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Abstract� This paper presents a new decomposi�

tion problem� decomposition of multi�valued �MV� re�

lations� and a method of its solution� Decomposition is

non�disjoint and multi�level� A fundamental di�erence

in decomposition of MV functions and MV relations

is discussed� the column �cofactor� pair compatibil�

ity translates to the group compatibility for functions�

but not for relations� This makes the decomposition

of relations more di�cult� The method is especially

e�cient for strongly unspeci	ed data typical for Ma�

chine Learning �ML�� It is implemented in program

GUD�MV� �

I� Introduction�

Functional Decomposition of switching functions has
applications in binary and multiple�valued circuit design�
Machine Learning �ML�� and Knowledge Discovery from
Data Bases �KDD�� Despite the fundamental nature of
the MV decomposition problem and many possible appli�
cations of its solutions� e�cient MV decomposers do not
exist yet� with the exception of ���� �The Curtis decom�
position of binary functions is presented in detail in �	��
Curtis�like decomposition of multi�valued functions based
on graph coloring was presented in �
��� In this paper we
will focus on a new problem of Curtis�like Decomposition
of MV Relations� We present also an e�cient computer
program for this task� The solution of the MV Relation
Decomposition Problem �nds numerous applications in
Machine Learning� binary circuits and Finite State Ma�
chine design�

An example of a relation with binary inputs and a sin�
gle MV output is shown in Table �� Observe� that only
the care minterms �care cubes� are present in the rela�
tion table as its rows� Standard don�t cares �unknown
data samples in ML� are represented by the remaining�
implicit� minterms� The values in the column for out�
put variable f include also the so�called �generalized don�t

�This research was partially supported by the Dutch Technology
Foundation �STW� under project EEL �������

a b c d f

� � � � � ���
� � � � � ���
� � � � � �
� � � � � ���
� � � � � ���
� � � � � ���
� � � � � ���
� � � � � ���
	 � � � � ���

 � � � � ���
�� � � � � ���
�� � � � � ���

Table �� Multivalued Relation

cares�� For instance� assume the meaning of the values of
decision variable f � � � a chair� � � an armchair� � � a desk�
� � a table� etc� Then� the position f���g in the �rst row
will mean a chair or an armchair� which means� some�
thing is known but the answer is not precize� The value �
means a de�nite answer a chair� and a value f��������	g
would mean a complete unknown� a standard don�t care�
denoted by �� Observe in Table � that there is no row
for a standard don�t care at all �like there is no row for
a minterm abcd � ������ In general� for a single�output
relation �like one from Table ��� there will be no row for
a standard don�t care� In case of relations with two or
more output variables� it can happen� however� that one
of these variables� say f � is a standard don�t care� and
another one� g� has a proper subset of its possible values�
In such case the row will exist in the table �the standard
don�t care for f has the meaning of a generalized don�t
care� with all possible values of this variable�� Similar
tables can be presented for multi�valued inputs as well
����

In multiple�valued systems� the entire classical decom�
position approach is considerably more complex than for
binary systems because of the associated combinatorial
explosion� However� this is not the case for weakly spec�
i�ed relations and functions� and an appropriate decom�
position approach can be made e�cient by utilizing don�t
cares� It can be observed that in the area of circuit de�
sign the percent of don�t cares is not more than ����
While in Machine Learning� this percent is usually larger
than ���� Arbitrarily� we will de�ne the functions with
more than ��� don�t cares to be weakly speci�ed �they
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Figure �� RVM Maps and Decomposition� �a� The stan�
dard map of the function f from Example �� �b� the RVM
map of the function f from Example � created from the
map in �a�� Coloring� �c� the coloring graph with col�
ors of nodes for a Binary Ashenhurst Decomposition of
f from Example 	� �d� map of incomplete function H to
Example 	� �e� map of function G� �f� encoded map of
function G� Multi�Coloring� �g� the multi�coloring graph
for f from Example 	� �h� map of function H to Example
	� �i� map of relation G� �j� encoded map of incomplete
function G�

are called also the strongly unspeci�ed functions�� Sim�
ilarly� we will de�ne the relations with more than ���
don�t cares �total� standard and generalized�� the weakly
speci�ed� or strongly unspeci�ed relations� Observe also�
that the more values exist in generalized don�t cares� the
more is the relation unspeci�ed� The less values exist in
generalized don�t cares� the relation is more similar to a
function�

II� Repeated Variable Maps and Non�Disjoint

Decompositions

We discuss Curtis�like decomposition F � H�G�B �
C�� A � C�� The set X of input variables is partitioned
to two sets� free variables A � C �using Curtis terminol�
ogy� are direct inputs to the successor blockH� and bound
variables B �C are inputs to the predecessor block G of
the non�disjoint decomposition� For relation F with C

� � represented as a Karnaugh map with B variables as
columns and A variables as rows� the column multiplic�
ity index � is the number of di�erent types of column
patterns� By columns we will understand the cofactors
of F with respect to the variables from the bound set�
The problem that we want to formulate and solve in this
paper is the following� Given is a multivalued� strongly
unspeci�ed relation� with many input variables� and many
output variables� Each variable can have a di�erent num�
ber of values �from � to hundreds�� Find the hierarchi�
cal decomposition of this function to a DAG �Directed
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Figure �� Compatibility for Decomposition of MV Rela�
tions to Example 
� G is a function� H is a relation�

Acyclic Graph�� with nodes of the multi�level DAG rep�
resenting blocks �each block representing a relation or in
particular a function�� and arrows representing variables
and intermediate variables� in such a way that the total
cost RC of the network of these blocks will be the mini�
mum� The intermediate signals created in the decompo�
sition may be multivalued� but smaller numbers of values
in them are preferable to decrease the cost� Similarly�
nonempty sets C may be assumed �non�disjoint decom�
positions�� but smaller sets C are preferable with respect
to the total cost� This is a decomposition model more
general than known in the literature �
��
First� we explain how to perform non�disjoint decompo�

sitions of multi�output relations with use of the Repeated
Variable Maps� A multivalued relation can be stored in a
tabular representation �such as a Karnaugh map or MV
map� in which for every entry there exist one of the follow�
ing� ��� a single value of the output �as in mv functions��
��� a standard don�t care represented by a dash� ��� a gen�
eralized don�t care represented by a set of values of the
output variable� Example of such map for relation from
Table � is shown in Figure �a�

De�nition � A Repeated Variable Map �RVM� of a mul�
tivalued relation is its tabular representation in which en�
tries store the values corresponding to the input combina�
tions assigned to the rows and columns� The row variables
correspond to the free set A � C� and the column variables
correspond to the bound set B � C� Note that the vari�
ables from the non�empty set C are repeated �called also
shared variables�� The entries of RVM whose row and
column combination values of C variables are the same�
take the values speci�ed for these variables in the origi�
nal standard map� The entries can be any of the three
cases �����	���
� speci�ed above� The entries for which
the C�values are di�erent� are set to standard don�t cares
�represented by dashes�� �This is because the same vari�
able cannot have di�erent values simultaneously��

Example �� An example of an RVM is shown in Figure ��



Fig� �a presents a standard Kmap of a ��input function
f � Assuming b is a repeated variable� the Bound Set fb�cg
�the columns� and the Free Set fa�bg �the rows�� one cre�
ates the RVM from Fig� �b� The set of Rows of rows is
composed of fR� � ab� R� � ab�R� � ab� R� � abg� The
set of Columns � fC� � bc� C� � bc� C� � bc� C� � bcg�
This map illustrates the principle of repeating variables
that leads to a new� strongly unspeci�ed function� In
other representations than Karnaugh Maps� a repetition
of variable b means creation of two variables� brow and
bcolumn� While RVM is only a dydactic concept� the
functions with repeated �renamed� variables can be repre�
sented in any known data structure that allows for don�t
cares ��� �� �� ���

De�nition � Two single�output MV relations F� and
F� are a relation tautology if for every entry in their
standard maps they have at least one value in common�
Two multi�output MV relations F� and F� are a relation
tautology if they are single�output tautologies for every
output separately�

Obviously this de�nition is a generalization of the def�
inition of incomplete tautology� where for each entry the
functions are either the same� or at least one is a standard
don�t care�

De�nition � We de�ne that MV relation F has a ��
valued Curtis Decomposition of the form H�G�B�C�� A�
C�� with a given bound set B � C� a given free set A � C�
and with � values in signal G� when relation F and com�
position of relations H�G�B � C�� A � C� are a relation
tautology�

Existence of the MV Curtis Decomposition for a given
bound set B � C and free set A � C can be checked
using Theorem ��

Theorem � The non�disjoint ��valued Curtis decompo�
sition exists if the column multiplicity index in the corre�
sponding RVM map is �� �see proof in 	���

Observe� that the MV Ashenhurst decomposition� a gen�
eralization of Ashenhurst decomposition for MV func�
tions� which assumes a single binary signal G� is a special
case of MV Curtis decomposition with � � �� Disjoint de�
compositions are those that decompose function F to two
subfunctions G and H that have disjoint sets of inputs
variables� Most authors di�erentiate between disjoint and
non�disjoint decompositions� and most of the MV decom�
positions reported in literature are disjoint� The RVMs
can be used to explain all the decomposition types in a
uniform way� As introduced before� if C � � the de�
composition is called disjoint and the RVM becomes a
standard Karnaugh Map� If C �� � the decomposition is
non�disjoint and the RVM is incompletely speci�ed� even
if the original function is completely speci�ed� The pro�
cess of �nding sets A�B and C is called input variable

partitioning� and we have proposed several e�cient algo�
rithms for it ��� �� ��� Observe� that addition of each
repeated variable increases the map dimension� and all
the newly introduced cells are don�t cares� For instance�
if the original map is completely speci�ed and has 	 vari�
ables a� b� c� d� the bound set is fa� c� dg and the variable a
is a repeated variable� the new 	 � � map will have three
variables for columns and two variables for rows �variable
a appears in both rows and columns�� Half of the en�
tries in this RVM are now don�t cares� If variables a and
c were repeated� and fa� c� dg is the bound set� the new
� � � map will have three column variables� and three
row variables� There will be ��� don�t cares in this case�
Starting even with a completely speci�ed function� by re�
peating variables� the function becomes very strongly un�
speci�ed� Since don�t cares represent design freedom�
this fact shows� why it is possible to �nd a decomposition
or to �nd a better decomposition by introducing more
repeated variables� In addition� in ML applications� even
the initial data can have more than ������ of don�t cares�
This percent grows with the size of the real life Machine
Learning benchmarks� Therefore� it is absolutely crucial
to represent and manipulate the weakly speci�ed func�
tions and relations e�ciently �we use the data structure
introduced in �����

III� Column Compatibility for MV Functions

and Relations

For relations ���� the decomposition problem has not
been discussed in the literature� and thus all the notions
below are new�

De�nition � Two columns C� and C� of an MV Rela�
tion form a pair of compatible columns if in each row
there exists at least one value that is the same in both
columns� In other words� if in any row the intersection
of the sets of values of C��Ri� and C��Ri� is non�empty�
C�

�� C� � ��Ri � Rows� � �C��Ri� � C��Ri� �� � �

De�nition � A set of columns COL forms a compat�

ible set of columns of an MV Relation i� for any
row there exists some nonempty set of values that is in�
cluded in all columns in COL� COMPRel�COL� �
��Ri � Rows� �

T

Cj�COL

Cj�Ri� �� � �

For instance� columns C� and C� in the MV relation from
Figure �a are compatible� Columns C� and C� are not
compatible� Although the columns C� and C�� C� and
C�� and C� and C�� are pairwise compatible� the set of
columns COL � fC�� C�� C�g is not a compatible set of
columns� Columns that are not compatible are called in�
compatible� The above compatibility notions can be de�
�ned for compatible rows in a strictly analogous manner�

De�nition � In the Column Compatibility Graph

�CCG� the nodes correspond to columns in the RVM map



�cofactors of the bound set�� If two columns are compati�
ble� there is an edge between the corresponding nodes� The
Column Incompatibility Graph �CIG� has the same
set of nodes as the CCG� An edge between two nodes ex�
ists� if the corresponding columns are incompatible�

CCG and CIG are complementary graphs� i�e� their
union forms a complete graph� because any two columns
are either compatible �exclusive�or incompatible�
Property �� Compatibility inheritance prop�

erty� The Column Compatibility Graph satis�es the
compatibility inheritance property on a set of columns
COL 	 Columns if compatibility of all ��column
subsets in COL implies compatibility of the entire
set COL� ��COL 	 Columns� ��Ci� Cj � COL�
�Ci � Cj� 
 COMP �COL�� For instance� if COL
� fC�� C�� C�� C�g and all possible pairs in the set are
compatible� i�e� C� � C�� C� � C�� C� � C�� C� � C��

C� � C�� C� � C�� then ful�llment of Property � implies
that fC�� C�� C�� C�g form a compatible set�

Theorem � In an MV function� the relation of compat�
ibility � satis�es Property �� In an MV relation� the re�
lation of compatibility �� does not satisfy Property ��
Proof� Proof for MV function directly follows from De��
nitions � and �� To prove for MV relation it is su�cient
to �nd a counter�example� see Example 
�

Checking the incompatibility of cofactors is what every
Curtis�like decomposer does most of the time� so this op�
eration must be e�ciently programmed� From the Theo�
rems � and � it follows that for MV functions we should
use proper graph coloring algorithms on CIG to deter�
mine the minimumcolumnmultiplicity index �� In proper
graph coloring every two nodes linked by an edge are col�
ored with di�erent colors and the total number of colors
should be minimal� Nodes assigned the same color form
a clique in the CCG graph and correspond to a compat�
ible set of columns� Subsequently they can be combined
into one column� The number of colors in the exact mini�
mum coloring� called the chromatic number of this graph�
is equal to the column multiplicity index � for the given
bound set B � C� Proper Multi�coloring is like proper col�
oring� but a node can be colored with many colors� This
corresponds to overlapping cliques in the compatibility
graph� and thus to both G and H being relations�
Example �� The Incompatibility Graph for the function
in Fig� �b with bound set fb� cg is shown in Fig� �c� The
coloring is� nodes ���C�� ���C� and ���C� with color A�
and node ���C� with color B� Now columns ��� �� and
��� colored with color A �a clique in the corresponding
Compatibility Graph�� can be combined� which creates a
map of the successor block H in Fig� �d� The map of
the predecessor block G is also obtained from this clique
partitioning� Fig� �e� After assigning binary codes A � ��
B � �� the solution G � bc� H � G � ab �f � bc � ab�
is found with blocks H and G from Fig� �d� and Fig� �f�

respectively� Similarly� solutions f � �a � b��b � c� and
f � bc � �a � b� are found for the same bound set� but
with di�erent colorings� One can verify that there is no
binary disjoint solution with bound variables a� b� since
three di�erent rows exist in the map in Fig� �a� Thus�
the multiplicity index for bound set fa� bg is � � �� Simi�
larly� for bound sets fa� cg and fb� cg � � � and there are
no binary disjoint decompositions� However� there ex�
ists a three�valued decomposition f � H�G�a� b�� c� with
��valued function G� and binary�output function H� Fig�
ure �g presents the graph with multi�coloring� nodes ��
and �� are colored with colors A and B� Corresponding
function H is in Fig��h� Observe� that it has less don�t
cares than the H from Fig� �d obtained from coloring� In
contrast� G is now a relation �Fig� �i�� Concluding� by
the switching between coloring and multi�coloring proce�
dures� and by controlling the size of sets of nodes colored
with single colors� we can constrain any of relations G or
H to become functions� We can also investigate trade�o�s
between percentages of standard don�t cares� generalized
don�t cares and speci�ed transitions in G and H�
In the case of CIG graph for MV Relations� the Proper

Graph Coloring or Multi�Coloring cannot be used� since
for every group of pairwise compatible nodes one has to
check if all these nodes �the columns that correspond to
them� satisfy De�nition �� This kind of graph coloring is
called Compatible Graph Coloring� or Compatible Graph
Multi�Coloring� respectively� The method to create a
combined column is the same for functions and relations�
The di�erence is only in the graph coloring� During node�
by�node compatible coloring of a CIG corresponding to a
relation the sets of nodes colored with the same color are
additionally checked for compatibility� This makes com�
patible coloring slower than the proper coloring� and also
more memory is needed to store the combined columns�
Every step of Compatible Graph Coloring creates a set of
compatible columns for the relation� When the coloring is
completed� the minimumset of sets of compatible columns
exists� �We compared exact and heuristic algorithms and
proved that heuristic multicoloring gives nearly minimum
results on binary and MV benchmark functions�� In each
set of compatible columns the columns are combined into
a single column� and next new relations G and H are cre�
ated� Observe� that even if we start from function� this
process creates relations during decomposition� These re�
lations are subject to next decompositions� This is one
more argument why the decomposition of relations is an
important and practical problem�

IV� Curtis�like Decomposition of MV Relations

Our Curtis�like Decomposer can handle both MV Func�
tions and Relations� In the case of a MV relation� the
CCG graph can be created with nodes for columns� and
edges for pairs of compatible nodes� Two compatible
columns Ci and Cj of RVM can be combined� and every



combined cell Cij�Rs� �� Ci�Rs� � Cj�Rs�� As shown
above� standard maximumcliques cannot be used for MV
relations� because� contrary to the standard column com�
patibility� column C� could be compatible with column
C�� column C� compatible with column C�� and column
C� compatible with column C�� but columns C�� C�� and
C� are not compatible all together as a set� Therefore�
the cliques in the CCG graph must be checked for set
compatibility COMPRel� This is equivalent to building
a CIG graph� and coloring it using a Compatible Graph
�Multi� Coloring algorithm� Such algorithm checks every
group of nodes colored with the same color for the set
compatibility of all columns corresponding to them�

Example �� Given a relation with 	 binary variables and
a ��valued output variable from Table � the map from
Fig� � is created� The bound set is fc�dg� A don�t care
symbol� �� stands for a set of values f��������	g� Every
cell that includes a set of values with more than one value
is a generalized don�t care� If at least one cell like this
exists in a map� the map describes a relation� Recall�
that the interpretation of such a map is that in every cell
with many values� any value that simpli�es the overall
description can be selected� The Column Compatibility
Graph is presented in Fig� �b� The nodes represent the
columns from the map in Fig� �a� A column in brackets
shown near the edge between nodes Ci and Cj represents
the combined column Cij� As we see� nodes C� � �� and
C� � �� are not compatible� since for instance f���g �
f���g � � in cofactor ab� thus C�� � �� The nodes C��
C� are compatible� so C�� �� �� Although the nodes C��
C� and C� are pairwise compatible� the maximum clique
from nodes C�� C� and C� cannot be used� since C�� �
C�� � C�� � �� which means that the set of columns fC��
C�� C�g do not form a compatible set�

The solution obtained from the relation Column
Compatibility Graph includes the cliques fC��C�g and
fC��C�g� Similarly� the CIG graph can be obtained as a
complement of the CCG graph �Fig� �f� �Multi��coloring
this graph leads to the same solution� columns C� and
C� are colored with color A� and columns C� and C� are
colored with color B� Columns C� and C� are thus com�
bined to the single column �encoded with v�� in Fig� �d��
Columns C� and C� are combined to the column encoded
with v�� in Fig� �d� We build the map of relation H

from Fig� �d� and from it and the map from Fig� �a
we build the map of relation G �function G in this case�
from Figure �c� This corresponds to the decomposed cir�
cuit from Fig� �e� The relations G and H can be further
decomposed or simpli�ed using other methods ����

Example �� Figure � presents a decomposition of func�
tion f �Fig� �a� to relations G and H� Figs� �c and �d�
respectively� Clique covering is shown in Fig� �b� Com�
position of relations H and G is shown in Fig��e� The
map for this composition is in Fig� �f� Correctness of de�
composition can be veri�ed by �nding the intersection of
maps from Fig� �a and Fig� �f �shown in Fig� �g�� All its
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Figure �� Compatibility for Decomposition of MV Rela�
tions to Example �� Both G and H are relations�

entries are non�empty� so H�G� and f are a relation tau�
tology� All solutions of MV�GUD have been veri�ed using
the compositional relation tautology veri�er we wrote�
Multi�level decomposition consists in decomposing the

initial relation into consecutive pairs of relations G and
H until the minimum decomposable blocks are obtained�
One decomposition step consists in determination of a set
of good partitions �X�� X�� based on certain heuristic cri�
teria ��� ��� selecting the best one� and performing decom�
position� Decomposition is performed only if it results
in smaller complexity of a relation� and we use Relation
Cardinality �RC� as a complexity measure�

De�nition 	 Relation Cardinality �RC� for MV re�
lation with a set of inputs X � fx�� x�� � � � � xng and set
of outputs Y � fy�� y�� � � � � ymg is de�ned by the following
formula� RC � �

Q
xi�X

mxi�
P

yj�Y
log�myj where� mxi

is multiplicity of variable xi � X� and myj is multiplicity
of variable yj � Y �

The above de�nition is based on information theory
and RC is directly related to the amount of information
the relation could possibly handle� The amount of infor�
mation is de�ned� in the simplest case� to be measured
by the logarithm of available choices� We use logarithm
to the base � and express the amount of information in
bits� So the value of I�X� �

P
xi�X

log�mxi is equal to
the amount of information a relation could possibly han�
dle if the relation output is binary� The total number
of available choices �relation cardinality� is then equal to
�I�X� �

Q
xi�X

mxi � If relation�s output is multivalued
it is equivalent to log�my binary outputs� and the rela�
tion itself� equivalent to log�my binary output relations
�blocks�� De�nition � extends this formula to the general
case of multioutput� multivalued relation� RC driven de�
composition splits a relation into smaller blocks in such a
way that the total RC value� equal to the sum of RCs of
decomposed blocks� be minimal� Such procedure follows
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Figure 	� Solutions for multi�valued ML Benchmarks�
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Figure �� GUD�MV decomposition results on multi�valued
ML benchmarks�

Occam�s Razor principle that we should always accept
the simplest solution that correctly �ts the data� In our
case the cost function de�ning simplicity of a solution is
RC which reduces the number of possible combinations
�choices� of variable values without reducing functional�
ity� In case of a tie for RC value� additional criteria are
used to select the best block and more unspeci�ed rela�
tions are given preference because they lead to simpler
circuits�

V� Experimental Results

Table � and Figure 	 show the results of decomposi�
tion of selected benchmarks from University of Califor�
nia� Irvine ML data base� Decomposed functions are in
most cases much smaller then the initial ones and depend
on fewer input variables� For testing� we used in par�
ticular� zoo
 Zoo Database� Created and donated by
Richard S� Forsyth� shuttle
 Space Shuttle Autoland�
ing Database� breastc
 Breast Cancer Database� Do�
nated by the University of Wisconsin Hospitals� Madison
from Dr� William H� Wolberg� balance
 Balance Scale
Weight � Distance Database� lenses
 Fitting Contact
Lenses Database� trains
 INDUCE Trains Data set� Let
us observe that both input� intermediate and output vari�
ables can be multivalued� and the numbers of the values
di�er� Smaller representation is usually equivalent to bet�
ter generalization properties in ML and KDD� Since most
of the ML data sets are only tiny representations of the
full data domain for a particular problem� good general�

ization properties are very important when we want to
determine function values for input data not contained in
the sample� Also� fewer input variables means that some
of the original input variables are vacuous� i�e� they don�t
provide any essential information for the function value
determination and can be removed without a�ecting the
result� Let�s take as an example the well known bench�
mark trains from book Machine Learning by Michal�
ski� It is considered to be di�cult test case for ML
programs� Running GUD�MV decomposer on it we ob�
tained two solutions� ��� direction � �b � e�� and ���
if�s� � � � s� � 
 � s� � �� then direction � �� else

direction � �� The �rst solution depends on two bi�
nary variables� the second� on one MV variable only� The
number of input variables of the initial data set was ���
Similar phenomena� but to a lesser extent� are observed
also in controller design �assuming that the don�t cares
were not arti�cially treated as binary constants� which is
sometimes an industrial practice��

VI� Conclusions

In this paper we formulated a research problem not yet
tackled by previous researchers � decomposition of multi�
valued relations� and we proposed an e�cient method to
solve it �some of our test cases are known to be di�cult
in KDD community� and our solutions have small values
of RC � see Fig� 	�� The decomposition forms multi�level
structures� and is applied to blocks with multiple�valued
inputs and multiple�valued outputs� Program GUD�MV
is� to our best knowledge� the �rst decomposer for MV
relations ever implemented� Decomposition of relations
will �nd applications in binary circuit and state machine
design� Machine Learning and KDD�
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