
CUBE DIAGRAM BUNDLES� A NEW REPRESENTATION

OF STRONGLY UNSPECIFIED MULTIPLE�VALUED FUNCTIONS

AND RELATIONS

S� Grygiel� M� Perkowski� M� Marek�Sadowska y� T� Luba �� L� Jozwiak ��

Portland State University� Dept� of Electrical Engineering� Portland� Oregon ������
Tel� 	�
���	�	���� Fax� 	�
���	��

�� mperkows�ee�pdx�edu�

y Univ� of Calif�� Santa Barbara� Electrical and Computer Engineering Dept��
Santa Barbara� CA �
���� mms�ece�ucsb�edu�

� Warsaw Univ� of Technology� Dept� of Electronics� Inst� of Telecommunication�
Warszawa� Nowowiejska �	���� Poland� luba�tele�pw�edu�pl�

� Faculty of Electronics Engineering� Eindhoven University of Technology�
P�O� Box 	�
� 	��� MB Eindhoven� The Netherlands� lech�eb�ele�tue�nl

Abstract

E�cient function representation is very important for
speed and memory requirements of multiple�valued de�
composers� This paper presents a new representation
of multiple�valued relations �functions in particular��
calledMultiple�Valued Cube Diagram Bundles �MVCDB��
MVCDBs improve on Rough Partition representation by
labeling their blocks with variable values and by repre�
senting blocks e�ciently� The MVCDB representation is
especially e�cient for very strongly unspeci�ed multiple�
valued input� multiple�valued output functions and rela�
tions� typical for Machine Learning applications� �

I� Introduction�

Multiple�valued functions and relations that include
very many don�t cares are becoming increasingly impor�
tant in several areas of applications such as Machine
Learning and Knowledge Discovery �	
� and also in com�
binational and sequential circuit design� It is impor�
tant to have an e�cient representation for such rela�
tions� For instance� the successes of many binary de�
composers depended on appropriate innovative represen�
tations of Boolean functions for which some properties
could be checked very rapidly� cube calculus �

�� spec�
tral transforms �

�� decision diagrams ���
	�� and rough
partitions �	��� Better representation allows storing larger
functions� and also� carrying the appropriate calculations
more e�ciently� Our work was motivated by multi�valued
relation decomposition �	��� The aim was to �nd such a

�This research was partially supported by the Dutch Technology
Foundation �STW� under project EEL �������

representation in which the operations of cofactoring� tau�
tology checking� determining intersections� set and all op�
erations necessary for relations had straightforward rep�
resentations in data structures and could be performed
e�ciently� With the exception of ��� �� 	��� the represen�
tation problem has not been investigated for thosemulti�
valued decomposers that have been practically realized in
computer programs� A new general�purpose representa�
tion of functions and relations proposed here improves on
the representations from ��� �� 	��� It is particularly cru�
cial to speed up the decomposition of large incompletely
speci�ed multiple�valued relations and functions� This
general�purpose representation takes good properties of
MV Cube Calculus �MVCC� ���
��� Decision Diagrams
�	� and Rough Partitions �	�� 		� 	�� 	
� 	��� and is related
to Boolean and multiple�valued relations �
�
��� It is espe�
cially useful for very weakly speci�ed relations� and allows
to e�ciently implement algorithms which used MVCC�
Decision Diagrams� and Calculus of Rough Partitions in
the past�

II� Representation of Incompletely Specified

Multi�Valued Functions

Two essentially di�erent representation methods for
MV functions are used in programs� Multiple�Valued
Cube Calculus �MVCC� �
�� and Multiple�Valued Deci�
sion Diagrams �MVDD� �	�� ��� These methods have also
been extended to incompletely speci�ed functions� Here
we will focus on the area that has not been researched
until recently� very weakly speci�ed functions� speci�ed
by very many variables but with relatively small percent�
age of care minterms� i�e� input combinations for which
function is speci�ed� We call them the Strongly Unspeci�

cube � a b f g

� ��
 	 �

	 ��	 � ��
 �

 � 	�
 �
� 	 	 	�

Table 	� Table of MV relation� Rows correspond to MV
cubes� Output variable g is a function�

�ed Functions� Multiple�valued functions of this type oc�
cur in Machine Learning �ML� �	
�� Knowledge Discovery
in Databases �KDD� �
�� and to a lesser degree in Finite
State Machine design �for instance� the 	��� FSM MCNC
benchmark s� has ��� next state don�t cares and kirkman
has �	� output don�t cares��
Below� we will give an overview of incompletely speci�

�ed function representations considered previously in lit�
erature� and explain why these representations are inade�
quate for our class of problems� Observe� that a discrete
function� or a discrete relation� can be represented as a
two�dimensional table �tables like this are not a part of
the representations� and we use them solely for ease of
explanation�� An example is shown in Table 	� There�
the columns correspond to the input variables �a� b�� a
��valued output relation f � and the ��valued output func�
tion g� The input variables describe the domain� and the
output variable�s� describe the co�domain� A row stores
an element of the domain and a set of the corresponding
function values� Rows are enumerated� each of them is as�
signed a �row number�� For a function� each minterm has
a single value in the co�domain� for a relation� minterm
may correspond to many values in the co�domain� For in�
stance� the row number � in Table 	 states that minterm
		 maps to values 	 or
 in the ��valued output relation f
�f�		� � 	 or f��	��� �
�� One can select any of these
values during minimization� whichever simpli�es the �nal
description better� Such entry in the table is called gener�
alized don�t care� For function g� each position in the col�
umn has a single value� Observe that out of
 minterms of

 variables the table includes only � care cubes �minterms
in this case� � the remaining
 don�t care minterms are not
listed� This is an implicit way of representing standard
output don�t cares of all output variables� When output
don�t care occurs only for some outputs� an explicit don�t
care symbol ��� is used for them� For instance� for vari�
able f in row �� Symbol ��� means all possible values of
this variable� this is a �standard don�t care�� representing
�totally unknown� values in ML applications�
Let us denote by n the number of input variables and

by m the number of output variables� The next general�
ization of a table representation is to allow for input don�t
cares� This means� the entries in input variables can take
many values� In particular� if all values of a given variable
are taken� a standard symbol ��� is used� In such a case�
rows correspond to MV cubes� i�e�� certain groups of MV
minterms form complete k�dimensional sub spaces of the

n�dimensional hypercube� k � n� When table has many
outputs �m � 	� it stores multi�output MV care cubes� A
care cube is one that has at least one output variable which
is not a standard don�t care ���� �It is possible to gener�
alize this representation further by adding more columns
corresponding to intermediate �auxiliary� variables�

The most general relation that can be described using
the table representation� has MV input variables with dif�
ferent number of values each and several MV outputs with
di�erent number of values each� It may also have sets of
values for positions in inputs columns� and sets of values
in positions for output variables �meaning a separate rela�
tion for each output with the inputs�� One can argue that
such tables are already realized in MVCC� the rows �with�
out their numbers� would correspond to cubes in an array
of cubes� The disadvantage of cube calculus is� however�
that large initial multilevel netlists or BDDs may produce
too many cubes after �attening� so that their cube arrays
cannot be stored� Even for initial data in forms of large
arrays of cubes in ML or controller design applications�
the cubes can be too slow to manipulate and alternative
representation may improve considerably the processing
speed�

In our approach we will create MVCDB representation
from cubes� in such a way� that during and after its cre�
ation� the MVCDB may occupy less storage than would
be occupied by the corresponding set of cubes� This is
because MVCDBs can be created incrementally� i�e� by
reading a row at a time and updating the data structure�

Below� we will �rst review the method to store MV
functions� which will conceptually refer to the table pre�
sented above� but which stores the data vertically� not
horizontally� This method represents functions with
Rough Partitions� Next� we will improve on this repre�
sentation and generalize to relations� An early attempt
to improve on the MVCC representation is presented in
�	��� MV functions are represented there by Rough Par�
titions �r�partitions� or RP� for their variables� There
are two blocks for a binary variable� and K blocks for
a K�valued variable� An RP stores the table column�
wise� To every K�valued variable corresponds a column
of the table� In RP with minterms as rows� every K�
valued variable induces with its values a partition on the
set of rows to blocks� For instance� in Table 	 the pri�
mary variable b is the header of column 	��	� Partition
for primary input variable b is� ��b� � fB�� B�g �
f�� �� 	�
g� rough�partition for output variable f is�
��f� � fB�� B�� B�g � f�� 	� ��
� �� �� 	�
� ��

The blocks may overlap� For instance an input binary
don�t care is treated as � and 	� so the number of a row
with a ��� for a binary variable a is included in both blocks
of the partition for this variable� The RP representation
is a set of rough partitions for all variables �input and out�
put� of the function� A similar� double�feature represen�
tation of lists of lists and lists of characteristic functions
�bit vectors� was used in ��� �� for sequential machines�

Observe� that although the RP is a really new and inter�
esting idea� it has the following major drawbacks� ��� RP
does not represent a function� but only certain abstraction
of a function� This is because� for blocks in a partition of
variable X� the values of the variable are not stored to�
gether with the blocks� Thus� some information of a func�
tion is lost when it is represented by a set of partitions
for its variables� ��� Similarly to arrays of cubes� the RP
implementation� as described in �	��� is a �at list represen�
tation� with all known disadvantages of such representa�
tions� ��� RP do not represent relations� We believe that
for these reasons the �pure� partition�based representa�
tions of functions and state machines �	�� �� �� have been
limited in the past in their applications and popularity�
In both binary and MV cases� an e�cient representa�

tion for strongly unspeci�ed relations �and even functions�
has not been yet proposed and this paper tries to �ll this
gap� We call our new representation the MV Cube Dia�
gram Bundles �MVCDB�� Cube � because it operates on
cubes as atomic representations� Diagrams � because it
uses Decision Diagrams �of any kind� to represent sets�
Bundles � because several diagrams and data are bun�
dled together to specify multi�outputMultiple�Valued Re�
lation� The MVCDB representation is general and can
be applied to both binary and multiple�valued functions
�Finite State Machines� and relations �non�deterministic
Finite State Machines� in the same way�

III� Multiple�Valued Cube Diagram Bundles to

Represent Functions and Relations

A multi�output MV cube is represented as a row of
the conceptual table introduced in the previous section�
Below� rows and cubes will be treated interchangeably�
Originally� the cubes are expressed in terms of the pri�
mary input variables� In MVCDB representation� each
cube is encoded with new binary variables called the sec�
ondary variables� To each cube corresponds a minterm
in secondary variables� If not speci�ed otherwise� the bi�
nary codes of the secondary variables correspond to the
decimal numbers enumerating the rows in the table�
Example �� A Kmap with primary input variables a� b�
and c is shown in Fig� 	a� As the result of encoding of
primary cubes with secondary input variables� x and y� a
new map� Fig� 	b� is created� Encoding of variables x and
y corresponds in this case to natural binary codes of the
numbers of rows� Figures 	a and 	b show how cubes of
the �rst map are encoded into minterms of the secondary
map� In general� this encoding can be arbitrary� and can
be of a non�minimum length� The table for the function
from Fig� 	a is shown in Fig� 	c� and the encodings of its
rows to secondary input variables is shown in Fig� 	d�

For each primary input variable VAR a set of Boolean
functions is created� there are as many functions as the
values that the variable can take� These functions are

input

variables

0

1

0

1

10ab

00

01

11

10

0

0

1

1

0

0

1

c
x

y

0

11

1

1 1

0

00
0

1

32

0

1

2

3

a b c

0

-

-

1

0

1

1

0

-

1

0

-

f

0

0

1

1

row

(cube)

0

0

1

1

x y

a) b) c) d)

output

variable

Figure 	� Mapping from primary to secondary variables
for Example �� �a� original function with primary inputs	
�b� secondary space with secondary input variables x and
y	 �c� table of function f 	 �d� encoding of primary cubes�

Input variables

DD0 DD1 DD0 DD1

variable b

DD0 DD1

variable a variable c

0,1,2 1,2,3 0,3 1,2 0,2,3 0,1,3

Figure
� Input part of a data structure for the MVCDB
from Example �

represented as� DDV AL�V AR� j V AL � �� 	� ��KVAR�

where KV AR is the number of values of variable VAR�

The ON�set of each DDV AL�V AR� represents a set of
minterms on secondary variables that have value VAL for
variableVAR� The number of rows of the table determines
the number of minterms in secondary variables and thus
the size of the corresponding set called Value DD� For in�
stance� in the MVCDB from Fig�
� which corresponds to
the function from Example 	� by �DD for set f��	�
g� we
understand a Value DD that represents the set of natu�
ral numbers f��	�
g encoded in �binary� secondary input
variables as f����	�	�g� respectively� Assuming secondary
variables x and y� this yields fx y� xy� xyg� All the Value
DDs are built together from columns of the conceptual ta�
ble� scanned row after row� They are shared and ordered�

For consistency with MV logic� the ON cube will be
called aVAL��cube� and the OFF cube� aVAL��cube� In
a single binary�output function F � each true minterm of
the function represented by DD��F � of MVCDB�F� cor�
responds to the table�s row� i�e�� to an ON cube in function
F on primary variables� Similarly� each false minterm
in DD��F � corresponds to an OFF cube in function F

on primary variables� In the case of a MVCDB repre�
senting a K�valued logic function� each s�valued minterm
of function represented by DDs�F � of the MVCDB is a
VALs�cube� s������K � 	� on primary variables�

MVCDB representation �see Fig�
� of function F may
be seen as a hierarchy of labeled sets� At the highest
level� there are sets labeled by function�s input and out�

variable a

DD0 DD1 DD2

0,1 1,3 0,2

Input variables

DD0 DD1

DD0 DD1 DD2

0,1

DD0 DD2

Output variables

variable b

variable f variable g

1,2 0,3

0,2,3 0,1,2,3 1,2 0,3

Figure �� Data structure for a MVCDB from Table � to
Example

put variables �variable a� variable b� variable c� on Fig�

�� Each of them consists of sets labeled by the variable�s
value �DD� corresponds to value �� DD	 corresponds to
value 	�� Each of sets labeled by the variable�s value con�
tains corresponding row numbers and is represented by a
decision diagram�
Example �� An MVCDB for function from Table 	 is
shown in Fig� �� Here DD��a� � DD��f�� DD��b� �
DD��g�� and DD��b� � DD��g� so these sets don�t need
to be repeated in the function F representation saving
memory space� Standard don�t cares for f are treated as
a generalized don�t care and all their values are stored
in the Value DDs� Observe also the pointer to � for the
non�used value 	 of output g�
Now we formally de�ne the MVCDB�

De�nition� Given is MV relation R in a form of a ta�
ble� The MVCDB representation of this table is the set
of rough partitions on rows for all its input and output
variables� in which all blocks are labeled with respective
values of these variables� Thus� MVCDB is a set of la�
beled sets� For e�ciency of processing and storage� this
set is represented in a compressed form� Any method to
represent sets is possible� In particular� these sets can
be represented as BSs� BDDs� BMDDs� EVDDs� KFDDs�
K�BMDs� ZBDDs� etc� �	���

IV� MVCDBs allow efficient manipulation and

storage of functions and relations

If an �implicit� cube has standard output don�t cares for
all its outputs� it is not stored �explicitly� in the MVCDB
at all� This means that only care cubes are stored� Don�t
care minterms are represented implicitly� because every�
thing that is not a care is implied to be a don�t care� This

means� for large functions and relations with many don�t
cares� a big saving of both storage and processing time�
when compared to the representations that store don�t
cares explicitly �such as MVCC in Espresso�MV�� Also� a
MVDD has to store pointers to the terminal node �DC��
If there are L disjoint DC cubes in a map� there would
be L such pointers� and this number can be exponential
in the number of input variables� Moreover� MVDD re�
quires a good ordering of MV input variables� which has
not been successfully solved and can lead to prohibitively
large diagrams� In contrast� the size of MVCDB is in the
worst case of the order of the number of cares� so it does
not depend on the location of the don�t cares� In addi�
tion� for MVCDB� the encoding with secondary variables
is used to decrease the sizes of the DDs� If the secondary
variables are binary� the e�cient binary BDD packages
based on sifting or other variable ordering techniques can
be used� In case of using MVCDBs to represent relations�
the generalized don�t care positions are stored in an e��
cient way� because they are treated in the same way as
the input don�t cares� and the sharing of subsets is used
between all the variables� Also the input and output vari�
ables are represented uniformly�

It is well�known� that there are functions� such as par�
ity� for which BDDs are obviously better� and there are
other functions� such as the one shown by Devadas ���
�or that occur in ML� logic or controller design �
���� that
are more e�ciently described using an array of cubes� It
can be shown that with good selection of Value DDs en�
coding� in these two extreme worst cases the MVCDBs
are comparable in size to the better representation of the
two� arrays of cubes� or BDDs� ��� One extreme exam�
ple is a completely speci�ed binary function� similar to
parity� and with many input variables� Obviously� in this
case� a BDD is better than an array of cubes� because
the BDD has the polynomial number of nodes� and the
array of cubes has an exponential number of cubes� In
this case the original variables are selected as the sec�
ondary variables for the MVCDB� Thus the size of the
Value DD for the ON�set of the output variable is the
same as that of the BDD for this function� All the In�
put Value DDs have one node each� So� disregarding a
small overhead in the top lists of the MVCDB data struc�
ture� both representations are comparable in size� ��� For
the other extreme case� let us consider a binary function
like those discussed in ��� that have polynomial number
of cubes and exponential number of nodes in BDD� When
the function is speci�ed by cubes� it has n variables and
k cubes� k ��
n� Very conservatively estimating� in
the worst case there are
�n� 	� Value DDs� each with k
nodes� So� the total number of DD nodes is O�
nk� while
the number of nodes in the BDD would be O�
n�� Exam�
ples of multi�output MV relations can be constructed for
which the advantage over MVDDs would be dramatic for
large values of n and k� It seems� that there exist practical
functions with similar� although not that extreme prop�

erties �
��� To this category belong functions with many
cubes and many variables� but with still very small ratio
of cares to don�t cares� This category includes the same
kind of functions as those from the ML benchmarks� but
with even larger k� n and number of terms than in all the
functions from U�C� Irvine benchmarks� We expect that
for larger multi�valued functions or relations the advan�
tages of MVCDBs will be even more clearly observable�
We implemented a decomposer� GUD�MV� for MV rela�

tions� �	�� which splits up a relation into smaller blocks in
order to minimize the overall relation complexity� Com�
plexity of MV relation is determined by a parameter called
Relation Cardinality �RC� and de�ned as follows�
De�nition� Relation Cardinality �RC� for MV rela�

tion with a set of inputs X � fx�� x�� � � � � xng and set of
outputs Y � fy�� y�� � � � � ymg is de�ned by the following
formula�

RC � �
Y

xi�X

mxi �
X

yj�Y

log
�
myj

where� mxi is multiplicity of variable xi � X�
myj is multiplicity of variable yj � Y �

The above de�nition extends Decomposed Function
Cardinality �DFC� �
�� on MV relations and is directly
related to the amount of information the relation could
possibly handle�
Concise and elegant solutions were obtained and veri�

�ed �for instance� for the di�cult example trains�� Some
benchmarks are in Tables � and �� Benchmarks run on
SPARC�	� workstations� Times listed are user times�
Result of comparison for selected MCNC benchmarks is
shown in Table �� �	��Results not available for this bench�
mark� �
��Program limited to �
 input and �
 output vari�
ables� TRADE � Program designed at PSU �

�� MISII �
Program designed at UC Berkeley� DSGN	�� � Program
designed by B� Steinbach �
��� GUD�MV � Program de�
signed at PSU� As we can see from the table� complex�
ity of the functions obtained using GUD�MV is in most
cases smaller than for other decomposers� And smaller
complexity translates directly to smaller circuit area and
power consumption in circuit design and to better gen�
eralization properties in ML� Table � shows the number
of BDD nodes for few ML benchmarks� Note that vari�
ables are multi�valued� so even benchmarks breastc and
balance are strongly unspeci�ed� Observe that even for
the medium size real�life data such as breastc the per�
cent of don�t cares is very high �for nine 	��valued vari�
ables there were 	���
�� don�t cares and only
�� cares�
Thanks to our MVCDB representation GUD�MV is fast�
For instance� the benchmarks zoo	 shuttle	 lenses and
trains took with BDDs only ���� 	��� ��� and 	�� seconds�
respectively� Other benchmarks� such as breastc and bal�
ance are slower �	�����s and ����s� but these are quite
large examples and the decomposer looks to many parti�
tion candidates�
All MV operations on MVCDBs use set�theoretical op�

erations on the corresponding sets representing blocks�

Therefore� any computer package for representing and
manipulating sets �and in particular any DD package
that allows set�theoretical operations�� can be used to
implement MVCDBs with no modi�cation� for instance
the packages for BMDDs� EVDDs� KFDDs� K�BMDs�
ZBDDs� etc� �	��� We plan to compare the e�ciency
and storage requirements for MVCDBs with various data
structures for blocks� Especially� we plan to experiment
with these new classes in our C�� based MVCDB pack�
age�

V� Conclusions

In this paper we report the following observations re�
lated to application of multiple�valued logic synthesis to
Machine Learning and KDD�
	� The data occuring in these applications are distinctly

di�erent from the most data taken from circuit design�
Some of these data are relations and all are strongly un�
speci�ed�

� These data should be represented in a special way

in a computer� The improved Rough Partition represen�
tation introduced here� allows not only for faster Ashen�
hurst�Curtis decomposition �	�� but also for many other
types of decomposition� such as for instance the binary
AND�OR�EXOR decompositions to two�input gates �
���
Also� our new MVCDB representation does not lose any
information� so it is a representation of the function� and
not only some abstraction of the function �as is the RP
representation�� The MVCDB representation is especially
good when there exist some variables with few� and other
variables with many values� and relations are weakly spec�
i�ed� a situation that is typical in ML� Relations allow to
elegantly formalize many aspects of generalized decom�
positions� and MVCDBs allow to directly translate algo�
rithms to data structures�
�� Finally� for the case of large initial data� the paper

proposed to represent the blocks in a compressed way in
order to further save on the memory and gain on the pro�
cessing speed� We compared two data structures for the
compressed blocks� GNU�� Bit Sets and Univ� of Cal�
ifornia Berkeley standard BDDs� For some benchmarks�
GUD�MV can decompose functions too large to be solved
by competing methods� The results of comparison� as well
as more detailed presentation of operations on MVCDBs
and benchmarks are presented in �	��� Although large
U�C� Irvine benchmarks seem still to favour Bit Sets� we
believe DDs will be better for even larger benchmarks�
The concept of MVCDB does not specify how the sets
should be represented� so any new improved representa�
tion can be used in the future�

References

��	 R�E� Bryant
 �Graph�BasedAlgorithms for BooleanFunction
Manipulation

 Trans� on Comput�
 Vol� C���
 No� �
 pp�
�������
 �����

��	 R� Brayton and F� Somenzi
 �An Exact Minimizer for
Boolean Relations

 Proc� of ICCAD
 pp� �������
 �����

��	 S� Devadas
 �Comparing Two�Level and Ordered Binary De�
cision Diagram Representations of Logic Functions

 IEEE
Trans� on CAD
 Vol� ��
 No� �
 May ����
 pp� ��������

��	 D�L� Dietmeyer
 �Logic Design of Digital Systems

 Allyn
and Bacon� Boston� MA� �����

��	 R� Drechsler
 �Veri�cation of Multi�Valued Logic Networks

Proc� ��th ISMVL���
 May �����
 Santiago de Compostela

Spain
 ����
 pp� ������

��	 J� Han
 �Data Mining Techniques

 Proc� ���� ACM�
SIGMOD Int�l Conf� on Management of Data �SIG�
MOD���	
 Montreal
 Canada
 June ���� �Tutorial��

��	 L� Jozwiak
 and F� Vankan
 �Bit Full Decompositions of Se�
quential Machines� Algorithms and Results

 Can� Conf�
Electr� Comp� Engn�� Sept� �����
 ����
 pp� ���������
Mon�
treal
 CA�

��	 L� Jozwiak
 �SimultaneousDecompositionsof SequentialMa�
chines

 Microprocessing and Microprogramming� Vol� ��

pp� �������
 �����

��	 Y�T� Lai
 K�R� Pan
 M� Pedram
 and S� Vrudhula
 �FGMap�
A Technology Mapping Algorithm for Look�up Table Type
FPGA Synthesis

 Proc�
��th DAC� pp� �������
 �����

���	 T� Luba
 and J� Rybnik
 �Algorithmic Approach to Discerni�
bility Function with Respect to Attributes and Objects Re�
duction

 Found� of Comp� and Dec� Sciences� Vol� ��
 No�
���
 pp� �������
 �����

���	 T� Luba
 M� Mochocki
 and J� Rybnik
 �Decomposition of
Information Systems Using Decision Tables

 Bull� Polish
Acad� Sci�� Techn� Sciences� Vol� ��
 No��
 �����

���	 T� Luba
 R� Lasocki
 and J� Rybnik
 �An Implementation of
DecompositionAlgorithm and its Application in Information
Systems Analysis and Logic Synthesis

 Intern� Workshop
on Rough Sets and Knowledge Discovery� pp� �������
 Ban�
����

���	 T� Luba
 �Decomposition of Multiple�Valued Functions

Proc� ��th ISMVL
 pp� �������
 �����

���	 D�M� Miller
 �Multiple�valued logic design tools

 in Proc�
ISMVL� pp� ����
 �����

���	 S� Minato
 �Graph�Based Representations of Discrete Func�
tions

 Proc� Reed�Muller��� Workshop
 Chiba
 Japan
 Au�
gust ����
 pp� �����

���	 M� Perkowski
 T� Ross
 D� Gadd
 J� A� Goldman
 and N�
Song
 �Applicationof ESOP Minimization in Machine Learn�
ing and Knowledge Discovery

 ibidem
 pp� ��������

���	 M� Perkowski
 �A New Representation of Strongly Unspeci�
�ed Switching Functions and its Application to Multi�Level
AND�OR�EXOR Synthesis

 ibidem
 pp� ��������

���	 M� Perkowski
 M� Marek�Sadowska
 L� Jozwiak
 T� Luba
 S�
Grygiel
 M� Nowicka
 R� Malvi
 Z� Wang
 and J� Zhang
 �De�
compositionof Multiple�ValuedRelations

Proc� ISMVL��
�

���	 S� Grygiel
 M� Perkowski
 M� Marek�Sadowska
 L� Jozwiak

T� Luba
 �full version of this paper
�

���	 T� D� Ross
 M�J� Noviskey
 T�N� Taylor
 D�A� Gadd
 �Pattern
Theory� An Engineering Paradigm for Algorithm Design

Final Technical Report WL�TR��������� Wright Laborato�
ries
 USAF
 WL�AART�WPAFB
 OH ����������
 August
�����

���	 T� Sasao
 �FPGA Design by Generalized Functional Decom�
position

 in �Logic Synthesis and Optimization�� T� Sasao�
� Ed�
 Kluwer Academic Publishers
 pp� �������
 �����

���	 V�Y� Shen
 A� C� McKellar
 and P� Weiner
 �An Fast Algo�
rithm for the Disjunctive Decomposition of Switching Func�
tions

 IEEE Trans� on Comput�
 Vol� C���
 No� �
 pp� ����
���
 March �����

���	 N� Song
 and M� Perkowski
�Minimization of Exclusive Sum
of Product Expressions forMulti�OutputMultiple�Valued In�
put Switching Functions

 IEEE Trans� on CAD� Vol� ��

No� �
 pp� ��� � ���
 April �����

���	 B� Steinbach
 and A� Wereszczynski
 �Synthesis of Multi�
Level Circuits Using EXOR�Gates

 Proc� Reed�Muller���
Workshop� Chiba
 Japan
 August ����
 pp� ��������

���	 Papers of Steinbach�Hesse
 Kempe
 Rohde�Barthel
 and dis�
cussions at the �nd Workshop Boolesche Probleme
 �����
September
 Freiberg
 Sachsen
 �����

���	 W� Wan
 and M� Perkowski
 �A New Approach to the De�
composition of Incompletely Speci�ed Multi�Output Func�
tion Based on Graph Coloring and Local Transformations
and Its Application to FPGA Mapping

 Proc� Euro�DAC

pp� ��� � ���
 �����

���	 Y� Watanabe
 and R�K� Brayton
 �Heuristic Minimization of
Multiple�Valued Relations

 IEEE Trans� on CAD�
 Vol� ��

No� ��
 pp� ���������
 October �����

input �le BDD set representation
� of � of � of � of � nodes

in�out cubes BDDs nodes per BDD
zoo 	
�	 	�	 �� 	���
��	
shuttle
�	 	� 	� �� ���
breastc ��	
�� �
 ���� ���

balance ��	

�
� �
� ����
lenses ��	
� 	� �� ���
trains �
�	 	� 	�� �
� ���

Table
� BDD set representation	 number of BDD nodes
for MV functions from ML Benchmarks�

TRADE MISII DSGN��� GUD�MV

in� RC time RC time RC time RC time
out �s� �s� �s� �s�

�xp� ���� �	
 ��

�� ��� �	� ��� ����� ���	

	sym 	��
�� �	�	 	�� ���� ��� ��� ����� �
��

b�� ���	 ���
�
 ��� ��� ��� ��� �	
�	 ����
bw ���� ���� 	�� ��� ��� ��� ��� ����
 ����

clip 	�� ��� ��� ��� ��� ��� ��� �

�	 ���

con� ��� �� ���
� ��

� ��� ���� ���

ex�p ��

 ��� ���
��� ���� ��
� ���
�� �	�
�� ����

inc ��	 ��� ��� ��� ��� ��� ���

	�� �
�	

misex� ��� ��� ��� ��� ��� ��� ��	 ��	�� ���

rd�
 ��
 ��� ��� 	
 ��
 �� ��� �	�	 ���
rd�
 ��

�� ���
�� ���� ��

�� ��
�� �
��

rd�� ��� ���
��

�� ��	��
�� ��
 ����	
���
sao� ���� ����
��� ��
 	�
 �
� �
�	 ����
 �
��

sqrt� ��� ��� ��� ��� ��� ��� ��� �

�� ���
squar� ��� ��� ��� ��� ��� ��� ��� �
��	
�

xor� ��� �
 ��� ��� ��� ��� ��� �
�� ���

Table �� Results on binary function MCNC benchmarks

