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Abstract 

Ternary and Quaternary Lattice Diagrams are introduced 
that can find applications to submicron design, and design- 
ing new fine-grain digital, analog and mixed FPGAs. They 
expand the ideas of Lattice diagrams [6, 111 and Linearly 
Independent (LI) Logic [5, 7,  8, 9, 10, 12, 17, 181. In a 
regular layout, every cell is connected to 4 ,  6 or 8 neigh- 
bors and to a number of vertical, horizontal and diagonal 
buses. Various lattices and algorithms for their creation are 
presented. 

1. INTRODUCTION. 

The goal of Lattice Diagrams is layout-driven logic synthe- 
sis in cellular structures with mostly local connections. The 
concept of a lattice diagram [ll] involves three components: 
(1) expansion of a function (the function corresponds to 
the initial node in the lattice), which creates several succes- 
sor nodes of this node, (2) joining of several (not necessarily 
tautologic) nodes of a tree level to a single node, which is in 
a sense a reverse operation to the expansion, (3) a regular 
geometry to which the nodes are mapped, this geometry 
guides which nodes of the level are to be joined. The proce- 
dure of expanding and joining nodes in levels is iterated for 
(repeated) variables until all node functions become vari- 
ables or constants. Cell with n inputs and m outputs is 
said to have n x m connectivity pattern. Below, we will 
present some ternary lattices (with 3 inputs and 3 outputs 
from a node) and quaternary lattices (with 4x4 connectivity 
pattern) for Shannon, Davio, nonsingular, fuzzy and analog 
expansions. 

2. TYPES OF EXPANSION NODES. 

Fig. 1 presents differ.ent expansion nodes for various kinds 
of expansions for binary, multi-valued, and fuzzy functions. 
Fig. l a  shows two views of a cell for Shannon (S) expan- 
sion: a multiplexer, and a general notation of a 2x2 cell in 
a Lattice that may be realized by this mux (the notation of 
inputs and outputs is preserved in next examples). When 
input a is inverted, the so-called Reversed Shannon (S’) ex- 
pansion is executed, which means that the role of inputs b 
and c is reversed. Fig. l b  shows the positive Davio expan- 
sion node (pD), and Fig. IC the negative Davio node (nD). 
Such nodes are used in Positive-Polarity, Fixed-Polarity, 
Kronecker and Pseudo-Kronecker Lattices and their gen- 
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Figure 1: Comparison of Expansion nodes for lattices. 

eralizations [5, 6, 7, 8, 9, lo]. Fig. l e  presents Shannon 
node for ternary logic, Fig. If Shannon node for quaternary 
logic, and Fig. l g  realization of the quaternary Shannon 
node from (f) in binary logic. Two binary signals routed 
together simulate a 4-valued signal. It can be observed [13], 
that a fundamental condition for existence of joining opera- 
tions and thus, ability of creating lattice diagrams is that in 
the underlying algebraic structure any two literals are dis- 
joint (in binary, this property reduces to  a . 5 = 0). This 
leads to binary and multiple-valued (MV) Max-type lattices 
(we denote max-type operations by + and min-type opera- 
tions by .). The principle of operation of binary max-type 
lattices is that any path in a diagram that includes z and f 
cancells. EXOR function is: a @ b = a . 6 + 7i . b .  Thus, 
a 63 a = ati +tia = 0 .  This leads to Linearly-Independent 
type (LI) lattices [ 111. The principle of operation of LI-type 
lattices is that any two identical paths to the root in the 
diagram cancel one another (z @ z = 0). 

2. BINARY LI-TYPE LATTICES. 

Fig. 2 presents a comparison of sizes of a standard bi- 
nary Shannon lattice and two new types of lattices for 
EXOR/XNOR function. Fig. 2a presents a solution that 
would be obtained using the standard Shannon lattice 
from [1, 2, 61. The order of control variables is a ,  b ,  c,  d .  Be- 
cause the function is symmetric, variables are not repeated. 
Observe that arrows with 0 (for negated control variable) 
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lattice diagrams of the LI type. In Fig. 3a illustrates the 
local situation in a level of lattice after using pD expansion 
with respect to variable a to nodes g and h.  In this figure, 
go = g(a = 0), gl = g(a = l),gz = go @ gl are the nega- 
tive and positive cofactors and Booleand difference, respec- 
tively. Fig. 3b presents the result of joining successor nodes 
gz and ho. The joining rule is: g2 J O I N  ho = ag2 @ ha, 
which means that nodes representing functions gz = go @ g1 
and ho are joined to a new node representing function 
agz @ ha. The correction terms ah0 and agz are prop- 
agated to left and right, respectively. It can be easily 

z @ z = 0), in the lattice level of variable a from Fig. 3b the 
checked, that because of term cancelling (based on principle 

(‘) (a) (b) 
Figure 2: Comparzson of three types Of Lattices for two- 
output EXOR/XNOR function. 

cancel for g ’ cancel for h 

Figure 3: Creataon of a Posatave Davao level an a Lattace: (a) 
two expanded nodes before goinang, (b) layer of lattace after 
goinang operataon on nodes gz and ho, (e) Faxed-Polaraty 
R M  Lattace for functaons f,g, h.  

are always in left. The shape is a trapezoid and the size is 
14 nodes. Connectivity pattern is 2x2. The Akers Array [l] 
would have (5 * 5) * 2 nodes (it realizes each of two func- 
tions separately, and uses a 5 * 5 fixed square for a 4 varlable 
function) Fig. 2b presents our solution with 3x3 connectiv- 
ity pattern array of multiplexers. It is linear in shape and 
has 2 * 4 = 8 nodes. In addition to Shannon (S), the Shan- 
non expansions with negated control variables (S’) are now 
used. Observe that arrows from the left have both 0 and 1 
values. Fig. 2c presents Positive Polarity Reed-Muller Lat- 
tice 2x2 connectivity pattern array of positive Davio (pD) 
nodes. It is nearly linear in shape and has 5 nodes. This 
figure clearly demonstrates an advantage of having higher 
connection patterns and more general expansion types. Pre- 
dictability and equality of delays should be appreciated in 
all lattices. 

The functions in Fig. 2 where symmetric, but what about 
lattice realization of non-symmetric functions? Firstly, we 
defined the Polarized Pseudo-Kronecker symmetries [3] 
which are much more general than known symmetries of 
functions, so using them, more functions can be put to 
lattices without repeating variables. Secondly, functions 
that do not have the Polarized Pseudo-Kronecker symme- 
tries can be still realized in lattices with repeated variables 
[14, 151. This requires, however, a joining operation for 
nodes. Figs. 3a,b present the principle of joining operation 
for EXOR-based, and in particular LI logic. Although it 
is shown here only for pD nodes and an ordered lattice, 
the same principle is used for more complex expansions and 

- 
pD expansions of g and h are still satisfied: g = go @ agz, 
and h = ho @ ahz. 

Fig. 3c presents Fixed-Polarity Reed-Muller Lattice Dia- 
gram (expansions pD and nD) for functions: f = a @ abcd, 
g = 1 @ bcd @ a d  @ abd @ abcd, 
h = cd @ bd @ abcd @ acd @ abd @ a d .  Vari- 
able a is used first in pD level on top of the lattice from 
Fig 3c As shown in Fig. 3c, expansions for variables a and 
b in first two levels are pD, and the expansion for variable 
c in the third level is c. Variable a is repeated once more 
in the bottom level of the lattice. The expansion in this 
level is pD’, which means, a reversed pD, that is a pD ex- 
pansion with reversed role of data inputs. Observe, that 
although the function is not symmetric in a standard way, 
it is lattice-realizable without variable repetitions because it 
has polarized Pseudo-Kronecker symmetries. In some types 
of expansions the propagation of correction terms is only to 
right, or only to left. In some other expansions, especially 
the non-canonical ones, more powerful corrections types are 
created, and the algorithm selects the correction rule eval- 
uated as the one leading to the simplest next level of the 
lattice. Selecting the order of (repeated) variables and the 
expansion type in each node are the most important and 
difficult problems to be solved. 

3. TERNARY AND QUATERNARY LATTICES. 

It is easy to generalize the binary Shannon expansions used 
in Fig. 2a,b’to 3-valued and 4-valued Shannon expansions. 
The new lattices would require 3 inputs and 3 outputs from 
a node, and 4 inputs and 4 outputs from a node, respectively 
[ll]. Next 3- and 4- valued counterparts of S’ can be cre- 
ated, and respective ternary and quaternary lattices can be 
formed by expanding and joining formulas. This way, Post- 
type and Galois-type lattices are created in an uniform way, 
with only difference of using various expansion and joining 
rules. However, the two kinds of principles, of creating the 
expansion and of the joining rules, remain the same: dis- 
joint literals for max-type lattices, and a + ( -a)  = 0 
term cancelling for LI lattices (which generalizes the rule 
a @ a = 0 of Galois Field (2) from section 2). The lattices 
have advantages especially for (nearly) symmetric functions 
and strongly unspecified functions that can be completed to 
symmetric functions. 
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Figure 4: A LI Pseudo-Kronecker Decision Lattice Diagram 
for variable blocks {a ,  b}l { c, d}? { elf) to function from [ll]. 

Figure 5: First part of the Butterfly Diagram to find the 
best nonsingular expansion by  creating expansions for all LI 
functions of a ,  b. 

h 

Figure 6: Realization of analog functions. 

By a regular layout we understand a layout of indenti- 
cal cells that, connect by abutting. By a complete layout 
s t ruc tu re  we understand connection pattern between cells, 
that allows to realize every symmetric function without re- 
peating variables. It can be proved that in a 2x2 lattice ev- 
ery binary symmetric function can be realized without vari- 
able repetitions, and with connections between cells having 
the same length. Thus, lattice layout for binary logic is 
regular and complete. In contrast to  binary functions, 
symmetric ternary functions cannot be realized in regular 2- 
dimensional 3x3 lattices. Although we created 3x3 lattices 
that can realize every symmetric ternary function without 
variable repetitions [ll], it is not possible to  find regular 
layouts for realizing them. Thus the cells distances in sub- 
sequent levels grow. Hopefully, it is not a practical problem 
for small functions realized in MV logic, but the beautiful 
simplicity of binary realizations does not longer exist. Thus, 
if mapped to a 2-dimensional space, the ternary lattices 
are either regular and not complete, or complete but not 
regular. It is still possible to obtain regular and complete 
3x3 lattices assuming layout of cells in a three-dimensional 
space. But it is not possible to create regular layout for 4x4 
lattices, because our Universe is 3-dimensional. Although 
these considerations are theoretically interesting, the two 
types of ternary and quaternary lattices that we developed; 
the regular and incomplete, and the irregular and complete, 
are very useful in practice. The difficulties would be only 
for very large functions, but in any case it is our assumption 
that the lattice approach is for not too large functions, be- 
cause it is applied to functions that result from Curtis-like 
nondisjoint, hierarchical functional decomposition of MV re- 
lations [IS]. 
4. QUATERNARY LI LATTICES. 

As shown in Fig.lg, pairs of binary variables correspond to 
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4-valued variables. Although here we discuss LI lattices for 
only two variables in each variable block, all concepts and 
algorithms can be expanded to variable blocks of arbitrary 
size. 4 shows an example of a circuit obtained by 
substituting nodes of a quaternary LI lattice diagram with 
their circuits (this particular circuit is even 3x3 realizable, 
a dummy node is used in level 2). 

The LI Lattice diagrams for pairs of variables are created 
similarly to lattices for single variables in section 2. Nodes 
are now for pairs of variables, and nonsingular expansions of 
LI logic [7, 8, 91 are used. Every node has at most 4 inputs. 
Instead selecting among only three expansions, S, pD and 
nD, the choice in every level of nodes is among all 840 non- 
singular expansions in exact algorithm (this is the maximum 
number of nonsingular expansions for a pair of variables), 
or some subset of them in approximate algorithms. 

The same type of expansion is selected in Kronecker type 
lattices, or various expansions are selected in nodes of 
Pseudo-Kronecker type lattices. The joinings are based on 
the same principles as in sect. 2. The lattices for all sin- 
gle outputs of a multi-output function are created together, 
level-by-level from their root nodes (outputs). In every level, 
the possible expansions are evaluated based on the complex- 
ity of the next level (look-ahead strategy). The best expan- 
sion found by the Polarity Selecting Algorithm for a level is 
next applied to all nodes (Kronecker types) from the level of 
the multi-output diagram. In Pseudo type of lattices, the 
expansion decision for each node is done separately. The 
algorithm from this section is used for small functions, and 
approximate algorithms from [6, 131 for larger functions. 

One of interesting concepts of Reed-Muller logic are the 
butterfly diagrams that allow to create all fixed polar- 
ity expansions by transforming from polarity to polarity, 
and doing this just by incremental exoring of some terms 
from the forms. This way, all forms of certain type are sys- 
tematically created without even, creating their expansion 
matrices M [7, 91 and without calculating their inverse 
matrices M-l .  The concept of Gray-code ordering of all 
Generalized Reed-Muller polarities was applied to find the 
exact minimum GRM form [22]. We introduce here similar 
ideas for the LI forms. 
Property 1. The following rule BR holds 

Fig. 

f l ( Z 1 ,  Z 2 ) S F 2 ( 2 3 ,  -,., % ) @ . f 3 ( e 1 , 2 2 ) s F 4 ( e 3 ,  ..+, en) = 
[ f i ( e 1 , 2 2 )  63 f3(e1,22)]SF2(23,...,en) 
63f3(el ,e2)[SFZ!(z3,  

where f l ( e 1 ,  e 2 )  and f 3 ( ~ 1 , 2 2 )  are arbitrary LI functions, 
and s F 2 ( $ 3 ,  ..., en) and S F q ( 2 3 ,  ..., e,) are the correspond- 
ing to them data input (DI) functions. '. 
Property 2. Any nonsingular expansion can be obtained by 
a repeated application of Rule BR to pairs of functions 

This way, rule B R  describes simultaneous EXOR-ing of 
columns in matrix M and corresponding columns in M-l. 

en) @ s F 4 ( e 3 ,  ..., era)] 

[ f l ( e l , Z ~ ) , S F 2 ( e 3 ,  ..,xn)I,[f3(e1,e2),sF4(e3, ..,en)]. 

~~ 

'It is easy to verify that this rule is true by simple Boolean manip- 
ulations comparing its left and right sides 

But how to select the pairs of functions? 
Property S. In matrix M ,  as well as in matrix M-l,  any 
column can be replaced by a linear combination of itself 
with other columns. Thus, any polarity expansion can be 
obtained by a repeated application of the basic rule BR to 
certain selected columns. 
Even if in general there is no recursive way to  define the 
universal Butterfly-like diagram for arbitrary LI matrix, a 
specific diagram can be once created for a set of variables 
with certain number of elements and for any set of expan- 
sion polarities. This diagram can be stored in memory, and 
next used for evaluations for each particular function of the 
respective number of variables. We will call this a "pre- 
computed" Butterfly diagram. 

Our exhaustive algorithm goes through all polarities. The 
set of all polarities is created as levels (rows) in a butterfly- 
like diagram from Fig. 5 (for the lack of space, only first 
few levels are shown). Small K-maps correspond to some 
LI functions f ( e 1 , 2 2 )  = f ( a , b )  and e , y , z , v  correspond 
to the original cofactors SFOO(Z3, ..., x,), S F o l ( z 3 ,  ..., xn), 
SFlO(Z3,  ..., xn), S F l I ( e 3 ,  ..., en), respectively (top row of 
the diagram). EXOR-ing on LI functions according to  BR 
rule is shown here graphically on K-maps. EXOR-ing of 
the respective DI functions is shown on formulas that stand 
on the right sides of the respective K-maps. However, the 
simplification rule X @ X = 0 is used in these formulas, in 
order to express them all in terms of EXORs on some subset 
of the initial cofactors. It can be observed, that by apply- 
ing the law (x @ y) @ (y @ z )  = ( e  @ x ) ,  the DI functions 
SFi(x3, ..., en) are repeating in the levels of the diagram 
and do not have to be computed repeatedly in the diagram. 
Thus, the diagram for all nonsingular expansions for pairs 
of variables can be created only once, and next the values of 
EXOR-sums of subsets of functions SF;(xs ,  ..., e,) can be 
just inserted for any particular initial cofactors. Thus the 
number of EXOR operations on subsets of cofactors e, y, z ,  'U 

is essentially decreased (for efficiency of EXORing, the co- 
factors can be represented as BDDs or in any other way). 
Because the algorithm goes through all polarities, it can be 
used to find. the best polarity for a lattice level, and thus 
it can be used as part of an algorithm to create minimum 
lattices, for given partitioning of variables to blocks, and 
given ordering of blocks. 

5. ITERATIVE CIRCUITS, CIRCUITS WITH 
MEMORY, FUZZY AND ANALOG DESIGN. 
Because in standard fuzzy logic a . a # 0, and a @ a 
= a?i + iia # 0, both the Max-type and LI methods 
from [ll] would not work. However, let us observe that 
one can define a negation-less fuzzy logic, which we 
call a Disjoint Fuzzy Logic (DFL), in which all fuzzy 
logic axioms besides those related to negation are satisfied, 
and negation is simulated by using special type of liter- 
als. In DFL logic, any two literals liter&, literalj can 
have arbitrary shapes, but must be disjoint; for any value 
of x E [0,1] literaZ,(x) . Ziteralj(z) = 0.  Fig. Id presents 
the binary expansion node for binary DFL, and Fig. l h  
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the ternary expansion node for ternary DFL. The literals 
literall , literala, literal3 are all mutually disjoint. DFL 
expansions are realized in ternary fuzzy lattices, similar to 
MV ternary lattices. Because of disjoint literals, joining 
operation can be always performed [ll]. Observe, that IC- 
valued Post logic is a special case of DFL with IC literals, 
(so the ternary Shannon expansion is a special case of the 
ternary DFL expansion). Non-Lattice memory-less arrays 
for fuzzy logic are also presented in [6, 181. 

Hierarchical design of iterative one- and two-dimensional 
structures is possible, which are cellular connections of logic 
blocks, each block realized as a multi-output lattice. This 
can be done also for discrete circuits with memory. Analog 
counterparts use sample-hold analog memories, which play 
the same role as flip-flops in discrete technologies. Lattices 
allow thus the realization of cellular memory-less functions, 
finite state machines, and infinite state machines; realized in 
analog, binary, or multivalued logic. For instance, the dig- 
ital and analog: filters, pipelined image processors, or sys- 
tolic processors. An elliptic ladder filter was mapped to this 
structure [17]. Fig. 6a shows a basic circuit with analog com- 
parator and analog multiplexer, and Fig. 6b a full cell with 
SRAM-controlled muxes to switch the inputs. Two simple 
lattices for analog functions are shown in Fig. 6c,d. Fig. 6c 
presents a lattice realization of the piecewise continuous 
function if ( ( c  > d )  and ( U  > b ) )  then y else if ( ( a  5 b 
and ( c  5 d ) )  then cos(y) else sin(y). Fig. 6d shows a 
lattice realization of analog function max(h1, h2, h3, h4, h5). 
Similar realizations can be created for rank and median fil- 
ters, cellular neural nets, equation solvers, and (analog and 
digital) image processing circuits 1191. 

6. CONCLUSION. 

We showed examples of ternary and quaternary lattices for 
binary, multi-valued, DFL and analog logic, and how to cre- 
ate them. In particular, we showed how to create quaternary 
lattice for binary LI logic. Such diagrams are the most gen- 
eral binary lattice diagrams introduced so far. The method 
presented for LI logic can be applied to both completely 
specified and incompletely specified functions; single-, and 
multi-output. Both Kronecker-like a.nd Pseudo-Kronecker- 
like generalizations can be created. Further generalization 
to LI Free lattices is also possible along the lines from [5]. 
Generalizations to Mixed, Ordered, Free, Lattice and other 
LI representations [lo] are also possible. We developed also 
a very similar approach to map multiple-output Boolean re- 
lations to trees, diagrams, and lattices. 

In general, the presented methods allow for layout- 
driven synthesis approaches to binary, multivalued, linearly- 
independent, Galois, fuzzy, analog and mixed functions, 
unifying many known expansions, decision diagrams, reg- 
ular layout geometries and FPGA/FPAA structures. These 
methods are of special interest to various new technologies 
based on regularity and locality of connections: deep sub- 
micron technology, binary and MV pass-transistor designs, 
quantum logic devices, OTA circuits, and new fine grain 

digital and analog FPGAs 
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