
International Conference on
Information, Communications and Signal Processing
ICICS ‘97
Singapore, 9-12 September 1997

lC2.7

TERNARY AND QUATERNARY LATTICE DIAGRAMS FOR

SYNTHESIS
LINEARLY-INDEPENDENT LOGIC, MULTIPLE-VALUED LOGIC, AND ANALOG

Marek A. Perkowski, Edmund Pierzchala, and Rolf Drechsler +,
Dept. Electr. Engn., Portland State University, Portland, OR 97207 + Inst. Comp. Sci., Albert-Ludwigs-University, 79110 Freiburg in Breisgau, Germany

Abstract

Ternary and Quaternary Lattice Diagrams are introduced
that can find applications to submicron design, and design-
ing new fine-grain digital, analog and mixed FPGAs. They
expand the ideas of Lattice diagrams [6, 111 and Linearly
Independent (LI) Logic [5, 7, 8, 9, 10, 12, 17, 181. In a
regular layout, every cell is connected to 4 , 6 or 8 neigh-
bors and to a number of vertical, horizontal and diagonal
buses. Various lattices and algorithms for their creation are
presented.

1. INTRODUCTION.

The goal of Lattice Diagrams is layout-driven logic synthe-
sis in cellular structures with mostly local connections. The
concept of a lattice diagram [ll] involves three components:
(1) expansion of a function (the function corresponds to
the initial node in the lattice), which creates several succes-
sor nodes of this node, (2) joining of several (not necessarily
tautologic) nodes of a tree level to a single node, which is in
a sense a reverse operation to the expansion, (3) a regular
geometry to which the nodes are mapped, this geometry
guides which nodes of the level are to be joined. The proce-
dure of expanding and joining nodes in levels is iterated for
(repeated) variables until all node functions become vari-
ables or constants. Cell with n inputs and m outputs is
said to have n x m connectivity pattern. Below, we will
present some ternary lattices (with 3 inputs and 3 outputs
from a node) and quaternary lattices (with 4x4 connectivity
pattern) for Shannon, Davio, nonsingular, fuzzy and analog
expansions.

2. TYPES OF EXPANSION NODES.

Fig. 1 presents differ.ent expansion nodes for various kinds
of expansions for binary, multi-valued, and fuzzy functions.
Fig. l a shows two views of a cell for Shannon (S) expan-
sion: a multiplexer, and a general notation of a 2x2 cell in
a Lattice that may be realized by this mux (the notation of
inputs and outputs is preserved in next examples). When
input a is inverted, the so-called Reversed Shannon (S’) ex-
pansion is executed, which means that the role of inputs b
and c is reversed. Fig. l b shows the positive Davio expan-
sion node (pD), and Fig. IC the negative Davio node (nD).
Such nodes are used in Positive-Polarity, Fixed-Polarity,
Kronecker and Pseudo-Kronecker Lattices and their gen-

b3

c -

Figure 1: Comparison of Expansion nodes for lattices.

eralizations [5, 6, 7, 8, 9, lo]. Fig. l e presents Shannon
node for ternary logic, Fig. If Shannon node for quaternary
logic, and Fig. l g realization of the quaternary Shannon
node from (f) in binary logic. Two binary signals routed
together simulate a 4-valued signal. It can be observed [13],
that a fundamental condition for existence of joining opera-
tions and thus, ability of creating lattice diagrams is that in
the underlying algebraic structure any two literals are dis-
joint (in binary, this property reduces to a . 5 = 0). This
leads to binary and multiple-valued (MV) Max-type lattices
(we denote max-type operations by + and min-type opera-
tions by .). The principle of operation of binary max-type
lattices is that any path in a diagram that includes z and f
cancells. EXOR function is: a @ b = a . 6 + 7i . b . Thus,
a 63 a = ati +tia = 0 . This leads to Linearly-Independent
type (LI) lattices [111. The principle of operation of LI-type
lattices is that any two identical paths to the root in the
diagram cancel one another (z @ z = 0).

2. BINARY LI-TYPE LATTICES.

Fig. 2 presents a comparison of sizes of a standard bi-
nary Shannon lattice and two new types of lattices for
EXOR/XNOR function. Fig. 2a presents a solution that
would be obtained using the standard Shannon lattice
from [1, 2, 61. The order of control variables is a , b , c, d . Be-
cause the function is symmetric, variables are not repeated.
Observe that arrows with 0 (for negated control variable)

0-7803-3676-3/97/$10.00 0 1997 IEEE

269

lattice diagrams of the LI type. In Fig. 3a illustrates the
local situation in a level of lattice after using pD expansion
with respect to variable a to nodes g and h. In this figure,
go = g(a = 0), gl = g(a = l),gz = go @ gl are the nega-
tive and positive cofactors and Booleand difference, respec-
tively. Fig. 3b presents the result of joining successor nodes
gz and ho. The joining rule is: g2 J O I N ho = ag2 @ ha,
which means that nodes representing functions gz = go @ g1
and ho are joined to a new node representing function
agz @ ha. The correction terms ah0 and agz are prop-
agated to left and right, respectively. It can be easily

z @ z = 0), in the lattice level of variable a from Fig. 3b the
checked, that because of term cancelling (based on principle

(‘) (a) (b)
Figure 2: Comparzson of three types Of Lattices for two-
output EXOR/XNOR function.

cancel for g ’ cancel for h

Figure 3: Creataon of a Posatave Davao level an a Lattace: (a)
two expanded nodes before goinang, (b) layer of lattace after
goinang operataon on nodes gz and ho, (e) Faxed-Polaraty
R M Lattace for functaons f,g, h.

are always in left. The shape is a trapezoid and the size is
14 nodes. Connectivity pattern is 2x2. The Akers Array [l]
would have (5 * 5) * 2 nodes (it realizes each of two func-
tions separately, and uses a 5 * 5 fixed square for a 4 varlable
function) Fig. 2b presents our solution with 3x3 connectiv-
ity pattern array of multiplexers. It is linear in shape and
has 2 * 4 = 8 nodes. In addition to Shannon (S), the Shan-
non expansions with negated control variables (S’) are now
used. Observe that arrows from the left have both 0 and 1
values. Fig. 2c presents Positive Polarity Reed-Muller Lat-
tice 2x2 connectivity pattern array of positive Davio (pD)
nodes. It is nearly linear in shape and has 5 nodes. This
figure clearly demonstrates an advantage of having higher
connection patterns and more general expansion types. Pre-
dictability and equality of delays should be appreciated in
all lattices.

The functions in Fig. 2 where symmetric, but what about
lattice realization of non-symmetric functions? Firstly, we
defined the Polarized Pseudo-Kronecker symmetries [3]
which are much more general than known symmetries of
functions, so using them, more functions can be put to
lattices without repeating variables. Secondly, functions
that do not have the Polarized Pseudo-Kronecker symme-
tries can be still realized in lattices with repeated variables
[14, 151. This requires, however, a joining operation for
nodes. Figs. 3a,b present the principle of joining operation
for EXOR-based, and in particular LI logic. Although it
is shown here only for pD nodes and an ordered lattice,
the same principle is used for more complex expansions and

-
pD expansions of g and h are still satisfied: g = go @ agz,
and h = ho @ ahz.

Fig. 3c presents Fixed-Polarity Reed-Muller Lattice Dia-
gram (expansions pD and nD) for functions: f = a @ abcd,
g = 1 @ bcd @ a d @ abd @ abcd,
h = cd @ bd @ abcd @ acd @ abd @ a d . Vari-
able a is used first in pD level on top of the lattice from
Fig 3c As shown in Fig. 3c, expansions for variables a and
b in first two levels are pD, and the expansion for variable
c in the third level is c. Variable a is repeated once more
in the bottom level of the lattice. The expansion in this
level is pD’, which means, a reversed pD, that is a pD ex-
pansion with reversed role of data inputs. Observe, that
although the function is not symmetric in a standard way,
it is lattice-realizable without variable repetitions because it
has polarized Pseudo-Kronecker symmetries. In some types
of expansions the propagation of correction terms is only to
right, or only to left. In some other expansions, especially
the non-canonical ones, more powerful corrections types are
created, and the algorithm selects the correction rule eval-
uated as the one leading to the simplest next level of the
lattice. Selecting the order of (repeated) variables and the
expansion type in each node are the most important and
difficult problems to be solved.

3. TERNARY AND QUATERNARY LATTICES.

It is easy to generalize the binary Shannon expansions used
in Fig. 2a,b’to 3-valued and 4-valued Shannon expansions.
The new lattices would require 3 inputs and 3 outputs from
a node, and 4 inputs and 4 outputs from a node, respectively
[ll]. Next 3- and 4- valued counterparts of S’ can be cre-
ated, and respective ternary and quaternary lattices can be
formed by expanding and joining formulas. This way, Post-
type and Galois-type lattices are created in an uniform way,
with only difference of using various expansion and joining
rules. However, the two kinds of principles, of creating the
expansion and of the joining rules, remain the same: dis-
joint literals for max-type lattices, and a + (-a) = 0
term cancelling for LI lattices (which generalizes the rule
a @ a = 0 of Galois Field (2) from section 2). The lattices
have advantages especially for (nearly) symmetric functions
and strongly unspecified functions that can be completed to
symmetric functions.

270

a const ,b c a1 a2

A

“f-----+rl I 1 1 .

Figure 4: A LI Pseudo-Kronecker Decision Lattice Diagram
for variable blocks {a , b}l { c, d}? { elf) to function from [ll].

Figure 5: First part of the Butterfly Diagram to find the
best nonsingular expansion by creating expansions for all LI
functions of a , b.

h

Figure 6: Realization of analog functions.

By a regular layout we understand a layout of indenti-
cal cells that, connect by abutting. By a complete layout
s t ruc tu re we understand connection pattern between cells,
that allows to realize every symmetric function without re-
peating variables. It can be proved that in a 2x2 lattice ev-
ery binary symmetric function can be realized without vari-
able repetitions, and with connections between cells having
the same length. Thus, lattice layout for binary logic is
regular and complete. In contrast to binary functions,
symmetric ternary functions cannot be realized in regular 2-
dimensional 3x3 lattices. Although we created 3x3 lattices
that can realize every symmetric ternary function without
variable repetitions [ll], it is not possible to find regular
layouts for realizing them. Thus the cells distances in sub-
sequent levels grow. Hopefully, it is not a practical problem
for small functions realized in MV logic, but the beautiful
simplicity of binary realizations does not longer exist. Thus,
if mapped to a 2-dimensional space, the ternary lattices
are either regular and not complete, or complete but not
regular. It is still possible to obtain regular and complete
3x3 lattices assuming layout of cells in a three-dimensional
space. But it is not possible to create regular layout for 4x4
lattices, because our Universe is 3-dimensional. Although
these considerations are theoretically interesting, the two
types of ternary and quaternary lattices that we developed;
the regular and incomplete, and the irregular and complete,
are very useful in practice. The difficulties would be only
for very large functions, but in any case it is our assumption
that the lattice approach is for not too large functions, be-
cause it is applied to functions that result from Curtis-like
nondisjoint, hierarchical functional decomposition of MV re-
lations [IS].
4. QUATERNARY LI LATTICES.

As shown in Fig.lg, pairs of binary variables correspond to

27 1

4-valued variables. Although here we discuss LI lattices for
only two variables in each variable block, all concepts and
algorithms can be expanded to variable blocks of arbitrary
size. 4 shows an example of a circuit obtained by
substituting nodes of a quaternary LI lattice diagram with
their circuits (this particular circuit is even 3x3 realizable,
a dummy node is used in level 2).

The LI Lattice diagrams for pairs of variables are created
similarly to lattices for single variables in section 2. Nodes
are now for pairs of variables, and nonsingular expansions of
LI logic [7, 8, 91 are used. Every node has at most 4 inputs.
Instead selecting among only three expansions, S, pD and
nD, the choice in every level of nodes is among all 840 non-
singular expansions in exact algorithm (this is the maximum
number of nonsingular expansions for a pair of variables),
or some subset of them in approximate algorithms.

The same type of expansion is selected in Kronecker type
lattices, or various expansions are selected in nodes of
Pseudo-Kronecker type lattices. The joinings are based on
the same principles as in sect. 2. The lattices for all sin-
gle outputs of a multi-output function are created together,
level-by-level from their root nodes (outputs). In every level,
the possible expansions are evaluated based on the complex-
ity of the next level (look-ahead strategy). The best expan-
sion found by the Polarity Selecting Algorithm for a level is
next applied to all nodes (Kronecker types) from the level of
the multi-output diagram. In Pseudo type of lattices, the
expansion decision for each node is done separately. The
algorithm from this section is used for small functions, and
approximate algorithms from [6, 131 for larger functions.

One of interesting concepts of Reed-Muller logic are the
butterfly diagrams that allow to create all fixed polar-
ity expansions by transforming from polarity to polarity,
and doing this just by incremental exoring of some terms
from the forms. This way, all forms of certain type are sys-
tematically created without even, creating their expansion
matrices M [7, 91 and without calculating their inverse
matrices M-l . The concept of Gray-code ordering of all
Generalized Reed-Muller polarities was applied to find the
exact minimum GRM form [22]. We introduce here similar
ideas for the LI forms.
Property 1. The following rule BR holds

Fig.

f l (Z 1 , Z 2) S F 2 (2 3 , -,., %) @ . f 3 (e 1 , 2 2) s F 4 (e 3 , ..+, en) =
[f i (e 1 , 2 2) 63 f3(e1,22)]SF2(23,...,en)
63f3(el ,e2)[SFZ!(z3,

where f l (e 1 , e 2) and f 3 (~ 1 , 2 2) are arbitrary LI functions,
and s F 2 ($ 3 , ..., en) and S F q (2 3 , ..., e,) are the correspond-
ing to them data input (DI) functions. '.
Property 2. Any nonsingular expansion can be obtained by
a repeated application of Rule BR to pairs of functions

This way, rule B R describes simultaneous EXOR-ing of
columns in matrix M and corresponding columns in M-l.

en) @ s F 4 (e 3 , ..., era)]

[f l (e l , Z ~) , S F 2 (e 3 , ..,xn)I,[f3(e1,e2),sF4(e3, ..,en)].

~~

'It is easy to verify that this rule is true by simple Boolean manip-
ulations comparing its left and right sides

But how to select the pairs of functions?
Property S. In matrix M , as well as in matrix M-l, any
column can be replaced by a linear combination of itself
with other columns. Thus, any polarity expansion can be
obtained by a repeated application of the basic rule BR to
certain selected columns.
Even if in general there is no recursive way to define the
universal Butterfly-like diagram for arbitrary LI matrix, a
specific diagram can be once created for a set of variables
with certain number of elements and for any set of expan-
sion polarities. This diagram can be stored in memory, and
next used for evaluations for each particular function of the
respective number of variables. We will call this a "pre-
computed" Butterfly diagram.

Our exhaustive algorithm goes through all polarities. The
set of all polarities is created as levels (rows) in a butterfly-
like diagram from Fig. 5 (for the lack of space, only first
few levels are shown). Small K-maps correspond to some
LI functions f (e 1 , 2 2) = f (a , b) and e , y , z , v correspond
to the original cofactors SFOO(Z3, ..., x,), S F o l (z 3 , ..., xn),
SFlO(Z3, ..., xn), S F l I (e 3 , ..., en), respectively (top row of
the diagram). EXOR-ing on LI functions according to BR
rule is shown here graphically on K-maps. EXOR-ing of
the respective DI functions is shown on formulas that stand
on the right sides of the respective K-maps. However, the
simplification rule X @ X = 0 is used in these formulas, in
order to express them all in terms of EXORs on some subset
of the initial cofactors. It can be observed, that by apply-
ing the law (x @ y) @ (y @ z) = (e @ x) , the DI functions
SFi(x3, ..., en) are repeating in the levels of the diagram
and do not have to be computed repeatedly in the diagram.
Thus, the diagram for all nonsingular expansions for pairs
of variables can be created only once, and next the values of
EXOR-sums of subsets of functions SF;(xs , ..., e,) can be
just inserted for any particular initial cofactors. Thus the
number of EXOR operations on subsets of cofactors e, y, z , 'U

is essentially decreased (for efficiency of EXORing, the co-
factors can be represented as BDDs or in any other way).
Because the algorithm goes through all polarities, it can be
used to find. the best polarity for a lattice level, and thus
it can be used as part of an algorithm to create minimum
lattices, for given partitioning of variables to blocks, and
given ordering of blocks.

5. ITERATIVE CIRCUITS, CIRCUITS WITH
MEMORY, FUZZY AND ANALOG DESIGN.
Because in standard fuzzy logic a . a # 0, and a @ a
= a?i + iia # 0, both the Max-type and LI methods
from [ll] would not work. However, let us observe that
one can define a negation-less fuzzy logic, which we
call a Disjoint Fuzzy Logic (DFL), in which all fuzzy
logic axioms besides those related to negation are satisfied,
and negation is simulated by using special type of liter-
als. In DFL logic, any two literals liter&, literalj can
have arbitrary shapes, but must be disjoint; for any value
of x E [0,1] literaZ,(x) . Ziteralj(z) = 0. Fig. Id presents
the binary expansion node for binary DFL, and Fig. l h

212

the ternary expansion node for ternary DFL. The literals
literall , literala, literal3 are all mutually disjoint. DFL
expansions are realized in ternary fuzzy lattices, similar to
MV ternary lattices. Because of disjoint literals, joining
operation can be always performed [ll]. Observe, that IC-
valued Post logic is a special case of DFL with IC literals,
(so the ternary Shannon expansion is a special case of the
ternary DFL expansion). Non-Lattice memory-less arrays
for fuzzy logic are also presented in [6, 181.

Hierarchical design of iterative one- and two-dimensional
structures is possible, which are cellular connections of logic
blocks, each block realized as a multi-output lattice. This
can be done also for discrete circuits with memory. Analog
counterparts use sample-hold analog memories, which play
the same role as flip-flops in discrete technologies. Lattices
allow thus the realization of cellular memory-less functions,
finite state machines, and infinite state machines; realized in
analog, binary, or multivalued logic. For instance, the dig-
ital and analog: filters, pipelined image processors, or sys-
tolic processors. An elliptic ladder filter was mapped to this
structure [17]. Fig. 6a shows a basic circuit with analog com-
parator and analog multiplexer, and Fig. 6b a full cell with
SRAM-controlled muxes to switch the inputs. Two simple
lattices for analog functions are shown in Fig. 6c,d. Fig. 6c
presents a lattice realization of the piecewise continuous
function if ((c > d) and (U > b)) then y else if ((a 5 b
and (c 5 d)) then cos(y) else sin(y). Fig. 6d shows a
lattice realization of analog function max(h1, h2, h3, h4, h5).
Similar realizations can be created for rank and median fil-
ters, cellular neural nets, equation solvers, and (analog and
digital) image processing circuits 1191.

6. CONCLUSION.

We showed examples of ternary and quaternary lattices for
binary, multi-valued, DFL and analog logic, and how to cre-
ate them. In particular, we showed how to create quaternary
lattice for binary LI logic. Such diagrams are the most gen-
eral binary lattice diagrams introduced so far. The method
presented for LI logic can be applied to both completely
specified and incompletely specified functions; single-, and
multi-output. Both Kronecker-like a.nd Pseudo-Kronecker-
like generalizations can be created. Further generalization
to LI Free lattices is also possible along the lines from [5].
Generalizations to Mixed, Ordered, Free, Lattice and other
LI representations [lo] are also possible. We developed also
a very similar approach to map multiple-output Boolean re-
lations to trees, diagrams, and lattices.

In general, the presented methods allow for layout-
driven synthesis approaches to binary, multivalued, linearly-
independent, Galois, fuzzy, analog and mixed functions,
unifying many known expansions, decision diagrams, reg-
ular layout geometries and FPGA/FPAA structures. These
methods are of special interest to various new technologies
based on regularity and locality of connections: deep sub-
micron technology, binary and MV pass-transistor designs,
quantum logic devices, OTA circuits, and new fine grain

digital and analog FPGAs
REFERENCES

S.B. Akers, “A rectangular logic array,” IEEE TC., Vol. C-21,
pp. 848-857, Aug. 1972.
M. Chrzanowska-Jeske, Z. Wang and Y. Xu, “A Regular Rep-
resentation for Mapping to Fine-Grain, Locally-Connected FP-
GAS,” Proc. ISCAS’97.
B.T. Drucker, C.M. Files, M.A. Perkowski, and M.
Chrzanowska-Jeske, “Polarized Pseudo-Kronecker Symmetry
with an Application to the Synthesis of Lattice Decision Di-
agrams,” subm. Proc. ICCIMA’98.
B. J. Falkowski, S. Rahardja, “Family of fast transforms for
GF(2) orthogonal logic,” Proc. RM’95, pp. 273-280.
P. Ho, M. A. Perkowski, ”Free Kronecker Decision Diagrams
and their Application to ATMEL 6000 FPGA Mapping,” Proc.
Euro-DAC’94/VHDL’94, pp. 8 - 13, Sept. 19-23, 1994, Greno-
ble France.
M.A. Perkowski, and E. Pierzchala, “New Canonical Forms for
Four-valued Logic”, Report, Dept. Electr. Engn. PSU, 1993.
M. Perkowski, “A Fundamental Theorem for Exor Circuits,”
Proc. RM’93, pp. 52-60.
M. Perkowski, A.Sarabi, F. Beyl, “XOR Canonical Forms of
Switching Functions,” Proc. RM’93, pp. 27-32.
M. Perkowski, A.Sarabi, F. Beyl, “Fundamental Theorems and
Families of Forms for Binary and Multiple-Valued Linearly In-
dependent Logic,” Proc. RM’95, pp. 288-299.
M.A. Perkowski, L. Jozwiak, R. Drechsler, “Two Hierarchies
of Generalized Kronecker Trees, Forms Decision Diagrams, and
Regular Layouts,” Proc. RM’97 Symposium, Oxford University,
U.K., September 1997.
M.A. Perkowski, E. Pierzchala, and R. Drechsler, “Layout-
Driven Synthesis for Submicron Technology: Mapping Expan-
sions to Regular Lattices,” Proc. ISIC-97, Singapur, Sept. 10-
12, 1997.
M.A. Perkowski, L. Jozwiak, R. Drechsler, and B. Falkowski,
“Ordered and Shared, Linearly-Independent, Variable-Pair De-
cision Diagrams,” Proc. ICICS’97, Singapur, Sept. 10-12, 1997.

M.A. Perkowski, E. Pierzchala, L. Jozwiak, R. Drechsler, and
B. Falkowski, “Approximate Algorithms for Selection of Good
Non-Singular Expansions for an Incompletely Specified Multi-
Output Boolean Function,” PSU Report, 1997.
M.A. Perkowski, M. Chrzanowska-Jeske, and Y. Xu, “Lattice
Diagrams Using Reed-Muller Logic,” RM’97.
M.A. Perkowski, M. ChrzanowsbJeske, and Y. Xu, “Mini-
mization of Lattice Diagrams for Deep Sub-Micron Technol-
ogy”, subm. ICCIMA, 1997.
M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba,
S. Grygiel, M. Nowicka, R. Malvi, Z. Wang, and J. Zhang,
“Decomposition of Multi-Valued Relations,” Proc. ISMVL ’97,
Nova Scotia, May 1997, pp. 13 - 18.
E. Pierzchala, and M.A. Perkowski, “High Speed Field
Programmable Analog Array Architecture Design,” Proc.
FPGA ’94, Berkeley, California, February 1994.
E. Pierzchala, M.A. Perkowski, and S. Grygiel, “A Field Pro-
grammable Analog Array for Continuous, Fuzzy, and Multi-
Valued Logic Applications,” Proc. 24-th ISMVL. PP. 148-155, _ _
Boston, May 25-27, 1994.
E. Pierzchala, and M.A. Perkowski. “A High-Freauencv Field- - ~-
programmable Analog Array (FPAA). Part 1. Design, Part 2.
Applications,” Analog Integrated Circuits and Signal Process-
ing, Kluwer Academic Publishers, to be published.
A. Sarabi, N. Song, M. Chrzanowska-Jeske, M. A. Perkowski,
” A Comprehensive Approach to Logic Synthesis and Physical
Design for Two-Dimensional Logic Arrays,” Proc. DAG’ ’94,
San Diego, June 1994, pp. 321 - 326.
I. Schaefer, M. Perkowski, “Synthesis of Multi-Level Mul-
tiplexer Circuits for Incompletely Specified Multi-Output
Boolean Functions with Mapping Multiplexer Based FPGAs,”
IEEE Tr. CAD,, Vol. 12, No. 11, Nov. 1993. pp. 1655-1664.
X. Zeng, M. Perkowski, K. Dill, A. Sarabi, “ApproximateMini-
mization of Generalized Reed-Muller Forms,” Proc. RM’95, pp.
221-230.

213

