�s in each
FPGA chip� with some remaining CLBs free to implement some
of the logic between the ILU and the CU	
Unfortunately� the ancient schematic capture program that

was used does not support any laserprinters� and just a few dot
matrix printers	 The schematic could not yet be printed	 It
can probably only be printed with the use of a screen capture
program� such as �grab	sys� of WordPerfect	 Such a program
was not yet available	 The XACT software also caused some
printing problems� which is why the CLB �oorplan was printed
with the �print display� option	 In this �oorplan� which is shown
in Chapter

� each CLB has the name of the output signal on its
X�output	 CR stands for CARRY � CF for CONF � and so on	

Chapter �

CURRENT AND

FUTURE WORK

The purpose of the Cube Calculus Machine Version II �CCM�� is
to execute logic operations in high�level formal systems in a real�
time fashion	 The CCM� targets applications in logic optimiza�
tion� logic synthesis� pattern recognition and image processing	 It
may be implemented as a coprocessor to a host computer� or de�
veloped as an application�speci�c add�in card� much like existing
hardware accelerator cards	

Presented in this report in most detail has been the Itera�
tive Logic Unit �ILU� of the CCM�	 A ���bit ILU� consisting
of � iterative cells �ITs� has been realized using commercial� o��
the�shelf Field Programmable Gate Arrays �FPGAs�	 The ILU
is quite regular in its design� allowing equal portions �� ITs� of
the design to be divided between the two Xilinx Logic Cell Ar�
rays �LCAs�	 FPGAs allow an ideal environment for university
projects due to their o��the�shelf availability� PC�based design
tools� and time�to�market capabilities	 Design modi�cations may
be made in hours versus weeks with the same design being real�
ized in VLSI	 Also� a single device may be used across multiple
design applications consuming only minutes changing from one
application to another	

The demonstration board developed by David Foote and Coen
Engelbarts was constructedmerely for the testing of the ILU	 The
current design is a ���bit ILU shared between two LCA devices
and only consumes �
 percent of each device	 One of the �rst

��

�� CHAPTER �� CURRENT AND FUTURE WORK

things that should be done is to extend the ILU to a ���bit ma�
chine	 This would double the size of the design� consuming �

percent of each device	 Currenly� �� percent of the I�O Blocks
�I�OBs� are being used for this design	 By doubling the size of
the ILU design� an additional �� I�OBs are needed pushing the
total IOB consumption to �� percent	 This design change may
be made in a short period of time without many problems	 Addi�
tional wiring would be needed as well as � additional dip�switch
banks and �� LEDs to handle the inputs and outputs respectively	
This will take some to organize since the majority of user I�O pins
becomes more scarce	 This addition makes the CCM scalable in
design by �� bits	 It is the �rst goal of our group now te evaluate
how large functions can be loadable to DEC�PERLE�� realization
of CCM�	 We assume that at least we will be able to handle ��
variables	 This has been currently the most pessimistic estima�
tion� and the most optimistic was ��� binary variables	 We plan
to re�use the bus interface circuitry and CU to interface with
a host computer from previous DEC PERLE designs	 Much of
their software will be also used and only a tiny software will have
to be designed to allow the user to input arrays of cubes and re�
ceive resultant values back from the board� storing the values in
speci�ed registers	

Chapter �

BOOLEAN FUNCTION

PROCESSING AND

ARCHITECTURES

A new concept of Boolean Function Processing �BFP� is intro�
duced� being an analogue of Digital Signal Processing �DSP�	 It
is shown that DSP provides a powerful methodology and build�
ing blocks to realize an entirely new class of computers� which�
by analogy� will be called Boolean Function Processsors	 It is
presented how the DSP architectures and BFP architectures can
be combined to build comprehensive� real�time systems to solve
a variety of important combinatorial problems	 This chapter at�
tempts to outline an entirely new concept of computing and to set
basic ideas for methodology to design such computers	 Several
examples� including� graph�coloring approach to Boolean mini�
mization� spectral�based multi�level Boolean decomposition with
EXOR gates� minimization of Boolean relations� realization of
multi�valued mixed polarity Reed Muller Forms� and realization
of Brayton�s Finite State Machines� are used to illustrate our ap�
proach	 The new concept of Function�Programmable Computers�
being enabled by this approach is also brie�y introduded	

��� INTRODUCTION

The Digital Signal Procesing �DSP� methods were for long not
widely applied in practical applications until the �relatively� in�

�

�	CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

expensive digital processing VLSI building blocks and processors
have arrived in the ���
�s	 Recently� very sophisticatedDSP algo�
rithms are e ciently and inexpansively build and applied in the
areas of control� communication� image processing� and instru�
mentation	 DSP becomes a new and powerful paradigm for de�
signing a wide variety of digital systems	 A growing family of ba�
sic building blocks is now available that includes dual�port memo�
ries� FIFO�s� ALU�s� multipliers� complex multipliers� multipliers�
adders� CAM�s� FFT processors� general�purpose DSP proces�
sors� convolvers �convolution processors�� digital FIR and IIR
�lters� correlators and other	 The DSP theory gives a deep and
comprehensive methodology to design systems from high level
speci�cations and constraints	 Moreover� each year brings many
new programming tools and comprehensive DSP software design
systems	
In these authors opinion there are three main reasons of DSP

success�

� existence of a wide market for products�

� existence of good supporting theory�

� possibility of inexpensive hardware realization of a wide cat�
egory of algorithms with a relatively limited number of VLSI
building blocks	

One of important principles of DSP are those of data��ow�
pipelining� �ne�grain parallelism� SIMD� and systolic processing	
For instance� usage of simple data��ow architectures �correspond�
ing to programs with no �if� and �case� statements� permits to
use Harvard architectures and recursive architectures with ad�
dress generators that are both very fast and relatively inexpen�
sive� so that a power of a Cray�class supercomputer is available
for a small fraction of cost for selected applications� when they
can be described using signal �ow�graphs	
The basic concept of DSP architectures is that of Data�Flow

�Signal� Graph	 Several methodologies exist to convert such
graphs to hardware realizations	
Another reason of the success of DSP building blocks is that

they permit to realize in hardware the most important and often used
DSP operations likemultiply� complexmultiply� multiply�add� trigono�
metric functions� and so on	
Let us observe that the success of DSP methods and hardware

was �rst modest and restricted to few areas of aerospace industry	

���� INTRODUCTION ��

Next the methods have spread widely to control� image process�
ing� instrumentation� and various branches of military electron�
ics	 The proceedings of Annual IEEE Conferences on Acoustics�
Speech and Signal Processing� as well as ISCAS Conference give a
real tribute to the width and depth of applications	 This technol�
ogy is now where the microprocessors were ten years ago� and is
growing extremely fast� so it is expected that the cost of the DSP
building blocks will be essentially reduced in the near future	
Recently� there is a growing interest in neural nets� learning�

genetic algorithms� real�time AI� logic synthesis and hardware
accelerators	 However� there are two main disadvantages that are
slowing down development of respective hardware accelerators�

�	 no comprehensive and uni�ed theory and methodology to
develop them�

�	 no set of readily available basic building blocks� other than
the general purpose digital components	

When we compare the situation of CAD hardware accelera�
tors with the glowing success of DSP� the following fundamental
questions� therefore� naturally arise�

�	 �why don�t we emulate the success of DSP
�

�	 �can we use the DSP methodologies� hardware and experi�
ence to process Boolean functions
�	

Let us �rst observe� that as documented in previous chap�
ters� there were already single attempts at using DSP methods
to design CAD hardware	 For instance� Sahni proposed a sys�
tolic design rules checker with recursive architecture� Perkowski
proposed a systolic satis�ability checker with SIMD ring archi�
tecture� Sasao proposed a PAL�based tautology checker� Ruten�
bar proposed to use the image processing archtecture for various
physical design tasks	 If we will be able to develop a methodology
and corresponding set of building blocks similar to DSP� we will
be able to build accelerators much more inexpensively� and with
smaller research�development e�ort	
In this chapter we will show that�

�	 All DSP VLSI building blocks can be used for designing
CAD accelerators� especially for logic synthesis	

�	 Much of the DSP theory can be used to design such accel�
erators	

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

�	 We propose few VLSI blocks to be added to the building
blocks repertuar	

�	 Our methods are applicable to one� and multi�output� bi�
nary or multi�valued input� binary or multi�valued output
Boolean functions	

�	 The possibility of real�time processing of Boolean functions
will permit to design a new category of computers� com�
puters with programmable both control �like in RAM�based
microprogrammed units� and data path	 We will call them
Function�Programmable Processors	

��� BOOLEAN FUNCTION PROCESSORS

In the area of digital signal processing� operations are exe�
cuted on signals being vectors or arrays of integers or �oating
point numbers	 In Boolean minimization� the operations are
done on data being vectors and arrays of binary vectors	 A well�
de�ned and commonly used theory of Boolean functions process�
ing is used� that uses the so�called multi�valued input arrays of
cubes	 On the other hand the spectral approach to logic synthesis
�
�
�
�
� operates on vectors and arrays of integers or tuples
of integers� similarly to DSP	 Many combinatorial algorithms op�
erate on matrices� graphs and other data structures that can be
also represented using binary vectors and arrays	 This is our
�rst important similarity � an observation that is a basis of this
chapter	
By Boolean Function Processing we will understand a new�

proposed here area of research that will consider algorithms�
structures� and methodologies to design Boolean Function Pro�
cessors	
The building blocks that are used in DSP are�

�	 Memory structures for data �ow� pipelined� parallel and
systolic architectures� FIFO�s� stacks� dual�port memories�
shift registers� video RAM�s� Content Addressable Memo�
ries �CAM�s�	

�	 Data Order Changing Operators� sorters� absorbers� multi�
plexers� demultiplexers� data broadcasters� data collectors	

�	 Controllers� SIMD architecture controllers� Address Gener�
ators	

���� DSP ARCHITECTURES ��

�	 Special DSP function processors� Convolvers� FFT proces�
sors� FWT �Fast Walsh Transform� Processors� correlators�
Filters� Adaptive Filters	

�	 General Purpose Arithmetic Processors	 image�graphicspro�
cessors� CODEC�s� trigonometric and logarithmic proces�
sors	

Currently� we see three di�erent methodologies of designing
accelerator architectures	

�	 DSP methodologies can be used with minimum changes to
design architectures based on spectral methods	

�	 Cube calculus algorithms� are �rst rewritten to data �ow
graph formalism� that is next mapped using DSP methods
to hardware	

�	 Combinatorial algorithms� like satis�ability� tautology� graph
coloring� shortest path� maximum clique� covering closure�
are solved in adaptive� neural like� self�optimizing structures	

We want to develop a comprehensive theory of Boolean Func�
tion Procesors� based on ideas of Digital Signal Processing� Cube
Calcus� spectral approach to logic synthesis� and general meth�
ods of solving combinatorial problems� including matrix algebra�
integer� linear and dynamic programming	 As the �rst attempt�
the three above methodologies will be presented and illustrated
with examples	

��� DSP ARCHITECTURES

By DSP Architectures we will understand all the CAD ac�
celerator architectures that use only the blocks of typical DSP
applications	 To design such architectures one does not have to
design special building blocks	 It is assumed that all functions
that cannot be mapped to DSP blocks� like conditional oper�
ations� are implemented in microprocessors or general purpose
DSP chips� such as Texas Instruments TMS ��
	 All Boolean
and vector operations� like AND� OR can be implemented either
in microprocessors and general�purpose DSP chips� or in special
DSP chips� like Honeywell�s DASP	
We will assume that the DSP algorithm is represented as a

hierarchical data��ow graph with nodes that are of one of the
following types�

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

�	 basic DSP operation� multiply� multiply�add� subtract� etc	
or a address�generator�based data��ow component� like Hon�
eywell�s DASP chip	

�	 node with conditional operations� which require general pro�
cesor type architecture	

�	 hierarchy of nodes of types � and �	

There are basically two groups of algorithms that can be im�
plemented with DSP architectures�

�	 Algorithms based on spectral methods �
�	 Such algorithms
use all blocks� like FFT processors� corelators� etc	 They
need� however� also to realize few operations in general pur�
pose blocks	

�	 Other algorithms that make use of logical and other special
vector operations that are available in DSP processors	

Before we will present the methods to design the �rst kind
of architectures� let us analyse the analogies that exist between
DSP and Logic Synthesis	

A	 DSP	

B	 Logic Synthesis

�A	 digital signal

�B	 Boolean function

�A	 digital signal in time domain

�B	 truth table of Boolean function	 Array of cubes

�A	 spectrum of a digital signal �Fourier� Cosine� Slant� Haar�
Walsh� Karhunen�Loevy�

�B	 spectrum of Boolean function �Walsh� Haar� Christenson�
Reed�Muller� Perkowski�Falkowski new transform�	

�A	 signal correlation function

�B	 complexity measure of a Boolean function

�A	 cross�corelation of two signals

���� DSP ARCHITECTURES ��

�B	 measure of similarity of two Boolean functions

�A	 digital �lter

�B	 decomposed component of some frequencies of a Boolean
function	 Many types of �lters for many kinds of transforms
exist that creates various possible decompositions	

�A	 adaptive �lter

�B	 method of decomposition that optimizes the �rst plane of
multi�level realization accoridng to some power �least�mean
squares� criteria	

�A	 cascaded adaptive �lter

�B	 method of cascaded decomposition into linear �EXOR�� NAND�
NOR� NOT� OR planes	

�A	 convolution of signals X � Y � FFT�� � FFT�X� 	 FFT�Y��
many applications in vision � speech procesing� etc	

�B	 convolution of Boolean functions� X " Y � FFT�� � FFT�X�
	 FFT�Y�� I don�t know yet	

�
A	 image compression

�
B	 compression of Boolean function �perhaps for some proba�
bilistic computers�

��A	 image coding

��B	 Boolean minimization into disjoint cubes �Falkowski algo�
rithm�	

��A	 inverse transform from a spectrum to a coded image

��B	 Falkowski�s inverse transforms �Walsh� ReedMuller� Perkowski�Falkowski
to disjoint cubes	

��A	 Besslich transform

��B	 Generation of prime implicants	

It would be good to look for more analogies like the above	

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

��� PRINCIPLES OF DATA�FLOW ARCHITECTURES

Any textbook on DSP or company data sheet of DSP building
blocks presents excellent examples how to realize pure data��ow	
As an example� let us consider the data��ow graph from Fig	

	
The inputs are vectors �A�� �B�� �C�� and �D�� each of them of length
n	 The output is the vector �F� of length n�� and equation
���A���B��"��C���D��� # ��A���B��

The scalar h is the multiplication reduction operator of the
vector sum of vectors �A� and �B�	 The vector �E� is the vector
product of the vector sums� �A� � �B� and �C� � �D�	 Vector �E�
is next concatenated �operation #� with scalar h� where h is the
and�reduction operator �denoted by � of vector sum of �A� and
�B�	
This data �ow can be realized in an address�generator based

recursive architecture as follows �see Fig	 �	��	 It is assumed that
the building block� Processor� has two adders and two multipliers
in the structure from Fig	

	 In the �rst pass the values of
��A���B�� and ��C���D�� are calculated and stored in memories	
In the second pass the values of �E� and h are created	 The
concatenation is created by Address Generators	 As we see� all
operations require only instructions from Address Generators to
Memories and to Processor	 No conditions are checked and used
to modify the data �ow	

Now we are ready to present a principle of usingDSP hardware
for Boolean minimization	 Boolean function of n variables can be
represented as vector of �n of integers �Better method� of using
cubes� is presented by Falkowski and Perkowski in �
�� but it is
not discussed here for brevity�	
Let us observe that most of them can be used for general�

purpose processing of vectors and arrays	 Also� the building
blocks that are speci�c to DSP� like FFT processor� have ap�
plications in spectral�based logic synthesis methods	 Therefore�
all the above blocks will be used by us to design accelerator ar�
chitectures� especially BFP�s	

Additionally� the following blocks will be added	
Special BFP function processors� Cube Calculus Processor�

Satis�ability Processor	

�	 basic DSP operation� multiply� multiply�add� subtract� etc	
or a address�generator�based data��ow component� like Hon�
eywell�s DASP chip	

���� PRINCIPLES OF DATA�FLOW ARCHITECTURES ��

�	 node with conditional operations� which require general pro�
cesor type architecture	

�	 hierarchy of nodes of types � and �	

Any textbook on DSP or company data sheet of DSP building
blocks presents excellent examples how to realize pure data��ow	
As an example� let us consider the data��ow graph from Fig	 �	�	
The inputs are vectors �A�� �B�� �C�� and �D�� each of them of
length n	

The output is the vector �F� of length n � � and equation�
F � ���A���B��"��C���D��� # ��A���B��
The scalar h is the multiplication reduction operator �denoted

by � of the vector sum of vectors �A� and �B�	 The vector �E� is
the vector product of the vector sums� �A� � �B� and �C� � �D�	
Vector �E� is next concatenated �operation #� with scalar h	
This data �ow can be realized in an address�generator based

recursive architecture as follows �see Fig	 �	��	 It is assumed that
the building block� Processor� has two adders� two multipliers�
register �le� and buses� in the structure from Fig	

	 In the
�rst pass the values of ��A���B�� and ��C���D�� are calculated and
stored in outside memories run from Address Generators	 In the
second pass the values of �E� and h are created	 The concatenation
is created by Address Generators again	 As we see� all operations
require only instructions from Address Generators to Memories
and to Processor	 No conditions are checked and used to modify
the data �ow	
Now we are ready to present a principle of using DSP hard�

ware for spectral�based Boolean minimization	 Boolean function
of n variables can be represented as vector of �n of integers �Bet�
ter method� of using cubes� is presented in �Falkowski�Perkowski��
but it is not discussed here for brevity�	 This Boolean function is
an input to a Fast Walsh Transform block FWT �Fig	

�	 As it
is well�known FWT looks for correlations with Walsh functions�
which are exors of all groups of variables	 The output of the FWT
is the memory wih �n spectral coe cients	 The spectrum is now
adaptively �ltered to �nd the frequencies that contain maximum
of signal energy	 The frequency Sabc was found	 This frequency
is now tunning an adaptive digital �lter	 The output of the �lter
is a residue function� which will be now subject to new mini�
mization	 This time a Perkowski�Falkowski ��nd better name�
spectral transform is executed on the residuum	 This transform

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

is de�ned exactly the same as the Walsh transform� but corre�
lation with AND functions of all combinations of arguments is
now looked for	 The new residue is
� so the network is found	
The entire process is illustrated in Fig	

	 All details to under�
stand this method will be given in next section	 Here we want to
explain the basic principle only	

��� CUBE CALCULUS ARCHITECTURES

Cube calculus architectures are basically hardware realizations
of cube calculus algorithms that assume the data��ow operations
as often as possible	 We assume also special hardware realizations
of several basic cube calculus operations for multiple�valued logic�

�	 consensus�

�	 inhibition �negation�� sharp and disjoint sharp�

�	 xlinking �
�
��

�	 and� or� not�

�	 absorption� inclusion� supercube�

�	 � several other cube calculus iperations	

Other operations on cubes and binary vectors that we need�
and that are not yet realized in hardware are the following�

�	 calculate the number of ones in a vector�

�	 calculate the number of selected symbols �
� �� X � for binary
logic�
� �� �� �� 			 �
��
�� 			
��� � X for quaternary logic�
etc	��

�	 replace the symbol V to symbol U in a cube�

�	 calculate the number of the �rst bit
� or � in a binary vector�

�	 calculate the number of the �rst symbol
 ��
� ��
�� X����
E�

 etc	� in a binary cube�

�	 calculate the number of the �rst symbol
 ��

� ��
�
�
��

��
� � ��
� ���
��� 			 in a ternary cube� and so on	

�	 generate the binary vector with a one on the position of the
�rst from left one in an input binary word	

��	� CUBE CALCULUS ARCHITECTURES �

�	 generate the cube with ones on the position of the symbol
from left an input cube	

�	 generate a binary word with one in a random position of
ones from a binary word	

A PSU team is now designing a complete CCM�	
 to be used
in BFP�s	 This processor together with a sorter can be used
to design a reverse�tree architecture for solving the satis�ability
problem and related combinatorial and logic synthesis problems
�See paper Ho�Perkowski in ISCAS��� ���	 There is also a need
to design a general purpose VLSI sorter for binary vectors and
cubes� that would sort using various criteria� and would absorb or
remove idenitical cubes while sorting with respect to their costs	
�See examples in �
� and �
�
��	
As an example of this type of an architecture for a cube cal�

culus problem� let us discuss the creation of the coloring graph
for the PLA minimization problem �
�
�	 For simpli�cation of
presentation� we assume below a binary function represented by
positive and negative minterms� however there exist an algorithm
that uses multi�valued cubes	 It can be easily shown that the en�
tire algorithm from Ciesielski �
� can be relized as ideal BFP�
without conditional statements	

	���� GENERALIZED MULTIPLE�VALUED CUBE CAL�
CULUS�

What all �logic machines� have in common is that they use
special hardware to do some kind of processing of Boolean or
other switching functions	 These tasks include� evaluation� Boolean
operations such as intersection or complementation� checking for
tautology or satis�ability� veri�cation� solving logic equations� op�
timizing decision functions �like Petrick or its generalizations��
performing resolution and uni�cation� operating on binary im�
ages and quadtrees represented as switching functions� stack �l�
ters� data�base operators� inferring facts in logic� and many other	
Many well�known problem reductions exist that support our

approach both theoretically �reductions of NP�complete problems
��
��� and practically �several CAD and Operations Research al�
gorithms�	
It was observed that all NP�complete problems can be reduced

to few generic problems such as graph coloring� maximum clique�
shortest path� SOP to POS transformation� etc	 Those in turn
are reducible to basic binary logic problems such as satis�ability

�	CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

�Garey�	 Solving the Satis�ability problem can be next reduced to
using some subset of the cube calculus operations such as sharp�
absorption� intersection and other	
It can be shown that the absolute most of problems in logic

synthesis� test� graph theory� problem solving� image processing�
robotics� Operations Research� logic programming and other can
be reduced to combinations of basic binary cube calculus opera�
tions	 Since such calculus is a special case of the multiple�valued
cube calculus ���
� ����� and since several practically important
problems can be directly reduced to non�binary cube calculus op�
erations our interest is on multiple�valued cube calculus	 Multi�
valued cube calculus describes a logic with multi�valued inputs
and binary outputs	 We create an extended formal model of
such calculus including new operations such as several kinds of
crosslinks ����� ����� and consensuses �consensus ������ asymmet�
ric consensus ���
��	 Several recent papers reduce many logic
synthesis� testing� veri�cation� high�level synthesis� scheduling�
parallelization� and physical design problems to logic decision or
optimization problems listed above	 Especially� many problems
have been reduced to �Boolean and multiple�valued logic� sat�
is�ability� tautology and inference �usually uni�cation�	 In par�
ticular� set covering� binate covering and several physical design
problems were reduced to satis�ability	 In theory� every combina�
torial problem can be reduced to it �
�
�
�	 Many recent research
papers from U	C	 Berkeley and U	 Colorado are based on tautol�
ogy	 Approach based on uni�cation is presented in �
�	 Very many
other reductions to operations e ciently realized in our machine
can be found in recent DAC� ICCD� ICCAD� ISMVL� ISCAS�
ICASSP conferences and Logic Synthesis workshops� and there is
even no space here to list them all	
There are two representation methods for switching functions

used in logic synthesis programs� ��Binary or Multiple�Valued�
cube calculus� and ��Binary or Multiple�Valued� Decision Dia�
grams�	 In this paper only the �rst one will be discussed� however
the new variant of our machine �TP� allows to deal also with data
other than the �multiple�valued input cubes� presented here� and
includes the MDDs as well	
The binary �cube calculus� �
� has been extended for a logic

with multiple�valued inputs �
�
�
�
�
� by Sasao� and is called
a positional cube notation� This calculus has been used for many
two�� three� and many level Boolean minimizers� tautology and
satis�ability checkers� veri�ers� programs for complementation

��
� THE TUPLE PROCESSOR� ��

of Boolean functions� synthesis of mixed and �xed generalized
Reed�Muller forms� generation of prime� minimal and disjoint im�
plicants� spectral transforms �Walsh� Reed�Muller� Arithmetic��
and many other �
� ��� �� ���� ����
� ���� ����
�
�
�
�
�
�
�	 It
is also useful in programs using the other e cient representation
of Boolean functions� Binary Decision Diagrams and Multiple�
valued Decision Diagrams	 Multiple�valued Cube Calculus seems
then to be one of the most general currently known internal rep�
resentation of data in propositional and predicate logic� logic syn�
thesis� logic programming� logic simulation and sequential eval�
uation of combinational logic� data�bases� image processing and
several areas of AI and problem�solving	 Methods based on it
have been successfully applied in practically realized products	
Analogously to other formalisms which were not fully appreci�
ated before building special hardware for them �such as fuzzy
logic� morphological image algebras or some digital signal process�
ing methods� we may reasonably expect that special computers
which will operate in Cube Calculus will �nd their �applications
niche� among computer architectures	 Implementing a hardware
processor to operate in this calculus will have wide applications�
including real�time AI and optimization� where recent devices
such as �fuzzy chips� �
�
�
� �nd use	

��� THE TUPLE PROCESSOR�

In addition to operations on sets and numbers� known from
CCM��� our interest in solving discrete combinatorial prolems is
in �nite formal systems that have a �nite �and from practical point
of view � also limited� number of symbols as well as a limited
number of operations	 We assume that all operations on symbols
can be decomposed to simple operations� which in turn can be
described as tables �two�dimensional matrices�	 We are already
familiar with such matrices describing sharp� consensus or other
binary operators	 This assumption allows to encode e ciently
symbols as binary strings� and implement e ciently the matrices
using ROMs� RAMs� CAMs� PLDs or other standard binary logic	
Such systems will be called Limited Finite Systems �LFS�	 Let us
observe that integer arithmetics is not an LFS since truth�table
description of the addition operation is impractical for hardware
realization� while �assuming small value of integer n� the modulo
n Galois Field is an LFS� since such matrix description can be
used to design the logic of modulo n operations	

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

The LFS formal systems include multi�valued cube calculus�
fuzzy logic� matrix logic� several formalizations of truly multi�
valued logics �in those logics both the inputs and outputs are
multi�valued�� several logics and algebras used in logic program�
ming� multi�dimensional solid algebras� data�base and parallel al�
gebras� image processing �for instance the image and morpho�
logical algebras�� spectral transforms and signal processing	 We
propose to solve the LFS problems using the GMVCC model and
corresponding GMVCC processors attached to the host	 We are
especially investigating a subset of GMVCC systems where the
operations on each mv�literal in a cube are partitionable to small
groups of bits	
Solving a problem with GMVCC hardware requires selection

of an appropriate GMVCC formal model and next reduction of a
high�level formal model to this model	

��� TUPPLE PROCESSOR� AREAS OF INTEREST

AND FUTURE APPLICATIONS

Each word of TP will represent

�	 a number �as in CCM����

�	 a pair of numbers �an interval��

�	 a set �as in CCM����

�	 a symbol	

Each symbol can have various meanings� it can be simple or
complex	 Simple symbol can be associated with a symbol of
multiple�valued algebra� modal algebra� or any discrete system
�such as consistent labeling�� in which the number of such sys�
tems is limited	 In TP� which will be constructed using FPGA
technology� particularly XILINX� we take into account the limits
of technology	 Since the cell of Xilinx has �ve inputs and can real�
ize any cell of �ve variables and some functions of � variables� we
restrict ourselves to symbols on three bits	 This allows to use one
or two cells for all two argument operations in algebras having up
to � values ��� � ��	 This is su cient for most known algebras�
except for ���valued algebras used in simulation	 However� we
can still use complex symbols composed of simple symbols in the
same way as the set operations in literals are composed in CCM�
from binary operations in ITs	

���� TUPPLE PROCESSOR� AREAS OF INTEREST AND FUTUREAPPLICATIONS��

Our machine introduces the dynamically modi�able size� the
operations on all words of an N�tuple will be done in parallel	
Our goal of introducing this computer will be achieved step�

by�step by introducing a number of simpler architectures and
algorithms for classes of problems	 We will show and discuss all
steps leading to our ultimate goal	 However� at this point the
reader must understand understand the Cube Calculus Machine
� really well� to be able to generalize it	
The TP is a comprehensive generalization of ideas and archi�

tectures used in several areas�

� Multiple�valued input �cube calculus�	 an algebraical model pop�
ularly used to process and minimize Boolean functions	 The
TP uses a �positional cube representation�which �nds many
applications in logic synthesis and combinatorial problem
solving	 It supports all operations including sharp� consen�
sus� supercube and crosslink� as well as many new opera�
tions	

� Multiple�valued notations for truly multiple�valued �both input
and output� logics	 Operations of many multiple�valued log�
ics such as the modal logic	 matrix logic	 quantum logic and other
will be realized	

� Fuzzy logic	 Although it is just a one more multiple�valued
logic� we pay special attention to it since it �nds recently
several practical applications	

� Associative N�tuples used in Arti�cial Intelligence and Image
Processing to represent and process knowledge	

� Grey�scale and binary Morphological Image Algebras	 They are
used to process images� encode them and recognize image
properties	

� Data�Base Algebras used for hardware realization of relational
data bases	

� Digital Simulation algebras used to simulate computers and dig�
ital systems in special hardware accelerators ��	

� Search� evaluation and inference mechanisms of relational	
functional and logical languages such as Lisp� Prolog� and Equa�
tional Logic	

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

� Formalism used to solve graph theory problems�

� General formalisms to represent and solve combinatorial prob�
lems �
�
�
�
�
�	

� Formalisms and architectures for computer image processing and
image recognition�

� Spectral transforms �Fourier�Walsh� Haar� Arithmetic� Adding�
Hough� and signal processing ideas �convolution� digital �l�
ters�	

� Neural�like learning networks and recognizers� Let us observe that
the taught binary neural network is the same as multi�input�
multi�outputBoolan function	 Learning of the network is the
process of constructing this functions �possibly by modifying
some initial function�	 This can be generalized to arbitrary
discrete neural nets� which correspond to multiple�valued
input� multiple�valued output switching functions	 It is pos�
sible that using the cube calculus operations the learning
process will be faster� think for instance about the n�input
EXOR function� which is very hard to learn by neural nets�
and is trivial to learn using for instance crosslink operator	

� Programmable architectures like those base od on Xilink
chips � �
�	

� Thinking Machines Connection Machine� Data�Programming	

� Transputer� GAPP� systolic processors� iWARP and DSP
architectures �AIM Sharp�	

� Brayton�s approach to using mv CC to solve combinatorial
problems	

Another aspect of this architecture is the implementation
of the processing unit TP as a microprogram�controlled it�
erative ring of FSMs	 There are two levels of parallelism�
micro�parallelism in the N�tuple� macro�parallelism in data�
�ow structures operating on N�tuples	 This seems to be a
totally new concept in computer architecture	

���� AN EXPANDABLE
 FOUR�DIMENSIONAL FPGA COMPUTER FORNON�NUMERICAL PROGRAMMIN

��	 AN EXPANDABLE
 FOUR�DIMENSIONAL

FPGA COMPUTER FOR NON�NUMERICAL PRO�

GRAMMING

We present the concept of Universal Logic Machine� a gener�
alization to standard computers� logic machines� associative
processors� VLIW� and other architectures� that is easily re�
alizable in FPGAs because of its regular hierarchical struc�
ture of Virtual Processors� based on iterative logic� universal
logic modules and cellular automata	 Application of the ma�
chine to generalized satis�ability is also discussed and simu�
lation results are analysed	

	���� INTRODUCTION

FPGA technology proved itself already practical in two ar�
eas� to realize parts of digital systems �especially comput�
ers�� and in the area of fast prototyping�hardware emulation
of digital systems	

In the �rst area there are three types of products�

�	 In case when a product of not high volume is expected�
FPGA is preferred to ASIC to decrease the cost	 A
veri�ed product that is in high demand is next migrated
to an ASIC	

�	 One piece of hardware plays several roles	 This is done
to decrease the cost or power consumption� to allow fur�
ther modi�cations by software upgrades� decrease size�
or any combination of the above	

�	 The circuit cooperates with a smart sensor or other ana�
log�digital�mechanical subsystem which is changing its
operation with time and needs therefore tunning and
modi�cation as the time progresses	 Or� this subsystem
�user�upgradeable�	

The second application area is to replace system�s software sim�
ulation with its emulation in hardware	 This allows for quick
design cycles and concurrent development of software and
hardware	 Also� it allows to observe e�ects that are not pos�
sible in standard simulation� for instance observing images�
or hearing to sounds while developing multi�media systems	
Companies like Quickturn ������ PiE Design Systems ������

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

and INCA ���
� are selling massive general�purpose hard�
ware emulation engines� and a patent for another concept of
a general purpose hardware emulator has been awarded to
employees of Mentor �now in Quickturn� �����	

In addition� several other companies are developing all kinds
of in�house specialized systems for fast prototyping and ex�
perimental FPGA�based emulators	

Both these application areas will have in�uence on the aris�
ing arena of the FPGA computers outlined below	 Hardware
emulation will perhaps migrate to VHDL and even higher�
level speci�cation languages	 It will then merge with some
aspects of the FPGA computers	

While these two areas can be treated as pretty well estab�
lished� with quickly increasing and potentially large mar�
kets� there has been much controversy about another con�
cept made possible by FPGAs � the con�gurable computer ar�
chitectures� Below we will call them �FPGA computers��

Such computers have been proposed in the last few years by
several research groups ���
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
� ��
�
�
�
�
�
�
� ����	

The main obstacle to accept the FPGA computer technology
will be software	 As a comparison� there are no widely ac�
cepted methods for writing pipelined� or parallel programs�
or converting sequential to parallel programs	 According to
the existing approaches� FPGA�based computers program�
ming will require at least these techniques �
�
�
�
�
�
� ��
�

�
�
�	 Similarly� there are no widely accepted and commer�
cially available tools for converting high�level descriptions
�such as VHDL� to systolic processors	 Even much simpler
related approaches such as microprogramming� which are
known for years in industry and for which a number of tools
have been developed� are di cult� time consuming and less
used in practice than their already existing technologies al�
low	 New methods will be also required� such as transforma�
tion of recursion and complex data structures to hardware	
All these techniques and many others would be necessary to
realize a truly universal FPGA computer� unless some pow�
erful niche will be found with narrower software base� or un�
less some breakthrough in programming technology will be
found	 Again� �nding an �application niche� seems then to

���� EXPANDABLE FIELD�PROGRAMMABLE CELLULARTISSUE ANDMAPPINGOF VIRTUAL ARCHITE

be the key to the step�by�step development of this required
software technology to support the FPGA computers	

A notably higher mathematical and computer science so�
phistication of engineers and program developers will be
needed� and the concepts such as program veri�cation� theo�
rem proving� software�hardware codesign� transformational
design� and very high level languages will have to be ac�
quired	 This can be done �see how the concepts of logic
synthesis and VHDL have been acquired in the eighties� but
will take much time and will require new educational e�orts	

For easier acceptance� the FPGA computers should adhere
as much possible to all existing software�hardware� CAD�
tool� interface� language� and mechanical standards	

Below we will propose a concept of an FPGA computer that
attempts to create a possible niche in the applicationsmarket and
tries to face� at least some� of the challenges mentioned above	

��
 EXPANDABLE FIELD�PROGRAMMABLE CEL�

LULAR TISSUE AND MAPPING OF VIRTUAL

ARCHITECTURES TO IT

As observed also by Hartenstein� there is a third� better way
between the two extremes of a totally electrically programmable
logic �FPGAs�� and a totally hard�wired one �microprocessors�	
Here we propose a regular computer architecture with a �xed
hierarchical �oor�plan in which some blocks and some connec�
tions are electrically programmable	 We call it Field�Programmable
Cellular Tissue �FPCT�� It is a crossfertilization of hard�wired data
processors and Field Programmable Gate Arrays	 It is a �generic
data processor�� personalized to its speci�c functions by elec�
trical programmability of some of its component blocks and�or
connection networks	 Although we apply this concept in our
CCM� realization� the concept of FPCT is a general one and
not necessarily related to CCM� class of applications �see also
�
�
�
�
�
� ��
�
�
�
�
�
��	
To make our presentation simpler� we will write names of phys�

ical components of CCM� in small lettters �con�gurable logic
block �clb�� section �quadrant� of a chip� chip� board� data��ow
cage�	 The names of the general�purpose virtual components will
be in capital letters �Point Processor� Cube Processor� Pipelined

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

Processor� Hypercube� Data Flow Architecture�	 The names of
virtual components of particular application architectures will
have star character in the beginning �i	e	 "Inclusion Processor�
"GPF Solver�	
The physical CCM� computer is shown in Figure �	�	 It in�

cludes the host� the processor boards and the interconnection
network	 The board is shown in Figure �	�	 It has an n " n �� "
� array of Xilinx �
�
 chips in our case� with constant physical
connection pattern of two�dimensional array	 Pins of each chip
are separated to six groups� four of them go to neighbors� one to
the local memory associated to this FPGA chip� and one to one
of the board�s controller FPGA chips	
We can think about such structure as one large two�dimensional

array that is folded to strips with four processors in a strip and
next folded again to squares� each square four by four processors	
This realization allows to avoid special large and expensive me�
chanical constructions used by emulation companies	 When more
computing power is needed one purchases more boards� like now
we can buy more memory on SIMMs	 Future boards will also
possibly include microprocesors� RAMs� Contents Addressable
Memories� and DSP components	
Now� when we understand the physical structure of our ma�

chine� let us derive its general virtual structure	 It is absolutely
crucial to distinguish the physical structure of the tissue from the vir�
tual structure of the Data Flow of the Universal Logic Machine� which
is mapped to it� and an application architecture that is a particu�
lar �high�level personalization� of generic virtual Universal Logic
Machine	
The virtual structure of CCM� is based on the hierarchy of

processors	 which we will list from the simplest�

�	 A Iterative Cell �IT� �called also Variable Processor in cube cal�
culus terminology and Point Processor in image processing
terminology�	 This processor can be as simple as an AND
gate and as complex as parallel multiplier�adder	

�	 A Group Processor �GP� �for group of variables in GMVCC� is
an array of Variable Processors	

�	 A Cube Processor �accepts GMVCC cubes�� called also Win�
dow Processor in image processing	 It is an array of Group
Processors controlled by a Controller �CU�	

�	 A Pipelined Processor� It is a pipeline of Cube Processors	

���� EXPANDABLE FIELD�PROGRAMMABLE CELLULARTISSUE ANDMAPPINGOF VIRTUAL ARCHITE

�	 A Data Flow of Processors is a data �ow of Pipelined Proces�
sors	

Both IT and GP have no separate control and can only modify�
in their state machines �being part of the cellular automaton of
the Cube Processor� the instructions obtained from the neighbors
and the controller of the Cube Processor	 In current implemen�
tation the layers � and � have no controllers as well	 Additionally
Host is used for FPGA programming and other standard tasks	

In layers ��� each virtual processor of higher level is a struc�
ture of processors of one level below in hierarchy	 This struc�
ture can be of one of the following types� one�dimensional ar�
ray� one�dimensional array with bus� two�dimensional array� two�
dimensional array with busses� three�dimensional array� hyper�
cube� binary tree� trellis� and snake�folded one�dimensional array	
On the lowest layer the rectangles of the architecture are combi�
national functions� state machines and macros	 The special logic
synthesis methods to minimize logic functions and machines to
cellular� rectangle shaped tissues� such as in CLI �

� have been
implemented ����� ���� ����	 Each processor� or part of it� is a
rectangle and has four sides� North� East� West and South� and
has ordered ports on each side	 Ports have user�assigned names
and types �input� output� input�output� bidirectional� global bus
�going above and not touching internal logic��	 In every level�
processor can communicate with other processors only through
abutting ports� or by regularly placed busses resulting from one�
or two�dimensional placements of virtual structures	 For instance�
hypercubes are placed in the same way as Karnaugh maps are
placed on the plane� which creates busses for non�abutting pro�
cessors	 The busses can be also user�declared	 Some examples
of hierarchical regular structures of virtual processors are in Fig�
ure

	

The approach outlined above restricts the �oorplans in that
all non�local connections are always �single segment�� vertical or
horizontal� local or global� busses	 All local connections are done
by programming cells to wires� but this is done only for abutting
cells� Some classes of problems have their respective structures�
for instance� for cube calculus one�dimensional arrays are used�
while for low�level image processing we use two�dimensional ar�
rays	 An arbitrary structure can be declared for layer �� but this
may require custom wiring of the interconnection network	 From
what was told above� down the Cube Processor layer� all connec�

�	CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

tions are regular	 One can think about the resources to which
we are mapping as a continuous two�dimensional regular �tis�
sue� of con�gurable logic blocks �clbs�� to which both logic and
connections are placed	 With certain kind of physical intercon�
nection network� corresponding to �twice folded two�dimensional
array�� the tissue extends to all clbs from all boards from the
rack	 Whenever an application architecture can be described as
a syntactically correct virtual Universal Logic Machine� it can be
also realized in physical CCM� hardware	 The approach does
not lead to problems related to placement�routing� that are so
painful in current emulators �non�routable designs� low usage of
chips and boards�	

The �FPGACompilation� is somewhat similar to old�fashioned
silicon compilation �Bristle Blocks� DPL� etc�	 It consists in �nd�
ing the mapping from the virtual speci�cation to the physical
resources	 The mapping is simpli�ed thanks to the use of stan�
dard parametrizable operators in all levels� and the regular hier�
archical �oorplans	 One can think about Virtual Processor spec�
i�cation as a dynamic �oorplan assembled from a hierarchy of
large and small rectangles� that can be not only scaled and have
their width�height ratios modifed� but also shifted� rotated and
mirrored as macro�blocks of clbs can be in the CLI �

 layout
�
�
�	

The Cube Processor has three kinds of data�control move�
ments associated with it	 The Vertical Movement �both data and
control� is between Group and Variable Processors	 In case of
linear arrays it can be imagined as vertical signals and shifts be�
tween processors �see ����� and section

�	 This movement corre�
sponds to Cellular Automata type of communication	 The Ping�
Pong Movement is the �address�generator� controlled movement
to and from memory in each processor �an idea from FFT pro�
cessor from Sharp�	 The Pipelined Movement is from a Cube
Processor to another Cube Processor in a Pipelined Processor	
The movements are illustrated in Figure �	

Each type of movement and associated geometry is like one
dimension of our architecture	 The architecture is expandable in
four dimensions

�	 In case of one�dimensional arrays the Vertical Movement
Dimension is expandable in a �bit�slice�way� by addingmore
Group or Variable Processors	 For two dimensions this type
of expansion is known from GAPP chips	

���� EXPANDABLE FIELD�PROGRAMMABLE CELLULARTISSUE ANDMAPPINGOF VIRTUAL ARCHITE

�	 The Ping�PongMovementDimension is expandable by adding
more memory to each processor and �option� modifying the
address generator	

�	 The PipelinedMovementDimension is expandable by adding
more Cube Processors to the pipeline �making it longer�	

�	 The Data FlowMovementDimension is expandable by adding
more Pipelined Processors to the Data Flow	

Physically� the expansions are done by electrical reprogram�
ming� adding boards� upgrading RAMs� and changing ribbon ca�
bles	 �We do not intent to do this early� but DEC�PERLE allows
for this	�	

How can one arrive at this kind of �generic regular architecture
generator�
 We have done it by comparing various architectures
that have some kind of geometrical regularity	 Let us for instance
focus on standard processors	 A standard processor performs var�
ious groups of operations� arithmetic� logic� shifting� etc	 While
the operations may vary from processor to processor� the general
structure will not	 It will always include register �le with regis�
ters of the length of the word� respective buses� multiplexers� and
interfaces� as well as some kind of ALU which operates on words	
Although ALUs will vary� they will always have some blocks cor�
responding to basic units of information �like bits�� which will be
iterated for the length of the word	 While for binary logic the
units will be one bit wide� they will be n�bit wide for a logic with
�n values	 There will be also carry signals between these blocks for
operations like shifting� addition� or comparison	 All those pro�
cessors can be then implemented as a regular hard�wired struc�
ture of� hard�wired blocks �such as registers and multiplexers� and
electrically programmable blocks� The latter are some combinational
or sequential circuits� which are not generic and of few types as
clbs in FPGAs� but of various types and sizes respective to the
assigned to them operational or control tasks of the entire archi�
tecture	 Following this observation and comparing fundamental
structures of microprocessors� VLIW Processors� string matching
computers� associative processors� Geometric Arithmetic Proces�
sors �GAPP�� and other special and general purpose pipelined�
systolic and SIMD processors �DAP� CLIP� MPP� CM�� as well
as logic machines� MCCC ���
�� HART �
�� GPFS �
� and CCM�
�
�� we designed the generic processor system � CCM� �����	

��CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

���� MECHANIZATION OF GENERALIZEDMULTI�

VALUED CUBE CALCULUS

Now that we understand the basic principle of virtual versus
physical architectures� let us explore the relation of the virtual
processors to the GMVCC� since the relation to image processing
hardware and systolic processors is standard and better under�
stood	
The Cube Processor operates not only on numbers but pre�

dominantly on generalized multiple�valued cubes	 This archi�
tecture is based on a data path composed of cellular automata
which take over the lowest level loop of sequential control� and
are electrically programmable to perform various functions	 In
our CCM� the data path has been designed to execute opera�
tions of �cube calculus�� an algebraic model popularly used to
process Boolean functions	 CCM� realizes e ciently all cube cal�
culus operations such as sharp and consensus	 The �positional
cube representation� used by CCM� can also represent Gener�
alized Multiple�Valued Cube Calculus �GMVCC� which has ap�
plications in many computational methods based on logic	 The
Multiple�Valued input	 binary output Cube Calculus �MVCC� seems to be
one of the most general internal representations of data in propo�
sitional logic� logic synthesis� logic programming� logic simulation�
data�bases� and several areas of AI and problem�solving	 Gener�
alized Multiple�valued Cube Calculus �GMVCC�� our extension
of MVCC ������ is even more powerful than the MVCC because it
can represent multiple�valued input multiple�valued�output logic
�called truly mv logic�� This means that it can be used for real�
time AI applications� image processing� genetic algorithms� fuzzy
logic and logic programming	 As it will be described� the heart
of the Cube Processor is a one dimensional �bit�slice� data path
constructed as an iterative network of electrically programmable
Cellular Automata �CA�� In fact� our concept of Cellular Automata
is more general than one from literature �
�
�� since the excita�
tion function of each register can be a combinational function of
all registers from the array� and not only the direct neighbors �see
Figure

�	
CCM� word �cube� window� includes a �exible number of

multiple�valued �mv� literals	 While CCM� executed only set�
theoretical operations on literals �
�� CCM� brings simple and
complex symbols as an intermediate level between bits and lit�
erals	 These are realized by Group Processors	 This allows to

����� MECHANIZATION OFGENERALIZEDMULTI�VALUEDCUBE CALCULUS��

realize arbitrary truly mv logic and to deal with the literals be�
ing various kinds of numbers	 CCM� can also deal with data such
as� number intervals� symbolic predicates� associative tuples� and
multi�valued multi�output relations	 Both the homogeneous and
heterogenous groups of variables are possible �various kinds of
Group Processors within a Cube Processor�	 The same is true on
other layers of virtual processors	 These capabilities greatly ex�
pand CCM� semantics and the range of potential applications	 It
becomes close to vector machines� VLIW computers� associative
processors� or logic programming machines	
All the known CC and MVCC software subroutines �
� pro�

cess the literals sequentially� but for most of the literals the
resultant cubes generated will have contradictions so that they
will have to be removed later	 CCM� implements a completely
new architecture to take advantage of the peculiarities of sequen�
tial cube calculus operations	 The architecture is an iterative
logic�cellular automata array with �carry�like� signals running
from left to right and from right to left through the iterative circuit
of CAs	 The fundamental advantage of this approach is that only
cubes without contradictions are generated	 The Cube Processor
consists of a set of Group Processors� a Controller and a memory	
The Group Processor is a �horizontal� linear cellular automaton
build from buiding blocks	 ITerative Cells �ITs�	 Each simple symbol
is processed by an iterative cell IT	 The number of ITs is denoted
by n� so that the number of bits is �n and we can process n binary
variables	 Besides combinational logic each IT�i� includes a Posi�
tion State Machine �PSM
i�� that in�uences the local interpretation
of the Controller�s micro�instructions	 In this sense each IT is a
small processing unit that processes a part of a cube in parallel �or
a Kit serially�� and communicates with neighbor IT processors	
Each IT�i� operates on arguments from its register �le or memory�
and some registers of neighbors	 Each IT�i� is divided into four
programmable blocks according to the function performed� RE�
LATION
i�	 PSM
i�	 MATCH COUNTER
i�	 and OPERATION
i�� �See
Figure

�	
MATCH COUNTER is used in global cube data Counting

Operations	 It counts the number of satis�ed predicates in all
ITs	 MATCH COUNTER
i� adds
 or � to MATCH COUNTER
i����
It takes predicate values from PSM
i� or RELATION
i��

OPERATION
i� creates bits of resultant cubes by performing
the operation on bits of the operand cubes	 This is where the
matrix of the GMVCC operator is programmed in	 It takes ar�

���CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

guments from A
i�	 B
i� and PSM
i�	 and has two outputs C
i� and
D
i� that go to register �le and neighbors	
The idea of combining basic programmability functions and

structures to create complex operations was observed and used
also for other kinds of operations for which our machine was de�
signed� for instance the morphological image processing	 While
the above observation allowed us to map the �variable loop� to
one dimension of the CCM� �horizontal communication inside
a CCM� Processor�� other operation patterns are mapped to
pipelined data movements �shifts� between several CCM� Proces�
sors connected in a linear array � as in WARP computer of Kung	
The principle is� �Implement the lowest loop in CCM� Processor	 and the
next from bottom loop �usually the �cube loop�� in a linear array of CCM�
Processors�� Similarly mapped are two�dimensional movements�
horizontal �inside CCM� Processor� and vertical �between CCM�
Processors� � as in SIMD meshes	 Three�dimensional shifts �us�
ing as the third dimension RAM memories connected to CCM
Processors� are mapped as in GAPP and image processing ar�
chitectures	 Additional advantages are created by using Content
Addresable Memories �CAMs� instead of RAMs for storing the results
from CCM� processors	
Concluding� each GMVCC operation is a point in a multidi�

mensional space created by a Cartesian Product of Basic Programmable
Features �such as rel� after� before� relation type� composition�
pipelining� etc	�	 The number of all possible operations is ex�
tremely large	 We were able to realize all known GMVCC op�
erations� and many useful new ones	 We have not yet found
practical applications for the astronomical numbers of new oper�
ations created as a byproduct of this �Cartesian Product� concept	
Automatic learning of the point and subsequent recon�guration
can be implemented per analogy with �cellular� neural nets	

���� CONCLUSION

The concepts of Universal LogicMachine and Field Programmable
Cellular Tissue are very general and not restricted to the real�
ization of CCM�	� and CCM� as illustrated above	 While in
CCM�	� most of the electrical programmability is to recon�gure
logic� one can also create system architectures where the con�g�
urability would be used primarily for communication	 The recon�
�gurable architectures build from general�purpose FPGA chips
�
�
� were on several problems superior to supercomputers� and

����� CONCLUSION ���

proved the usefullness of the concept of electrical recon�gurabil�
ity applied to special purpose massively parallel processors	 We
believe that the ideas outlined here and illustrated on CCM� will
allow for designing even more powerful FPGA computer archi�
tectures with new cellular FPGAs ���
�
� ���� ���� and their
fortcoming respective MCMs	

���CHAPTER �� BOOLEAN FUNCTION PROCESSINGANDARCHITECTURES

Chapter �

COMMUNICATION�

BASED

OPERATIONS�

��� COMMUNICATIONS IN DSP APPLICATIONS�

Just as the DSP or AI architectures can be build from regular
structures of few kinds of blocks through which data vectors are
transmitted� the principle of CCM is to allow for pipelined�systolic
execution of the most common operations on clists and cclists	
Those operations include for instance the Cartesian Products�
the dot products� the permutations� and the generations of all
subsets or combinations of a clist	 Micro�Programming of CCM
consists then in assigning values to two kinds of control �elds�

�	 Those that describe the processing inside the CCM� for ex�
ample� the operations on cubes and short clists described in
section

	

�	 Those that describe the communication of the CCM with
other processors and memories	

There are currently two styles of communication�

�	 Address Generator based	

�	 Data Flow based	

���

��� CHAPTER �� COMMUNICATION�BASED OPERATIONS�

Address Generators are used to send out the address of the
desired operand in Dual�Port Memories	 The data �ow style is
based on FIFOs	 In this case the CCM chip �CCM processor
�
sends a signal to a FIFO to get the next cube	 A Ping�Pong com�
munication mechanism is used to transfer the data from Memory
A to Memory B while the processing	 Possibly� the data��ow in
the processor can be changed for every change of direction	 and
this is controlled as well	

��� COMMUNICATION BASED OPERATIONS IN

ULM

There are three main types of communication�based opera�
tions�

�	 simple operations on a clist�

�	 simple operations on two clists�

�	 complex operations on a clist	

Ad	 ���	

Simple operations on a clist include Global Reduction	 Mapping	 Pair�
ing	 Selection	 Inversion	 Mapping with Insertion	 Inversion with Insertion	
Replacement	 All Pairs with Reduction	 All Ordered Pairs	 and other
operations	 Examples of some of those operations on clist A � f
a�� a�� a� g are as follows	
NOTE�

In the following� f g denotes a clist� ff gg a cclist� � � a cube� �� a
group of variables� j � � j a set� � a symbol	 OPER and OP CLIST
are two�operand cube operations	

Global Reduction � in which a cube is created from a clist�

REDUCTION �A� OPER� � �a� OPER a� OPER a��

Examples of such operations in cube calculus are the super�
cube of all cubes from the clist� and the intersection of all
cubes from the clist	

Mapping � for which the clist produces a new clist of the same size�

MAPPING�A� OPER� � f OPER�a��� OPER�a��� OPER�a��
g

���� COMMUNICATION BASED OPERATIONS IN ULM ��

Pairing � where the operation is repeated on subsequent pairs of
arguments and the results are directly inserted in a new
clist�

PAIRING�A� OPER� OP CLIST� � f OPER�a�� a�� OP CLIST OPER�a�� ��
g

Sorting � can be realized as repeated pairing	

Sorting with Absorption can be realized as repeated pairing	

Reducing Operations such as�

ab � a �
 a�

a � a �
 a�

ab� a �
 a�b�

or

a� � �
 a�

can be used as OP CLIST	 Repetitive Ping�Pong transfer of
a clist through a CCM with an exchange of neighbor cubes
�based on a speci�ed ordering relation between them� leads
to sorting the clist	 When the compare�exchange operation
also executes cube absorption� algorithms such as POS �

SOP transformation by multiplication can be executed �
�	

�item� Inversion �� for which the clist creates a new clist of
the same size�

INVERSION�A� OPER� � f OPER�a��� OPER�a��� OPER�a��
g

All Pairs of a Clist�

ALL PAIRS�A� OPER� � f OPER�a�� a��� OPER�a�� a��� OPER� a�� a��
g	

Selection � is an operation known from CAM�based and associative
processing	 It selects cube�s� for which a certain Boolean
function of literal�related predicates is satis�ed	 For instance
the operation�

�age � ��� AND character � "good� OR properties � fj
�gwealth� good� contactsf� jg�

operates on cubes with numeric variable �age�	 symbol vari�
able �character�	 and set variable �properties� and selects all
people who either are older than �� and have good character�
or have wealth and good contacts among their properties	

��	 CHAPTER �� COMMUNICATION�BASED OPERATIONS�

Replacement � is a similar operation	 It does some cube operation on
selected cubes such as adding � �

 to the numeric variable
�salary� or adding set value �good�contacts� to the variable
�properties�	

The following operations of Cube Pairing and Cube Pairing
with Reduction are executed on a clist and a cube�

CUBE CLIST PAIR�A� cube� OPER� � f OPER�a�� cube�� OPER�a�� cube�� OPER�
g

CUBE CLIST REDUCE�A� cube� OPER� OP CLIST� �

f OPER�a�� cube� OP CLIST OPER�a�� cube� OP CLIST OPER�a�� cube�
g

Ad ���
Simple operations on two lists include Dot Product	 Vector Product	 Sim�
ple Cartesian Product	 Sequential Cartesian Product	 Convolution	 Vector
Product with Insertion	 Vector Product with Reduction	 and other	 Some
of those operations on clists A � f a�� a�� a� g and B � f b�� b�� b�
g are the following�

Dot Product � for which two clists create a cube�

DOT PRODUCT�A� B� OPER� OP CLIST� �

�OPER�a�� b�� OP CLIST OPER�a�� b�� OP CLIST OPER�a�� b���

As an example� OPER can be a cube intersection operation�
and OP CLIST can be a cube supercube operation	

Vector Product � for which two clists create a clist�

VECTOR PRODUCT�A� B� OPER� � f OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b
g

Simple Cartesian Product � where two clists create a clist �in particular representing a
matrix� or a set of pairs��

SIMPLE CARTESIAN PRODUCT�A� B� OPER� � f OPER�a�� b�� � OPER�a�� b��
OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b�� � OPER�
g

This matrix is returned row by row� from left to right	

Sequential Cartesian Product � where two clists create a clist	 In this operation the OPER
is applied sequentially to the result of the operation of A with
the �rst cube of B� the second cube of B� etc� as follows�

���� COMMUNICATION BASED OPERATIONS IN ULM ���

SEQUENTIAL CARTESIAN PRODUCT�A� B� OPER� OP CLIST�
� fCUBE CLIST REDUCE� �CUBE CLIST REDUCE� �CUBE CLIST REDUCE�A�
b�� OPER� OP CLIST� b�� OPER� OP CLIST�� b�� OPER�
OP CLIST�� g

This is applied in sharp� intersection and union of clists	

Convolution 	 A new clist of length �n� � is created according to a con�
volution algorithm such as that used in polynomial multipli�
cation	 This operation is a base of many image�processing
operations	

Ad	 ��� Complex operations on a single clist include the following�
All permutations	 All subsets	 All combinations	 and other	 Such oper�
ations� which are in fact the mappings of tree�search algorithms
to pipes� are based on two coordinated pipes	 For instance� All
Subsets Operation uses the method from �
� to generate all subsets
of a set	 This operation can be used to generate all cubes that
include a speci�ed cube	
Many other pipelined�systolic�data��owMVCC operations can

be created that are especially useful for problem�solving and spec�
tral applications	

��� CHAPTER �� COMMUNICATION�BASED OPERATIONS�

Chapter �

PROBLEMS FOR

SELF�EVALUATION

RELATED TO

UNIVERSAL LOGIC

MACHINE�

�	 BASE OF THE CCM MACHINES	

Draw in detail the basic IT cells for�

a� K � ��

b� K � ��

c� K ��	

The blocks should use universal binary logic gates �lookup
table types� such as in Xilinx�	 Write how many inputs and
outputs from each module	

Discuss advantages and disadvantages of each	

�	 BASE OF THE CCM MACHINES	 Present table of sharp
operation realized on CCM of base �	 �similar to the table
of complementation operation of base � machine from the
class�	

���

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

�	 BASE OF THE CCM MACHINES	 The truly ��valued logic
requires � " � matrices and � bits per symbol	 The set logic
of binary logic requires � bits to represent values
 �
� �
� ��
�� � X� � � � empty set � contradiction	 Make a
comparizon of a general case of truly k�valued logic and set
logic for a set with k elements	 How are they related to base
K	

�	 BASE OF THE CCM MACHINES	 Explain why the opera�
tions such as $ and % cannot be implemented on binary CCM	
Present how these operations can be realized on CCM with
larger K	 What value of K is enough	 Draw the circuit	

�	 GENERALIZEDMULTIPLE�VALUEDCUBE CALCULUS	

As we said earlier� in GeneralizedMultiple�ValuedCube Cal�
culus �GMVCC�� each cube is a vector of variables	 Each
variable X has its type T �X� and length	 denoted by L�X��
L�X� � R � K�IT�	 where K�IT� is the base of the IT cells used in
the implementation of the variable X� The types are
 a symbol� a
number� and a set�

Symbols are used in several discrete combinatorial problems	 such as
consistent labeling	 so the ability to work with symbols is an impor�
tant innovation of CCM�� For practical reasons the number of dif�
ferent symbols is usually limited� In CCM� there are two kinds of
symbols
 simple symbols and complex symbols� Simple symbols are
implemented as binary strings and operations on them are e�ciently
realized as Boolean functions described by matrices� Such systems will
be called Limited Finite Systems �LFS�� Complex symbols are ordered
sets of simple symbols	 For instance a binary number is a complex
symbol of simple symbols � and �� A ternary number is a complex
symbol of simple symbols �	 � and ��

Present how the machine handles ternary numbers for arithmetic op�
erations�

How addition and multiplication operations can be executed in Galois
Field����

�� GENERALIZED MULTIPLE�VALUED CUBE CALCULUS�

Restricting the number of logic values allows e�cient operations on
symbols� Operations on complex symbols are done by iterative op�
erations on ordered sets of simple symbols using multi�bit internal
variables� This is realized as linear iterative circuits �Unger� of ITs

���

with two kinds of internal variables
 carry signals going from left to
right	 and con�rm signals going from right to left� Operations on two
simple symbols can be described by two dimensional matrices called
operator tables� Matrices describing sharp	 consensus	 and other bi�
nary operators can be found in

�� Examples of matrices for various
multiple�valued logics can be found for instance in

� and

��

Use the same method as applied in CCM��� to implement all opera�
tions from

��

Use the same method as applied in CCM��� to implement all opera�
tions from

��

Use the same method as applied in CCM��� to implement all opera�
tions from

� and

��

�� GENERALIZED MULTIPLE�VALUED CUBE CALCULUS� Num�
bers in ULM are represented as complex or simple symbols� Oper�
ations on numbers are realized as LFS� For instance	 when K � �	
one is able to realize binary	 ternary and quaternary counting� Bi�
nary arithmetic operations for arbitrary v � K �such as addition
and subtraction modulo v� minus� max and min� as well as equal�
ity and order relations� are not decomposable to any groups of bits�
They are	 however	 decomposable to groups of K bits assuming one or
more carry signals� going from left to right� The same is true about
ternary or quaternary arithmetic� Multiplication� division� and other
operations can be only described by matrices	 and only for numbers
� �K�

Illustrate how ternary arithmetic operations are realized in CCM with
K � ��

Illustrate how quaternary arithmetic operations are realized in CCM
with K � ��

Illustrate how ternary arithmetic operations are realized in CCM with
K � ��

Illustrate how quaternary arithmetic operations are realized in CCM
with K � ��

Illustrate how ternary arithmetic operations are realized in CCM with
K � ��

Illustrate how quaternary arithmetic operations are realized in CCM
with K � ��

Try to generalize to any value of K being a �a� small	 or �b� large
natural number�

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

�� SET TYPES�

Set types represent ordered sets	 in particular	 sets of logic values�
These types are used in MVCC� As in the positional cube calculus
notation or in Set Logic
 � is for an existing element	 � for a non�
existing one� For values of tuples �relations� the set values are as
follows
 �� � false	 �� � true	 ��� value irrelevant	 �� � contra�
diction� Set Operations and Binary Number Operations are the most
e�ciently realized since they are decomposable to single bits	 which
means that the same Boolean function can be executed on all pairs of
bits of literals�

In GMVCC each cube can have two parts
 input variables and output
variables� We call these the input�cube and the output�cube� The
value of each output variable can be a set �in a set logic� or a number
�in a truly mv logic�� For instance	 in the case of a truly mv logic	 each
value of the output variable in the output�cube represents the value of
that variable for the given input�cube� Thus	
 �������������� � ��	��
� means the input cube
������������� has value � in the �rst output
variable and value � in the second output variable�

Extend all the MVCC operations for this kind of cube calculus�

�� Additionally to the input and output cubes introduced in GMVCC	 any
number of adjacent variables can be combined as a Variable Group�

Examples� Two numbers are combined as a number interval group� A
tuple can be created from four symbols� �rst �simple� symbol stands for
tuple value	 second �complex� symbol for name of relation	 next two
�complex� symbols for elements of this relation
����� For instance the
group ���	�PARENT	 �Mary	 �Robert�	 denoted as � PARENT�Mary	
Robert� states that it is not true that Mary is a parent of Robert� Vari�
ables in linked groups can be of various types� For instance	 assum�
ing set variable PEOPLE � j
Mary	Carol	Robert	John	Adam	Julie� j
�L�PEOPLE� � �� the set of Mary and John is represented by literal
PEOPLEfMary� Johng	 or in positional notation j
������� j�

Assuming the relations

� PARENT�Mary	 Robert�	 � PARENT�Mary	 Carol�	 � PARENT�John	
Robert�	

� PARENT�John	 Carol�	

one can create the relation group

PARENT�������	 �������

���

which means that Mary and John are Parents of Robert and Carol�
This notation compacts four PARENT relations to a tuple with mv
variables�

See
���� and

� for more explanation�

Extend the Cube Calculus for these operations�

Realize all operations of Ulug on the new CCM� processor�

��� PREDICATES�

The Predicates check if some relation of operands is satis�ed� This
relation is set�theoretical in the above examples	 but can be arbitrary
in general� The most common relations are �	 �	 �	 ��	 �	 �	 �	 	 �	
and �� They can be either local �in a variable�	 or global �in a group
or a cube��

How to implement each of these operations in

� CCM�

� CCM���

� CCM���

Can we implement each of them in CCM� If no	 explain why

��� CUBE OPERATIONS�

The MVCC Cube Operations use set�theoretical operations on pairs
of variables of operand cubes to calculate the resultant cubes� These
operations are set�theoretical in MVCC for CCM� and CCM�	 but in
GMVCC they can be arbitrary� The set theoretical operations can be
realized by Boolean functions of two variables �simple symbol opera�
tions for K���� The results of operations are complex symbols	 i�e�
compositions of simple symbols�

Discuss with examples the advantage of using CCM��� over CCM�	
and CCM��� over CCM��� on all those operations�

��� NUMERICAL OPERATIONS

Numerical operations on complex symbols include
 �� �� max� min�
truncated max� truncated min� Numerical operations on simple sym�
bols include
 �high radix plus� high radix minus� modulo plus� mod�
ulo minus� high radix multiply� high radix divide� They can produce
generalized carry signals to create complex symbols as for instance in
radix � addition� Many other symbol operations exist for K � ��

Show schematically how relations �	 �	 �	 ��	 �	 �	 �	 	 �	 and are
realized in CCM of base K � ��

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

��� COUNTING OPERATIONS�

Counting Operations count the number of the occurrences of satis�ed
relations on variables� For instance	 a numerical value of the Ham�
ming Distance of binary cubes A and B is calculated by counting the
number of symbols epsilon in cube C � A � B� The distance of
mv cubes is calculated by counting the number of symbols es in vari�
ables of cube C � A � B� In general	 counting serves to evaluate
the quality of perfect!imperfect matching of the operand cubes� This
allows for the realization of approximate string matching and fuzzy
logic algorithms�

Show how to realize in CCM��� operation of exact match �number of
simple symbols that agree��

Show how to realize on CCM��� operation of approximate match �num�
ber of simple symbols that agree more or less��

There is a table that for every two simple symbols gives numerical
match result
 � � no match	 � � weak match	 � � strong match	 � �
perfect match�

How is this table realized in CCM���

How the approximate match results are used

��� Similarly to MVCC	 operations in GMVCC are on cubes	 clists and
cclists� Operations on cubes are simple combinational� complex com�
binational and sequential� However	 the relations and operators can
be di�erent for each variable	 and can be treated di�erently in di�erent
variable groups and in di�erent parts of a cube� It is this �exibility
which makes it possible to use GMVCC for the wide range of formal
systems listed in the Introduction with our �rst mention of GMVCC�

EXAMPLES OF GMVCC OPERATIONS�

Give any examples of GMVCC operations that are not in MVCC�
Show how they are realized in CCM�

��� THE MAIN OPERATIONS OF ULM�

Below we will present the main principles that are applicable to logic
machines of any base� K� Here they are described for K � �	 but the
reader can easily modify them for any K�

Each sequential operation can be described by a pattern

A � OPsm � B � fX
aft�A�� B��
� ��� X

aft�Ai��� Bi���
i�� X

act�Ai� Bi�
i X

bef�Ai��� Bi���
i�� ��� X

bef�AN � BN

N

��

An important property of functions before �for short � bef�� active
�act�� after �aft�	 and relation �rel� is that they are K�wise functions	
e�g�	 for K��	 bits Cs� Cs�� of the resultant cube of each of the
functions befs�s��	 acts�s��	 afts�s��	 and rels�s�� of a simple symbol
are dependent only on bits As� As�� and Bs� Bs�� of the arguments�
A complex symbol which represents the value of variable Ci of length
� R � K�IT� is a composition of R simple symbols which are the
results calculated in each of ITs representing this variable�

Illustrate the above operation for K � �� The formula and the circuit�
What is the di�erence with respect to K � �

��� The value returned by the reli of variable Ci is determined by the
function relation type� Relation type	 here is OR� AND� or one of
many other Boolean functions of signals corresponding to partial re�
lations rels� s�� for simple symbols� This function is selected for the
desired type of ULM operation� An iterative circuit similar to multi�
rail Maitra cascades is used to realize the relation type function� A
similar mechanism is used to create more global relations for groups
of variables or cubes� In general	 rel signals are arbitrary base K
signals	 so Boolean predicates are not treated in a distinct way�

In class we presented such cicuits for relations AND	 OR	 EXOR	
and few other� Show some other relation that can be realized in this
circuit and explain its practical usage�

The �rst resultant cube for a sequential CC operation is produced for
the �rst speci�c literal selected as the active one starting from the
left� Later	 the next speci�c literal to the right is selected as the ac�
tive one	 and the next resultant cube is produced� This procedure is
repeated until the last speci�c literal has been selected as the active
one� When producing a particular resultant cube	 all the literals with
numbers less than the number of the active literal are of the after
type	 all the literals with numbers greater than the number of the ac�
tive literal are of the before type� All these operations are totally
executed in hardware by the iterative network of state machines�

Invent examples of such operations and their applications�

��� GENERAL PATTERNS FOR GMVCC MAIN ALGORITHM�

The more general pattern of the main algorithm for GMVCC opera�
tions is

A � OPsg � B � fX
fun��state�� A�� B��
� ��� X

funi���statei��� Ai�� � Bi���
i�� X

funi�statei� Ai� Bi�
i X

funi���statei��� Ai���

i��

j where all statei are determined by functions reli�Ai� Bi� g

��	CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

In general	 functions funi�statei� Ai� Bi� are determined as follows

funi�statei� Ai� Bi� � if reli�� � � then funi�����statei� Ai� Bi�

else if reli�� � � then funi�����statei� Ai� Bi����

else if reli�� � � then funi�����statei� Ai� Bi����

else if reli�� � � then funi�����statei� Ai� Bi����

else if reli�� � � then funi�����statei� Ai� Bi����

������

else funi�h�statei� Ai� Bi�

where statei is an internal state of a state machine associated with
variable i� The set of states for the machine includes states bef� act�
and aft� The set statei should have at least �K states�

Give some application of this formula that is not a standard MVCC
operation as sharp or consensus�

��� SIMPLE COMBINATIONAL OPERATIONS�

Combinational CC operations are de�ned as K�wise functions on
the bits of the arguments� There is no need for de�ning act	 bef
and aft or other states for combinational CC operations� The same
computational mechanism can be used to calculate both sequential and
combinational CC functions� Simple combinational operations are de�
termined by the formula

A � OPsc � B �

fX
fun�A��B��
� ��� Xi��fun�Ai���Bi���X

fun�Ai�Bi�
i X

fun�Ai���Bi���
i�� ��� X

fun�AN �BN �
N g

Give example of operation that is not in MVCC�

��� COMPLEX COMBINATIONAL OPERATIONS�

In ComplexCombinational operations there is for each pair of operand
cubes at most a single resultant cube� This cube is produced by a K�
wise logic operation conditioned for each literal by some relation�pattern
of the input cubes� In this category are the operations prime� double
prime� and �binary consensus�� as well as conditional value settings
such as those described by CXY Z operations of Dietmeyer

� and
those used in set logic

�� Complex combinational operations can be
described as

A � OPcc � B �

fX
fun��A�� B��
� ��� X

funi���Ai��� Bi���
i�� X

funi�Ai� Bi�
i X

funi�Ai��� Bi���
i�� ��� X

funN �AN � BN �
N j for a

In general	 functions funi�Ai� Bi� are determined as follows

���

funi� Ai� Bi� � if reli�� � � then funi�����Ai� Bi�

else if reli�� � � then funi�����Ai� Bi����

else if reli�� � � then funi�����Ai� Bi����

else if reli�� � � then funi�����Ai� Bi����

else if reli�� � � then funi�����Ai� Bi����

������

else funi�h�Ai� Bi�

Give example of an operation of this kind that is not in MVCC�

��� SHIFT AND COUNTING OPERATIONS�

It follows from the above considerations	 that each of the functions
funi funi�j�t and reli�j is actually composed of functions for sim�
ple symbols	 where each function for simple symbols is a K�bit�output
Boolean function of two K�tuples of bits� Function funi�statei� Ai� Bi�
is composed of functions that additionally have bits of the encoded sig�
nals of states for machines in ITs corresponding to simple symbols�
The number of bits used to program the function relation type de�
pends on K and the particular realization of the machine� A K�bit
signal called carry is used to help combine partial relations or func�
tions for particular pairs of bits� For relations like A � B	 A � B

a single bit carry signal is enough	 while for relations like A � B	
A � B or A � B a two�bit carry signal is required� All these
programmable functions de�ne the programmability pattern of the
machine�

The simple combinational operations of ULM are vector�like exten�
sions of standard computer instructions �logical	 numerical	 jumps	
etc� expanded in a SIMD pattern to separate �elds �variables�	 each
of arbitrary length� The complex combinational operations are sim�
ilar extensions	 but they allow us to execute di�erent operations in
the �elds� They are useful for tagged operations	 �ag conditional set�
ting	 etc� Sequential operations generalize shifts and string matching
operations� For instance	 various types of shifts can be executed in
parallel for all variables	 as well as shifts between variables� In addi�
tion to standard arithmetical!logical shifts	 shifts with unary K�wise
operation in the shift loop are possible	 that are the generalizations of
the K�� case of the Johnson counter with the controlled EXOR in
the shift loop�

In the previous chapters we demonstrated several of those shift opera�
tions� Present in a very systematic way all possible shifting!counting
operations for K � � and for K � ��

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

��� THE HARDWARE ARCHITECTURE OF ULM PROCESSOR� BA�
SIC COMPONENTS OF ULM PROCESSOR�

All the known software subroutines process the literals sequentially	
but for most of the literals the resultant cubes generated will have con�
tradictions and that will have to be removed later� ULM implements
a completely new architecture to take advantage of the peculiarities of
sequential cube calculus operations� The architecture is an iterative
logic array �ILU� with �carry� signals running from left to right and
from right to left through the iterative circuit of Position State Ma�
chines �PSMs�	 The fundamental advantage of this approach
is that only cubes without contradictions are generated	

The ULM Processor consists of a set of bit�slice ILU processing units	
an interface controller	 and a control unit� The processing unit is im�
plemented as an iterative logic array �ILU� of basic buiding blocks	
A single cell �block� from an ILU is called a ITerative Cell �IT�� Basi�
cally	 ULM has a base of two �K�IT� � ��	 which allows us to realize
matrices of all logic operators in logics with not more than �� � �
values� The four simple symbols for base � are

� �negated variable��

� �positive variable��

X �don�t care��

and epsilon �contradiction��

They are encoded as ��	 ��	 ��	 and ��	 respectively� Since it is im�
portant to realize resolution!uni�cation operations of theorem�proving

���� and other truly mv logics	 we can also realize base � operations in
ULM� The CUBEX concept of theorem�proving
���� has three vari�
ants
 propositional logic� predicate logic and hybrid� This concept
uses new �cross� cube calculus operations �cross�intersection	 cross�
sharp	 cross�consensus	 cross�subsume�	 which require four additional
symbols� The total set of symbols for base � ULM is then f�	 �	 X	
�	 R	 L	 Y	 Zg	 which leads to K��� They are coded
 ���	 ���	 ���	
���	 ���	 ���	 ���	 ���	 respectively �which is di�erent from that in

������

By a W�input K�base universal cell we mean a logic function with W
inputs and one output	 each input or output being a base K signal�
It means that when multiple�valued logic is realized using binary sig�
nals	 one has K wires to represent each simple symbol of a set of �K

symbols� A universal cell of base K realizes all matrices of base �K

universal logic� or base K set logic� In ULM each simple symbol is

���

processed by an iterative cell IT� A K�base symbol requires a K�wise
IT cell�

Essentially	 ULM is a logic machine of K�� but it can be hardware�
recon�gured to machine with K�� and smaller number of ITs� As a
�by�product� of this scheme one is also able to realize some functions
for K���

Illustrate how this scheme of hardware recon�guration from K � � to
K � � can be realized�

��� For simpli�cation	 only case of K�IT� � � will be discussed below but
the principles are exactly the same regardless of the base� Moreover	
they would remain the same even for a realization of universal cells
in a truly mv logic	 and not using universal cells with binary gates as
in ULM�

IT blocks will be enumerated from left to right
 IT
��	 IT
��	 ��IT
i�	
���	 IT
n�� �The number of ITs is denoted by n	 so that the number of
bits is �n and we can process n binary variables�� Besides combina�
tional logic each IT
i� includes a Position State Machine �PSM�
that in�uences the local interpretation of the micro�instructions� In
this sense each IT is a small processing unit that processes a part of
a cube in parallel and communicates with other processors that are
connected in a linear organization� A processor with two ITs of K��
is shown in Fig� ����� For explanation purposes we will divide each
IT
i� into four blocks according to the function that it performs	 and
we will discuss simpli�ed signals for MVCC operations from section
� and K��� The combinational blocks of IT
i� are
 RELATION�i��
MATCH COUNTER�i�� and OPERATION�i�	 The sequential
PSM block is called STATE�i�	 A	 B are the input �operand� cubes
and C	 D are the output �resultant� cubes�

��� Block RELATION�i� has the task of identifying the po�
sition of the IT within the literal and generating a Boolean
signal VARIABLE�i� that is true when the IT�i� is a part of
a literal that satis�es the selected relation �rel�� To calculate
the value of VARIABLE�i�� the RELATION�i� block uses two
iterative signals	 CARRY�i� is an iterative signal that runs
from left to right and is true when all ITs of the same literal
to the left of the IT satisfy the AND�type relation encoded
in rel	 CONF�i� �con�rm� says that at this position all ITs
have satis�ed the relation	 As we see� the signal CARRY
goes from left to right� up to the end of variable� and next
returns as signal CONF� back to all ITs of this variable	 This

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

explanation is only for AND�type relations	 Similar expla�
nation for OR�type and other relations can be given	

��� Block STATE�i� is an FSM essential to executing sequen�
tial operations	 The state of the STATE�i� block represents
the position of the IT�i� in relation to the active literal	 The
STATE�i� is in state active if the IT�i� is a part of an active
literal� it is in the before state if the IT�i� is to the right of
active literal� and in after state if the IT�i� is to the left of
the active literal	 All STATE�i� are initialized to the state
before with the global signal CLEAR from CU	

��� MATCH COUNTER�i� counts the number of satis�ed
predicates in IT�i�	

��� OPERATION�i� creates bits of resultant cubes by performing
the operation on bits of the operand cubes� This is where the operator
matrix is programmed in�

The Control Unit �CU� of the CCM receives the code of a high
level cube calculus operation �CCM instruction� in the Instruc�
tion Register �IR� and translates it into simpler basic operations
implemented in the processing unit�

The Bus Interface Unit �BIU� handles the communication be�
tween the host computer �or a distributed system of CCMs and con�
trollers� and the CCM� The communication between the BIU and the
ILU is done through shared registers!memory	 as is the communica�
tion between the BIU and the CU� The interfaces between the BIU
and the ILU and the CU were made independent	 asynchronous and
through a protocol to let the design of the ILU and CU be independent
of the BIU�

A shared data register �le is used for storing the input cubes	 the
output cubes	 and the intermediate results� This shared �le prevents
also a loss of performance due to di�erences in the processing rates
of the system and the ILU�

Some other registers used for communication and control are RIGHTE�rightedgeofvariable�� a
valuedvariablewhichwillusethefirst�ITs� thesecond�bitsareusedbyanother��
valuedvariablewhichwilltakeanothertwoITs� thethirdandthefourthvariablesare��
valued�binary�andwilluseonlyoneiterativecelleach�

Register RIGHTEisusedtoseparatevariables�Nowwewantalsotoseparateinputandoutputpartsa

Draw the schematic of complete IT for CCM�	
	

��	 THE BASIC CYCLE	

���

The basic cycle is a generalization of one from chapter

	
The ILU recognizes the next speci�c �active� literal and gen�
erates a resultant cube in each cycle	 It realizes� using in�
ternal distributed control� the lowest level iterative loop� as
described by formulas

	 Therefore� ILU does not need
the control unit to execute the basic cube operations	 While
generating the resultant cube the role of CU is limited to
generating REQUEST signals and checking NEXT signals	
The ILU is controlled by two types of signals� iterative signals
and global signals� Two of those signals� global REQUEST
and iterative NEXT work in an �interlock mechanism� that
replaces the �clock� of synchronous machines with a �two�
phase non�overlapping waveform� in a linear sequence of cel�
lular automata	

A general concept in computer architecture is to remove the
lowest level control loop from the control unit and put it
directly in the data path in a distributed form	 The state
machine in the CU in CCM� becomes relatively simple and
a great part of the control task is distributed in the ILU
itself	

Sequential operation begins by loading the operand cubes to
let RELATION�i� blocks recognize all the speci�c literals	
The CU keeps the global signals REQUEST� CLEAR� as
well as the initial signal NEXT�
� false and lets all VARI�
ABLE�i� signals in ITs reach their �nal values	 The interval
of time before CU is ready to do something more has to be
long enough for IT�n� to have the VARIABLE�n� signal sta�
bilized �delay of � IT for a binary variable� � IT for a ��valued
variable�			�	 At the end of this phase all speci�c literals are
marked by � values of VARIABLE�i� in the corresponding
ITs	 The CU resets the ILU to its initial condition by as�
serting CLEAR	 The control unit does not have the control
over signals VARIABLE�i� but since A� B� AND OR and
M remain stable� VARIABLE�i� will remain stable as well	
The execution of the instruction really begins with the as�
sertion of NEXT for the leftmost IT� NEXT�
�	 The �rst
literal that has VARIABLE�i� � true will become active	
�If many ITs are used to represent a literal� all of them will
have VARIABLE�i� � �� and all will become active	 Remem�
ber� however� that there is a signal RIGHT E
i� that is used
to distinguish between neighboring variables�	 Either the

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

�rst literal becomes active or signal NEXT may propagate
through one or more literals	

After short time� with stable states of STATE� CU transmits
resultant cube�s�� C �and D�� to the output�s�	 CU then
samples NEXT�n�	 If it is true there are no resultant cubes
to generate and the operation is �nished� if it is false� it
means that the signal NEXT has been stopped by a next
speci�c literal and the CU has to output the resultant cube	
If NEXT�n� �
 the CU generates the active edge of the
REQUEST signal to prepare for the next cycle	 This will
make the ITs in the active positions transit to the after state
and let the NEXT signal pass to the cells after it	 A new
cycle can begin for those literals in state before as soon as the
cells change from the active state to the after state	 Signal
READY informs CU that the resultant cubes C and D are
ready	 Such process is iterated until the NEXT � true signal
passes through the entire ILU and� as NEXT�n�� reaches the
CU	 At this point the operation is �nished	

Step�by�step� analyse how the described above mechanism
will work in CCM�	
	 What is the essence of generalization

��	 COMMUNICATION�BASED OPERATIONS	

Just as the DSP and AI architectures can be build from reg�
ular structures of few kinds of blocks through which data
vectors are transmitted� the principle of CCM is to allow for
pipelined�systolic execution of the most common operations
on clists and cclists	 Those operations include for instance
Cartesian products� dot products� permutations� and gener�
ations of all subsets or combinations of a clist	 Micro Pro�
gramming of CCM consists then in assigning values to two
kinds of control �elds�

P �	 those that describe the processing inside the CCM� for
example� operations on cubes and short clists as described
in section ��

P �	 those that describe the communication of CCM with
other processors and memories	

There are currently two styles of communication�

�a� Address Generator based� and

�b� Data Flow based	

���

Address Generators are used to send out the address of the
desired operand in Dual�PortMemories	 The data �ow style
is based on FIFOs	 In this case the CCM chip sends a
signal to a FIFO to get the next cube	 In most clist op�
erations CCM uses the Ping�Pong communication mechanism	
known from DSP� particularly FFT realizations	 The prin�
ciple of this mechanism is to transfer the data iteratively
through the CCM processor� fromMemory A to Memory B�
next fromMemory B to Memory A� next fromMemory A to
Memory B� etc	� until certain conditions are met	 With each
change of the transfer direction� the operations executed in
the processor and the data��ow in it can be modi�ed	 There
are also three main types of communication�based opera�
tions� ��� simple operations on a clist	 ��� simple operations on
two clists	 and ��� complex operations on a clist� NOTE� In this
document� denotes a clist� a cclist� � � a cube� % $ a group of
variables� &� �& a set� � a symbol� � is a negation� OP type�
OPER and OP CLIST are two�operand cube operations	

Explain on an example how the Ping�Pongarchitectureworks	
Show address generator sequences	

��	 SIMPLE OPERATIONS ON A CLIST	

��� Simple operations on a clist includeGlobal Reduction	 Mapping	
Pairing	 Selection	 Inversion	 Mapping with Insertion	 Inversion with
Insertion	 Replacement	 All Pairs with Reduction	 All Ordered Pairs	
and other operations	 Examples of some of those operations
on clist A � a�� a�� a� are as follows	

P �	 Global Reduction� in which a cube is created from a
clist�

REDUCTION �A� OPER� � �a� OPER a� OPER a��

Examples of such operations in cube calculus are the super�
cube of all cubes from the clist� and the intersection of all
cubes from the clist	

Show how to use these operations for executing�

�a� A �d B � where A and B are arbitrary arrays	

�b� A �nd B � where A and B are arbitrary arrays	

�c� A � B � where A and B are arbitrary arrays	

�d� A supercube B � where A and B are arbitrary arrays	

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

��	 MAPPING	 Mapping is an operation for which the clist pro�
duces a new clist of the same size�

MAPPING�A� OPER� � OPER�a��� OPER�a��� OPER�a��

Give examples of Mapping applications	

��	 PAIRING	 Pairing is an operation where the operation is
repeated on subsequent pairs of arguments and the results
are directly inserted in a new clist�

PAIRING�A� OPER� OP CLIST� � OPER�a�� a�� OP CLIST OPER�a�� ��

Show application of Pairing	

Sorting and sorting with absorption can be realized as repeated
pairing	 Show how	

��	 Reducing Operations such as�

�ab � a �� a�� �a � ��
� �ab � a �� a �b or � a � � �� a�
can be used as OP CLIST	 Repetitive Ping�Pong transfer of
a clist through a CCM with an exchange of neighbor cubes
�based on a speci�ed ordering relation between them� leads
to sorting the clist	 When the compare�exchange operation
also executes cube absorption� algorithms such as POSE �$
SOPE transformation by multiplication can be executed �
�	

Show architectures for such applications based on the SM�
CM� CCM�� CCM�	� and CCM�	
	

��	 INVERSION	 Inversion is an operation for which the clist
creates a new clist of the same size�

INVERSION�A� OPER� � OPER�a��� OPER�a��� OPER�a��

Give examples of Inversion	

�
	 ALL PAIRS OF A CLIST	

All Pairs of a Clist�

ALL PAIRS�A� OPER� � OPER�a�� a��� OPER�a�� a��� OPER� a�� a��
	

Give two applications from di�erent areas of a practical
application of this operation	 Write address generator se�
quences for them	

��

��	 SELECTION	

Selection is an operation known from CAM�based and as�
sociative processing	 It selects cube�s� for which a certain
Boolean function of literal�related predicates is satis�ed	 For
instance the operation�

age � ��

AND

character � "good

OR

properties � kwealth� good � contactsk

operates on cubes with numeric variable �age�	 symbol vari�
able �character�	 and set variable �properties� and selects all
people who either are older than �� and have good character�
or have wealth and good contacts among their properties	

Show practical architecture for data�base search based on
these principles	

��	 REPLACEMENT	 The similar operation of Replacement
does some cube operation on selected cubes such as adding
����tothenumericvariable�salary�oraddingsetvalue�good�contacts�tothevariable�properties��

Show application and realization	

��	 The following operations of Cube Pairing and Cube Pairing with
Reduction are executed on a clist and a cube�

CUBE CLIST PAIR�A� cube� OPER� �

OPER�a�� cube�� OPER�a�� cube�� OPER�a�� cube�

CUBE CLIST REDUCE�A� cube� OPER� OP CLIST� �

OPER�a�� cube� OP CLIST OPER�a�� cube� OP CLIST OPER�a�� cube�
E

Show applications in CCM�	
	

��	 SIMPLE OPERATIONS ON TWO LISTS	

Simple operations on two lists include Dot Product	 Vector Product	 Sim�
ple Cartesian Product	 Sequential Cartesian Product	 Convolution	 Vector
Product with Insertion	 Vector Product with Reduction	 and other	 Some
of those operations on clists A � a�� a�� a� and B � b�� b�� b�
are the following�

P �	 Dot Product� for which two clists create a cube�

��	CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

DOT PRODUCT�A� B� OPER� OP CLIST� �

�OPER�a�� b�� OP CLIST OPER�a�� b�� OP CLIST OPER�a�� b���

As an example� OPER can be a cube intersection operation� and
OP CLIST can be a cube supercube operation	

Show applications	

��	 VECTOR PRODUCT	

P �	 Vector Product� for which two clists create a clist�

VECTOR PRODUCT�A� B� OPER� �

OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b��

Discuss applications	

SIMPLE CARTESIAN PRODUCT	

P �	 Simple Cartesian Product� where two clists create a clist
�in particular representing a matrix� or a set of pairs��

SIMPLE CARTESIAN PRODUCT�A� B� OPER� �

OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b�� �

OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b�� �

OPER�a�� b�� � OPER�a�� b�� � OPER�a�� b��

This matrix is returned row by row� from left to right	

List applications	 Discuss Galois Field applications in particular	

��	 SEQUENTIAL CARTESIAN PRODUCT

P �	 Sequential Cartesian Product� is an operation where two
clists create a clist	 In this operation the OPER is applied se�
quentially to the result of the operation of A with the �rst cube
of B� the second cube of B� etc� as follows�

SEQUENTIAL CARTESIAN PRODUCT�A� B� OPER� OP CLIST�
�

CUBE CLIST REDUCE� �CUBE CLIST REDUCE� �CUBE CLIST REDUCE�A�
b�� OPER� OP CLIST� b�� OPER� OP CLIST�� b�� OPER� OP CLIST��

This is applied in sharp� intersection and union of clists	

Give examples of applications to CCM�	
	 Give a practical algo�
rithm to generate all primes that would use this method	

���

��	 CONVOLUTION	

P �	 Convolution	 A new clist of length �n� � is created accord�
ing to a convolution algorithm such as that used in polynomial
multiplication	 This operation is a base of many image�processing
operations	

Show any image processing operation using this concept	

��	 COMPLEX OPERATIONS ON SINGLE LISTS	

Complex operations on a single clist include the following� All per�
mutations	 All subsets	 All combinations	 and other	 Such operations�
which are in fact the mappings of tree�search algorithms to pipes�
are based on two coordinated pipes	 For instance� All Subsets Op�
eration uses the method from �
�
� to generate all subsets of a set	
This operation can be used to generate all cubes that include a
speci�ed cube	

Many other pipelined�systolic�data��owGMVCC operations can
be created that are especially useful for problem�solving and spec�
tral applications	

Illustrate each of the above operations with one application of
a practical sense	 Think �rst about logic operations and image
processing operations presented in the class	

��	 Can you invent other communication operations than all those
listed above

�
	 Can you explain in a systematic way how all such operations can
be created for vectors of GMVCC cubes

��	 Think about programming languages as APL� Prolog or LISP	
Show solutions	

��	 Think about mathematical and logical �set theory� notations in
learned at school and at university	 What communication opera�
tions are associated with them
 Show solutions	

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

ACKNOWLEDGMENTS

Marek Perkowski would like to thank many people who over
many years helped in one way or another to develop the ideas�
machines and software described in part in this document� by de�
signing chips� helping to �nd sources of information� contributing
criticizm and ideas� helping to write code and documentation	
Mr	 Haitham Akkary from Intel wrote VHDL code for CCM	
Dr	 Joseph Brandenburg of Intel Supercomputers helped me to
learn about parallel processing while I was a summer professor at
Intel in ����	 Prof	 Robert Brayton of U	C	Berkeley helped to
understand and appreciate many important issues in logic syn�
thesis especially related to SOP minimization	 Tuan Caominh of
Intel wrote the �rst assembler of CCM	 David Chalupsky of Intel
designed the �rst version of BIU	 Prof	 Maciej Ciesielski of Univ	
of Mass� Amherst� collaborated on ideas of graph coloring and
implicant generation	 Coen Englebarts from Holland developed
the �rst Xilinx prototype and put many of my reports and stu�
dents reports together	 Cecilia Espinosa of University of Santo
Tomas� Philippines� developed the Hough Transform on CCM	
Prof	 Bogdan Falkowski� Nanyang Technical University� helped
to understand better relation to spectral methods	 David Foote
from Intel developed second Xilinx prototype and have done soft�
ware comparisons	 Je� Fox� of GTE Labs made me interested in
EXOR logic� which become my source of inspiration for many
ideas	 Prof	 Andrzej Goralski from Polish Academy of Sciences
made me interested in history of computers and Ramon Lullus	
Prof	 Doug Hall of PSU improved presentation and helped to
clarify and simulate the design of CCM��	 Martin Helliwell� US
Navy� invented the binary primary and secondary crosslink oper�
ations	 Dr	 Wlodzimierz Holsztynski enthused me to massively
parallel VLSI and explained some ideas of his GAPP chip	 James
Howard invented the EXOR�based counter circuit	 PhuongMinh
Ho of Microsoft developed and simulated the �rst version of Sat�
is�ability Machine	 Dr	 Y	I	 Hsieh from Sharp Microelectronics
helped to understand di�erence between university research and
industrial product development	 He helpedme also to learn about
massively parallel DSP design and Ping�Pong architectures	 Luis
Kida from BIT invented the ring of asynchronous machines of
CCM��	 He helped also to write �
� ��
� and several additional
reports� and with Cecilia Espinoza designed the VLSI chip of
CCM��	 Prof	 Malgorzata Marek�Sadowska of U	C	 Santa Bar�

���

bara provided a very useful criticism of my ideas over the years	
Dieudonne Mayi from Microsoft helped with CCM�� chip and
many simulations	 Prof	 Ryszard Michalski of �then� MIT told
me about importance of set covering problem inmultivalued logic	
Prof	 Piotr Misiurewicz of WTU developed logic lab and equip�
ment that helped me to develop the prototypes of my �rst logic
machines	 Chintamani M	Patwardhan simulated several versions	
Jolanta Pawelska�Stepien worked with me on a never published
book about cube calculus	 Edmund Pierzchala of PSU proved
with his design that parallel CCM is not practical	 Keith Pirkl
wrote parallel software for several combinational operations of
CCM	 Prof	 David C	 Rine from Washington University helped
with literature on multi�valued logic which improved my under�
standing of many applications	 Dr	 Richard Rudell of Synopsys
was a creatively critical reviewer and helped to develop better
formulation of some ideas	 Dr	 Andisheh Sarabi from View�
logic Corp	 invented few cube operations and developed software	
Prof	 Tsutomu Sasao from Kyushu University� Japan� asked me
be an invited speaker at ISMVL in Sendai� which caused me to
prepare better presentations of machine and in result improved
it much	 Dr	 Ingo Schaefer of Mentor Graphics improved ring
mechanism and adapted to synchronous logic	 Ning Song from
Lattice Logic Corporation invented multivalued exorlink opera�
tion and removed bugs from equations	 Prof	 Wieslaw Traczyk
of WTU �rst introduced me to logic design and was my Ph	D	
supervisor	 Dr	 Pan Wu of AT#T Bell Labs developed few new
CC operations	 Lixin Zhou from Mentor Graphics helped with
VHDL simulation and developed testability analysis	

���CHAPTER 	� PROBLEMS FOR SELF�EVALUATION RELATEDTO UNIVERSAL LOGICM

Chapter �

LITERATURE

AAAAAAAAAAA

���

��� CHAPTER
� LITERATURE

Bibliography

��� Proc� ACM FPGA��� Workshop	 Berkeley� ����� Febr	 ����	

���

��� Algotronix� The CHS �"�� the World�s First Custom Com�
puter� ����	

bibitem� bibitemb� T	 Aoki� et al� Proc� IEEE ISMVL	 pp	
�������� May ����	

b� bibitema� Arnold� et al� �SPLASH ��� Report	

b� bibitema� A	 Ast� R	 Hartenstein� et al� �Novel High Per�
formance Machine Paradigms and Fast�Turnaround ASIC
Design Methods� A Consequence of� and� a Challenge to�
Field�programmable Logic�� in FPL ����

��� Aristotle� �Politics�� translated by Ernest Baker� Oxford Uni�
versity Press	 Oxford� England	

��� A	A	 Arkhangelskyaya� V	G	 Lazarev� and V	N	 Roginskii�
�The Mechanization of the Process of Synthesizing Relay
Networks�� Vses� Mos� Sov� Teorii Ust� Rel� Deist�	 p	 ��� ����	

��� A	A	 Arkhangelskyaya� V	G	 Lazarev� and V	N	 Roginskii�
�A Machine for the Synthesis of Contact Networks�� Prob�
Pered� Infor�	 Vol	 �	� pp	 ������ ����	

��� A	A	 Arkhangelskyaya� V	G	 Lazarev� et al	� �A Machine for
the Synthesis of Relay�Contact Networks�� Prob� Pered� Infor�	
No	 �	� pp	 ����� ���
	

��� M	 Amamiya� M	 Takesue� R	 Hasegawa� and H	 Mikami�
�Implementation and Evaluation of a List�Processing�
OrientedData Flow Machine�� Proc� ��th Intern� Symp� on Com�
puter Architecture	 pp	 �
���� ����	

���

��� BIBLIOGRAPHY

BBBBBBBBBBB

��� Ch	 Babbage� �Passages from the Life of a Philosopher�	 London�
Longman� Green� ����	 Reprinted in ���� by Dawsons of Pall
Mall �London�	 Gdzie ja to czytalem

b�

��
� P	 Barrie� P	 Cockshott� at al� �SPACE� A Scalable Cellular
Array Architecture�� in FPL ����

���� K	E	 Batcher� �Design of a Massively Parallel Processor��
IEEE Trans� on Computers� C����� ��

���� E	T	 Bell� �Men of Mathematics�� New York� Simon # Schus�
ter� ����	

���� V	E	 Benes� �Mathematical Theory of Connecting Networks
and Telephone Tra c�� Academic Press� ����	

b�

���� P	 Bertin� D	 Roncin� and J	 Vuillemin� �Introduction to
Programmable Active Memories�� Research Report No� �	 DEC
Paris Research Laboratory� ����	

���� Bic� L	� �Execution of Logic Programs on a Data�ow Archi�
tecture�� SIGARCH Newsletter	 Vol	 ��	� No	 �	� pp	 ��
�����
June ����	

���� D	 Bobrow� �A Symbolic Logic Machine to MinimizeBoolean
Functions of Four Variables� and Application to Switching
Circuits�� �� pp	� privately printed manuscript� Bronx ����	

���� M	 Boden� �Arti�cial Intelligence and Natural Man�	 New York�
Basic Books� ����	

���� B	 Boghosian and D	 Levermore� 'A cellular automaton for
Burgers� equation�� Complex Systems� �� ����� ��	

���� Bolt� Beranek an Newman� Inc	� �Development of a Butter�y
Test Bed�� Rep	 ����� Quaterly Technical Report	 Number ��
����	

��
� Boole� �George
� �The Mathematical Analysis of Logic�� Cam�
bridge� ����	 reprinted Oxford� ����� in Rush Rhees �ed	��
Studies in Logic and Probability� Watts and Co	� London�
����	

BIBLIOGRAPHY ��

���� G	 Boole� �The Laws of Thought�	 London ����� in Rhees� Stud�
ies in Logic	

���� A	 Borning� �Thinglab� A Constraint�Oriented Simulation
Laboratory�� Stanford University Computer Science Department�
Rep	 ������� ����	

���� D	 Brand� and T	 Sasao� �On the Minimization of And�Exor
Expressions�� �� FTC� pp	 � � �� ���
	

b� Bray ��

���� R	K	 Brayton� G	D	 Hachtel� C	T	 McMullen� and A	L	
Sangiovanni�Vincentelli� �Logic MinimizationAlgorithms for
VLSI Synthesis�� Kluwer Academic Publishers	 ����	

���� Y	 Breitbart� and R	 Vairavan� �The Computational Com�
plexity of a Class of Minimization Algorithms for Switch�
ing Functions�	 IEEE TC� Vol	C��
� No	 ��� December �����
pp	�������	

���� M	A	 Breuer� �ed	�� �Design Automation of Digital Sys�
tems�	 Vol	�� Prentice Hall� Englewood Cli�s� New Jersey�
����	

���� M	A	 Breuer� and K	 Shamsa� �A hardware router�� J�Digital
Systems� vol IV� issue �� pp	 �����
�� ����	

���� G	 Broomell� and J	R	 Heath� �Classi�cation Categories
and Historical Development of Circuit Switching Topologies��
Computing Surveys� ��� ���� pp	 ������	

���� M	F	 Brown� �Reduced Solutions of Boolean Equations��
IEEE Trans� on Computers	 Vol	 C���� pp	 �������� ���
	

��
� M	F	 Brown� �Single�parameter Solutions of Flip�Flop Equa�
tions�� IEEE Trans� on Computers	 Vol	 C��
� pp	 ��������
April� ����	

���� M	F	 Brown� �On a ConvenientDivision of Labor in the Gen�
eration of Prime Implicants�� Computers and Electrical Engineer�
ing	 Vol	 �	� pp	 �������� ����	

���� M	F	 Brown� and S	 Rudeanu� �Consequences� Consistency
and Independence in Boolean Algebra�� Notre Dame J� Formal
Logic	 Vol	 ��� No	 �	� pp	 ������ ����	

��	 BIBLIOGRAPHY

���� M	F	 Brown� �Segmental Solutions of Boolean Equations��
Discrete Applied Mathematics	 Vol	 �� pp	 ������ ����	

���� M	F	 Brown� and S	 Rudeanu� �Recurrent Covers and
Boolean Equations�� Proc� Colloq� on Lattice Theory	 Szeged�
Hungary� Aug	 ���
	 Published in Colloquia Mathematica Soci�
etatis Janos Bolyai	 North�HollandPub	 Co	� Vol	 ��� pp	 ������
����	

���� M	F	 Brown� and S	 Rudeanu� �Prime Implicants of Depen�
dency Functions�� Analele Universitatii Bucuresti	 Vol	 ��� No	
�	� pp	 ����� ����	

b�

���� F	M	 Brown� �Boolean Reasoning	
The Logic of Boolean Equations�� Kluwer Academic Publishers�
Boston�Dordrecht�London� ���
	

���� S	D	 Brown� R	J	 Francis� J	 Rose� Z	G	 Vranesic� �Field Pro�
grammable Gate Arrays�� Kluwer Academic Publishers

���� S	A	 Browning� �A Tree Machine�� Lambda Magazine �� �� pp	
�����	

���� J	A	 Brzozowski� and M	 Yoeli� �Digital Networks�� Engle�
wood Cli�s	 N	J	� Prentice�Hall� ����	

��
� B	 Burack� �An Electrical Logic Machine�� Science	 Vol	 �
��
June ��� ����� p	 ��
	

���� A	W	 Burks� D	W	 Warren� and J	B	 Wright� �An Analy�
sis of a Logical Machine Using Parenthesis�free Notation��
Mathematical Tables and other Aids to Computation	 Vol	 �	� April�
����� p	 ��	

CCCCCCCCCCC

���� C	R	 Carroll� �Hardware Path Finders�� Caltech VLSI Confer�
ence Proceedings� California Institute of Technology� ���
	

���� Cellular Automata and the Modeling of Complex Physical
Systems� Proc� of ���� Les Houches Worshop� Springer� Berlin�
����	

���� S	 Chakradhar� V	 Agrawal� and M	 Bushnell� �Neural Net
and Boolean Satis�ability Models of Logic Circuits�� IEEE
Design and Test of Computers	 October ���
	

BIBLIOGRAPHY ���

���� U	S	 Chakravarthy� S	 Kasif� M	 Kohli� J	 Minker� and D	
Cao� �Logic Programming on ZMOB� A Highly Parallel Ma�
chine� Departament of Computer Science� University of Mary�
land� College Park� MD	�

���� A	H	 Chan� �Using decision trees to derive the complement
of a binary functionwith multiple�valued inputs�� IEEE Trans�
on Comp�	 Vol	 C���� pp	 ��� � ���� Febr	 ����	

b�

���� P	K	 Chan� M	 Schlag� and M	 Martin� �BORG� A Recon�g�
urable Prototyping Board using Field�Programmable Gate
Arrays�� in FPGA ����

���� H	 Chang� �Bubbles for Relational Database�� Fourth Annual
Workshop on Computer Architecture for Non�Numeric Processing�
pp	 ��
����	

���� D	 Chyan� and M	A	 Breuer� �A placement algorithm
for array processors�� Proc���th Design Automation Conference	
pp	���� ���� June ����	

��
� M	 Ciesielski� FIND� Minimization Based on Graph Color�
ing�� Proc� of the International Conference on Computer Design
�
VLSI in Computers� ICCD���� October ����� pp	 �������	

���� E	F	 Codd� �Relational Completeness of Data Base Sublan�
guages�� in �Database Systems�� R	 Rustin �ed�� Prentice Hall	

���� M	 Cohn� �Switching Function Canonical Forms over Integer
Fields�� Ph�D� Dissertation	 Harvard University� Cambridge�
MA� Dec	 ���
	

���� M	 Cohn� �Inconsistent canonical forms of switching func�
tions�� IRE Trans� Electron� Comput�	

b�

���� Concurrent Logic� ApplicationNotes and other company ma�
terials� ����	

���� G	P	 Copeland� G	J	 Lipovski� and S	Y	W	 Su� �The Archi�
tecture of CASSM� A Cellular System for Non�numeric Pro�
cessing�� Proceedings of the �st Annual Symposium on Computer
Architectures� pp	 �������	

b��

��� BIBLIOGRAPHY

���� C	E	 Cox� and W	E	 Blanz� �GANGLION � A fast �eld pro�
grammable gate array gate array implementation of a con�
nectionist classi�er�� Report No� RJ ���� �������	 IBM Research
Division	 Almaden Research Centre� ���
	

���� L	 Csanky� M	 Perkowski� and I	 Schaefer� �Exact Minimiza�
tion of Mixed�Radix Exclusive Sums of Products and Gener�
alized Reed�Muller Forms�� IEE Transactions	 FIND	 ����
	

���� L	 Csanky� M	 Perkowski� and I	 Schaefer� �Canonical re�
stricted mixed�polarity exclusive sum of products and the
e cient algorithm for their minimization�� ISCAS����

b��

���� R	 Cucchhiara� et al� and T	S	 Cinotti� �FPGAs boost �exi�
bility and performance of a �ne grain mesh connected SIMD
array for computer vision applications�� in FPL ����

DDDDDDDDDDDD

��
� C	J	 Date� �An Introduction to Database Systems�� Addison�
Wesley� ����	

���� Daumas� �NAME
� �History of Technology�	 Vols	 I � II� �ED�
ITOR

�

���� M	 Davio� and J	P	 Deschamps� �Classes of Solutions of
Boolean Equations�� Philips Research Report	 Vol	 ��	� pp	 ����
���� October ����	

���� M	 Davio� J	P	 Deschamps� and A	 Thayse� �Discrete and
Switching Functions�	 McGraw�Hill Book Co	� Inc	� New York�
����	

���� M	 Davis� and H	 Putnam� �A Computing Procedure for
Quali�cation Theory�� J� Assoc� for Computing Machinery	 Vol	
�	� pp	 �
������ ���
	

���� R	 Davis� and D	 Thomas� �Geometric Arithmetic Parallel
Processor�� NCR� ����� preprint	

���� C	 Delobel� and R	G	 Casey� �Decomposition of a Data Base
and the Theory of Boolean Switching Functions�� IBM J� Res�
" Develop�	 Vol	 ��	� pp	 �������� ����	

BIBLIOGRAPHY ���

���� G	 De Michelli� A	L	 Sangiovanni�Vincentelli� and T	 Villa�
�Computer�Aided Synthesis of PLA�Based Finite State Ma�
chines�� Proc� IEEE ���� ICCAD� pp	 �������	 Sept	 ����	

���� G	 DeMicheli� R	 Brayton� and A	 Sangiovanni�Vincentelli�
�Optimal State Assignment for Finite State Machines�� IEEE
Trans� on CAD	 Vol	 CAD��� No	 �� July ����� pp	 �������	

���� M	M	 Denneau� �The Yorktown simulation engine�� In Proc�
��th Design Automation Conf	� pp	������ June ����	

��
� J	B	 Dennis� and K	S	 Weng� 'Applications of Data Flow
Computation to the Weather Problem�� in �High Speed
Computer and Algorithm Organization�� D	J	 Kuck� D	H	
Lawrie� and A	 Sameh �eds	�� Academic Press� pp	 �������	

���� J	B	 Dennis� �Data Flow Supercomputers�� Computer� ��� pp	
�����	

���� J	P	 Deschamps� �Maximal Classes of Solutions of Boolean
Equations�� Philips Research Reports	 Vol	 ��	� pp	 ������
� Au�
gust ����	

b��

���� D	L	 Dietmeyer� 'Logic Design of Digital Systems�� Allyn and
Bacon	 ����	

���� E	 Domany and W	 Kinzel� Equivalence of cellular automata
to Ising models and directed percolation� Phys� Rev� Lett	 ���
����� ���	

���� B	 Dunahm� and H	 Wang� �Towards Feasible Solutions to
the Tautology Problem�� Ann� Math� Logic� Vol	 �
	� pp	 ����
���� ����	

EEEEEEEEEEEE

b��

���� ELTEC GmbH� �An Important Step in Image Processing��
����	

���� C	 Espinosa� and M	A	 Perkowski� �Implementation of a
Hierarchical Hough Transform on a Personal Computer��
Preprint	 ����	

��� BIBLIOGRAPHY

���� C	 Espinosa� M	A	 Perkowski� �Hierarchical Hough Trans�
form for the Vision System of a Wheelchair Robot��
IPCCC���	 IEEE International Phoenix Conference on Computers
and Communications	

���� A	C	 Ewing� et al	� �Algorithms for Logical Design�� Comm�
" Electronics	 No	 ��	� pp	 ��
����� ����	

FFFFFFFFFFFF

��
� B	J	 Falkowski� and M	A	 Perkowski� �Algorithms for the
Calculation of Hadamard�Walsh Spectrum for Completely
and Incompletely Speci�ed Boolean Functions�� Proceedings
of IEEE International Phoenix Conference on Computers and Com�
munication� Scottsdale� Arizona� March ���
� pp	 �������	

���� B	J	 Falkowski� and M	A	 Perkowski� �Walsh Type Trans�
forms for Completely and Incompletely Speci�ed Multiple�
Valued Input Binary Functions� Proc� of the ��th ISMVL	 In�
ternational Symposium on Multiple�Valued Logic	 Charlotte� NC�
pp	 ������ May ���
	

���� B	J	 Falkowski� and M	A	 Perkowski� �Algorithm and Archi�
tecture for Gray Code Ordered Fast Walsh Transform�� Proc�
of the ISCAS���	 International Symposium on Circuits and Systems	
New Orleans� ��� May ���
� pp	 ���������	

���� B	J	 Falkowski� and M	A	 Perkowski� �A Family of All Es�
sential Radix�� Addition�Subtraction Multi�Polarity Trans�
forms� Algorithms and Interpretations in Boolean Domain��
Proc� of the ISCAS���	 International Symposium on Circuits and Sys�
tems	 New Orleans� ��� May ���
� pp	 ���������	

���� B	J	 Falkowski� and M	A	 Perkowski� �Essential Relations
between Classical and Spectral Approaches to Analysis� Syn�
thesis and Testing of Completely and Incompletely Speci�ed
Boolean Functions�� Proc� of the ISCAS���	 International Sympo�
sium on Circuits and Systems	 New Orleans� ��� May ���
� pp	
���������	

���� B	J	 Falkowski� and M	A	 Perkowski� �One More Method
for the Calculation of the Hadamard�Walsh Spectrum for
Completely and Incompletely Speci�ed Boolean Functions��
International Journal of Electronics	 Vol	 ��� No	 �� pp	 �����
��
Nov	 ���
	

BIBLIOGRAPHY ���

���� B	 Falkowski� I	 Schaefer� and M	 Perkowski� �A Fast Com�
puter Algorithm for the Generation of Disjoint Cubes for
Completely and Incompletely Speci�ed Boolean Functions��
Proc� of the Midwest Symp� on Circuits and Systems	 August ���
�
Alberta� Canada� pp	 ���������	

���� B	J	 Falkowski� and M	A	 Perkowski� �On the Calculation
of Generalized Reed�Muller Canonical Expansions from Dis�
joint Representation of Boolean Functions�� Proc� of the ��rd
Midwest Symp� on Circuits and Systems� August ���
� Alberta�
Canada� pp	 ���������	

���� B	J	 Falkowski� and M	A	 Perkowski� �An Algorithm for the
Generation of Disjoint Cubes for Completely and Incom�
pletely Speci�ed Boolean Functions�� International Journal of
Electronics	 Vol	 �
� No	 �� pp	 �������� March ����	

���� B	J	 Falkowski� and M	A	 Perkowski� �One More Way to
Calculate Generalized Reed�Muller Expansions of Boolean
Functions�� International Journal of Electronics	 Vol	 ��� No	 ��
pp	 �������� September ����	

��
� B	J	 Falkowski� and M	A	 Perkowski� �An Algorithm for the
Generation of GRM forms�� International Journal of Electronics�
September� ����	

���� B	 Falkowski� I	 Schaefer� and M	 Perkowski� �E�ective
Computer Methods for the Calculation of Rademacher�
Walsh Spectrum for Completely and Incompletely Speci�ed
Boolean Functions�� IEEE Trans� on Computer�Aided Design	

����	

���� D	 Farmer� T	 To�oli� and S	 Wolfram� �Eds� Cellular au�
tomata� Proceedings of the interdisciplinary workshop� Phys�
ica D� �
 ������ ����	

���� J	 Florine� �Optimization of Binary Functions with a Special�
Purpose Electronic Computer�� Automation and Remote Con�
trol	 Vol	 ��	� pp	 �������� ����	

���� J	 Florine� �The Design of Logical Machines�� Crane	 Russak
" Co�	 New York� ����	

��� BIBLIOGRAPHY

���� D	 Foote� 'The Design� Realization and Testing of the ILU
of the CCM� Using FPGA Technology�� Master Thesis� Port�
land State University� Department of Electrical Engineering�
����	

b��

���� J	A	B	 Fortes� K	S	 Fu� and B	J	 Wah� �Systematic Ap�
proaches for Algorithmically Speci�ed Systolic Arrays in
Computer Architecture� Concepts and Systems� Milutinovic
ed�	 North Holland� ����	

���� R	 Freivald� �Probabilistic Machines Can Use Less Running
Time�� IFIP ��� North�Holland� Amsterdam� ����� pp	 ����
���	

���� U	 Frisch� B	 Hasslacher� and Y	 Pomeau� Lattice�gas au�
tomata for the Navier�Stokes equation� Phys� Rev� Lett� ���
����� ��
�	

���� M	 Fujita� Y	 Matsunaga� T	 Kakuda� and K�Ch	 Chen� �On
Application of Boolean Uni�cation to Combinational Logic
Synthesis�	 Proc� Intern� Workshop on Logic Synthesis� May ���
�
����	 Vol �	

��

� M	 Fujita� Y	 Tamija� Y	 Kukimoto� and K�Ch	 Chen� �Ap�
plication of Boolean Uni�cation to Combinational Logic Syn�
thesis�	 Proc� ICCAD���� Nov	 ����� pp	��
����	

��
�� H	 Fujiwara� Logic Testing and Design for Testability	 Computer
System Series� The MIT Press� ����	

b��

��
�� F	 Furtek� G	 Stone� and I	W	 Jones� �Labyrinth� A Homo�
geneous computational medium�� Proc� IEEE Custom Integrated
Circuits Conference	 May ���
� paper ��	�	

b��

��
�� F	 Furtek� �An FPGA Architecture for Massively Parallel
Computing�� in FPL����

GGGGGGGGGG

��
�� M	 Gardner� �Logic Machines and Diagrams�� McGraw�
Hill� ����	 Harvester� Brighton� ����	 �FIND IT� IT IS
GREAT� I SAW IT IN MINNESOTA BUT NOT HERE�	

BIBLIOGRAPHY ���

b��

Gare ��

��
�� M	R	 Garey� and D	S	 Johnson� �Computers and In�
tractability	 A Guide to the Theory of NP�Completeness��
W�H� Freeman and Company	 San Francisco ����	

��
�� H	L	 Garner� and J	S	� Squire� �Iterative Circuit Comput�
ers� in �Computer Organization�� Barnum �ed	�� Spartan
Books	 ����	

��
�� M	A	 Gavrilov� and A	D	 Zakrevskii �eds	�� �LYaPAS� A
Programming Language for Logic and Coding Algorithms��
Academic Press	 New York� ����	

��
�� M	R	 Genesereth� and N	J	 Nilsson� �Logical Foundations
of Arti�cial Intelligence�� Morgan Kaufmann	 Los Altos� CA�
����	

b��

��
�� G	B	 Gerace� et al� �TOPI�A Special�Purpose Computer
for Boolean Analysis and Synthesis�� IEEE TC	 Vol	 C��
�
pp	 �������� Aug	 ����	

���
� P	 Gilliam� �A Practical Parallel Algorithm for the Mini�
mization of Kronecker Reed�Muller Expansions��M�S� Thesis�
Portland State Univ	� August ����	

b�

����� M	 Gokhale� W	 Holmes� A	 Kopser� S	 Lucas� R	 Minnich�
D	 Sweely� and D	 Lopresti� �Building and Using a Highly
Parallel Programmable Logic Array�� in FPL ���	

����� H	H	 Goldstein� �The Computer from Pascal to von Neumann�	
Princeton University Press� Princeton� ����	

����� L	 Gomez�Gonzalez� �Estudio Teorico� Concepcion y Real�
izacion de un Sistema Electronico Para Simpli�car Funciones
Logicas�� Dissertation	 Dpto	 Electricidad y Electronica� Fac�
ultad de Ciencias� Universidad de Granada� Spain� ����	

����� R	L	 Goodstein� �Development of Mathematical Logic�	 New
York� Springer Verlag� ����	

��� BIBLIOGRAPHY

����� A	 Gottlieb� and J	T	� Schwartz� �Networks and Algorithms
for Very�Large�Scale Computation�� Computer� January �����
pp	 �����	

����� A	 Gottlieb� R	 Grishman� C	P	 Kruskal� K	P	 McAuli�e�
L	 Rudolph� and M	 Snir� �The NYU Ultracomputer � De�
signing an MIMD SharedMemory Parallel Computer�� IEEE
Trans� on Computers� C���� �� pp	 �������	

b��

����� J	P	 Gray� and T	A	 Kean� �Con�gurable Hardware� A New
Paradigm for Computation�� Proc� Decennial Caltech Conference
on VLSI	 Pasadena� CA� March ����	

����� D	 Green� Modern Logic Design	 Electronic Systems Engineer�
ing Series� ����	

����� H	 Gutowitz� �Ed�� Cellular Automata� MIT�North�
Holland� ����	 �reprints from Physica D�� publishedby Center
for Nonlinear Studies at Los Alamos National Laboratory�

HHHHHHHHHHHHHHHh

���
� P	R	 Halmos� �Lectures on Boolean Algebras�� Springer�
Verlag	 New York� ����	

b��

����� R	 Halverson� �Hawaii Parallel Computer Project� the
Boolean Processor�� in FPL����

����� P	L	 Hammer� and S	 Rudeanu� �Boolean Methods in Op�
erations Research�� Springer�Verlag	 New York� ����	

����� M	A	 Harrison� �Introduction to Switching and Automata
Theory�� McGraw�Hill	 New York� ����	

����� R	W	 Hartenstein� K	 Schmidt� et al� �A Novel Compi�
lation Technique for a Machine Paradigm Based on Field�
Programmable Logic�� in FPGAs	 pp	 ������
	

b��

����� R	W	 Hartenstein� and K	 Lemmert� �A CHDL�based
CAD�system for the synthesis of Systolic Architectures��
Proc� Intl� Symposium on Hardware Description Languages and their

BIBLIOGRAPHY ��

Applications	 Washington D	C	� North Holland Publ	 Com�
pany� Amsterdam ����	

b��

����� R	W	 Hartenstein� A	G	 Hirschbiel� and M	 Weber� �A
Novel Paradigm of Parallel Computation and its Use to Im�
plement Simple High Performance Hardware�� Proc� of Joint
Conference on Vector and Parallel Processing	 CONPAR ��� VAPP
IV� Zurich� Sept� ���
	

b��

����� R	W	 Hartenstein� A	G	 Hirschbiel� and M	 Weber�
�XPUTERS� An Open Family of Non�von Neumann Archi�
tectures�� Nr� ���!��	 Universitaet Kaiserlautern� Fachbere�
ich Informatik� Postfach �
��� D����
 Kaiserlautern� ����	

b��

����� R	W	 Hartenstein� et al� �A Novel Paradigm of Parallel
Computation and its use to implement simple High Perfor�
mance Hardware�� Intl� Conf� on Information Technology	 Tokyo�
Japan	 Oct	 ���
	

����� R	W	 Hartenstein� K	 Schmidt� H	 Reinig� and M	 Weber�
�A Novel Compilation Technique for a Machine Paradigm
Based on Field�Programmable Logic�� in FPGAs	 pp	 ����
��
	

���
�

����� R	W	 Hartenstein� et al� �The machine Paradigm of Xput�
ers and its Application to Digital Signal Processing�� Proc� of
���� Intern� Conf� on Parallel Processing	 St	 Charles� Oct	 ���
	

b��

����� R	W	 Hartenstein� et al� �A Novel ASIC Design Approach
Based on New Machine Paradigm�� IEEE Journal of Solid�State
Circuits	 July ����� Vol	 ��� Nr	 �� pp		

����� R	 Hartley� �The Stanhope Demonstrator�� Mind	 Vol	 ��
April ����	

����� P	B	 Hawthorn� and D	 DeWitt� �Performance Analysis of
Alternative Database Machine Architectures�� IEEE Trans�
on Software Engineering SE��� �� pp	 ������ ����	

��	 BIBLIOGRAPHY

����� L	S	 Haynes� R	L	 Lau� D	P	 Siewiorek� and D	W	 Mizell�
�A Survey of Highly Parallel Computing�� Computer� January
����	

b�

����� B	 Heeb� and C	 P�ster� �Chameleon� A Workstation of a
Di�erent Colour�� in FPL ����

����� M	 Helliwell� and M	A	 Perkowski� �A Fast Algorithm to
Minimize Multi�Output Mixed�Polarity Generalized Reed�
Muller Forms�� Proc� ���th ACM!IEEE Design Automation Con�
ference	 paper ��	�� pp	 �������� June ��� June ��� ����	

����� M	 Helliwell� and M	A	 Perkowski� �GAL�based Hardware
Accelerator to Find Exact Minimum Solutions for Mixed�
Polarity Generalized Reed Muller Forms�� report PSU�

����� C	E	 Hewitt� �The Apiary Network Architecture for Knowl�
edgeable Systems�� Proceedings of Lisp Conference� Stanford� pp	
�
������ ���
	

���
� W	D	 Hillis� �The Connection Machine�	 The MIT Press� Cam�
bridge� Massachusetts� ����	

����� D	R	 Hofstadter� �Goedel	 Escher	 Bach
 An Eternal Golden
Braid�	 Vintage Books� ���
	

����� A	 Hodges� �Alan Turing
 The Enigma of Intelligence�	 Unwin�
London� ����	

Hong��

����� S	J	 Hong� R	G	 Cain� and D	L	 Ostapko� �MINI� A heuris�
tic approach for logic minimization�� IBM J� Res� Develop�	 Vol	
��� pp	 ��� � ���� Sept	 ����	

����� B	 Ho� �NAND Synthesis of Multiple�Output Combina�
tional Logic Using Implicants Containing Output Variables��
Ph�D� Dissertation	 U	 of Wisconsin� ����	

b��

�����

����� P	M	 Ho� and M	A	 Perkowski� �Systolic Architecture for
Solving NP�Hard Combinational Problems of Logic Design
and Related Areas�� Proc� ISCAS���	 pp	 ���
������ ����	

BIBLIOGRAPHY ���

����� P	M	 Ho� and M	A	 Perkowski� �Evaluation of Systolic Ar�
chitecture for Solving NP�Hard Combinatorial Problems of
Logic Design and Related Areas�� Report� PSU	

b�� P	M	 Ho� and M	A	 Perkowski� �Massively Parallel Pro�
cessors for Solving Combinational Problems�� Portland State
University� Portland� OR� ����	

����� F	 Hohn� �Applied Boolean Algebra�� Macmillan	 Second
Edition� New York # London� ����	

����� D	A	 Hu�man� �Solvability Criterion for Simultaneous Log�
ical Equations�� MIT Research Lab� of Electronics	 Quarterly
Progress Report No	 ��� AD �������� �� Jan	 ����	

���
� S	L	 Hurst� The Logical Processing of Digital Signals	 Crane�
Russak	 New York and Edward Arnold� London� ����	

����� Hwang� K	� Briggs� F	A� �Computer Architecture and Par�
allel Processing� McGraw�Hill� New York� ����	

IIIIIIIIIIII

����� T	 Ibaraki� �Theoretial comparisons of search strategies in
branch�and�bound algorithms�� Intern� Journ� Comp� Sci�	 �
������� pp	 �������	

����� M	E	 Isenman� and D	E	 Shasha� �Performance and Archi�
tectural Issues for StringMatching�� IEEE JSSC	 Vol	 ��� No	
�� pp	 ������
� Febr	 ���
	

JJJJJJJJJJJJ

����� P	C	 Jackson� �Introduction to Arti�cial Intelligence�	 New York�
Petrocelli Charter� ����	

����� W	S	 Jevons� �The Principles of Science�	 Dover� New York�
����	

����� W	S	 Jevons� �Pure Logic or the Logic of Quality Apart
from Quantity�� Stanford	 London� ����	

����� W	S	 Jevons� �On the Mechanical Performance of Logical
Inference�� Philosophical Transactions of the Royal Society	 CLX�
���
	 pp	 �������	

b�� John xx

��� BIBLIOGRAPHY

����� D	 Johnson� �The NP�Completeness Column� An Ongoing
Guide�	 Journal of Algorithms	 Academic Press� each issue	

KKKKKKKKKKKKKK

����� W	C	 Kabat� and A	S	 Wojcik� �Automated Synthesis of
Combinational Logic Using Theorem�Proving Techniques��
Proc� �� Int� Symp on Multiple�Valued Logic	 pp	 �������� May
����	 IEEE Trans	 on Comp	 Vol	 C���� No	 �	� pp	 ��
�����
July ����	

���
� D	 Kalish� and R	 Montague� �Logic� Techniques of Formal
Reasoning�� Harcourt Brace Jovanovich	 New York� ����	

����� R	 Kane� and S	 Sahni� �A systolic design rule checker�	 TR�
������ Computer Science Dept	� University of Minnesota�
July ����	

b��

����� Ch	 J	 Kappler� �The MusiCAL Lambda Reduction Ma�
chine�� in FPL ����

����� R	M	 Karp� �Reducibility Among Combinatorial Prob�
lems�	 Complexity of Computer Computation� Plenum Press�
ed	 Miller� pp	 ����
�� New York� ����	

����� V	I	 Kashirov� et al	� �Problems in Realizing the L�
Machine�� Dokl� Rev� Ustr� Kon� Avt	 p	 ���� ����	

b��

����� E	 Katona� �Cellular Processing�� Chapter � in �Fuzzy�
Holographic� and Parallel Intelligence� By B	 Soucek and the
IRIS Group� pp	 �������� John Wiley # Sons� ����	

b��

����� T	 Kean� �Using CAL to Accelerate Maze Routing of CAL
Designs�� in FPL ����

����� P	 Kerntopf� and A	 Michalski� �Selected Problems in Syn�
thesis of Combinatorial Logic Circuits�� PWN� Warsaw� ����
�in Polish�	

����� L	 Kida� �Documentation of Cube Calculus Machine�� PSU
EE Dept	 Report� ����

b��

BIBLIOGRAPHY ���

�����

���
� L	 Kida� and M	A	 Perkowski� �The Cube Calculus Ma�
chine� A Ring of Asynchronous Automata to Process
Multiple�Valued Boolean Functions�� Proc� of the ISCAS���	
International Symposium on Circuits and Systems	 Sheratons on
Harbor Island� San Diego� CA� May �
���� ����� pp	 �
��
��
	

����� L	 Kida� �Associative Processing Implemented with
Content�Addressable Memories�� M	S	 Thesis� PSU� ����	

����� S	 Kleene� �Introduction to Mathematical Logic�	 New York�
John Wiley� ����	

����� G	J	 Klir� �Introduction to the Methodology of Switching
Circuits�� D� Van Nostrand Co�	 New York� ����	

����� Koestler� A	� �The Art of Creation�	 New York� Dell� ����	

����� Kung� H	T	� �Why Systolic Architectures�� IEEE Computer	
pp	 ������ January ����	

����� Kung� H	 T	� and P	L	 Lehman� �Systolic �VLSI� arrays
for relational database operations�� International Conference on
Management of Data	 May ���
	

����� H	T	 Kung� and C	E	 Leiserson� �Systolic Arrays�� in �In�
troduction to VLSI Systems�� C	A	 Mead and L	A	 Conway�
Addison�Wesley�

����� Kung� H	T	� �Special Purpose Devices for Signal and Im�
age Processing� An Opportunity in Very Large Scale Inte�
gration �VLSI��� SPIE� Vol	���� Real Time Signal Processing
III� pp	������ ���
	

����� S	Y	 Kung� �On Supercomputing with Systolic�Wavefront
Array Processors�� Proc� IEEE� Vol	��� pp	�������� July ����	

���
� Y	S	 Kuo� �GeneratingEssential Primes for a Boolean Func�
tion with Multiple�Valued Inputs�� IEEE Trans� on Computers�
Vol	 C���� pp	 �������� March ����	

LLLLLLLLLLLLLL

�
� BIBLIOGRAPHY

����� T	 Lang� and H	S	 Stone� �A Shu(e�Exchange Network
with Simpli�ed Control�� IEEE Transactions on Computers� C�
��� �� pp	 ������ ����	

����� V	G	 Lazarev� and Yu	 L	 Sagalovich� �The Switchboard of
a Machine for Synthesizing Contact Networks�� Prob� Pered�
Infor�	 Vol	 �� pp	 �������� ����	

����� V	G	 Lazarev� and P	P	 Parkhomenko� �A Machine for the
Process of Analysis and Synthesis of the Structure of Relay
Devices�� Proc� of the First Intern� Congress of the Intern� Feder�
ation of Automatic Control� Moscow� ���
� �Butterworth� Lon�
don� ������ Vol	 �� pp	 �������	

����� V	G	 Lazarev� O	 A	 Oganov� and V	N	 Roginskii� �Funda�
mentals in the Design of Contactless Machines for the Syn�
thesis of Relay�Contact Networks�� Prob� Pered� Infor�	 Vol	 ��
pp	 ����� ����	

b��

����� H	 V	 D	 Le� and M	 A	 Perkowski� �A New General Pur�
pose Systolic Architecture for Matrix Computations�� Proc�
of the Intern� Conf� on Computer and Information Systems	 Toronto�
Ontario� Canada� May ������ ����� pp	 �������	

����� H	V	D	 Le� and M	A	 Perkowski� �Size Independent Im�
plementation of Matrix Operations on TASA � A Two�
Dimensional Array Matrix Architecture�� Proc� of the IEEE
International Phoenix Conference on Computers and Communication	
Scottsdale� Arizona� March ���
� pp	 ������
	

����� H	 V	 D	 Le� and M	 A	 Perkowski� �Realization of Exten�
sions to Faddev Algorithm on Array of SIMD Processors��
Proc� of the ISCAS���	 International Symposium on Circuits and Sys�
tems	 New Orleans� ��� May ���
� pp	 ���������	

����� R	M	 Lea� �SCAPE� a Single�chip Array Processing Ele�
ment for Signal and Image Processing�� IEE Proceedings	 Pt	
E	� Vol	 ���� No	 �	� pp	 �������� May ����	

����� R	M	 Lea� �VLSI and WSI Associative String Processor
for Structured Data Processing�� IEE Proceedings	 Pt	 E	� Vol	
���� No	 �	� pp	 �������� May ����	

BIBLIOGRAPHY �
�

���
� R	M	 Lea� �ASP� A Cost�e�ectiveParallelMicrocomputer��
IEEE Micro	 Vol	 �� No	 �� pp	 �
���� October ����	

�����

����� E	 B	 Lee� andM	 Perkowski� �A new approach to structural
synthesis of automata�	 University of Minnesota	 Department of
Electrical Engineering	 preprint� ����	

�����

����� E	 B	 Lee� and M	 Perkowski� �Concurrent Minimization
and State Assignment of Finite State Machines�� Proceedings
of the ���� Intern� Conf� on Systems	 Man	 and Cybernetics	 IEEE�
Halifax� Nova Scotia� Canada� October � � ��� ����	

����� C	Y	 Lee� �Intercommunicating Cells� Basis for a
Distributed�Logic Computer�� Proc� of ���� Fall Joint Computer
Conference�

����� C	Y	 Lee� and M	C	 Paul� �A Content�Addressable
Distributed�Logic Memory with Applications to Information
Retrieval�� IEE Proceedings� ��� pp	 �������� ����	

����� R	S	 Ledley� �Mathematical Foundations and Computa�
tional Methods for a Digital Logic Machine�� J� Ops� Res� Soc�
Amer�	 Vol	 �� pp	 �������� ����	

����� R	S	 Ledley� �Digital Computational Methods in Symbolic
Logic� with Examples in Biochemistry�� Proc� Nat�l� Acad� Sci�	
Vol	 ��	� pp	 �������� July ����	

����� R	S	 Ledley� �Logical Aid to Systematic Medical Diagnosis
�and Operational Simulation in Medicine��� J� Ops� Res� Soc�
Amer�	 Vol	 �� No	�	� p	 ���� Aug	 ����	

��

� R	S	 Ledley� �Reasoning Foundations of Medical Diagno�
sis�� Science	 Vol	 ��
� No	 ����� pp	 ����� � July ����	

��
�� R	S	 Ledley� �Digital Computer and Control Engineering��
McGraw�Hill Book Co�	 New York� ���
	

��
�� R	S	 Ledley� �Use of Computers in Biology and Medicine��
McGraw�Hill Book Co�	 New York� ���
	

��
�� G	 Leibniz� �On the Art of Combination�	 in �Parkinson Logical
Papers�	

�
� BIBLIOGRAPHY

��
�� Ch	E	 Leiserson� �FAT�TREES� Universal Networks for
Hardware�E cient Supercomputing�� ���� International Con�
ference on Parallel Processing	 IEEE Computer Society� August
����	

b��

��
�� A	 Linde� T	 Nordstroem� and M	 Taveniku� �Using FPGAs
to Implement a Recon�gurable Highly Parallel Computer��
in FPL ����

��
�� L	 Loewenheim� �Uber die Au�oesung von Gleichungen im
Logischen Gebietekalkul�� Math� Ann� Vol	 ��	� ���
� pp	 ����
�
�	 Translation
 �The Solution of Equations in the Calculus
of Logic�� AFCRL����
���� Air Force Cambridge Research
Laboratories� April ����	

��
�� D	 Luckham� �The Resolution Principle in Theorem�
Proving�� Machine Intelligence I	 �N	L	 Collins and D	 Michie�
Eds	�� Oliver " Boyd	 Edinburgh # London� ����	

b��

��
�� W	 Luk� and I	 Page� �Parametrising Designs for FPGAs��
in FPGAs	 pp	 �������	

��
�� Raymon Lullus� �a	k	a	 Ramon Llull�� �Ars Major�� �Ars
Generalis�� �Ars Veritatis Inventiva��

MMMMMMMMMMMMMM

���
� G	 Mago� �A Network of Microprocessors to Execute Re�
duction Languages� Part I�� Intern� Journal of Computer and
Information Sciences� �� �� pp	 �������	

����� J	 Maluszynski� and H	J	 Komorowski� �Uni�cation�free
Execution of Logic Programs�� Proc� of the ���� Symposium on
Logic Programming	 July ������ Boston� MA� pp	 ������ �����

����� E	 Marczewski� �Independence in Algebras of Sets and
Boolean Algebras�� Fundamenta Mathematicae	 Vol	 ��� pp	 ����
���� ���
	

b��

����� M	A	 Marin� �Investigation of the Field of Problems for the
Boolean Analyzer�� Ph�D� Dissertation	Univ	 of California� Los
Angeles� ����	 early version in Report No	 �����	

BIBLIOGRAPHY �
�

����� A	 Marquand� �A Logical Diagram for N terms�� Philosoph�
ical Magazine	 Vol	 ��	� pp	 ������
� ����	

����� A	J	 Martin� �A Synthesis Method for Self�Timed VLSI
Circuits�� Proc� ��th Annual International Symposium of Computer
Architecture	 May �
�June �� ����� Honolulu� Hawaii� pp	
�������	

����� A	J	 Martin� S	M	 Burns� T	K	 Lee� D	 Borkovic� and P	J	
Hazewindus� �The First Asynchronous Microprocessor� The
Test Results�� Proc� ��th Annual International Symposium of Com�
puter Architecture	 May ���June �� ����� Jerusalem� Israel� pp	
�����
	

����� U	 Martin� and T	 Nipkow� �Uni�cation in Boolean Rings��
Journal of Automated Reasoning	 Vol	 �	� pp	 �������� ����	

����� U	 Martin� and T	 Nipkow� �Boolean Uni�cation � the Story
so Far�� Journal of Symbolic Computation	 Vol	 �	� pp	 ��������
����	

����� W	 Mays� and D	 G	 Prinz� �A Relay Machine for the
Demonstration of Symbolic Logic�� Nature	 ���� ���
� p	���	

���
� W	 Mays� �Note on the Exhibition of Logical Machines��
Mind	 Vol	 �
� April ����� p	 ���	

����� W	 Mays� and D	 Henry� �Exhibition of the Work of W	
Stanley Jevons�� Nature	 ��
� ����� pp	�������	

����� W	 Mays� and D	 Henry� �Jevons and Logic�� Mind	 LXII�
����� pp	�����
�	

����� H	 McCall� �Symbolic Reasoning�� Mind	 ���
� p	 ��	

b��

����� J	T	 McCall� J	G	 Tront� F	G	 Gray� R	T	 Haralick� and
W	M	 McCormack� �Parallel Computer Architectures and
Problem Solving Strategies for the Consistent LabelingProb�
lem�� IEEE TC�	 Vol	 C���� No	 ��� Nov	 ����	

����� C	 Mead� and L	 Convay� �Introduction to VLSI Systems�	
Addison�Wesley� ���
	

����� Mentor� Patent for emulation machine� ����	

�
� BIBLIOGRAPHY

����� R	E	 Michalski� and R	E	 Flick� �Automated Construction
of Classi�cations� Conceptual Clustering Versus Numeri�
cal Taxonomy�� Pattern Matching and Machine Intelligence� July
����� pp	 ��
����� ����	

����� M	 Minsky� �Computation� Finite and In�nite Machines��
Prentice�Hall� ����	

����� M	 Minsky� and S	 Papert� �Perceptrons�� MIT Press� sec�
ond edition� ����	

���
� M	 Minsky� �K�Lines� A Theory of Memory�� Mas�
sachusetts Institute of Technology Arti�cial Intelligence Lab�
oratory Memo ���� Reprinted in Cognitive Science� ���
� pp	
�������	

����� D	 Mithani� �Implementation of NAND Synthesis Using
Implicants Containing Output Variables�� M�S� Thesis	 Dept	
Electr	 Engng	� Univ	 of Wisconsin� ����	

����� E	F	 Moore� �Sequential Machines� Selected Papers��
Addison�Wesley� ����	

b��

����� W	 Moore� and W	 Luk� �FPGAs�� Edited from the Ox�
ford ���� International Workshop on Field Programmable
Logic and Applications� Abingdon EE " CS Books	 Abingdon
England�����	

����� P	 and E	 Morrison� �Calculating Engines�	 �WHERE TO
FIND IT
�

����� P	 Morrison� and J	 Morrison� �Eds	�� �Charles Babbage and
His Calculating Engines�	 New York� Dover Publications� ����	

NNNNNNNNNNNN

����� T	A	 Nodes� J	L	 Smith� and R	 Hecht�Nielsen� �A Fuzzy
Associative Memory Module and its Applications to Signal
Processing�� Proc� Intern�	 Conf� on Acoustics Speech and Signal
Processing	 ICASSP	 pp	 ���������� New York� ����	

����� A	 Newell� J	C	 Shaw� and H	A	 Simon� �Empirical Explo�
rations with the Logic Theory Machine� A Case Study in
Heuristics�� Proceedings of the Western Joint Computer Confer�
ence	 ��� ����� in Feigenbaum and Feldman� �Computers and
Thought�� p	 ���	

BIBLIOGRAPHY �

����� A	 Newell� J	C	 Shaw� and H	A	 Simon� �The Logic The�
ory Machine�� in Feigenbaum and Feldman� �Computers and
Thought�	 pp	 ��� �

	

����� A	 Newell� and H	A	 Simon� �GPS� A Program that Simu�
lates Human Thought�� in Feigenbaum and Feldman� �Com�
puters and Thought�	 p	 ���	

���
� L	 Nguyen� M	 Perkowski� and N	 Goldstein� �PALMINI
� Fast Boolean Minimizer for Personal Computers�� Proc� of
the ��th Design Automation Conference	 June �� � July �� �����
Miami� Florida� Paper ��	�� pp	 �������	

����� J	 Nievergelt� J	C	 Farrar� and E	M	 Reingold� �Computer
Approaches to Mathematical Problems�	 Englewood Cli�s� N	J	�
Prentice Hall� ����	

OOOOOOOOOOOOOOOoo

����� S	E	 Orcutt� �Implementation of Permutation Functions in
ILLIAC IV�Type Computers�� IEEE Trans� on Computers� C�
��� �� pp	�������� ����	

����� J	V	 Old�eld� �Logic Programms and an Experiment Ar�
chitecture for their Execution�� IEE Proc� Pt�E�	 Vol	 ���� No	
�� pp	 �������� May ����	

����� J	V	 Old�eld� Ch	 Storman� andM	 Brule� �The Application
of VLSI Content�Addressable Memories to the Acceleration
of Logic Programming Systems�� Proc� of VLSI and Computers	
First Intern� Conf� on Computer Technology	 Systems	 and Applica�
tions	 pp	 ����
� IEEE� Hamburg� May ������ ����	

����� J	V	 Old�eld� R	D	 Williams� and N	E	 Wiseman� �Content�
Addressable Memories for Storing and Processing Recur�
sively Subdivided Images and Trees�� Electronic Letters	 Vol	
��� No	 �� pp	 �������� �� March ����	

����� O�Keefe� R	A	� �A Comment on �A Hardware Uni�cation
Unit� Design and Analysis�� Computer Architecture News	 Vol	
��� No	 �� pp	 ���� January ����	

����� S	A	 Ozkarahan� S	A	 Schuster� and K	C	 Sevcik� �A Data
Base Processor�� Tech	 Rep	 CSRG���� Computer Systems Re�
search Group	 University of Toronto� ����	

�
	 BIBLIOGRAPHY

����� S	A	 Ozkarahan� S	A	� Schuster� and K	C	 Sevcik� �Per�
formance Evaluation of a Relational Associative Processor��
ACM Trans� Database Systems� �� �� ����	

PPPPPPPPPPPPPP

b��

����� I	 Page� and W	 Luk� �Compiling OCCAM into FPGAs��
in FPGAs	 pp	 �������	

���
� Ch	A	 Papachristou� �Content�Addressable Memory Re�
quirements for Multivalued Logic�� ��th Int� Symp� on Multi�
Valued Logic	 pp	 ������ ����	

����� B	 Parhami� �Rapid� A Rotating Associative Processor for
Information Dissemination�� UCLA�ENG������ University of
California� Los Angeles	

����� P	P	 Parkhomenko� �Automatizing the Process of Analyzing
Relay Contact Networks�� Vses� Mos� Sov� Teorii Ust� Rel� Deist�	
p	 �
� ����	

����� P	P	 Parkhomenko� �A Large Capacity Logic Machine for
Relay Circuit Analysis�� Izv� A�N� O�T�N� E i A�	 No	 �	� pp	
������
� ����	

����� P	P	 Parkhomenko� �Machine Analysis of Relay Networks��
Avt� i Telem� Vol	 �
� No	 �	� pp	 �������� ����	

����� P	P	 Parkhomenko� �The Principles of Mechanization of the
Analysis of Relay�Contact Networks�� Dokl� A�N�	 Vol	 ����
No	 �	� pp	 ������ ����	

����� P	P	 Parkhomenko� �A Large Capacity General�Purpose
Computer for the Analysis of RelayNetworks�� Teoriya i Prim�
Disk� Avt� Sistem	 ���
	

����� C	S	 Peirce� ed	� �Studies in Logic�� By Members of the Johns
Hopkins University	 Little Brown " Co�	 Boston� ����	

����� C	S	 Peirce� �Logical Machines�� Amer� J� Psychology	 Vol	 �	
pp	 ������
� ����	

����� M	 Perkowski� �Relational�structure languages and their
application in the system for automatic design of block

BIBLIOGRAPHY �
�

synthesis of digital systems of automatic control�	 Proceed�
ings of the �th National Conference on Automatic Control	 Poznan�
Poland� ���� September ����� Vol	 �� pp	 �����
� �in Polish�	

���
� M	 Perkowski� �An example of heuristic programming ap�
plication in the three�level combinational logic design�	 Pro�
ceedings of the �rd Symposium on heuristic methods	 Polish
Cybernetical SocietyWarsaw� �� September ����� Vol	 �	 pp	
�
�����	

����� M	 Perkowski� �Synthesis of multioutput three level NAND
networks�	 Proc on the Seminar on Computer Aided Design	
Budapest ��� November ����� pp	�������	

����� M	 Perkowski� �Some concepts on reasoning by analogy	
The heuristic programming approach�	 Proceedings of IVth In�
ternational Symposium on Heuristic Methods	Warsaw� �� Septem�
ber� ����� Vol	 �� pp	 ������	

����� M	 Perkowski� A	 Rydzewski� and P	 Misiurewicz� �Theory
of Logic Circuits� Selected Problems�	 Publishers of the Tech�
nical University of Warsaw	 Ed	 � � ����� Ed	 � � ����� Ed	 � �
���� �in Polish�	

����� M	 Perkowski� �An application of general problem�solving
methods in computer�aided design� the MULTICOMP sys�
tem and its problem�oriented source language�	 Proceedings of
IVth International Symposium on Heuristic Methods	 Warsaw� ��
September� ����� Vol	 �� pp	 ����
�	

����� M	 Perkowski� �The state�space approach to the design of
multipurpose problem�solver for logic design�	 �Arti�cial In�
telligence and Pattern Recognition in Computer�Aided Design�	 J	
C	 Latombe �ed	�� North Holland� Amsterdam� pp	 ������
�
����	 �book chapter�	

����� M	 Perkowski� �The state�space approach to the design of
multipurpose Conference �Arti�cial Intelligence and Pattern
Recognition in Computer�Aided Design�	 Grenoble� France�
����� March ����� J	 C	 Latombe �ed	� North Holland� Am�
sterdam� pp	 ������
� ����	

����� M	 Perkowski� andM	 Gluch� �Knowledge Engineering Lan�
guage Using Strategies �KELUS��� Institute of Automatic Con�
trol	 Technical University of Warsaw	 ����	

�
� BIBLIOGRAPHY

����� M	 Perkowski� and A	 Zasowska� �Minimal area MOS asyn�
chronous automata�	 Proceedings of the International Sym�
posium on Applied Aspects of Automata Theory� Warna�
Bulgaria� ����� May ����� pp	 �������	

�����

���
� M	 Perkowski� �The method of solving combinatorial prob�
lems in the automatic design of digital systems�	 Institute of
Automatic Control� Technical University of Warsaw� Ph	D	
Thesis� ���
� �in Polish�	

����� M	 Perkowski� �Multistrategical Problem Solver�� Proceed�
ings of the �nd InternationalMeeting on Intelligent Robotics
and Knowledge

����� b��

����� M	 Perkowski� �General methods for solving combina�
tional problems�	 Chapter � in A	 Goralski �ed	� �Prob�
lem� method� solution�� Vol	 � Scienti�c�Technical Publish�
ers� Poland� Warszawa ����	

����� M	 Perkowski� A Goralski� and G	 Zielinski� �Elements of
Arti�cial Intelligence	� Book in Polish	 Preprint ����	

����� M	 Perkowski� B	 Goldstein� �A new algorithm for multi�
output Boolean functions minimization based on reduction
to graph coloring	� University of Minnesota	� Department of
Electrical Engineering� report	

����� M	 Perkowski� �Fast Approach to Multiple�Valued Con�
straints Problem� Systolic VLSI Realization of SystemMUL�
TICOMP�� PSU Report� December ����	

����� M	 Perkowski� �Design of Finite State Machines with Su�
perPeg�� Seminar of Department of Electrical Engineering�
Oregon State University� Corvallis� Oregon� February ���
����	

�����

����� M	 Perkowski� �A Systolic Processor for Approximate So�
lutions to NP�Complete Combinatorial Problems�	 Sympo�
sium on Complexity of Approximately Solved Problems	
Computer Science Department� Columbia University� New
York� NY �

��� April �� ��� � ����	

BIBLIOGRAPHY �
�

���
�

�����

����� M	A	 Perkowski� �Systolic Architecture for the Logic De�
sign Machine�	 Proceedings of the IEEE and ACM International
Conference on Computer Aided Design � ICCAD �
� Santa Clara	
����� November ����	 pp� ��������

���� M� Perkowski	 �Reduction of Problems for the Logic Design Ma�
chine�� Portland State University	 report�

���� Perkowski	 M�	 Goldstein	 B�	 Nguyen	 L� �PLA with tail gives esti�
mation from lower bound and has a decreased area�� Preprint�

���� M� Perkowski	 and N� Nguyen	 �Minimization of Finite State Ma�
chines in SuperPeg�� Proceedings of the Midwest Symposium on Cir�
cuits and Systems� Luisville	 Kentucky	 ����� August �����

���� M�A� Perkowski	 and J� Brandenberg	 �Solving Basic Boolean Algebra
Problems on a Hypercube Computer�	 Report PSU	 �����

���� M�A� Perkowski	 �A Universal Logic Machine�	 Proc� of the IEEE IS�
MVL���� the ��st International Symposium on Multiple�Valued Logic�
Sendai	 Japan	 May �����	 ����	 pp� �������	 invited address�

���� M�A� Perkowski	 �The Generalized Orthonormal Expansion of Func�
tions with Multiple�Valued Inputs and Some of its Applications�	
Proc� of the ISMVL���� the ��st IEEE International Symposium on
Multiple�Valued Logic� Sendai	 Japan	 May �����	 ����	 pp� ��������

���� M� Perkowski	 �On the Reduction of Combinatorial Problems and
Parallel Computers for Solving Generic Combinatorial Problems�	
System Science Seminar PSU� February ��	 �����

bitemperkowski M�A� Perkowski	 T� Luba	 S� Grygiel	 P� Burkey	 M�
Burns	 N� Iliev	 M� Kolsteren	 R� Lisanke	 R� Malvi	 Z� Wang	 H� Wu	
F� Yang	 S� Zhou	 and J�S� Zhang	 #Uni�ed Approach to Functional
Decompositions of Switching Functions	� Technical Report	 Portland
State University	 �����

���� M� Perkowski	 �Logic Design Machine�	 Carnegie Mellon University�
Department of Electrical Engineering	 Invited Lecture	 �����

���� M� Perkowski	 D� Smith	 and R� Krzywiec
 �Logic Simula�
tion!Design!Veri�cation Environment in Prolog�	 Proc� of the ��th

�	� BIBLIOGRAPHY

Annual Pittsburgh Conference on Modelling and Simulation� �����
April	 ����	 University of Pittsburgh	 Pittsburgh	 Pennsylvania	 pp�
��������

���� M� Perkowski	 �Parallel Programs for Tautology	 Satis�ability	 and
Complementation of Boolean Functions�	 INTEL Scienti�c Comput�
ers� Report	 September �����

���� M� Perkowski	 and J� Liu	 �A System for Fast Prototyping of Logic
Design Programs�	 Proc� of the ��th Midwest Symposium on Circuits
and Systems� Syracuse	 New York	 August �����	 ����	 paper TA
������

���� M� Perkowski	 and J�E� Brown	 �An Uni�ed Approach to Designs
Implemented with Multiplexers and to the Decomposition of Boolean
Functions�	 Proc� of the ���� ASEE National Conference� Portland	
Oregon	 June �����	 ����	 pp� ����������

���� M�A� Perkowski	 M� Helliwell	 and P� Wu	 �Minimization of
Multiple�Valued Input	 Multi�Output Mixed�Radix Excllusive Sums of
Products for Incompletely Speci�ed Boolean Functions�	 Proc� of the
��th ISMVL� International IEEE Symposium on Multi�Valued Logic�
Guangzhou	 People�s Republic of China	 May ����	 pp� ��������

���� M� Perkowski	 J� Liu	 and J� Brown	 �Quick Software Prototyping

CAD Design of Digital CAD Algorithms�	 In G� Zobrist �ed� �Progress
in Computer Aided VLSI Design�� Vol� ��	 Ablex Publishing Corp�	
����	 pp� ��������

���� M�A� Perkowski	 P� Wu	 and K�A� Pirkl	 �KUAI�EXACT
 A New
Approach for Multi�Valued Logic Minimization in VLSI Synthesis�	
Proc� of the ���� ISCAS � International Symposium on Circuits and
Systems� May ����	 ����	 pp� ��������

���� M� Perkowski	 M� Helliwell	 and P� Wu	 �Minimization of Multiple�
Valued Input Multi�Output Mixed�Radix Exclusive Sums of Products
for Incompletely Speci�ed Boolean Functions�	 Proc� ISMVL����

���� M�A� Perkowski	 P� Dysko	 and B�J� Falkowski	 �Two Learning Meth�
ods for a Tree�Search Combinatorial Optimizer�	 Proceedings of IEEE
International Phoenix Conference on Computers and Communication�
Scottsdale	 Arizona	 March ����	 pp� ��������

���� M�A� Perkowski	 and J� Liu	 �Generation of Finite State Machines
from Parallel Program Graphs in DIADES�	 Proc� of the ISCAS����

BIBLIOGRAPHY �	�

International Symposium on Circuits and Systems� New Orleans	 ���
May ����	 pp� ����������

���� M�A� Perkowski	 and J� Liu	 �A Program for Synthesis of Three Level
NAND Networks�	 Proc� of the ISCAS���� International Symposium
on Circuits and Systems� New Orleans	 ��� May ����	 pp� ����������

b��

���� M�A� Perkowski	 and M� Chrzanowska�Jeske	 �An Exact Algorithm
to Minimize Mixed�Radix Exclusive Sums of Products for Incompletely
Speci�ed Boolean Functions�	 Proc� of the ISCAS���� International
Symposium on Circuits and Systems� New Orleans	 ��� May ����	
pp� ����������

���� M�A� Perkowski	 and L� Jozwiak	 �Two�Dimensional State Minimiza�
tion of Finite State Machines�	 planned to be submitted�

���� M�A� Perkowski	 A�Sarabi	 and I� Schaefer	 �Aplication of Orthogo�
nal Transforms in Image Processing�	 Proc� of Northcon���� Portland	
��� October ����	 Session S�	 pp� ��������

���� M� A� Perkowski	 and P� Johnson	 �Canonical Multivalued�Input
Reed�Muller Trees Expressions�	 Proc� of the Third NASA Sympo�
sium on VLSI Design� Moscow	 Idaho	 October �����	 �����

���� M�A� Perkowski and students	 �The Multiple Valued Cube Calculus
Machine	 CCM��	 Portland State University report

���� M�A� Perkowski and Pan Wu	 �A new Approach To Exact Mini�
mization Of Boolean Functions With Multiple Valued Inputs�	 Diades
research group	 Portland State University

���� M�A� Perkowski	 Martin Helliwell	 Pan Wu	 �Minimization Of Mul�
tiple Valued Input Multi�Output Mixed�Polarity Generalized Reed�
Muller Forms For Incompletely Speci�ed Boolean Functions�	 Port�
land State University report�

���� M�A� Perkowski	 #ULM�Lisp	 the tutorial��	 �����

���� C� Peterson	 �iWARP�	 HOT Chips Symposium Record� Santa
Clara	 CA	 August �����	 �����

b��

����

�	� BIBLIOGRAPHY

���� S�R� Petrick	 �On the Minimization of Boolean Functions�	 Proc�
Symp� on Switch� Theory� IFIP	 Paris	 June �����

���� PiE Design	 company broschures	 �����

���� P� Poretsky	 �On the Methods for Solving Logical Equations and on
the Inverse Method for Mathematical Logic�	 �In Russian�	 Bull� de
la Soc� Physico�Mathematique de Kasan� Vol� ��	 pp� �������	 �����

���� G�N� Povarov	 �A Method for the Synthesis of Computing and Con�
trol Contact Networks�	 Avt� i Telem�� Vol� ���	 No ��	 pp� �������	
�����

���� D�K� Pradhan	 Fault�Tolerant Computing� Theory and Techniques�
Vol� I�� Prentice�Hall	 �����

���� Pratt	 V�	 �Thinking Machines� The Evolution of Arti�cial Intelli�
gence�	 Basil Blackwell� Inc�� Oxford	 U�K�	 �����

���� Proceedings of the Workshop on FPGA custom architectures� Napa
Valey	 California	 April �����

���� Proceedings of ACM FPGA��� Workshop� Hotel Durant	 Berkeley	
����� Febr� �����

���� Proceedings of Workshop of Field�Programmable Logic and Applica�
tions� FPL���	 Vienna	 Austria	 �� August � � September �����

���� Proceedings of ACM FPGA��� Workshop� Hotel Durant	 Berkeley	
����� Febr� �����

���� Proceedings of Workshop of Field�Programmable Logic and Applica�
tions� FPL���	 Vienna	 Austria	 �� August � � September �����

QQQQQQQQQQQQQ

���� Quickturn company materials	 �����

���� M�R� Quillian	 �Semantic Memory�	 in �Semantic Information Pro�
cessing�	 M� Minsky �ed��	 MIT Press	 pp� �������	 �����

���� J�R� Quinlan	 #C���
 Programs for machine learning	� San Mateo	
CA
 Morgann Kaufmann�

RRRRRRRRRRRRR

���� M�O� Rabin	 �Probabilistic Algorithms�� In J�Traub �ed�� Algorithms
and Complexity
 New Directions and Recent Results	 Academic Press	
New York	 ����	 pp�������

BIBLIOGRAPHY �	�

���� B� Randell	 �The Origins of Digital Computers�� Springer�Verlag	
Berlin	 �����

���� Randell	 �On Alan Turing and the Origins of Digital Computers�	
in B	 Melzer and D� Michie �eds�	 Machine Intelligence �	 Edinburgh
University Press	 Edinburgh	 �����

���� C�V� Ramamoorthy	 J�L� Turner	 and B� W� Wah	 �A Design of Fast
Cellular Associative Memory for Ordered Retrieval�	 IEEE Trans� on
Computers� Vol� C���	 No� �	 pp� �������	 September �����

���� A�P� Reeves	 �Parallel Computer Architectures for Image Process�
ing�	 Proc� of the Intern� Conf� on Parallel Processing� pp� �������	
�����

���� J�C� Ribeiro	 C�D� Stormaon	 J�V� Old�eld	 and M�R� Brule	
�Content�Addressable Memories Applied to Execution of Logic Pro�
grams� IEE Proceedings� Vol� ���	 Pt� E�	 No� �	 pp� �������	
September �����

���� C� Rieger	 �ZMOB
 A Mob of ��� Cooperative Z��A�Based Micro�
computers�	 Computer Science Tech� Rep�	 Series TR����	 University
of Maryland	 College Park	 MD	 �����

���� C� Rieger	 J� Bane	 and R� Trigg	 �ZMOB
 A Highly Parallel Multi�
processor�	 Tech� Rep� TR����� Dept� Comp� Sci� University of Mary�
land	 College Park	 MD	 �����

b�� bibitem� D� Rine	 �Computer Science and Multiple�Valued Logic�
Theory and Applications�	 North�Holland� �����

����

���� B� Reusch	 and L� Detering	 �On the Generation of Prime Impli�
cants�	 Annales Societatis Mathematicae Polonae� Series IV
 Funda�
menta Informaticae II	 pp� �������	 �����

���� J�A� Robinson	 �A Machine Oriented Logic Based on the Resolution
Principle�	 J� of the Association for Computing Machinery� Vol� ���	
No� ��	 pp� �����	 January �����

���� P� Robinson	 �The SUM
 an AI Coprocessor�	 BYTE� pp� �������	
June �����

���� V�I� Rodin	 �An Electronic Analyzer for Contact Networks�	 Avt� i
Telem�� Vol� ��	 No� ��	 pp� �������	 �����

�	� BIBLIOGRAPHY

���� V�N� Roginskii	 �A Machine for the Design of Relay Networks�	 Vest�
nik Akad� Nauk S�S�S�R�� No� ��	 pp� �����	 �����

���� T�D� Ross	 M�J� Noviskey	 T�N� Taylor	 and D�A� Gadd	 #Pat�
tern Theory
 An Engineering Paradigm for Algorithm Design	� Fi�
nal Technical Report WL�TR������	�	 Wright Laboratories	 USAF	
WL!AART!WPAFB	 OH ����������	 August �����

���� P� Roth	 �Computer Logic� Testing and Veri�cation�� Rockville	 MD

Computer Science	 �����

���� S� Rudeanu	 �Boolean Equations and their Applications to the Study
of Bridge Circuits I�	 Bull� Math� Soc� Math� Phys� R� P� Roumaine�
Vol� ��	 pp� �������	 �����

���� S� Rudeanu	 �Boolean Functions and Equations�	 North�Holland
Publ� Co� # American Elsevier� New York	 �����

���� R�L� Rudell	 and A�L� Sangiovanni�Vincentelli
 �ESPRESSO�MV

algorithms for multiple�valued logic minimization	 Proc� IEEE Custom
Integrated Circuits Conf�� �����

���� R� Rudell	 �Multiple�Valued Logic Minimization for PLA Synthesis��
M�S� Report	 June �	 ����� University of California	 Berkeley Cali�
fornia ������

���� R�L� Rudell	 and A�L� Sangiovanni�Vincentelli	 �Multiple�valued
minimization for PLA optimization	� Proc� Intern� Symp� on
Multiple�Valued Logic� pp� �������	 May �����	 Boston	 MA	 �����

���� B� Russell	 �An Outline of Philosophy�� Allen and Unwin	 London	
�����

���� R�A� Rutenbar	 T�N� Mudge	 and D�E� Atkins	 �A Class of Cellular
Architectures to Support Physical Design Automation�	 IEEE TCAD	
Vol CAD��	 No���	 October ����	 pp���������

SSSSSSSSSSSSSS

���� A� Sarabi	 and M�A� Perkowski	 �Fast Exact and Quasi�Minimal
Minimization of Highly Testable Fixed�Polarity AND!EXOR Canon�
ical Networks�	 Proc� DAC����

���� T� Sasao	 �An application of multiple�valued logic to a design of Pro�
grammable Logic Arrays�	 Proc� �th Intern� Symp� on Multiple�Valued
Logic �ISMVL�� �����

BIBLIOGRAPHY �	

���� T� Sasao	 and H� Terada	 �Multiple�Valued Logic and the Design of
Programmable Logic Arrays with Decoders�	 Proc� of �th International
Symposium on Multiple�Valued Logic� Bath	 England	 pp� �� � ��	
�����

���� T� Sasao	 �Multiple�valued decomposition of generalized boolean func�
tions and the complexity of programmable logic arrays	� IEEE Trans�
Comput�� Vol� C���	 pp� �������	 Sept� �����

b��

����

���� T� Sasao	 �Input variable assignment and output phase optimization
of PLA�s	� IEEE Trans� Comput�� Vol� C���	 pp� ��� � ���	 Oct�
�����

b��

����

���� T� Sasao	 �HART
 A Hardware for Logic Minimization and Veri�ca�
tion�	 Proc� ICCD��
� pp� �������	 Oct� ����	 �����

���� T� Sasao	 �MACDAS
 Multi�level AND�OR circuit synthesis using
two�variable function generators�	 ���rd Design Automation Confer�
ence� Las Vegas	 pp� �����	 June �����

���� T� Sasao	 and P� Besslich	 �On the Complexity of MOD�� Sum
PLA�	 Institute of Electronics and Communication Engineers of
Japan� FTS�����	 pp� ���	 Nov� ��	 �����

���� T� Sasao	 �EXMIN
 A Simpli�cation Algorithm for Exclusive�OR�
Sum�of�Products Expressions for Multiple�Valued Input Two�Valued
Output Functions�	 Proc� of ��th Int� Symp� on Multiple�Valued
Logic� pp� �������	 May �����

���� J�M� Saul	 �An Improved Algorithm for the Minimization of Mixed
Polarity Reed�Muller Representations�	 Proc� ICCD���� pp� �������	
Sept� �����

���� I� Schaefer	 �An E�ective Cube Comparison Method for Discrete
Spectral Transformations of Logic Functions�	 M� Sc�� Thesis� May
�����

�		 BIBLIOGRAPHY

���� I� Schaefer	 B�J� Falkowski	 and M�A� Perkowski	 �An E�cient Com�
puter Algorithm for the Calculation of Walsh Transform for Com�
pletely and Incompletely Speci�ed Multiple�Valued Input Binary Func�
tions�	 Proc� of the ��th IEEE Midwest Symposium on Circuits and
Systems� Monterey	 CA	 May ����� PAGES

���� I� Schaefer	 B�J� Falkowski	 and M�A� Perkowski	 �A Fast Computer
Implementation of Adding and Arithmetic Multi�Polarity Transforms
for Logic Design�	 Proc� of the ��th IEEE Midwest Symposium on
Circuits and Systems� Monterey	 CA	 May ����� PAGES

���� I� Schaefer	 B�J� Falkowski	 and M�A� Perkowski	 �A Fast Computer
Implementation of Adding and Arithmetic Multi�Polarity Transforms
for Logic Design�	 International Journal of Electronics� Pages

���� I� Schaefer	 and M�A� Perkowski	 �Multiple�Valued Input Generalized
Reed�Muller Forms�	 Proc� ISMVL���� Victoria	 British Columbia	
May ����� PAGES

���� I� Schaefer	 and M�A� Perkowski	 �Multiple�Valued Input Generalized
Reed�Muller Forms�	 IEE Journal� �

���� I� Schaefer	 and M�A� Perkowski	 �An Algorithm to Find the Minimal
Multiple�Valued Input Kronecker Reed�Muller Form�	

���� I� Schaefer	 and M�A� Perkowski	 �Synthesis of Multi�Level Multi�
plexer Circuits for Incompletely Speci�ed Multi�Output Boolean Func�
tions with Mapping Multiplexer Based FPGAs�	 IEEE Transactions
on Computer Aided Design�

���� J�T� Schwartz	 �Ultracomputers�	 ACM Transactions on Program�
ming Languages and Systems	 �	 �	 pp� �������	 �����

���� J�T� Schwartz	 �A Taxonomic Table of Parallel Computers	 Based on
�� Designs�	 Courant Institute	 New York University	 �����

���� S� Shankar	 �A Hierarchical Associative Memory Architecture for
Logic Programming Uni�cation� Logic Programming� Proc� of the �th
Intern� Conf� and Symp� Vol� ��	 pp� ���������	 MIT Press	 �����

���� Y� Shotobatake	 and H� Aiso	 �A Uni�cation Processor Based on Uni�
formly Structured Cellular Hardware�	 ��th Intern� Symp� on Com�
puter Architecture� pp� �������	 �����

���� C�E� Shannon	 and E�F� Moore	 �Machine Aid for Switching Circuit
Design�	 Proc� IRE� Vol� ���	 pp� ���������	 Oct� �����

BIBLIOGRAPHY �	�

���� D�E� Shaw	 �The NON�VON Supercomputer	 Department of Com�
puter Science	 Columbia University	 �����

b��

���� D� Shumake	 �The MOS Boolean Analyzer�	 M�Sc� Thesis� UCLA	
�����

���� H�J� Siegel	 L�J� Siegel	 F�C� Kemmerer	 P�T� Mueller	 Jr�	 H�E�
Smalley Jr�	 and S�D� Smith	 �PASM
 A Partitionable SIMD!MIMD
System for Image Processing and Pattern Recognition�	 IEEE Trans�
on Computers� C���	 ��	 pp� �������	 �����

���� J� Siekmann	 �Uni�cation Theory�	 J� of Symbolic Computation�
Vol� �	 pp� �������	 �����

���� J�R� Slagle	 et al	 �A New Algorithm for Generating Prime Impli�
cants�	 IEEE Trans� on Computers� Vol� C���	 pp� �������	 �����

���� R� Spickelmier	 �ed��	 �OCT Tools Distribution �����	 Electronics
Research Laboratory� University of California	 Berkeley	 March ��	
�����

���� A� Srinivasan	 T� Kam	 S� Malik	 and R�K� Brayton	 �Algorithms
for Discrete Function Manipulation�	 IEEE Proc� of IEEE Int� Conf�
on CAD	 ICCAD���	 pp� �����	 �����

b��

���� A� Stern	 �Matrix Logic�	 North�Holland� �����

���� Stolfo	 S�J�	 and D�E� Shaw	 �DADO
 A Tree�Structured Machine
Architecture for Production Systems�	 Department of Computer Sci�
ence	 Columbia University	 �����

���� C�D� Stormaon	 M�R� Brule	 J�V� Old�eld	 and J�C� Ribeiro	 �An
Architecture Based on Content�Addressable Memory for the Rapid Ex�
ecution of Prolog�	 Logic Programming� Proc� of the
th Intern� Con�
ference and Symposium� ed� Kenneth A� Bowen	 Vol� ��	 pp� �����
����	 MIT Press	 �����

���� M�D� Strugala	 D� Tavangarian	 K� Waldschmidt	 and G� Roll	 �An
Associative Processor as a Design Rule Check Accelerator�	 Proc� of
VLSI and Computers First Intern� Conf� on Computer Technology�
Systems and Applications� pp� �������	 IEEE	 Hamburg	 May �����	
�����

b��

�	� BIBLIOGRAPHY

����

���� Su	 S�Y�H�	 and P�T� Cheung	 �Computer Minimization of Multival�
ued Switching Functions�	 IEEE Trans� on Comp�� Vol� C���	 No� �	
p� ���	 September �����

���� P� Suppes	 �Introduction to Logic�� New York
 Van Nostrand Rein�
hold	 �����

b��

���� A� Svoboda	 �Boolean Analyzer�	 Proc� Information Processing 	��
Amsterdam	 North�Holland	 ����	 pp� ��������

b��

���� A� Svoboda	 �Parallel Processing in Boolean Algebra�	 IEEE TC� Vol�
C���	 No� �	 pp� �������	 Sept �����

���� A� Svoboda	 and D�E� White	 �Advanced Logical Circuit Design Tech�
niques�	 Garland STPM Press� New York	 �����

TTTTTTTTTTT

���� M�A� Tapia	 J�H� Tucker and A�W� Bennett	 �Boolean Integration�	
Proc� IEEE Southeast�Con� Clemson	 SC	 April �����

���� M�A� Tapia	 �Boolean Di�erentiation and Integration using Kar�
naugh Map�	 Proc� IEEE Southeast�Con�	 �����

���� M�A� Tapia	 �Application of Boolean Calculus to Digital System De�
sign�	 Proc� IEEE Southeast�Conf�� Nashville	 Tenn�	 ����� April
�����

���� M�A� Tapia	 and J�H� Tucker	 �Complete Solution of Boolean Equa�
tions�	 IEEE Trans� on Comp� Vol� C���	 No� ��	 pp� �������	 July
�����

���� M�A� Tapia	 �Boolean Integral Calculus for Digital Systems�	 IEEE
Trans� on Comp� Vol� C���	 No� ��	 pp� �����	 Jan� �����

���� D�K� Taylor	 �Analyzing Relational Databases using Propositional
Logic�	 M�S� Thesis	 Department of Electrical Engineering	 Univer�
sity of Kentucky	 December	 �����

���� A� Thayse	 �Boolean Di�erential Calculus�	 Philips Res� Reports�
Vol� ���	 pp� �������	 �����

BIBLIOGRAPHY �	�

���� A� Thayse	 and M� Davio	 �Boolean Di�erential Calculus and its
Applications in Switching Theory�	 IEEE Trans� on Computers� Vol�
C����	 pp� �������	 �����

���� B�L� Timofeev	 �A Machine for Minimizing Relay Circuits in the Dis�
junctive Normal Form Category�	 Avt� i Vyc� Tekhn�� Vol� ��	 �����

���� B�L� Timofeev	 �Mechanization of the Process of Determining Min�
imal Variants of Relay Systems in Disjunctive Normal Forms�	 Vo�
prosy Sbornik Avtomat� Upravlenie� pp� �������	 �����

���� B�L� Timofeev	 �The Minimization of Logical Functions as Disjunc�
tive Normal Forms	 with the Aid of a Specialized Computer�	 Dokl�
Rel� Ustr� Kon� Avt�� �����

���� P� Tison	 �Generalization of Consensus Theory and Application to
the Minimization of Boolean Functions�	 IEEE Trans� Electronic
Computers� Vol� EC���	 pp� �������	 �����

���� D� Tavangarian	 �Flag�Algebra
 A New Concept for the Realisation
of Fully Parallel Associative Architectures�	 IEE Proc�� Vol� ���	 Pt�
E	 No� �	 pp� �������	 September �����

b��

���� T� To�oli	 and M� Margolus	 �Cellular Automata Machines�	 MIT
Press	 Cambridge	 Mass�	 �����

���� P�C� Traleaven	 and G�F� Moll	 �A Multi�Processor Reduction Ma�
chine for User�De�ned Reduction Languages�	 Seventh Annual Sym�
posium on Computer Architecture	 La Baule	 France	 pp� �������	
�����

���� Ph�C� Treleaven	 D�R� Brownbridge	 and R� P� Hopkins	 �Data�
Driven and Demand�Driven Computer Architecture�	 Computing Sur�
veys� Vol� ��	 No� �	 pp� ������	 March �����

���� Ph�C� Treleaven	 �The New Generation of Computer Architecture�	
SIGARCH Newsletter� Vol� ��	 No� �	 pp� �������	 �����

���� T�T� Tsukanov	 �A Matrix Analyzer of Relay�Contact Networks�	
Vses� Mos� Sov� Teorii Ust� Rel� Deist�� p� ��	 �����

���� T�T� Tsukanov	 �Problems in Mechanization of the Analysis of Relay�
Contact Circuits�	 Trudy Tomsk� Elekt�Inst� Inzhen� Zheleznykh
Dorog� Vol� ��	 pp� �������	 �����

��� BIBLIOGRAPHY

���� T�T� Tsukanov	 �Some Instances of Application of the Matrix Ana�
lyzer� Trudy Tomsk� Elekt�Inst� Inzhen� Zheleznykh Dorog� Vol� ��	
pp� �������	 �����

���� S� Turing	 �Alan M� Turing�� Cambridge	 U�K�
 W� He�er " Sons	
�����

UUUUUUUUUUUUUUU

���� T� Uehara	 and N� Kawato	 �Logic Circuit Synthesis using Prolog�	
New Generation Computing� Vol� ��	 No� ��	 �����

���� Ullman	 J�D�	 �Computational Aspects of VLSI�	 Computer Science
Press	 �����

b��

���� M�E� Ulug	 and B�A� Bowen	 �A Uni�ed Theory of the Algebraic
Topological Methods for the Synthesis of Switching Systems�	 IEEE
TC� pp� �������	 March �����

b��

���� M�E� Ulug	 �VLSI Knowledge Representation Using Predicate Logic
and Cubical Algebra�	 Proc� IEEE Intern� Conference on Computers
and Communications	 Arizona	 ����	 pp� ��������

���� M�E� Ulug	 �Application of Cubical Array Operators to a Relational
Database�	 Proc� of the Minnowbrook Workshop� July �����	 ����	
Blue Mountain Lake	 New York�

���� M�E� Ulug	 �A Real�Time AI System for Military Communications�	
Proc� of the Third IEEE Conference on Arti�cial Intelligence Appli�
cations� February ����	 Orlando	 Florida�

���� Usher	 �NAME � �Mechanical Inventions�� �EDITOR YEAR �

VVVVVVVVVVV

���� G�Y� Vichniac	 Boolean derivatives on cellular automata	 Physica D	
��	 pp� �����	 �����

b��

���� Virtual ASIC	 �Concept Silicon partitions your design onto multiple
FPGAs�	 INCA company materials� �����

WWWWWWWWWWWWW

b��

BIBLIOGRAPHY ���

����

���� B�W� Wah	 Y�W�E� Ma	 �MANIP � A Multicomputer Architecture
for Solving Combinatorial Extremum�Search Problems�	 IEEE TC�
Vol� C���	 No� �	 pp� ��� � ���	 May �����

���� H� Wang	 �Towards Mechanical Mathematics�	 IBM J� for Research
and Development� �	 ����	 pp� �����

���� J� Weissman	 �Boolean Algebra	 Map Coloring	 and Interconnec�
tions�	 Amer� Math� Monthly	 Vol� ���	 pp� �������	 �����

���� I� Williams	 �Using FPGAs to Prototype New Computer Archite�
cures�	 in FPGAs	 pp� ��������

���� T�A� Welch	 �An Investigation of Descriptor Oriented Architecture�	
Computer Architecture News� Vol� �	 No� �	 pp� �������	 January
�����

���� J� Werner	 � Japanese trends in system design� Part �� Advanced
Computer�Aided Design Tools�� VLSI Design	 July ����	 pp�������

���� N�S� Woo	 �A Hardware Uni�cation Unit
 Design and Analysis�	
��th International Symposium on Computer Architecture� pp� ����
���	 �����

���� W�S� Wojciechowski	 and A�S� Wojcik	 �Multiple�Valued Logic De�
sign by Theorem Proving�	 Proc� ��th Intl� Symp� on Multiple�Valued
Logic� Bath	 England	 ����	 pp� ��������

���� W�S� Wojciechowski	 �Multiple�Valued Combinational Logic Design
using Theorem Proving�	 Dissertation� Ill� Inst� of Tech�� University
Micro�lms	 No� KRA�������	 May �����

���� W�S� Wojciechowski	 and A�S� Wojcik	 �Automated Design of
Multiple�Valued Logic Circuits by Automated Theorem Proving Tech�
niques�	 IEEE Trans� on Computers� Vol� C���	 pp� �������	 Sept�
�����

���� S� Wolfram	 �Cellular Automata as Models of Complexity�	 Nature	
���	�	 pp� �������	 �����

���� S� Wolfram	 Theory and Applications of Cellular Automata	 World
Scienti�c Press	 Singapore	 �����

��� BIBLIOGRAPHY

���� L� Wos	 R� Overbeek	 E� Lusk	 and J� Boyle	 �Automated Reasoning

Introduction and Applications�	 Prentice�Hall� Englewood Cli�s	 N�J�	
�����

���� L��F� Wu	 and M�A� Perkowski	 �Minimization of Permuted Reed�
Muller Trees for Cellular Logic Programmable Gate Arrays�	 Proc� of
the �nd Intern� Workshop on Field�Programmable Logic and Appli�
cations	 FPL���	 Vienna	 Austria	 August ���September �	 ����	 pp�
�!�����!����

���� Wu	 S�B�	 and M� T� Liu	 �A Cluster Structure as an Interconnection
Network for Large Multicomputer Systems�	 IEEE Trans� on Comput�
ers	 C���	 ��	 pp� �������	 �����

XXXXXXXXXXXXXXXxx

���� XILINX	 Inc�	 �The Programmable Gate Array Data Book�� �����

YYYYYYYYYYYYYYYYYY

���� K� Yamada	 and K� Yoshida	 �An Application of Boolean Algebra in
Practical Situations�	 Hitotsubashi J� Arts # Sciences� Vol� ��	 pp�
�����	 �����

���� K� Yamada	 H� Nakada	 A� Tsutsui	 T� Fujii	 and N� Ohta	 �FPGA
Design for Digital Telecommunication Circuits using a High Level De�
sign System�	 Report�

���� H� Yasura	 T� Tsujimoto	 K� Tamaru	 �Parallel Exhaustive Search
For Several NP�Complete Problems Using Content Addressable Mem�
ories�	 Proc� IEEE Intern� Conference on Circuits and Systems� IS�
CAS���	 pp� ���� ����

���� T� Yuba	 T� Shimada	 Y� Yamaguchi	 K� Hiraki	 and S� Sakai	
�Data�ow Computer Development in Japan�	 ACM SIGARCH News�
Vol� ��	 No� �	 pp� �������	 Sept� �����

ZZZZZZZZZZZZZZZZZ

���� A�D� Zakrevskii	 �A Machine for the Solution of Logical Problems of
Switching Synthesis Type�	 Dokl� Rel� Ustr� Kon� Avt�� �����

���� A�D� Zakrevskii	 �A Universal System for the Solution of Problems
Similar to Contact Network Synthesis�	 Vyc� Tekh� Avt� Teorii� Inf��
No� ���	 pp� ����	 �����

���� H� Zemanek	 �Central European Prehistory of Computing�	 in
Metropolis et al� �History of Computing�� �PUBLISHER ��

BIBLIOGRAPHY ���

���� I�I� Zhegalkin	 �On the Calculation of Propositions in Symbolic
Logic�	 �in Russian�	 Math� Sbornik� Vol� ���	 pp� ����	 �����

���� B� Zupan	 and M� Bohanec	 #Experimental Evaluation of Three Par�
tition Selection Criteria for Decision Table Decomposition	� Research
Report� October ��	 ����	 Department of Intelligent Systems	 Jozef
Stefan Institute	 ���� Ljubljana	 Slovenia�

���� B� Zupan	 and M� Bohanec	 #Learning Concept Hierarchies from Ex�
amples by Function Decomposition	� Technical Report� Department
of Intelligent Systems	 Jozef Stefan Institute	 Ljubljana	 Slovenia	
September �����

���� Zwicky �Name �	 �INVENTION ��

��� BIBLIOGRAPHY

Chapter �

APPENDIX �� XACT

DEVELOPMENT

SYSTEM TUTORIAL

The tutorial presented in this appendix is an introduction to the
design �ow and development tools for con�guring Xilinx LCAs	
The tutorial consists of a simple design for a seven�segment de�
coder that will be downloaded to the provided demonstration
board supplied by Xilinx	 It encompasses the following�

�	 The viewing of the created design in the FutureNet DASH
schematic capture package	

�	 The conversion of the drawing �les to Xilinx netlist �les	

�	 The mapping of the netlist �les to logic cell array �les	

�	 The viewing of the LCA design and layout	

�	 The downloading and operation of the design in the Xilinx
LCA	

The Xilinx tools reside on the ��� PC in Dr	 Perkowski�s lab
downstairs in the front room of the lab	 The FutureNet DASH
and Xilinxmanuals also reside in the front room and Xilinx down�
load cable and Demo board are stored in the back room	

��

��	CHAPTER �� APPENDIX �� XACTDEVELOPMENT SYSTEM TUTORIAL

��� CREATING THE DESIGN

The design used in this tutorial was created using the supplied
schematic capture applicationFutureNet DASH �
�	 The dashdice
design is a two�level schematic� with the top�level design calling
a lower�level schematic design which holds the operation of the
included macro	

�	 To view the Dashdice example� you must �rst enter the Fu�
tureNet DASH Schematic Capture tools	 To invoke DASH�
type�

C���� �fn ��

�	 This automatically calls the macro library for the XC�

family of LCA�s	 This family is selected since the demon�
stration board was designed for use with a Xilinx �
�� LCA
device	 The schematic capture package will be invoked	

�	 Load the XC�

 macros	

�	 Load the current pro�le� then give yourself control of the
program	

The mouse is setup as such�

left button � select middle button � execute right button � menu

�	 From the command prompt� type �dir� to view the current
directory that you are located� which should be

C����XACT��DESIGNS�

You will need to change directories to

C����XACT�	����TUTORIAL�

This can be done by typing

!cd ��XACT�	����TUTORIAL�

at the command prompt	 Then type

���� CREATING THE DESIGN ���

!dir!

to view the contents of this directory	 There should be at
least two �les� dashdice	dwg and dice�seg	dwg for this tuto�
rial to work properly	

�	 If you are currently located in the menu of DASH move to
the far right of the menu and select �Load�	 The drawing
screen will then appear with a command line at the bottom
containing the word load	

�	 Type in �dashdice� and press return	 The drawing will be
loaded into the full screen for you to view	

�	 Move the cursor around the screen observing the dashed box
that follows the cursor	 This is the zoom window	 Move the
cursor so the box is encompassing the area in which you wish
to zoom in upon	 To zoom in and out so details of the draw�
ing can be better seen� use the �Pageup� and �Pagedown�
keys from the keyboard	 Features that you might wish to
look at are the input�output bu�ers and pins� and how they
are represented in symbolic terms within the drawing	 The
labels given to drawing are called attributes	 The attributes
de�ne the labels given to certain macros such as I�O pins�
logic gates� and the signals running between the two	 As
the mouse is moved across the attributes� the values are dis�
played to the right of the viewing area giving greater insight
to their de�nition	 These attributes are quite important to
the �nal LCA design through their ability to direct outputs
of the design to the actual device pins� and give a macro in
a design an actual call to an additional drawing design	

�	 Now zoom out to the full�size drawing picture and place the
zoom window around the large rectangular box in the lower
right portion of the drawing �not the title box�	 Zoom in
to that area and notice that the box at the top contains the
title �dice�seg�	 This box actually represents a lower level
schematic named �dice�seg	dwg� that is implemented as a
user�created macro in the top�level design �dashdice	dwg�	
To view this drawing� go back to the menu by pressing the
right mouse button	 Move to the far right side of the Menu
again and select �Load�	 The viewing screen will once again
appear with the command line at the bottom	

���CHAPTER �� APPENDIX �� XACTDEVELOPMENT SYSTEM TUTORIAL

�
	 Type �dice�seg� and hit %RETURN$	 The drawing of the
macro dice�seg will be loaded for you to view	

��	 If you wish to bypass the Menu portion of this process� just
type �load dice�seg� and it will do the same job as selecting
load from the Menu	

This section was meant to let a user see the schematic descrip�
tion of the design in which you will soon be downloading to the
device	 No changes should have been made at this stage of the tu�
torial� otherwise the �nal LCA design may no function correctly	
You now want to quit out of the schematic capture package by
one of two ways�

�	 Go back in the menu and select �quit�	

�	 Type �quit� or �q� from where you currently are located	

�	 You should now be back to the DOS prompt� and should be
in the directory�

C����XACT�	����TUTORIAL�

This is the default directory where DASH places all of its
design �les	 It is necessary to be located in this directory for
now� since you will be converting the design �les to Xilinx
netlist �les	 Please refer to the FutureNet DASH manual
Vol	 I for an overview of the available operations in the
schematic capture tools	 Also� refer to Vol	 II of the DASH
manuals for de�nitions of each command and the user se�
lected options stored in the application�s pro�les	

��� CONVERTING THE DRAWING FILES

�	 The �rst step that a user will make is to prepare the draw�
ings that you have just viewed for post�processing before
conversion into a pinlist �le	 Follow Figure � in Chapter II
to see the basic design �ow	 At the DOS prompt� type�

C���XACT�	����TUTORIAL� dcm dashdice�dwg

then�

���� CONVERTING THE DRAWING FILES ���

C���XACT�	����TUTORIAL� dcm dice�seg�dwg

This will create a total of four �les� dashdice	der� dice�seg	der�
dashdice	dcm� and dice�seg	dcm	 The two 	der �les are a
record of the conversion of the drawing �les to 	dcm �les
and are not needed for further processing	 The two �les
that we are concerned with are the 	dcm �les	 DCM is a
pre�processor program used in the translation from DASH�
LCA schematics to an XNF �le	 These pre�processor �les
are the �rst step in converting the drawing �les to pinlist
�les	 The pinlist �les contain a list of the connections within
and electronic design� consisting of the names of the pins of
all symbols in the entire design� and the names of the signals
to which each pin connects	 To convert the 	dcm �les to 	pin
�les� type�

C���XACT�	����TUTORIAL� pinc dashdice�dcm

then�

C���XACT�	����TUTORIAL� pinc dice�seg�dcm

�	 This will create the two �les� dashdice	pin and dice�seg	pin	
PINC is a pin�list generator program used to translate the
pre�processed dcm �les to a FutureNet compatible PIN �le	
For a detailed explanation of the PINC command� refer to
Vol	 II of the Xilinx XACT Programmable Gate Array man�
ual in Chapter �	�	

�	 The next step is to convert the 	pin �les into Xilinx Netlist
Files �XNF� with pin�xnf	 The netlist �le is a common Xil�
inx format for logic input to the development system� re�
gardless of the source �i	e	 schematic� boolean equations�
state machine language�	

�	 To make the conversion� type�

C���XACT�	����TUTORIAL� pin�xnf �P ����PC����� dashdice�pin

�	 The �P option allows the user to select the target Xilinx
device that will be used �in this case the XC�
��PC�	 The
trailing ��
 is the speed grade of the device	 The trailing

���CHAPTER �� APPENDIX �� XACTDEVELOPMENT SYSTEM TUTORIAL

�lename is the pinlist �le that you just created	 As you can
observe� you only had to convert the top level design to a
netlist �le	 Since the design dice�seg is included in dashdice�
the XNF conversion process searches the top level pinlist �le
�dashdice	pin� and automatically converts all �les contained
within it �dice�seg	pin�	

��� CREATING THE LOGIC CELL ARRAY FILE

�	 Now that you have converted the entire design to the gate�
level netlist �le� you must now convert it to a Con�gurable
Logic Block and Input�Output Block level	 This is called
a Logic Cell Array �LCA� �le	 This �le will later on be
placed and routed into the targeted device	 To make this
conversion� type�

C���XACT�	����TUTORIAL� xnfcvt dashdice�xnf dash�xnf

This command provides the conversion from older XNF �les
to the most recent version	 This is needed since the pin�xnf
conversion is from the older software	 Refer to the Xilinx
User Guide and Tutorials manual for the best explanation
of the xnfcvt command	 The XNF �lename was changed� so
we now have two versions of the same XNF �le	

�	 At this point the user needs to partition the design logic into
CLB and IOB resources with the xnfmap program	 To map
the dashdice design� type�

C���XACT�	����TUTORIAL� xnfmap �p ����pc����� dash�xnf

When xnfmap has been executed� two �les should have been
created	 The �le dash	crf is a cross�reference report showing
how xnfmap partitioned the logic	 The �le dash	map con�
tains the partitioned logic from the XNF �le	 The dash	map
�le must then be converted to an LCA �le	

�	 To convert the partitioned logic into an LCA �le� type�

C���XACT�	����TUTORIAL� map�lca �p ����pc����� dash

���� CREATING THE LOGIC CELL ARRAY FILE ���

�	 After the execution of the map�lca program� three �les should
have been created	 The �rst �le� dash	aka� lists the sig�
nal pre�xes to let the user know which functional block the
signal comes from	 The �le dash	lca is an LCA design �le
that has yet to be placed or routed	 The dash	scp �le is a
schematic constraints �le containing information that assists
APR in placement and routing� such as pin and block loca�
tions� and net �ags from the schematic �les	 Chapter �	�
of Vol	 II of the Xilinx XACT Programmable Gate Array
Development System manual gives a detailed explanation of
the map commands	

�	 The �nal step is to place and route your LCA �le into the
target device	 The Automatic Place and Route procedure
�APR�� reads an LCA �le� generates a new block placement�
routes the nets of the design� and writes the result to another
LCA �le	

In APR� there are four steps�

�� Partitioning phase where logic is partitioned into pieces
that can be implemented with LCA logic blocks �i	e	
CLB�s� IOB�s� etc			��

�� Placement phase where blocks are assigned to a location
with the LCA�

�� Routing phase where the signals connecting the blocks
are routed using the routing resources of the LCA�

�� Programming phase where the design information is
converted into a bit stream which is then loaded into
an LCA	

The number of possible block placements is the matrix size
�� of CLB�s�	 For the XC�
��� this is greater than ��	

possible placements� not including I�O blocks	

�	 A �simulated annealing� algorithm is used to determine the
optimal block placement	 Annealing refers to the crystal�
lization process in which a metal is melted and then slowly
cooled back to freezing in order to form highly�ordered crys�
tals with few defects	 Simulated annealing is an algorithm
for �nding good solutions to complicated optimization prob�
lems in a manner analogous to the physical crystallization

���CHAPTER �� APPENDIX �� XACTDEVELOPMENT SYSTEM TUTORIAL

of a metal	 During each iteration of the simulated anneal�
ing placement algorithm� two or more blocks are exchanged
at random� and the �routability� of the resulting placement
is calculated �
�	 This routability is expressed in terms of
a �routing score�� calculated using a formula that includes
the length of the routes� the net weighting� and the number
of available routing channels as factors	

The simulatedannealing placement algorithmhas two phases�
the annealing phase and the quenching phase	 In the anneal�
ing phase� a new placement that results in better routabil�
ity is always accepted	 However� if the new placement is
worse� there is still a probability that that it will be ac�
cepted� depending on how much worse it is and the current
�temperature�	 The worse the placement� the less likely it
will be accepted� although the higher the �temperature��
the greater the chance of its acceptance	 As the algorithm
proceeds� the design is slowly �cooled� by lowering the tem�
perature	 As the design cools� blocks move less freely and
tend to settle into place	 Once the design has su ciently
cooled� the quenching phase is entered	 At this stage� only
placements of better optimization are accepted	

By default� APR automatically calculates and assigns a start�
ing temperature su cient to �melt� the design� or in other
words� a temperature high enough to allow total scrambling
of the initial placement	 The algorithm then determines the
rate at which the temperature is lowered and when the de�
sign has cooled enough to allow quenching	 All of this infor�
mation can be seen as its happening upon invoking the APR
program	

�	 To place and route your LCA design� type�

C���XACT�	����TUTORIAL� apr dash�lca dashapr�lca

This step will take several minutes to place and route this
design	 Larger designs such as the design for the Iterative
Logic Unit �ILU� of the Cube Calculus Machine �	
 �CCM��
may take up to several hours to do the APR step	 As you
can see� the syntax of the APR statement has the unrouted
LCA �le� and the placed and routed LCA �le which will be

���� VIEWING THE LOGIC CELL ARRAY FILE ���

distinguished as dashapr	lca	 Refer to Chapter � of the Xil�
inx XACT Programmable Gate Array Development System
Vol	 II manual	

��� VIEWING THE LOGIC CELL ARRAY FILE

�	 You now have a complete logic cell array design that is placed
and routed	 To view your placed and routed design� using
the XACT Design Editor by typing at the prompt�

C���XACT��DESIGNS� xde

�	 This brings you into the XACT development system� allow�
ing you to view� change and download your design to the
device	 Move the cursor to the Designs menu and select
Design	 Another menu will pop up and allow you to choose
the design which you wish to work with	 If you followed the
exact syntax that I used for the APR step� the design you
want to work with is dashapr	lca	 Select this �le� and wait	

�	 Once the �le is loaded and ready� move the cursor to the Pro�
grams Menu and select Editlca	 The editing screen will ap�
pear� and you will be able to view the layout of the dashdice
design	 Move the cursor onto the layout area and click down
on the left mouse bottom and drag the mouse around	 This
allows you to scan across the layout while being able to see
a global picture of the layout in the lower right corner of the
screen	

�	 Now� move to where you have a good view of the routing
within your local window and let up on the mouse	 The
global window disappears and you will be able to see the
routing from CLB�s through switching matrices to other
CLB�s and I�O Blocks	 Move the cursor and point to a
pin on any CLB or I�O block� and watch the information at
the bottom of the screen	 It will tell you the current pin be�
ing pointed at� what it corresponds to in your design layout�
and its net connections	

�	 Once you have looked around here� move the cursor to the
Misc Menu and select Exit	 You will now be out at the Main
Menu of XACT and ready for downloading the dashapr	lca
design to the demo board	

���CHAPTER �� APPENDIX �� XACTDEVELOPMENT SYSTEM TUTORIAL

��� DOWNLOADING THE LOGIC CELL ARRAY

FILE

�	 First� install an XC�
�� in the demo board�s LCA socket and
connect the power source to the jumper J� �pin ��GND� pin
��Vcc�	

�	 Next install the download cable	 One end is connected to
the parallel port of the computer which has the Xilinx key
connected to it	 Fit the connector to the key and the other
end to the demo board�s J� jumper	 Connection to J� is ob�
vious due to the keyed pin �tting	 When the demo board has
been properly prepared� invokeMakebits from the Programs
Menu to access the bitstream and downloading commands	

�	 If prompted� select the design �le you wish to download
�dashapr	lca�	 Once the Makebits screen appears� use the
Misc Menu�s Port command to specify which port the down�
load cable is connected to	 For our setup� select LPT�	 If
the cable is connected properly� a message saying that Port
LPT� is initiated will appear at the bottom of the screen	

�	 Next� invoke the Con�g Menu�s Makebits command� creat�
ing a bitstream �le that is present in memory and can be
downloaded into an LCA	

�	 At this junction� select the Tie option which will internally
tie all �oating I�O pins low	

�	 Then select Done� and the XACT system will create the
bitstream �le dashapr	bit for downloading	 Also created is
dashapr	mbo� a record of the Makebits options that were
selected in the process of creating dashapr	bit	

�	 Next� invoke the Writebits command in Con�g Menu to save
the bitstream �le to disk	 Hit %CR$ for the default �lename�
which should be dashapr	bit	

�	 Then� use the Download Menu�s Download command to
transfer the bitstream into the LCA on the demo board	
If prompted �Reset the LCA�� then press the demo board�s
Reset switch once	 The bottom of the screen should show
that the Reset pin has gone low	

��	� DOWNLOADING THE LOGIC CELL ARRAY FILE ��

�	 Then hit %CR$ to start the downloading process	 Download�
ing should take � to �
 seconds depending upon the speed
of the PC	

�
	 If the download is successful� the message �Done Signal
Went High� will appear at the bottom of the screen	 If
downloading fails� �rst check the cable connection between
the demo board and the PC for proper connection	 If down�
load is successful but the demo board doesn�t function cor�
rectly� check the user switch settings SW� on the demo
board� noting the correct positions of ON�OFF switches	

For this design� a ��bit Johnson counter is decoded into a seven
segment display of ���	 For proper operation� the seven segment
display on the demo board should be rapidly counting from ���
until the clock is inhibited by setting SW� to
�OFF� e�ectively
stopping the counter at a random number	

��	CHAPTER �� APPENDIX �� XACTDEVELOPMENT SYSTEM TUTORIAL

Chapter �

APPENDIX �� VHDL

CODE OF CCM��

"""""""""""

" file clock�vhdl	�

"""""""""""

���

�� clock genertor

��

�� During reset drive clk to !�! until reset

�� is deasserted� This allows synchronization of bus

�� unit interface and bus clock to the cpu clock�

��

�� cycle time is arbitrarily set to ���ns�

���

ENTITY clock IS

PORT �reset� IN BIT
 clk� INOUT BIT�

END clock

ARCHITECTURE clock� OF clock IS

BEGIN

clk #� !�! WHEN �reset � !�!�

���

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

ELSE NOT clk AFTER ��ns

END clock�

""""""""""""""""""""

" file flip	flop�vhdl	��

"""""""""""""""""""""

���

�� Edge triggered D flip�flop with synchronous reset

���

ENTITY flip	flop IS

PORT �clk enable reset din� IN BIT
 dout� OUT BIT�

END flip	flop

ARCHITECTURE msff OF flip	flop IS

SIGNAL temp� temp� temp�� BIT

SIGNAL slct� BIT	VECTOR �� DOWNTO ��

BEGIN

slct #� �enable $ reset�

WITH slct SELECT

temp� #� !�! WHEN ����

din WHEN ����

temp� WHEN OTHERS

temp� #� temp� WHEN �clk � !�!�

ELSE temp�

temp� #� temp� WHEN �clk � !�!�

ELSE temp�

dout #� temp�

END msff

""""""""""""

" file mux�to��vhdl	�

""""""""""""

��

�� � to � mux used in this design to implement any one of

�� the �� possible two�input binary functions�

�� The � bit input is the truth values of the binary function

�� and the two select lines are the two

�� input bits to the binary function�

���

���

ENTITY mux�to� IS

PORT �in� in� in� in� sel� sel�� IN BIT

out�� OUT BIT�

END mux�to�

ARCHITECTURE zmux� OF mux�to� IS

SIGNAL sel� BIT	VECTOR �� DOWNTO ��

BEGIN

sel #� �sel� $ sel��

WITH sel SELECT

out� #� in� WHEN ����

in� WHEN ����

in� WHEN ����

in� WHEN ����

END zmux�

"""""""""""

" file counter�vhdl	��

""""""""""

��

�� � bit counter used to count the number of output

�� cubes of a sequential cube operation�

��

USE work�all

ENTITY counter IS

PORT �clk �� Clock from clock generator

count �� From control unit state machine�

�� Enables a count by ��

ld	ir �� From bus interface units� Loads

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

�� instruction register and clears

�� the counter for the next operation�

reset �� External CPU reset�

stall� �� Register file stalls the CPU when it is full�

IN BIT

count	out� �� Counter output to the bus unit�

�� Provides status on the number of output

�� cubes from a particular instruction�

OUT BIT	VECTOR �� DOWNTO ���

END counter

ARCHITECTURE counter� OF counter IS

SIGNAL temp value carry� BIT	VECTOR �� DOWNTO ��

SIGNAL rst	count count	en� BIT

COMPONENT flip	flop

PORT �clk enable reset din� IN BIT

dout� OUT BIT�

END COMPONENT

BEGIN

rst	count #� ld	ir OR reset

�� Reset the counter to � on the

�� start of new instruction execution

�� indicated by ld	ir going active high

�� or when cpu reset is asserted�

�� carry chain for the counter

��

carry��� #� !�!

carry��� #� value��� AND carry���

carry��� #� value��� AND carry���

carry��� #� value��� AND carry���

���

carry��� #� value��� AND carry���

temp #� value XOR carry

count	en #� count AND NOT stall

�� Enable the counter when count

�� is asserted by the control unit

�� state machine and the register

�� file is not full� Count is asserted

�� when a request is made by the CU

�� state machine and the ILU responds

�� that it has not completed all

�� cube computations �wait	out high��

�� Stall causes the CU state machine to

�� spin waiting for a register file

�� entry to become available so counting

�� should also be disabled in such case�

msff�� flip	flop

PORT MAP �clk count	en rst	count temp��� value����

msff�� flip	flop

PORT MAP �clk count	en rst	count temp��� value����

msff�� flip	flop

PORT MAP �clk count	en rst	count temp��� value����

msff�� flip	flop

PORT MAP �clk count	en rst	count temp��� value����

msff�� flip	flop

PORT MAP �clk count	en rst	count temp��� value����

count	out #� value

END counter�

""""""""""""""""""

" file reg���vhdl	�

"""""""""""""""""""

��

�� �� bit register output triggered on rising clk

��

ENTITY reg�� IS

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

PORT �ld	reg �� write enable

clk� �� global CPU clock

IN BIT

reg	in� �� register input bus

IN BIT	VECTOR ��� DOWNTO ��

reg	out� �� register output bus

OUT BIT	VECTOR ��� DOWNTO ���

END reg��

ARCHITECTURE reg��	� of reg�� IS

SIGNAL reg	wr	en� BIT

SIGNAL temp� temp�� BIT	VECTOR ��� DOWNTO ��

BEGIN

reg	wr	en #� ld	reg AND NOT clk

temp� #� reg	in WHEN �reg	wr	en � !�!�

ELSE temp�

temp� #� temp� WHEN �clk � !�!�

ELSE temp�

reg	out #� temp�

END reg��	�

""""""""""""""""""

" file reg���vhdl	�

"""""""""""""""""""

��

�� �� bit register output triggered on rising clk

��

ENTITY reg�� IS

PORT �ld	reg �� write enable

���

clk� �� global CPU clock

IN BIT

reg	in� �� register input bus

IN BIT	VECTOR ��� DOWNTO ��

reg	out� ��� register output bus

OUT BIT	VECTOR ��� DOWNTO ���

END reg��

ARCHITECTURE reg��	� of reg�� IS

SIGNAL reg	wr	en� BIT

SIGNAL temp� temp�� BIT	VECTOR ��� DOWNTO ��

BEGIN

reg	wr	en #� ld	reg AND NOT clk

temp� #� reg	in WHEN �reg	wr	en � !�!�

ELSE temp�

temp� #� temp� WHEN �clk � !�!�

ELSE temp�

reg	out #� temp�

END reg��	�

""""""""""""""""""""""""

" file regfile�vhdl	�

""""""""""""""""""""""""

���

�� This functional block is the output cube queue� A queue has

�� been the design choice for implementing the register file in

�� order to simplify the central control unit state machine and

�� to allow buffering between the ILU computation and a bus

�� interface DMA like control� Computation can progress at a rate

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

�� different from the DMA rate and the buffer smoothes out

�� variations in speed� The queue stalls the CPU when it is full

�� and cannot accept new results� It signals to the bus interface

�� unit when it is empty and has not data for the DMA to read�

��

�� This block consists of the following logic�

��

�� �� Six ���bit entries to hold result cubes and a valid bit

�� for each entry� The number of the queue entries have been

�� arbitrarily chosen� It should be optimized for best

�� area�performance trade�off when a target main CPU is

�� selected and a bus interface unit is designed to

�� inetrafce with the main CPU�

��

�� �� A shift carry chain which detects if there is any non

�� valid entry ahead in the queue� If there is then all

�� previous entris are shifted one position ahead in the

�� queue in one clock� The queue is therefore is implemented

�� as �� ��bit shift registers ��� data and one valid bit�

�� and the shift register control is local�

��

�� �� A head carry chain which detects the head of the queue

�� i�e� the oldest entry which has valid data� When the

�� bus interface unit reads the queue the head carry chain

�� automatically controls the read cycle and enables

�� reading the oldest entry in the queue�

��

�� �� Logic to clear the valid bit associated with the head of

�� the queue when the bus interface unit reads an entry� For

�� best performance a read and a shift can happen in the

�� same cycle and the correct valid bit in this case is

�� cleared�

��

�� �� Output cubes from the ILU are always written in entry �

�� of the queue� The ILU output is therefore the input to

�� the queue shift registers�

��

�� �� Logic which detects full and empty states� When the queue

�� is full it stalls the CPU and when it is empty it

�� signals this condition to the bus interface unit to make

�� it aware that there is no valid data yet for it to read�

���

��

USE work�all

ENTITY regfile IS

PORT �clk �� Global CPU clock

reset �� CPU reset

wr	en �� External input which enables writing a

�� new entry in the queue�

rd	en� �� External input which enables reading

�� the head of the queue�

IN BIT

reg	file	in� �� Input data to write into the queue

IN BIT	VECTOR ��� DOWNTO ��

empty �� Queue is empty

full� �� Queue is full

OUT BIT

reg	file	out� �� Output data from the queue

OUT BIT	VECTOR ��� DOWNTO ���

END regfile

ARCHITECTURE regfile� OF regfile IS

SIGNAL head head	carry read write regvclr

regv shift	carry� BIT	VECTOR �� DOWNTO ��

SIGNAL reg	out� reg	out� reg	out� reg	out�

reg	out� reg	out�� BIT	VECTOR ��� DOWNTO ��

COMPONENT reg��

PORT �ld	reg clk� IN BIT

reg	in� IN BIT	VECTOR ��� DOWNTO ��

reg	out� OUT BIT	VECTOR ��� DOWNTO ���

��	 CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

END COMPONENT

COMPONENT flip	flop

port �clk enable reset din� IN BIT

dout� OUT BIT�

END COMPONENT

BEGIN

�� instantiate the queue!s six ���bit registers

��

reg�� reg��

PORT MAP �write��� clk reg	file	in reg	out��

reg�� reg��

PORT MAP �write��� clk reg	out� reg	out��

reg�� reg��

PORT MAP �write��� clk reg	out� reg	out��

reg�� reg��

PORT MAP �write��� clk reg	out� reg	out��

reg�� reg��

PORT MAP �write��� clk reg	out� reg	out��

reg�� reg��

PORT MAP �write��� clk reg	out� reg	out��

�� instantiate the queue!s valid bits

��

valid�� flip	flop

PORT MAP �clk write��� regvclr��� wr	en regv����

valid�� flip	flop

PORT MAP �clk write��� regvclr��� regv��� regv����

valid�� flip	flop

PORT MAP �clk write��� regvclr��� regv��� regv����

valid�� flip	flop

PORT MAP �clk write��� regvclr��� regv��� regv����

valid�� flip	flop

PORT MAP �clk write��� regvclr��� regv��� regv����

valid�� flip	flop

PORT MAP �clk write��� regvclr��� regv��� regv����

�� Shift carry chain� when one or more entries ahead in the

�� queue is empty a shift carry is generated for the entries

�� before which causes all previou entries in the queue to

���

�� be shifted by one position therefore allowing a new cube

�� to be written from the ILU into the tail entry of the

�� queue �entry ���

��

shift	carry��� #� �NOT regv����

shift	carry��� #� shift	carry��� OR �NOT regv����

shift	carry��� #� shift	carry��� OR �NOT regv����

shift	carry��� #� shift	carry��� OR �NOT regv����

shift	carry��� #� shift	carry��� OR �NOT regv����

shift	carry��� #� shift	carry��� OR �NOT regv����

write #� shift	carry

�� Head carry chain� signal for an entry that there is a

�� valid entry ahead of it in the queue� The head carry chain

�� is used to read the oldest entry in the queue when the

�� bus interface unit reads an entry from the queue�

��

head	carry��� #� !�!

head	carry��� #� head	carry��� OR regv���

head	carry��� #� head	carry��� OR regv���

head	carry��� #� head	carry��� OR regv���

head	carry��� #� head	carry��� OR regv���

head	carry��� #� head	carry��� OR regv���

head #� regv AND NOT head	carry

read��� #� head��� AND rd	en

read��� #� head��� AND rd	en

read��� #� head��� AND rd	en

read��� #� head��� AND rd	en

read��� #� head��� AND rd	en

read��� #� head��� AND rd	en

�� Clear the valid bit of the entry read by the bus

�� interface unit� Make sure to clear the valid bit

�� of the next entry in the queue and not the entry

�� being read when a read and a shift occur simultaneously�

��

regvclr��� #� reset OR

�read��� AND NOT write����

regvclr��� #� reset OR

�read��� AND NOT write���� OR

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

�read��� AND write����

regvclr��� #� reset OR

�read��� AND NOT write���� OR

�read��� AND write����

regvclr��� #� reset OR

�read��� AND NOT write���� OR

�read��� AND write����

regvclr��� #� reset OR

�read��� AND NOT write���� OR

�read��� AND write����

regvclr��� #� reset OR

�read��� AND NOT write���� OR

�read��� AND write����

�� Output the entry read from the queue

��

WITH read SELECT

reg	file	out #� reg	out� WHEN ��������

reg	out� WHEN ��������

reg	out� WHEN ��������

reg	out� WHEN ��������

reg	out� WHEN ��������

reg	out� WHEN OTHERS

�� Detect when the queue is full�

��

full #� regv��� AND

regv��� AND

regv��� AND

regv��� AND

regv��� AND

regv���

�� Detect when the queue is empty�

��

empty #� NOT regv��� AND

NOT regv��� AND

NOT regv��� AND

NOT regv��� AND

NOT regv��� AND

NOT regv���

���

END regfile�

""""""""""""""""""""""""""

" file custm�vhdl	��

""""""""""""""""""""""""""

��

�� Control unit state machine� It has three states�

��

�� �� Fetch state� CPU is done processing previous

�� and is waiting for the bus interface unit to load

�� a new instruction in the instruction register�

�� �� Clear state� CPU signals to the iterative logic

�� unit to clear its iterative state machines and to

�� compute the relation function and detect which

�� variables if any are active�

�� �� Request state� CPU requests a cube output from the

�� iterative unit� CPU keeps on asserting this signal

�� until the iterative unit has computed all its

�� output cubes�

��

USE work�all

ENTITY custm IS

PORT �clk �� Clock from clock generator

ld	ir �� From bus interface unit� Loads instruction

�� register and signals to the state machine to

�� start next instruction execution�

wait	out �� When asserted by ILU indicates that the

�� ILU still has more output cubes to compute�

reset �� External CPU reset�

stall �� Register file is empty so CPU should stall

�� until a register file entry becomes available

�� for the ILU to store another cube result�

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

prime� �� Opcode bit which indicates that the operation

�� is simple or complex operation �one cube result�

�� and not a sequential operation� this bit forces

�� a one cycle count pulse for prime operations to

�� make the counter counts to one the number of

�� output cubes for prime operations�

IN BIT

clear �� signal to ILU to clear its sequential state

�� machines and identify active variables�

request �� signal to ILU to compute next cube result�

count �� signal to the counter to count one more cube

�� and for the register file to write the cube

�� currently output by the ILU�

fetch� �� signal to the bus unit to fetch the next

�� instruction�

OUT BIT�

END custm

ARCHITECTURE custm� OF custm IS

SIGNAL fetch	state clear	state request	state

next	state	fetch next	state	request

next	state	clear update	state count	in� BIT

SIGNAL next	state state� BIT	VECTOR �� DOWNTO ��

SIGNAL slct� BIT	VECTOR �� DOWNTO ��

COMPONENT flip	flop

PORT �clk enable reset din� IN BIT

dout� OUT BIT�

END COMPONENT

BEGIN

�� decode current state

��

���

fetch	state #� !�! WHEN �state � �����

ELSE !�!

clear	state #� !�! WHEN �state � �����

ELSE !�!

request	state #� !�! WHEN �state � �����

ELSE !�!

�� compute next state

��

next	state	fetch #� request	state AND

NOT wait	out AND

NOT stall

next	state	clear #� fetch	state AND

ld	ir

next	state	request #� clear	state

�� drive current outputs

��

clear #� clear	state

request #� request	state

fetch #� fetch	state

slct #� �next	state	fetch $ next	state	clear $

next	state	request�

�� encode next state and latch into D flip�flops�

��

WITH slct SELECT

next	state #� ���� WHEN �����

���� WHEN �����

���� WHEN �����

state WHEN OTHERS

update	state #� !�!

count	in #� request	state AND

�wait	out OR prime OR stall�

msff�� flip	flop

PORT MAP �clk update	state reset count	in count�

msff�� flip	flop

PORT MAP �clk update	state reset next	state��� state����

msff�� flip	flop

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

PORT MAP �clk update	state reset next	state��� state����

END custm�

"""""""""""""""""""""""

" file ident	main�vhdl	��

"""""""""""""""""""""""

��

�� This functional block contains the logic which identifies if

�� a variable is �specific� during a complex or sequential operation�

��

�� The block contains � carry chains� Two AND carry chains and

�� two OR carry chains with one of the two pairs of chains used

�� for a particular instruction to determine which variables are

�� �specific�� A bit in the instruction �and	or� determines if the

�� �AND� or �OR� carry chains are to be used� If the sequential

�� operation is of the �AND� type then a variable is �specific� if

�� all its bit positions meet the �specific� relation specified in

�� �rel� subfield of the instruction� If the sequential operation is

�� of the �OR� type then a variable is specific if one or more of

�� its bit positions satisfy the specific relation for the

�� instruction�

��

�� Each pair of carry chains consist of a carry right and carry

�� left chains� The use of symmetrical chains one to the left and

�� one to the right instead of a one directional chain and a

�� confirm chain reduces the carry propagation delay by half� With

�� a confirm chain implementation the carry has to propagate all

�� the way in one direction and then the confirm in the worst

�� case has to propagate afterwards all the way in the opposite

�� direction before a variable is identified� In this two chain

�� implemenatation propagation right and propagation left happens

�� simultaneously therefore cutting down the worst case propagation

�� delay by half without adding extra hardware�

��

���

ENTITY ident	main IS

PORT �and	carry	r	in �� �AND� right carry input from the cell to the left

and	carry	l	in �� �AND� left carry input from the cell to the right

or	carry	r	in �� �OR� right carry input from the cell to the left

or	carry	l	in �� �OR� left carry input from the cell to the right

left	edge �� An input to each iterative cell which comes from

�� right edge register bit for the the cell on its left�

�� This bit is set to !�! at the higher hierarchical

�� level �ILU level� for cell ���

��

�� It is very important to set the right edge bit to the

�� left cell of the leftmost non�water �enabled� cell

�� if the leftmost cell is not cell ��� Carry generation

�� requires proper identification of the left edge of

�� each variable� So though a cell to the left of a left

�� edge cell may be watered the edge register for

�� a particular instruction still need to be set for

�� watered variables for correct operation of the carry

�� cahinas�

right	edge �� edge register bit which indicates that a particular

�� cell in an operation is the rightmost position of

�� a variable� As explained above this same bit also

�� indicates to the cell to the right that it is the

�� leftmost cell of a variable�

water �� bit from the �water� register which indicates if

�� a cell shouldd be enabled in a particular

�� instrcution�

rel� �� The output of an instruction!s �specific� relation

�� on bit � of an iterative cell�

rel� �� The output of an instruction!s �specific� relation

�� on bit � of an iterative cell�

and	or� �� Instruction bit which determines if the specific

�� relation of an instruction is of the �AND� or �OR�

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

�� type�

IN BIT

and	carry	r	out �� �AND� carry output to the cell to the right

and	carry	l	out �� �AND� carry output to the cell to the left

or	carry	r	out �� �OR� carry output to the cell to the right

or	carry	l	out �� �OR� carry output to the cell to the left

var� �� set when a cell is identified to be contained

�� within a �specific� variable�

OUT BIT�

END ident	main

ARCHITECTURE ident	main� OF ident	main IS

SIGNAL gen	and	carry	l gen	and	carry	r prop	and	carry

gen	or	carry prop	or	carry	l prop	or	carry	r

temp� temp� temp� temp�� BIT

BEGIN

�� AND carry chains logic

��

prop	and	carry #� �rel� AND rel�� OR water
 �� propagate AND carry if the

�� specific �AND� relation

�� results in high output on

�� both bit positions of an

�� iterative cell�

gen	and	carry	r #� left	edge AND �� generate �AND� carry at the right

prop	and	carry AND �� edge position of a variable if

NOT water
 �� the right cell meets the

�� �specific� relation�

gen	and	carry	l #� right	edge AND �� generate �AND� carry at the left

prop	and	carry AND �� edge position of a avariable if

NOT water
 �� the left cell meets the

��

�� �specific� relation�

�� propagate the carry from the left and the carry from the right if

�� a cell meets the �specific� relation and the cell is not an edge

�� cell� If the cell is an edge cell then drive an active carry only

�� if the edge cell meets the �specific� relation�

��

temp� #� �and	carry	r	in AND prop	and	carry�

OR gen	and	carry	r

temp� #� �and	carry	l	in AND prop	and	carry�

OR gen	and	carry	l

and	carry	r	out #� temp�

and	carry	l	out #� temp�

�� �OR� carry chains logic�

��

�� generate a carry to the left and to the right if a cell meets the

�� �specific� relation� If a cell is an edge cell do not propagate the

�� carry from outside the variabel� If a cell is not an edge cell

�� perform the �OR� carry function by propagating the left and right

�� carry even when the cell does not meet the �specific� relation�

��

gen	or	carry #� �rel� OR rel�� AND NOT water

prop	or	carry	r #� �NOT left	edge� OR water

prop	or	carry	l #� �NOT right	edge� OR water

temp� #� �or	carry	r	in AND prop	or	carry	r�

OR gen	or	carry

temp� #� �or	carry	l	in AND prop	or	carry	l�

OR gen	or	carry

or	carry	r	out #� temp�

or	carry	l	out #� temp�

�� now that the carry out to right and to left is computed identify

�� if a cell is within a specific variable� If the carry chain function

�� is �AND� a cell is within a variable if both carry right and

�� carry left are active� From the carry logic above it can easily be

�� seen that both �AND� chain outputs active implies that this cell all

�� cells to the left and all cells to the right meet the specific

�� relation�

��

�� If the carry chain function is �OR� than from the �OR� carry logic

�� above this cell one or more of the cells to the right or one or

��	 CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

�� more of the cells to the left meet the specific relation i�e� the

�� variable is specific� So var in this case is simply the OR of the

�� left and right carry outputs�

��

var #� �temp� AND temp�� WHEN �and	or � !�!� ELSE

�temp� OR temp��

END ident	main�

"""""""""""""""""""""""

" psm�vhdl	��

"""""""""""""""""""""""

��

�� Iterative cell state machine�

��

�� The iterative logic unit in this cube calculus architecture uses

�� distributed control to execute sequential cube calculus efficently�

�� Each iterative cell in the ILU contains a small state machine which

�� with the help of simple global control from the CPU control unit

�� determine the state during execution of the iterative cell and the

�� type of funvtion the iterative cell executes� i�e� the state of the

�� state machine determines if the iterative cell computes the �before�

�� �active� or �after� functions based on the time in the execution

�� cycle and whether the iterative cell belongs to a specific variable

�� or not�

��

�� The state machine contaions the following logic component�

��

�� psmcst� consists of two D edge triggered flip�flops associated with

�� the two state bits of the iterative cell� Signals from the

�� control unit state machine resets or latches the inputs to

�� these flip�flops� A stall signal from the output data queue

�� stalls the state machine when the queue is full and cannot

�� accept any more output cubes�

��

�� psmnst� combinatorial logic which computes the next state based on

�� inputs to the state machine and the current state�

���

��

�� psmout� combinatorial logic which outputs the iterative control wait

�� carry chain and the control which selects the function to

�� apply the the cube operand bits for a particular execution

�� cycle�

��

USE work�all

ENTITY psm IS

PORT �clk �� global CPU clock

request �� Control unit requests another sequential output

�� cube� This signals clocks the state flip�flops

�� and latches the next state value in the state

�� flip	flops unless �stall� is active�

stall �� Input from the output data queue which indicates

�� that the queue is full� Stalls the iterative

�� control state machine until the output queue has

�� empty entries to accept new output cubes�

clear �� Control unit signal which triggers the start of

�� the ILU execution� It resets all iterative cells

�� state to the �before� state and allows a cycle

�� time for the iterative cells to identify if they

�� belong to a specific variable�

wait	in �� Iterative carry chain input� When asserted it

�� indicates to a cell that there is a specific

�� variable to the left for which the corresponding

�� output cube has not been yet computed� This

�� signal keeps the cell from making a transition

�� into an active or after state until all specific

�� variables to its left has made their active

�� computation�

var �� Active when a cell identifies itself as part of

�� a specific variable�

right	edge �� The cell is the rightmost of a variable�

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

water �� From the water register� Remove a cell from a

�� computation when set to !�!

prime� �� Instruction bit which determines if the operation

�� is simple�complex �one output cube� or sequential

�� �� � or more output cubes��

IN BIT

wait	out� �� Iterative carry chain output� Asserted by a

�� specific variable until it has made its active

�� computation�

OUT BIT

slct� �� Control signal which selects if the function

�� executed by the iterative cell is �before�

�� �active� or �after��

OUT BIT	VECTOR �� DOWNTO ���

END psm

ARCHITECTURE psm� OF psm IS

SIGNAL next	state state� BIT	VECTOR �� DOWNTO ��

COMPONENT psmcst

PORT �next	state� IN BIT	VECTOR �� DOWNTO ��

clk request clear stall� IN BIT

state� OUT BIT	VECTOR �� DOWNTO ���

END COMPONENT

COMPONENT psmnst

PORT �wait	in var� IN BIT

state� IN BIT	VECTOR �� DOWNTO ��

next	state� OUT BIT	VECTOR �� DOWNTO ���

END COMPONENT

COMPONENT psmout

PORT �wait	in right	edge var water prime� IN BIT

state� IN BIT	VECTOR �� DOWNTO ��

wait	out� OUT BIT

���

slct� OUT BIT	VECTOR �� DOWNTO ���

END COMPONENT

BEGIN

�� next state logic component

��

nst�� psmnst

PORT MAP �wait	in var state next	state�

�� state flip�flops component

��

cst�� psmcst

PORT MAP �next	state clk request clear stall state�

�� output logic and iterative control chain component

��

out�� psmout

PORT MAP �wait	in right	edge var water prime

state wait	out slct�

END psm�

""""""""""""""""""""""""

" file psmnst�vhdl	�

""""""""""""""""""""""""

���

�� This functional block determines the next state the iterative

�� state machine should transit into if control unit state

�� machine �request� a new cube computation and the output

�� data queue does not �stall� because it is full�

���

ENTITY psmnst IS

PORT �wait	in �� Iterative carry chain input� When asserted

�� it indicates to a cell that there is a

�� specific variable to the left for which the

�� corresponding output cube has not yet been

�� computed� This signal keeps the cell from

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

�� making a transition into an active or after

�� state until all specific variables to its

�� left has made their active computation�

var� �� Active when a celll identifies itself as

�� part of a specific variable�

IN BIT

state� �� iterative cell state variable

IN BIT	VECTOR �� DOWNTO ��

next	state� �� next state into which to make a transition�

OUT BIT	VECTOR �� DOWNTO ���

END psmnst

ARCHITECTURE psmnst� OF psmnst IS

SIGNAL slct� BIT	VECTOR �� DOWNTO ��

SIGNAL next	state	act next	state	aft

bef	state act	state aft	state� BIT

BEGIN

�� decode current state

��

bef	state #� !�! WHEN �state � �����

ELSE !�!

act	state #� !�! WHEN �state � �����

ELSE !�!

aft	state #� !�! WHEN �state � �����

ELSE !�!

�� go to active state if the cell is a specific variable

�� and all specific cells to the left have made their

�� active computation �indicated by an inactive wait carry

�� input��

��

next	state	act #� bef	state AND

var AND

���

NOT wait	in

�� go to sfter state if the cell is not a specific

�� variable and all specific cells to the left have made

�� their active computation �indicated by an inactive wait

�� carry input��

��

next	state	aft #� �bef	state AND

NOT var AND

NOT wait	in� OR act	state

�� encode into � bits the next state value

��

slct #� �next	state	act $ next	state	aft�

WITH slct SELECT

next	state #� ���� WHEN ����

���� WHEN ����

state WHEN OTHERS

END psmnst�

""""""""""""""""""""""""""

" psmout�vhdl	�

""""""""""""""""""""""""""

��

�� Iterative carry chain and output logic�

��

�� The �wait� carry chain is asserted by an iterative cell until

�� it has had its turn in case it is a specific variable to do

�� its active computation and produce its output cube� This

�� carry chain propagates from left to right� As long as the wait

�� carry is high an iterative cell is in the �before� state and

�� performs the �before� binary function of the instruction� When

�� wait carry becomes low into a cell the cell makes either

�� makes a transition into the active state for one cycle to

�� compute its active cube output or makes an immediate

�� transition into an agter state and propagates a � wait carry�

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

��

ENTITY psmout IS

PORT �wait	in �� Iterative control carry chain input

right	edge �� From the edge register� Indicates that the

�� cell is the rightmost of a variable�

var �� The cell has identified itself as a specific

�� variable�

water �� Water register bit which disables a cell

�� from the computation when active�

prime� �� Instruction register bit which determines if

�� an instruction is simple�complex �one cube

�� output� or sequential �� � or more cube

�� outputs�

IN BIT

state� �� Current iterative state

IN BIT	VECTOR �� DOWNTO ��

wait	out� �� Output of the iterative control carry chain

OUT BIT

slct� �� Control output which selects the function

�� to use �before active or after� in a

�� computation cycle�

OUT BIT	VECTOR �� DOWNTO ���

END psmout

ARCHITECTURE psmout� OF psmout IS

SIGNAL bef	state act	state aft	state gen	wait� BIT

SIGNAL temp�� BIT	VECTOR �� DOWNTO ��

BEGIN

���

�� decode the current state

��

bef	state #� !�! WHEN �state � �����

ELSE !�!

act	state #� !�! WHEN �state � �����

ELSE !�!

aft	state #� !�! WHEN �state � �����

ELSE !�!

�� Generate a wait carry when a specific variable cell is in

�� a before state �has not done the active computation� the

�� cell is enabled �water bit is !�!� and the instruction is

�� sequential�

��

gen	wait #� bef	state AND

right	edge AND

var AND

NOT water AND

NOT prime

�� Propagate the wait carry or drive an active wait if the

�� cell has generated a wait carry�

��

wait	out #� wait	in OR gen	wait

�� Output control which selects the function to execute in

�� a particular cycle dependoing on the state and the type

�� of operation �prime vs� sequential��

��

temp� #� �prime $ var�

WITH temp� SELECT

slct #� ���� WHEN ����

���� WHEN ����

state WHEN OTHERS

END psmout�

""""""""""""""""""""""""""

" file psmcst�vhdl	��

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

""""""""""""""""""""""""""

��

�� This block contains � D edge triggered flip�flops which contains

�� the current state for the iterative cell�

��

USE work�all

ENTITY psmcst IS

PORT �next	state� �� Next state to latch into the flip�flops

IN BIT	VECTOR �� DOWNTO ��

clk �� Global CPU clock

request �� Control signal from the control unit state� Causes

�� iterative cell state transition by enabling the

�� state flip�flip�

clear �� Control signal from the control unit which fires the

�� iterative cells sequential execution� Resets the state

�� machine to the �before� �before active i�e�� state�

stall� �� Stall signal from the output data queue

IN BIT

state� �� Output of the state flip�flops

OUT BIT	VECTOR �� DOWNTO ���

END psmcst

ARCHITECTURE psmcst� OF psmcst IS

SIGNAL update	state� BIT

COMPONENT flip	flop

PORT �clk enable reset din� IN BIT

dout� OUT BIT�

END COMPONENT

��

BEGIN

update	state #� request AND NOT stall

ms�� flip	flop

PORT MAP �clk update	state clear next	state��� state����

ms�� flip	flop

PORT MAP �clk update	state clear next	state��� state����

END psmcst�

""""""""""""""""""""""""""

" file itcell�vhdl	�

""""""""""""""""""""""""""

��

�� This is the iterative cell block� It is the most primitive

�� cell of the cube calculus execution unit named in this design

�� the ILU� Each iterative cell operates on two bits of the two

�� input cubes for a particulat instruction� These two bits can

�� represent the four possible values of a binary variable

�� using positional notaation encodings ��� for truth value � ��

�� for value � �� for don!t care and �� for contradiction or

�� empty set�� If multi�valued calculus is needed adjacent iterative

�� cells can be combined together to represent a variable� For

�� example two adjacent iterative cells can represent in postitional

�� notation a four�valued logic variable� The edge register define

�� the boundaries of the variables within the ���itcell ILU� the

�� water register disables unused iterative cells if an instruction

�� is executed on cubes which contain less number of variables than

�� can fit within a ���bit operand�

��

�� The functions of the iterative cell are�

��

�� �� Identify if the cell is within a specific variable� A

�� specific variable is a variable position within the input

�� cubes which meets the �specific� relation for the executed

�� instruction� the specific relation is defined in �rel�

��	 CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

�� subfield of the instruction� There are two types of specific

�� relations that can be defined using the and	or bit of the

�� instruction� An �AND� relation requires a specific variable

�� to meet the relation at each bit position within the

�� variable� An �OR� relation requires a specific variable to

�� meet the relation at one or more bit positions within the

�� variable�

��

�� �� Each iterative cell has its own embedded iterative control

�� state machine� the state machine within a cell is used to

�� execute sequential cube calculus operations� In sequential

�� operations each iterative cell compute one of three possible

�� functions on its bits� These functions are called before

�� after and active and are defined in the �bef� �act� and

�� �aft� ��bit subfields of the instruction� The number of

�� output cubes for a sequential operation is equal to the number

�� of specific variables within the input cubes� Each variable

�� contribute to an output cube its after active or before

�� result depending on its position relative to the specific

�� variable corresponding to this output cube� The state machine

�� has three states which determine if a cell is currently

�� executing the before after or active function� The state

�� machine output controls a three to one mux which select the

�� before after or active function subfield from the executed

�� instruction�

��

�� �� Each cell has logic associated with the iterative control

�� carry chain� This carry chain is called the �wait� chain�

�� A wait signal propagates from one specific variable to another

�� in the left to right direction and is used to control the

�� state transitions of the iterative cell state machine�

��

�� �� Each cell propagates �AND� and �OR� carries in both directions

�� which are used to determine if a variable is specific in case

�� the cell is within a multi�valued logic variable� If a cell

�� identifies itself within a specific variable it asserts �var�

�� which is also used to control its state machine transitions�

��

USE work�all

ENTITY itcell IS

���

PORT �rel bef act aft� �� relation before active and after subfields

�� from the instruction register

IN BIT	VECTOR �� DOWNTO ��

clk �� CPU clock

water �� Water register bit disables a cell when high

left	edge �� Indicates cell is leftmost in a variable

right	edge �� Indicates cell is rightmost in a variable

and	or �� From instruction� determines �AND� or �OR�

�� type specific relation�

a� b� a� b� �� Input bits from the input operands

wait	in �� Input of iterative control carry chain

request �� Input of control unit state machine� It is

�� a request for another cube result so causes

�� iterative state machine transition in the

�� current active cell next active cell and all

�� cells in between �left to right��

stall �� Register file is full and cannot take any

�� new result so CPU should stall�

clear �� From control unit state machine� It clears

�� the state of the iterative cell to allow

�� the iterative cell to identifiy itcelf and

�� set its state machine to start executing

�� another operation�

prime �� Indicates if an operation is simple�comples

�� �one output cube� or sequential �� or more

�� output cubes�

and	carry	r	in and	carry	l	in �� �AND� carry chain inputs

or	carry	r	in or	carry	l	in� �� �OR� carry chain inputs

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

IN BIT

wait	out �� iterative control chain output

and	carry	r	out and	carry	l	out �� �AND� carry chain outputs

or	carry	r	out or	carry	l	out �� �OR� carry chain outputs

c� c�� �� output cube bits

OUT BIT�

END itcell

ARCHITECTURE itcell� OF itcell IS

SIGNAL rel� rel� var� BIT

SIGNAL slct� BIT	VECTOR �� DOWNTO ��

SIGNAL fun� BIT	VECTOR �� DOWNTO ��

COMPONENT mux�to�

PORT �in� in� in� in� sel� sel�� IN BIT

out�� OUT BIT�

END COMPONENT

COMPONENT funmux

PORT �slct� IN BIT	VECTOR �� DOWNTO ��

bef act aft� IN BIT	VECTOR �� DOWNTO ��

fun� OUT BIT	VECTOR �� DOWNTO ���

END COMPONENT

COMPONENT ident	main

PORT �and	carry	r	in and	carry	l	in or	carry	r	in

or	carry	l	in left	edge right	edge water

rel� rel� and	or� IN BIT

and	carry	r	out and	carry	l	out or	carry	r	out

or	carry	l	out var� OUT BIT�

END COMPONENT

COMPONENT psm

PORT �clk request stall clear wait	in var

���

right	edge water prime� IN BIT

wait	out� OUT BIT

slct� OUT BIT	VECTOR �� DOWNTO ���

END COMPONENT

BEGIN

�� Two � to � muxes used to perform any one of �� possible binary functions�

�� The � bit input represent the values in the truth table for the binary

�� function� This input comes from the relation subfield of the

�� instruction� the two select bits are the input operand bits and the

�� output is the result of the relation function specified in the � bit

�� input on the two operand bits�

��

mux�� mux�to�

PORT MAP �rel��� rel��� rel��� rel���

b� a� rel��

mux�� mux�to�

PORT MAP �rel��� rel��� rel��� rel���

b� a� rel��

�� A mux to select �bef� �act� or �aft� ��bit function encodings from the

�� instruction� The select lines are controlled by the iterative state machine�

�� A ��bit function encoding is simply the values of the truth table for

�� the binary function�

��

mux�� funmux

PORT MAP �slct bef act aft fun�

�� Two � to � muxes used to execute the �before� �active� or �after� functions

�� on the two cube operand bits�

��

mux�� mux�to�

PORT MAP �fun��� fun��� fun��� fun���

b� a� c��

mux�� mux�to�

PORT MAP �fun��� fun��� fun��� fun���

b� a� c��

�� This component identified is the cell is within a specific variable

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

��

ident�� ident	main

PORT MAP �and	carry	r	in and	carry	l	in or	carry	r	in

or	carry	l	in left	edge right	edge water

rel� rel� and	or and	carry	r	out

and	carry	l	out or	carry	r	out or	carry	l	out

var�

�� This is the iterative state machine

��

stm�� psm

PORT MAP �clk request stall clear wait	in var

right	edge water prime wait	out slct�

END itcell�

"""""""""""""""""""""""""""

" file ilu�vhdl	��

"""""""""""""""""""""""""""

��

�� This is the iterative logic unit� It is the main execution unit for

�� the cube calculus CPU� It is simply an array of �� iterative cells�

�� Each iterative cell executes the specified cube calculus operation on

�� two bits of a teo ���bit cubes� Therefore if binary variables only

�� are used in the cube operands the ILU executes any cube calculus

�� operation on a cube which can contain up to �� literals�

��

�� To understand the IN OUT and internal signals of the ILU see the

�� comments in the �itcell� component and the logic components inside

�� the iterative cell�

��

�� Carry signals are input and output from the ILU iterative cell chains�

�� this makes it possible to combine two or more ILUs together to build

�� a CPU which can execute operations on cubes that have more than ��

�� binary variables�

���

USE work�all

���

ENTITY ilu IS

PORT �water right	edge� IN BIT	VECTOR ��� DOWNTO ��

rel bef act aft� IN BIT	VECTOR �� DOWNTO ��

cube� cube�� IN BIT	VECTOR ��� DOWNTO ��

wait	in and	carry	r	in and	carry	l	in

or	carry	r	in or	carry	l	in and	or prime

request stall clear ilu	left	edge clk� IN BIT

out	cube� OUT BIT	VECTOR ��� DOWNTO ��

and	carry	r	out and	carry	l	out or	carry	r	out

or	carry	l	out wait	out ilu	right	edge� OUT BIT�

END ilu

ARCHITECTURE ilu� OF ilu IS

SIGNAL and	carry	r and	carry	l or	carry	r or	carry	l

wait	carry edge� BIT	VECTOR ��� DOWNTO ��

COMPONENT itcell

PORT �rel bef act aft� BIT	VECTOR �� DOWNTO ��

clk water left	edge right	edge and	or

a� b� a� b� wait	in request stall clear

prime and	carry	r	in and	carry	l	in

or	carry	r	in or	carry	l	in� IN BIT

wait	out and	carry	r	out and	carry	l	out

or	carry	r	out or	carry	l	out c� c�� OUT BIT�

END COMPONENT

BEGIN

�� set the ILU edge carry chain and left edge signals�

��

and	carry	r���� #� and	carry	r	in

and	carry	l��� #� and	carry	l	in

and	carry	r	out #� and	carry	r���

and	carry	l	out #� and	carry	l����

or	carry	r���� #� or	carry	r	in

or	carry	l��� #� or	carry	l	in

or	carry	r	out #� or	carry	r���

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

or	carry	l	out #� or	carry	l����

wait	carry���� #� wait	in

wait	out #� wait	carry���

edge #� ilu	left	edge $ right	edge

ilu	right	edge #� right	edge���

�� place and connect �� iterative cells to form one �� binary variable

�� ILU�

��

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube���� cube���� cube���� cube����

wait	carry��� request stall clear

prime and	carry	r���

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube���

out	cube����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube���� cube���� cube���� cube����

wait	carry��� request stall clear

prime and	carry	r���

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube���

out	cube����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube���� cube���� cube���� cube����

wait	carry��� request stall clear

prime and	carry	r���

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube���

out	cube����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube���� cube���� cube���� cube����

���

wait	carry��� request stall clear

prime and	carry	r���

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube���

out	cube����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube���� cube���� cube���� cube����

wait	carry��� request stall clear

prime and	carry	r���

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube���

out	cube����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube����� cube����� cube����� cube�����

wait	carry��� request stall clear

prime and	carry	r���

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube����

out	cube�����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube����� cube����� cube����� cube�����

wait	carry��� request stall clear

prime and	carry	r���

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube����

out	cube�����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube����� cube����� cube����� cube�����

wait	carry��� request stall clear

prime and	carry	r���

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube����

out	cube�����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge��� edge���

and	or cube����� cube����� cube����� cube�����

wait	carry��� request stall clear

prime and	carry	r���

and	carry	l��� or	carry	r��� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l���

or	carry	r��� or	carry	l��� out	cube����

out	cube�����

it�� itcell

PORT MAP �rel bef act aft clk water��� edge���� edge���

and	or cube����� cube����� cube����� cube�����

wait	carry���� request stall clear

prime and	carry	r����

and	carry	l��� or	carry	r���� or	carry	l���

wait	carry��� and	carry	r��� and	carry	l����

or	carry	r��� or	carry	l���� out	cube����

out	cube�����

it��� itcell

PORT MAP �rel bef act aft clk water���� edge���� edge����

and	or cube����� cube����� cube����� cube�����

wait	carry���� request stall clear

prime and	carry	r����

and	carry	l���� or	carry	r���� or	carry	l����

wait	carry���� and	carry	r���� and	carry	l����

or	carry	r���� or	carry	l���� out	cube����

out	cube�����

it��� itcell

PORT MAP �rel bef act aft clk water���� edge���� edge����

and	or cube����� cube����� cube����� cube�����

wait	carry���� request stall clear

prime and	carry	r����

and	carry	l���� or	carry	r���� or	carry	l����

wait	carry���� and	carry	r���� and	carry	l����

��

or	carry	r���� or	carry	l���� out	cube����

out	cube�����

it��� itcell

PORT MAP �rel bef act aft clk water���� edge���� edge����

and	or cube����� cube����� cube����� cube�����

wait	carry���� request stall clear

prime and	carry	r����

and	carry	l���� or	carry	r���� or	carry	l����

wait	carry���� and	carry	r���� and	carry	l����

or	carry	r���� or	carry	l���� out	cube����

out	cube�����

it��� itcell

PORT MAP �rel bef act aft clk water���� edge���� edge����

and	or cube����� cube����� cube����� cube�����

wait	carry���� request stall clear

prime and	carry	r����

and	carry	l���� or	carry	r���� or	carry	l����

wait	carry���� and	carry	r���� and	carry	l����

or	carry	r���� or	carry	l���� out	cube����

out	cube�����

it��� itcell

PORT MAP �rel bef act aft clk water���� edge���� edge����

and	or cube����� cube����� cube����� cube�����

wait	carry���� request stall clear

prime and	carry	r����

and	carry	l���� or	carry	r���� or	carry	l����

wait	carry���� and	carry	r���� and	carry	l����

or	carry	r���� or	carry	l���� out	cube����

out	cube�����

it��� itcell

PORT MAP �rel bef act aft clk water���� edge���� edge����

and	or cube����� cube����� cube����� cube�����

wait	carry���� request stall clear

prime and	carry	r����

and	carry	l���� or	carry	r���� or	carry	l����

wait	carry���� and	carry	r���� and	carry	l����

or	carry	r���� or	carry	l���� out	cube����

out	cube�����

��	 CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

END ilu�

"""""""""""""""""""""""""""""

" cpu�vhdl	��

"""""""""""""""""""""""""""""

���

�� Cube calculus CPU� Consists of�

��

�� �� Register file in which output cubes are written

�� by the ILU and read by the bus interface unit�

�� The register file is imlemented as a queue�

�� �� Instruction register in which commands are written

�� by the bus interface unit�

�� �� Water register which is used to disable operations

�� on unused variables in the operands�

�� �� Edge register which indicates to the ILU the bit

�� positions of differnet operand variables�

�� �� A � bit counter which counts the number of output

�� cube from a particular operation� Bus interface unit

�� has a direct access to a � bit bus output from this

�� counter� How exactly the bus unit would use this

�� value is left as an open implementation issue for

�� the bus unit designer�

�� �� Two �� bit operand registers�

�� �� A control unit state machine�

�� �� An iterative logic unit which consists of an array

�� of �� iterative cells capable of performing simple

�� complex or sequential cube calculus operations on

�� two �� bit operands� The two operands can represent

�� a cube consisting of a product of up to �� binary

�� variables�

���

USE work�all

ENTITY cpu IS

PORT �reset �� External reset pin

���

ld	ir �� Asserted by bus interface unit to

�� write a new instruction into the opcode

�� register� Triggers the start of execution�

ld	water �� Asserted by bus unit to write water register�

ld	edge �� Asserted by bus unit to write edge register�

rd	reg	file �� Asserted by bus unit to read head of

�� data output queue �register file��

ld	cube� �� Asserted by bus unit to write operand � register�

ld	cube�� �� Asserted by bus unit to write operand � register�

IN BIT

ibus� �� Instruction bus used by bus unit to load

�� instruction water edge operand� and operand�

�� registers�

IN BIT	VECTOR ��� DOWNTO ��

dbus� �� Data bus used by the bus unit to read output

�� cubes from the register file queue�

OUT BIT	VECTOR ��� DOWNTO ��

cube	num� �� Output from � bit counter� Has the value of the

�� number of cubes generated by a particular operation�

OUT BIT	VECTOR �� DOWNTO ��

fetch �� Indicates that the CPU is done with the previous

�� instruction and is ready for another one�

empty �� Indicates that the data output queue is empty�

clkout� �� Clock output from the CPU to the bus interface unit

�� and external bus�

OUT BIT�

END cpu

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

ARCHITECTURE cubecalc OF CPU IS

SIGNAL water right	edge� BIT	VECTOR ��� DOWNTO ��

SIGNAL rel bef act aft� BIT	VECTOR �� DOWNTO ��

SIGNAL cube� cube� out	cube

opcode� BIT	VECTOR ��� DOWNTO ��

SIGNAL wait	in and	carry	r	in and	carry	l	in

or	carry	r	in or	carry	l	in and	or prime

request clear and	carry	r	out and	carry	l	out

or	carry	r	out or	carry	l	out wait	out stall

count clk ilu	left	edge ilu	right	edge� BIT

COMPONENT ilu

PORT �water right	edge� IN BIT	VECTOR ��� DOWNTO ��

rel bef act aft� IN BIT	VECTOR �� DOWNTO ��

cube� cube�� IN BIT	VECTOR ��� DOWNTO ��

wait	in and	carry	r	in and	carry	l	in

or	carry	r	in or	carry	l	in and	or prime

request stall clear ilu	left	edge clk� IN BIT

out	cube� OUT BIT	VECTOR ��� DOWNTO ��

and	carry	r	out and	carry	l	out or	carry	r	out

or	carry	l	out wait	out ilu	right	edge� OUT BIT�

END COMPONENT

COMPONENT custm

PORT �clk ld	ir wait	out reset stall prime� IN BIT

clear request count fetch� OUT BIT�

END COMPONENT

COMPONENT counter

PORT �clk count ld	ir reset stall� IN BIT

count	out� OUT BIT	VECTOR �� DOWNTO ���

END COMPONENT

COMPONENT reg��

PORT �ld	reg clk� IN BIT

reg	in� IN BIT	VECTOR ��� DOWNTO ��

reg	out� OUT BIT	VECTOR ��� DOWNTO ���

END COMPONENT

COMPONENT reg��

���

PORT �ld	reg clk� IN BIT

reg	in� IN BIT	VECTOR ��� DOWNTO ��

reg	out� OUT BIT	VECTOR ��� DOWNTO ���

END COMPONENT

COMPONENT regfile

PORT �clk reset wr	en rd	en� IN BIT

reg	file	in� IN BIT	VECTOR ��� DOWNTO ��

empty full� OUT BIT

reg	file	out� OUT BIT	VECTOR ��� DOWNTO ���

END COMPONENT

COMPONENT clock

PORT �reset� IN BIT
 clk� INOUT BIT�

END COMPONENT

BEGIN

�� set carry chain and edge inputs to the ILU

��

and	carry	r	in #� !�!

and	carry	l	in #� !�!

or	carry	r	in #� !�!

or	carry	l	in #� !�!

wait	in #� !�!

ilu	left	edge #� !�!

�� iterative logic unit

��

ilu�� ilu

PORT MAP �water right	edge rel bef act aft

cube� cube� wait	in and	carry	r	in

and	carry	l	in or	carry	r	in or	carry	l	in

and	or prime request stall clear

ilu	left	edge clk out	cube and	carry	r	out

and	carry	l	out or	carry	r	out or	carry	l	out

wait	out ilu	right	edge�

�� control unit state machine

��

custm�� custm

PORT MAP �clk ld	ir wait	out reset stall prime

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

clear request count fetch�

�� � bit counter

��

counter�� counter

PORT MAP �clk count ld	ir reset stall cube	num�

�� water register

��

water	reg� reg��

PORT MAP �ld	water clk ibus��� DOWNTO �� water�

�� edge register

��

edge	reg� reg��

PORT MAP �ld	edge clk ibus��� DOWNTO �� right	edge�

�� instruction register

��

ireg� reg��

PORT MAP �ld	ir clk ibus opcode�

�� set differnet control fields from the instruction register

��

rel #� opcode�� DOWNTO ��

bef #� opcode�� DOWNTO ��

act #� opcode��� DOWNTO ��

aft #� opcode��� DOWNTO ���

and	or #� opcode����

prime #� opcode����

�� operand � register

��

cube�reg� reg��

PORT MAP �ld	cube� clk ibus cube��

�� operand � register

��

cube�reg� reg��

PORT MAP �ld	cube� clk ibus cube��

�� register file �output data queue�

���

��

outq� regfile

PORT MAP �clk reset count rd	reg	file

out	cube empty stall dbus�

�� clock generator

��

globclk� clock

PORT MAP �reset clk�

clkout #� clk

END cubecalc

��� CHAPTER �� APPENDIX �� VHDL CODE OF CCM��

Chapter �

APPENDIX ��

SYSTEMATIC LISTING

OF CLASSES OF

APPLICATIONS OF

UNIVERSAL LOGIC

MACHINE

In this chapter we will systematically present all known to us
problems that can be e ciently solved on ULM	

In decision problems the solution is binary� yes�no	

In all other problems the solution is an array �clist� of cubes�
with one or more cubes� representing�

� subset�

� mapping�

� Switching function�

� learned neural network�

� relation	

���

���CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

The ULM system includes the host with software and DEC�
PERLE�� board	 DEC PERLE�� board includes �programmable�
modules referenced above	
The groups of problems will include�

�	 Tautology problems�

�	 Satis�ability problems�

�	 Finding one solution to decision function problems�

�	 Finding best solution to decision function problems�

�	 Finding all solution to decision function problems�

�	 Finding all solution to decision relation problems�

�	 Covering problems�

�	 Graph Theory problems�

�	 Games and Logic Puzzles�

�
	 Switching function manipulation and Logic Synthesis prob�
lems�

��	 Problems related to Finite State Machines and Micropro�
gramming�

��	 Problems related to High�Level Synthesis� Scheduling and
Allocation�

��	 Problems related to testing� veri�cation and analysis�

��	 Problems related to physical synthesis	

��	 Boolean Equations and Multiple�Valued Equations�

��	 Boolean Relations and Multiple�Valued Relations	

��	 General Purpose Consistent Labeling Problems	

��	 Data�Base Problems�

��	 Cryptography Problems	

�
	 Morphological Image Processing Problems�

��	 High�Level Computer Vision�

���� TAUTOLOGY PROBLEMS� ��

��	 Automatic Theorem Proving�

��	 Applications of Logic in Humanities�

��	 Integer Programming�

��	 Pseudo�Boolean Programming	

�� TAUTOLOGY PROBLEMS�

These are all decision problems with answer Yes�No	
POS is a Product of Sums of mv literals� single output switch�

ing function	
SOP is an Inclusive Sum of Products of mv literals� single

output switching function	
ESOP is a Exclusive Sum of Products of mv literals� single

output switching function	
POSP is a Product of Sums of Products mv literals� single

output switching function	
SOPS is a Sum of Products of Sums mv literals� single output

switching function	
Problem TAUT�	
�For All X � XX� �POS�X� �
�
Application in automatic theorem�proving	

Problem TAUT�	
�For All X � XX� �SOP�X� � ��
Application in PLA minimization �Sasao � HART�	

Problem TAUT�	
�For All X � XX� �ESOP�X� � ��

Problem TAUT�	
�For All X � XX� �ESOP�X� �
�

Problem TAUT�	
�For All X � XX� �POSP�X� � ���

Problem TAUT�	
�For All X � XX� �POSP�X� �
��

Problem TAUT�	
�For All X � XX� �SOPS�X� � ���

Problem TAUT�	
�For All X � XX� �SOPS�X� �
�	
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	
Problem TAUT�	
�For All X � XX� �SOP�X� � SOP�X��

��	CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

Problem TAUT�
	
�For All X � XX� �SOP�X� � POS�X��

Problem TAUT��	
�For All X � XX� �POS�X� � POS�X��
Problem TAUT��	
�For All X � XX� �ESOP�X� � ESOP�X��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	

�� SATISFIABILITY PROBLEMS�

These are all decision problems with answer Yes�No	
Problem SAT�	
�Exists X � XX� �POS�X� � ��
Application in automatic theorem�proving	

Problem SAT�	
�Exists X � XX� �SOP�X� �
�

Problem SAT�	
�Exists X � XX� �ESOP�X� � ��

Problem SAT�	
�Exists X � XX� �ESOP�X� �
�

Problem SAT�	
�Exists X � XX� �POSP�X� � ���

Problem SAT�	
�Exists X � XX� �POSP�X� �
��

Problem SAT�	
�Exists X � XX� �SOPS�X� � ���

Problem SAT�	
�Exists X � XX� �SOPS�X� �
��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	

Problem SAT�	
�Exists X � XX� �SOP�X� � SOP�X��

Problem SAT�
	
�Exists X � XX� �SOP�X� � POS�X��

Problem SAT��	
�Exists X � XX� �POS�X� � POS�X��

Problem SAT��	
�Exists X � XX� �ESOP�X� � ESOP�X��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	

���� FIND SATISFIABLE SOLUTION TO DECISION FUNCTION� ���

�� FIND SATISFIABLE SOLUTION TO DECISION

FUNCTION�

This is to �nd one solution X that satis�es all constraints �i	e	
the function�	
Problem SATSOL�	
�Find one X � XX� �POS�X� � ��
Application in automatic theorem�proving	

Problem SATSOL�	
�Find one X � XX� �SOP�X� �
�

Problem SATSOL�	
�Find one X � XX� �ESOP�X� � ��

Problem SATSOL�	
�Find one X � XX� �ESOP�X� �
�

Problem SATSOL�	
�Find one X � XX� �POSP�X� � ���

Problem SATSOL�	
�Find one X � XX� �POSP�X� �
��

Problem SATSOL�	
�Find one X � XX� �SOPS�X� � ���

Problem SATSOL�	
�Find one X � XX� �SOPS�X� �
��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	
Problem SATSOL�	
�Find one X � XX� �SOP�X� � SOP�X��

Problem SATSOL�
	
�Find one X � XX� �SOP�X� � POS�X��

Problem SATSOL��	
�Find one X � XX� �POS�X� � POS�X��

Problem SATSOL��	
�Find one X � XX� �ESOP�X� � ESOP�X��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	

�� FIND BEST SATISFIABLE SOLUTION TO DE�

CISION FUNCTION�

This is to �nd one solution X that satis�es all constraints� and
is best with respect to some cost function COST�X�	
Problem BESTSOL�	
�Find best X � XX� �POS�X� � ��

���CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

Application in automatic theorem�proving	
Problem BESTSOL�	
�Find best X � XX� �SOP�X� �
�

Problem BESTSOL�	
�Find best X � XX� �ESOP�X� � ��

Problem BESTSOL�	
�Find best X � XX� �ESOP�X� �
�

Problem BESTSOL�	
�Find one X � XX� �POSP�X� � ���

Problem BESTSOL�	
�Find one X � XX� �POSP�X� �
��

Problem BESTSOL�	
�Find best X � XX� �SOPS�X� � ���

Problem BESTSOL�	
�Find best X � XX� �SOPS�X� �
��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	
Problem BESTSOL�	
�Find best X � XX� �SOP�X� � SOP�X��

Problem BESTSOL�
	
�Find best X � XX� �SOP�X� � POS�X��

Problem BESTSOL��	
�Find best X � XX� �POS�X� � POS�X��

Problem BESTSOL��	
�Find best X � XX� �ESOP�X� � ESOP�X��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	

�� FIND ALL SATISFIABLE SOLUTIONS TO DE�

CISION FUNCTION�

This is to �nd one solution X that satis�es all constraints� and
is best with respect to some cost function COST�X�	
Problem ALLSOL�	
�Find all X � XX� �POS�X� � ��
Application in automatic theorem�proving	

Problem ALLSOL�	
�Find all X � XX� �SOP�X� �
�

Problem ALLSOL�	
�Find all X � XX� �ESOP�X� � ��

Problem ALLSOL�	
�Find all X � XX� �ESOP�X� �
�

��
� FIND ALL SATISFIABLE SOLUTIONS TODECISION RELATION� ���

Problem ALLSOL�	
�Find one X � XX� �POSP�X� � ���

Problem ALLSOL�	
�Find one X � XX� �POSP�X� �
��

Problem ALLSOL�	
�Find all X � XX� �SOPS�X� � ���

Problem ALLSOL�	
�Find all X � XX� �SOPS�X� �
��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	
Problem ALLSOL�	
�Find all X � XX� �SOP�X� � SOP�X��

Problem ALLSOL�
	
�Find all X � XX� �SOP�X� � POS�X��

Problem ALLSOL��	
�Find all X � XX� �POS�X� � POS�X��

Problem ALLSOL��	
�Find all X � XX� �ESOP�X� � ESOP�X��
Applications in automatic theorem�proving� logic synthesis�

solving Boolean equations	

�� FIND ALL SATISFIABLE SOLUTIONS TO DE�

CISION RELATION�

This is to all solutionsX that satisfy all constraints of a decision
relation	
Problem ALLREL�	
�Find all X � XX� �POS�X� � ��
Application in automatic theorem�proving	

Problem ALLREL�	
�Find all X � XX� �SOP�X� �
�

Problem ALLREL�	
�Find all X � XX� �ESOP�X� � ��

Problem ALLREL�	
�Find all X � XX� �ESOP�X� �
�

Problem ALLREL�	
�Find one X � XX� �POSP�X� � ���

Problem ALLREL�	
�Find one X � XX� �POSP�X� �
��

Problem ALLREL�	
�Find all X � XX� �SOPS�X� � ���

Problem ALLREL�	

���CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

�Find all X � XX� �SOPS�X� �
��

Applications in automatic theorem�proving� logic synthesis�
solving Boolean equations	

Problem ALLREL�	

�Find all X � XX� �SOP�X� � SOP�X��
Problem ALLREL�
	

�Find all X � XX� �SOP�X� � POS�X��
Problem ALLREL��	

�Find all X � XX� �POS�X� � POS�X��
Problem ALLREL��	

�Find all X � XX� �ESOP�X� � ESOP�X��

Applications in automatic theorem�proving� logic synthesis�
solving Boolean equations	

�� COVERING PROBLEMS�

MAXIMUM INDEPENDENT SET	

Reduce to�

MAXIMUM INDEPENDENT SET	

Reduce to�

MAXIMUM CLIQUE	

Reduce to�

SET COVERING	

Reduce to Petrick function� reduce to GPF� reduce to�

COVERING�CLOSURE	

Equivalent to Binate Covering� reduce to�

EDGE COVERING PROBLEM	

�	 GRAPH THEORY PROBLEMS�

PROPER GRAPH COLORING	

�Maghout Method� Reduce to �nding all Maximum Cliques
and next Covering nodes with them	

COMPATIBLE GRAPH COLORING	

CDEC�COMPATIBLE GRAPH COLORING	

EDGE COLORING PROBLEM	

�
 GAMES AND LOGIC PUZZLES�

Games and Logic Puzzles are described in �
�
�
�
�
�	

����� SWITCHING FUNCTIONMANIPULATION AND LOGIC SYNTHESIS PROBLEMS����

��� SWITCHING FUNCTIONMANIPULATION AND

LOGIC SYNTHESIS PROBLEMS�

Switching function manipulation include� Complementation�
sharp� intersection� generation of all primes� supercube� consen�
sus� etc	 SOP�POS and POS�SOP transformations�

Logic Synthesis problems includePAL�PLAminimization� two�
level� three�level� four�level logic minimizatin� ESOP� GRM� CRMP�
minimization	

SATISFIABILITY Every NP�hard problem can be reduced to it
�
�
�
�	 Many recent research papers from U	C	 Berkeley and U	
Colorado are based on tautology	 Approach based on uni�cation
is presented in �
�	 Very many other reductions to operations
e ciently realized in our machine can be found in recent DAC�
ICCD� ICCAD� ISMVL� ISCAS� ICASSP conferences and Logic
Synthesis workshops� and there is even no space here to list them
all	

There are two representation methods for switching functions
used in logic synthesis programs� ��Binary or Multiple�Valued�
cube calculus� and ��Binary or Multiple�Valued� Decision Dia�
grams�	 In this paper only the �rst one will be discussed� however
the new variant of our machine �TP� allows to deal also with data
other than the �multiple�valued input cubes� presented here� and
includes the MDDs as well	

COMPLEMENTATION OF BOOLEAN FUNCTION	

�SOP�TO�POS� AND �POS�TO�SOP� TRANSFORMATIONS	

��� PROBLEMS RELATED TO FINITE STATEMA�

CHINES AND MICROPROGRAMMING�

Problems related to Finite State Machines and Microprogram�
ming include� Minimization of FSM� Concurrent State and Input
Minimization of FSM� Concurrent State Assignment and State
Minimization of FSM� State Assignment of FSM� Decomposition
of FSM� Splitting of states of FSM�

��� PROBLEMS RELATED TO HIGH�LEVEL SYN�

THESIS
 SCHEDULING AND ALLOCATION�

Problems related to High�Level Synthesis� Scheduling and Al�
location include� Data Path Scheduling� Data Path Allocation�

���CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

Memory Scheduling�Memory Allocation� Multi processor Schedul�
ing� Multi�processor Allocation�

��� PROBLEMS RELATED TO TESTING
 VERI�

FICATION AND ANALYSIS�

Problems related to testing� veri�cation and analysis include�

��� PROBLEMS RELATED TO PHYSICAL SYN�

THESIS�

Problems related to physical synthesis include�

��� BOOLEAN EQUATIONS ANDMULTIPLE�VALUED

EQUATIONS�

Boolean Equations and Multiple�Valued Equations include�
SOLVING BOOLEAN EQUATIONS	
SOLVING MULTIPLE�VALUED EQUATIONS	

��� BOOLEANRELATIONS ANDMULTIPLE�VALUED

RELATIONS�

Boolean Relations and Multiple�Valued Relations include�
Boolean relation of inputsx�� x�� x�� x�� x� and outputs y�� y�� y�� y�

is represented in the form of two cubes�
�
����
��
������
��

�����
��
�����
��

where � separates input from output variables	 This means�
x� x� x� �$ �
���
��

or
x� x� x� �$ y� y� y� y�� y� y� y� y�	
Another notation may be�
RELATION �x� � x� � x�� y�� y�� y�� y��
RELATION �x�� x�� x� � y�� y�� y�� y�	�
Generalization of the above notation to multiple�valued input

and multiple�valued output variables looks like this�
�

�������
�
����

�������
���
�
�
�

�������
�
����

�������

����

�

�������
�
����

�������
����
�

SOLVING BOOLEAN RELATIONS	
SOLVING MULTIPLE�VALUED RELATIONS	

����� GENERAL PURPOSE CONSISTENT LABELING PROBLEMS� ���

��� GENERAL PURPOSE CONSISTENT LABEL�

ING PROBLEMS�

General Purpose Consistent Labeling Problems include�

ENUMERATE CARTESIAN PRODUCTWITH CONSTRAINTS	

This is morphological methods of solving problems �
�
�	
SOLVINGGENERAL�PURPOSE CONSISTENT LABELING PROB�
LEM	
See problems solved by MULT�II� Multicomp� all versions	

�	 Use Multicomp�
�	 Use CCM model�
�	 Use CCM instructions�

�	 use pipelining� parallelism	
�	 use Multicomp problem description language�
�	 adapt old papers� multicomp� book AI� analogy� relational

languages	

��	 DATA�BASE PROBLEMS�

Data�Base Problems include� Ulug ����� ����
� proposed an
extended

��
 CRYPTOGRAPHY PROBLEMS�

Cryptography Problems include�

��� MORPHOLOGICAL IMAGE PROCESSING PROB�

LEMS�

Morphological Image Processing Problems include�

��� HIGH�LEVELCOMPUTER VISION PROBLEMS�

High�Level Computer Vision problems include�

��� AUTOMATIC THEOREM PROVING�

Automatic Theorem Proving includes� resolution�based theo�
rem proving� resolution�uni�cation�based theorem proving� the�
orem proving in higher�order logics� Analogy�based reasoning	

���CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

��� APPLICATIONS OF LOGIC INHUMANITIES�

Applications of Logic in Humanities include�

��� INTEGER PROGRAMMING�

Integer Programming includes�

��� PSEUDO�BOOLEAN PROGRAMMING�

Pseudo�Boolean Programming includes �
�	

��� APPLICATIONS REQUIRING LONG WORD

ARITHMETIC OPERATIONS�

��� FUZZY LOGIC

Fuzzy logic	 Although it is just a one more multiple�valued
logic� we pay special attention to it since it �nds recently several
practical applications	
such as �fuzzy chips� �
�
�
� �nd use	
ROUGH SETS
STACK FILTERS FOR IMAGE PROCESSING	
NEURAL NETWORKS	
LOGIC PROGRAMMING	
OPERATIONS IN LINEAR SYSTEMS
Modulo�p �elds for encoding� testing� etc	

CAM�BASED
In paper ���
� a CAM�based architecture has been proposed

that is able to solve by exhaustive search the �Traveling Sales�
man�� �Set Covering�� and several other combinatorial problems
close to those of logic synthesis	
Kida thesis	
RHINE book	

LOGIC SIMULATION
Several machines for logic simulation have been successfully

build and are used in practice in USA and Japan	
CONTROLLERS TO EVALUATE BDD DIAGRAMS	
paper from IEEE Trans	 on Industrial Electronics	
It is also useful in programs using the other e cient repre�

sentation of Boolean functions� Binary Decision Diagrams and
Multiple�valued Decision Diagrams	 Multiple�valued Cube Cal�
culus seems then to be one of the most general currently known

����� FUZZY LOGIC ��

internal representation of data in propositional and predicate
logic� logic synthesis� logic programming� logic simulation and
sequential evaluation of combinational logic� data�bases� image
processing and several areas of AI and problem�solving	 Methods
based on it have been successfully applied in practically realized
products	
EQUIVALENCE TOTURINGMACHINES� COMPUTERS� PURE
LISP	
our machine should be a general�purpose computer� it means

it must be Turing�machine equivalent and must include the most
common and all necessary instructions of general�purpose com�
puters	
APPLICATIONS OF GAPP� TRANSPUTER� THINKING MA�
CHINES	
the machine must be a hardware accelerator board for PC�

but at the same time the chip must be also a building block of
various massively parallel architectures �such as it is the case with
GAPP or Transputer�	 Thinking Machines Connection Machine	
Data�Programming	
APPLICATIONS BASED ONTERNARY ANDOTHRE N�COUNTING	

two�bit IT cell to represent a part of any mv�literal� �exible
number of values in literals� and iterative circuit of FSMs with
information �owing in two directions	 This was also the �rst
machine which emphasized cube calculus operations� and the �rst
which did not use the concept of counting in any way� it based
algorithms such as tautology on cube operations such as sharp�
intersection or crosslink	
VARIOUS PROBLEM SOLVING
What all �logic machines� have in common is that they use

special hardware to do some kind of processing of Boolean or
other switching functions	 These tasks include� evaluation� Boolean
operations such as intersection or complementation� checking for
tautology or satis�ability� veri�cation� solving logic equations� op�
timizing decision functions �like Petrick or its generalizations��
performing resolution and uni�cation� operating on binary im�
ages and quadtrees represented as switching functions� stack �l�
ters� data�base operators� inferring facts in logic� and many other	
Many well�known problem reductions exist that support our

approach both theoretically �reductions of NP�complete problems
��
��� and practically �several CAD and Operations Research al�
gorithms�	

��	CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

It was observed that all NP�complete problems can be reduced
to few generic problems such as graph coloring� maximum clique�
shortest path� SOP to POS transformation� etc	 Those in turn
are reducible to basic binary logic problems such as satis�ability
�
�	 Solving the Satis�ability problem can be next reduced to
using some subset of the cube calculus operations such as sharp�
absorption� intersection and other	

ROBOTICS

OPERATIONS RESEARCH

The binary �cube calculus� �
� has been extended for a logic
with multiple�valued inputs �
�
�
�
�
� by Sasao� and is called
a positional cube notation� This calculus has been used for many
two�� three� and many level Boolean minimizers� tautology and
satis�ability checkers� veri�ers� programs for complementation
of Boolean functions� synthesis of mixed and �xed generalized
Reed�Muller forms� generation of prime� minimal and disjoint im�
plicants� spectral transforms �Walsh� Reed�Muller� Arithmetic��
and many other �
� ��� �� ���� ����
� ���� ����
�
�
�
�
�
�
�	

REAL�TIME AI Implementing a hardware processor to operate
in this calculus will have wide applications� including real�time
AI and optimization� where recent devices

��	 THE TUPLE PROCESSOR�

In addition to operations on sets and numbers� known from
CCM��� our interest in solving discrete combinatorial prolems is
in �nite formal systems that have a �nite �and from practical point
of view � also limited� number of symbols as well as a limited
number of operations	 We assume that all operations on symbols
can be decomposed to simple operations� which in turn can be
described as tables �two�dimensional matrices�	 We are already
familiar with such matrices describing sharp� consensus or other
binary operators	 This assumption allows to encode e ciently
symbols as binary strings� and implement e ciently the matrices
using ROMs� RAMs� CAMs� PLDs or other standard binary logic	
Such systems will be called Limited Finite Systems �LFS�	 Let us
observe that integer arithmetics is not an LFS since truth�table
description of the addition operation is impractical for hardware
realization� while �assuming small value of integer n� the modulo
n Galois Field is an LFS� since such matrix description can be
used to design the logic of modulo n operations	

����� MULTI�DIMENSIONAL SOLID ALGEBRAS� ���

��
 MULTI�DIMENSIONAL SOLID ALGEBRAS�

MATRIX LOGIC

��� TRULY MULTIPLE�VALUED LOGICS�

��� TUPPLE PROCESSOR� AREAS OF INTER�

EST AND FUTURE APPLICATIONS

Each word of TP will represent

�	 a number �as in CCM����

�	 a pair of numbers �an interval��

�	 a set �as in CCM����

�	 a symbol	

Each symbol can have various meanings� it can be simple or
complex	 Simple symbol can be associated with a symbol of
multiple�valued algebra� modal algebra� or any discrete system
�such as consistent labeling�� in which the number of such sys�
tems is limited	 In TP� which will be constructed using FPGA
technology� particularly XILINX� we take into account the limits
of technology	 Since the cell of Xilinx has �ve inputs and can real�
ize any cell of �ve variables and some functions of � variables� we
restrict ourselves to symbols on three bits	 This allows to use one
or two cells for all two argument operations in algebras having up
to � values ��� � ��	 This is su cient for most known algebras�
except for ���valued algebras used in simulation	 However� we
can still use complex symbols composed of simple symbols in the
same way as the set operations in literals are composed in CCM��
from binary operations in ITs	
Our machine introduces the dynamically modi�able size� the

operations on all words of an N�tuple will be done in parallel	
Our goal of introducing this computer will be achieved step�

by�step by introducing a number of simpler architectures and
algorithms for classes of problems	 We will show and discuss all
steps leading to our ultimate goal	 Particularly� we will �rst have
to understand the Cube Calculus Machine �
� and next we will
generalize it	
The TP is a comprehensive generalization of ideas and archi�

tectures used in several areas�

���CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

�	 Multiple�valued input �cube calculus�	 an algebraical model pop�
ularly used to process and minimize Boolean functions	 The
TP uses a �positional cube representation�which �nds many
applications in logic synthesis and combinatorial problem
solving	 It supports all operations including sharp� consen�
sus� supercube and crosslink� as well as many new opera�
tions	

�	 Multiple�valued notations for truly multiple�valued �both input
and output� logics	 Operations of many multiple�valued log�
ics such as the modal logic	 matrix logic	 quantum logic and other
will be realized	

ASSOCIATIVE PROCESSING
Associative N�tuples used in Arti�cial Intelligence and Image

Processing to represent and process knowledge	
DATA�BASE ALGEBRAS	
Data�Base Algebras used for hardware realization of relational

data bases	
DIGITAL SIMULATION ALGEBRAS	
Digital Simulation algebras used to simulate computers and

digital systems in special hardware accelerators ��	
MECHANISMS OF HARDWARE REALIZATIONS OF PRO�
LOG� LISP AND EQUATIONAL LOGIC	
Search� evaluation and inference mechanisms of relational	 func�

tional and logical languages such as Lisp� Prolog� and Equational
Logic	
MECHANIZMS TO SOLVE COMBINATORIAL PROBLEMS	
General formalisms to represent and solve combinatorial prob�

lems �
�
�
�
�
�	
ARCHITECTURES FOR COMPUTER VISION	
Formalisms and architectures for computer image processing and

image recognition�
SPECTRAL TRANSFORMS	
Spectral transforms �Fourier� Walsh� Haar� Arithmetic� Adding�

Hough� and signal processing ideas �convolution� digital �lters�	
NEURAL�LIKE LEARNING NETWORKS	
Neural Nets� Genetic Programming� SimulatedAnnealing� Cel�

lular neural networks	
Neural�like learning networks and recognizers	 Let us observe

that the taught binary neural network is the same as multi�input�
multi�outputBoolan function	 Learning of the network is the pro�
cess of constructing this functions �possibly by modifying some

����� CELLULAR AUTOMATA� ���

initial function�	 This can be generalized to arbitrary discrete
neural nets� which correspond to multiple�valued input� multiple�
valued output switching functions	 It is possible that using the
cube calculus operations the learning process will be faster� think
for instance about the n�inputEXOR function� which is very hard
to learn by neural nets� and is trivial to learn using for instance
crosslink operator	
PROGRAMMABLE XILINX ARCHITECTURES	 DYNAMIC
PROCESSORS	
Programmable architectures like those base od on Xilink chips

� �
�	 Svetlana Kartashev	
TREE SEARCHING ARCHITECTURES
Paper how to map tree searching to pipes �Information Pro�

cessing Letters
�	
PROBLEMS GOOD FOR SYSTOLIC AND PIPELINED AR�
CHITECTURES	
Transputer� GAPP� systolic processors� iWARP and DSP ar�

chitectures �AIM Sharp�	
USINGMV CUBE CALCULUS TO SOLVE COMBINATORIAL
PROBLEMS	
Brayton�s approach to using mv CC to solve combinatorial

problems	

��� CELLULAR AUTOMATA�

Cellular Automata are a class of nonlinear mathematical sys�
tems characterized by discretness �in space� time� and state val�
ues�� determinism� and local interaction	
There are some narrower classes and some extensions dis�

cussed in the literature	
There can be�

�	 one�dimensional� two�dimensional� more dimensional	

�	 regular� irregular	

�	 If regular� triangle� rectangle� hexagon	

�	 linear� non�linear	

Cellular automata have attracted substantial interest in recent
years	 Theyt are used as simple models for complex physical and
biological phenomena ����� ����	

�
�CHAPTER �� APPENDIX �� SYSTEMATIC LISTINGOF CLASSES OF APPLICATIONS OF

��� COMPRESSION ANDDECOMPRESSION� IM�

AGE PROCESSING�

Our e�orts will be on developing system�logic methods that
will allow for fast prototyping of any compression�decompression
algorithms	 Our approach is being tested on several algorithms
of various nature	 This should give good chance that it will also
work on proprietary algorithms of our customers	

We are interested in data� speech and image compression� but
as an example we will discuss the last one only	

Discrete Cosine Transform �DCT� is used in many compression
standards	 In particular � " � DCT is now used widely in image
coding� and it will be perhaps used in HDTV	 Recently several
new systolic� and pipelined solutions to � " � DCT have been
proposed based on very regular decompositions	 Some of them
are multiplier�free	 Some use distributed arithmetic	 There are
solutions that use Fast Fourier Transform �FFT� or Fast Walsh
Transform �FWT�	 Characteristic to all those solutions are the
following properties� advantageous from the point of view of our
approach	

�	 Very high regularity of blocks	 Short connections between
blocks	 Regular patterns of connections	

�	 Multi�level regular hierarchy of regular blocks	

�	 Much use of fast RAM memory	

�	 Use of adders� shifters� counters� ROMs� EXOR gates	

�	 Variants investigate trade�o�s between time and space� which
is� speed and cost	

�	 It results from our preliminary calculations that about ten
boards� each of them � " � CLI chips should allow for real�
ization of even the most sophisticated hardware algorithms
for HDTV pixel rates� even if progressive scan ���� MSam�
ples�s� is neded	

�	 Several architectures are very similar for DCT� sine� Fourier�
Walsh� Hadamard� and other transforms	 Similar aproaches
can be used also for inverse transforms	 This should be a
proof of generality of the approach	

����� COMPRESSION ANDDECOMPRESSION� IMAGE PROCESSING��
�

�	 The techniques are very good for pre�lter and post�lter op�
erations used in the entire image coding system	 In essence�
any kind of digital �lter is easily realizable	

�	 Convolution is easily realizable so as many algorithms based
on it	

