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Abstract. 
The  paper presents a new kind of decision tree: it 
is based on nonsingular expansions for pairs of vari- 
ables. Such trees are next used to  create Linearly In- 
dependent (LI) Decision Diagrams (LI DDs). There 
are 840 nonsigular expansions for a pair of vari- 
ables, so number of nodes in such (exact) diagrams is 
never larger than that of trees with single-variable 
Shannon, Positive Davio, and Negative Davio ex- 
pansions. The LI Diagrams are  a starting point in 
a synthesis of multilevel AND/OR/EXOR circuits 
and can potentially achieve better results than the 
well-known Pseudo-Kronecker Functional Decision 
Diagrams. They introduce also other gates than 
AND and EXOR to the  synthesis process. 

1. INTRODUCTION 

It is known that the Linearly Independent Logic (LI) 
can create circuits that are superior to AND/EXOR 
circuits, but there have been no efficient algorithms for 
the calculation of nonsingular expansions of LI logic. 
The approach from [7] only outlined some efficient ap- 
proaches, but no deta.iled examples were presented. Pa- 
per [3] presented a ”fast transform” method to find a 
single expansion for some of the polarities, but still the 
problem of selecting the best polarity among all polari- 
ties of two-variable nonsingular expansions was not dis- 
cussed. Therefore, although there exist fast transforms, 
there is still no method to select a good one among a 
huge number of such transforms. Applying ”fast” trans- 
forms for all possible polarities would be too inefficient 
as well. 
In this paper we will develop a new representation that 
is based on the Linearly Independent logic and that can 
be used in the fiist stage of logic synthesis - the ”tech- 
nology independent, EXOR synthesis” phase, which is 
next followed by the ” EXOR-related technology map- 
ping” [14, 17, 13, 161, not discussed here. In section 
2 we introduce the LI Universal Logic Module (node) 
and present the theory how to compute the expansion 
data functions for such two-variable nodes in the pro- 
cess of tree creation. Section 3 introduces the LI Trees, 
LI Decision Diagrams, and LI Forms. 

2. THE NON-SINGULAR EXPANSION 

To introduce the ideas of Linearly Independent (LI) 
logic and nonsingular expansions, we will solve a simple 
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Figure 1: (a) Function f ( A ,  B ,  C,  D )  to Example 2.1, 
(b) Function to Example 3.3 

example first. 
Example 2.1. Given is function !(A, B ,  C,  D) from Fig- 
ure 1. Lkt us assume that we want to  expand this func- 
tion with respect to variables { A ,  B}.  
Let us first find the standard expansion with respect 
to cofactors on variables A ,  B. The first expansion will 
use the, computable from function f(A, B ,  C, D), stan- 
dard cofactors: fx E(C,  D ) ,  f;i B(C1 D), !A s ( C ,  D), 
! A B ( ~ ,  D). We calculate: !(A, B,  C,  D) = A B 

A B ~ A B ( C , D )  = A B ~ ( A , B , C , D ) I A = O , E = O  GI A - B 
f ( A ,  B ,  c, D)IA=o,B=i  @ A B 
f(&B_LC, D)IA=I,B=o @ AB f ( A ,  B ,  C,  D)IA=I,B=I 
= A B ( C +  D) @ 
AB (CO) 
The second expansion, called a nonsingular expansions, 
will use unknown functions SF,-(C, D):  
- f ( A ,  B ,  C, D) = ( A  + B )  - SFA+B (C, D) CB 
B SFF(C,D)  CB A SF;i-(C,D) @ SFi(C,D) 
(2.1) 
The basis of the functions on variables A and B for 
which we are expanding is here arbitrarily selected as: 
f A + B  = A + B ,  fE = B ,  and fz = A, and f1 = 1. 
In order to calculate the unknown functions SFj (C, D) 
we will compare the expansions for all possible com- 
binations of values of A and B. This will lead to  a 
set of linear logic equations, which after solving will 
give the values to the unknown functions SFi(C, D). 
Thus comparing the two expansions for !(A, B ,  C, D) 
w e h a v e x B ( C + D ) $  x B ( D @ C ) $  AB(CD)$  
- AB (DC) = (A+B) SFA+B(C, D) @ B SFE(C, D) @ 
A SJ’x(C, D) CB SFI  (C, D )  
By substituting in the above equation A = 0, B = 0, we 
get the following equation 1 for cofactor f;i- E(C’ D): 

- -  
fx B ( C , D )  @ B f x  -- B(clD) @ A B f A  E(c ,D)  - @ 

B(C @ D) @ A B(CD) @ 

- 
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( C + D )  = f X g ( C , D )  = S F z @ S F x @ S F 1 .  
By substituting A = 0, B = 1, we obtain equation 2: 
(C D )  = fx B(C,  D )  = SFA+B@ SFx$ SFi 
By substituting A = 1, B = 0, we obtain equation 3: 
(CD) = fA B(C, D )  = SFA+BCB S F z $  5'8'1. 
By substituting A = 1, B = 1,  we obtain equation 4: 
(CD)  = ~ A B ( C ,  D )  = SFA+B CB SFi. 
The last four equations for cofactors fAt BJ (C, D )  can 
be rewritten to the matrix form of equation: 
F V  = M x CV = 

Now, that the unknown data input functions SF; have 
been found, they are substituted into the nonsingular 
expansion (2.1) to create the expansion formula (2.2). 
The coefficients S F { ( C , D )  are taken from the above 
vector CV.  
From Figure 1, the function F be represented by a vector 
FVT = [(C + D )  (C $ D )  ( C B )  ( C D )  1 .  

Then f ( A , B , C , D )  = 

Concluding, we were able to  expand the original func- 
tion with respect to four functions on variables A,  B. 
We will call these functions (in our case, functions 
A + B ,  A, B, and l), the Linearly Independent Func- 
tions, since the columns corresponding to them in ma- 
trix M are linearly independent with respect to the op- 
eration of EXOR-ing of columns. For comparison, the 
same function was expanded for classical AND/EXOR 
logic in [9]. Observe, that a unique expansion was pos- 
sible because the set of equations had exactly one solu- 
tion, which is equivalent to matrix M being nonsingular. 
Hence, the name " nonsingular" used for our expansion. 
Moreover, our method of solving this example can be 
generalized to arbitrary sets of Linearly Independent 
functions. 

This nonsingular expansion with functional coefficients 
is realized using an universal logic module with control 
variables A , B  (illustrated in Figure 2). This way, for 
the set of LI functions { z , B ,  ( A  + B ) ,  l}, there exists 
only one nonsingular expansion specified by its matrix 

(A+ B )  (C+ D )  $B( C@ D)&( CD) CB 1 (C)  (2.2). 

~ 
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Figure 2: Nonsingular expansion module to Example 2.1 
M - l .  The module from Figure 2 is a generalization 
of modules for Shannon Expansion (multiplexer) and 
Davio Expansion (AND/EXOR gate). 
Let us observe that formula (2.2) describes only one of 
the 840 nonsingular expansions for variables A, B [6, 31. 
In addition, any set of two, three, or four variables out 
of set {A ,  B , C , D }  can be selected for the first level 
expansion. So, there are very many different trees rep- 
resenting successive expansions. Even if the problem of 
fast calculating of a single expansion were solved, the 
more important problem remains: how to select the best 
one of all the nonsingular expansions (or nonsingular ex- 
pansions of certain kind). This problem is difficult, be- 
cause there are very many of such expansions [6]. Our 
approach will be to modify some methods known the 
from Reed-Muller logic. First, we will formally define 
the representations of Boolean functions that we will be 
next used in functions' optimization. 
Linearly Independent logic [5, 6, 71 allows to uniquely 
derive data functions SF; for universal expansion mod- 
ules from the original function f(z1,22, ..., zn), assum- 
ing given sets of linearly independent functions of m 
variables (m 5 n) .  We will review these methods 
briefly below. We create a 2" x 2" matrix M with 
rows corresponding to minterms (for a subfunction fi 
with m variables we have 2" columns). The columns 
correspond then to some Boolean functions fe  of m vari- 
ables. A 1 in the intersection of a column "2' and row 
"7 means that minterm " j "  is in function "i". The 
set of columns should be linearly independent with re- 
spect to EXOR operation (i.e. columns are bit-by-bit 
exored). If a set of 2" columns is linearly independent 
then there exists one and only one matrix M - l  , inverse 
to M with respect to the exoring operation. In such 
case, the family of Boolean functions fi corresponding 
to columns will be called the "linearly independent fam- 
ily of Boolean functions" (or set of LI (Boolean) func- 
tions, or LI set). We will call them LI functzons, for 
short. The matrix will be called a "nonszngular ma- 
trzx". 
Let us denote the vector of cofactors with respect to 
variables ( 2 1 ,  ... z,} by F V .  CV denotes the vector of 
coefficients for some given canonical form represented 
by nonsingular M .  Given is an arbitrary linearly inde- 
pendent (LI) set of 2" Boolean functions f% of m vari- 
ables. This set can be represented as a 2" x 2, non- 
singular matrix M with basis functions fi as columns, 



i = 0, ..., 2, - 1. 

Theorem 1. Given is afunction F(z1, ..., z,, ..., z,) such 
that the set of input variables { z1 , ..., z,} includes prop- 
erly the set ( 2 1  , ..., zm}. There exists an unique expan- 
sion 

F(z1, ... 1 4  = fo(z1, . . . , z m ) S F o ( z m + 1 ,  .-, zn) 

f2"-1(21, * e * ,  zm)SFP-l(Zm+l , ... 1 Zr6) 

@fl(21, ..., ~ m ) S F l ( z m + l ,  ... ,2,) e... @ 
(2.3) 

where functions fi are the given basis LI functions of 
m variables, and the coefficient functions (called also 
the "data input functions") SFi  of the remaining input 
variables are determined from the coefficient vector CV 
= M-' x F V ,  where FV(zm+l ,  ..., zn)  is a vector of 
all 2, cofactors of F with respect to variables froin the 
set ( 2 1 ,  ..., zm}. 
Proof. Proof is a generalization of the method of solving 
EXOR logic equations from the above example. The 
method as above would work for any basis LI functions 
as columns of nonsingular matrix AI. 
We will call (2.3) the nonsingular expansion with func- 
tional coefficients. f i (z l ,  .... zm), i = 0 ,  ...2n-1. This 
is a unique expansion for the set of variables 2 1 ,  ..., zm 
and the set of functional coefficients. This means, the 
data functions on variables zm+l ,  ..., z, for given basis 
LI functions of matrix M are uniquely determined by 
expansion (2.3). 

3. LINEARLY INDEPENDENT TREES, DE- 
CISION DIAGRAMS AND FORMS. 

The (standard) Kronecker Tree has levels that corre- 
spond to single (input) variables. Only one of three 
types of binary expansions (S,pD, and nD) is used in 
every level of the tree [15]. Kronecker Trees are quite 
useful to obtain high-quality multi-level circuits. They 
can be also generalized to Pseudo-Kronecker Trees, 1141, 
that lead to even better circuits. The decision diagrams 
are created from such trees by applying reductions to 
nodes of such trees. 
It can be observed, however, that one may allow to have 
nodes in the trees for sets of variables, instead for sin- 
gle variables only. These sets will be called blocks. The 
concept of a tree is now generalised, and the tree is 
no longer a binary tree, but has multz-varzable nodes. 
Moreover, arbitrary nonsingular expansions are 
now allowed in the nodes. The number of such expan- 
sions is very large, even for small blocks of grouped 
variables. For instance, let us observe that in the case 
of two successive levels of a (standard) Kronecker Tree, 
there are three nodes for a pair of variables, and each 
node can have S, pD or nD expansion. Thus, the to- 
tal number of expansions for a pair of variables in the 
Kronecker tree is 33 = 27. In contrast, there are 840 
various nonsingular expansions for a pair of variables in 
a LI tree. This new type of a tree will be called the 
Lznearly Independent Iironeclcer Tree, (LIKT). It is a 
special case of LI Tree, which means, a tree that uses 
nonsingular expansions. 

Definition 2. The LI Kronecker Tree (LIKT) is a tree 
with multi-variable expansion nodes, created as follows: 
1) The set of all n input variables is partitioned into a 
set of disjoint and nonempty subsets Sj such that the 
union of all these subsets forms the initial set. (This 
is a partition of the set of input variables). The sub- 
sets will be called blocks. If each block includes just a 
single variable, the tree reduces to the special case of 
a KRO Tree. If there is only one block that includes 
all variables, the tree reduces to the special case of a 
nonsingular form [5, 6, 71. 
2) The sets (blocks) are ordered, each of them corre- 
sponds to a level of the tree. 
3) For every level, if the block involves a single vari- 
able, S, nD, or pD is selected for its nodes. If the block 
is multi-variable, one nonsingular expansion polarity is 
selected for the nodes of the tree at the level correspond- 
ing to this block. 

In LIKTs, the set of all input variables is thus par- 
titioned to several disjoint blocks, each correspond- 
ing to a level of the tree. For every block with a 
single variable, the corresponding expansions are S, 
pD and nD. For a block with two variables there 
are 840 .nonsingular expansions. Therefore, for the 
two-variable nodes there are 840 types of nodes, 
called LI(2) nodes (expansion types). They will 
be denoted by L1(2)-{721,1, 722,1,n3,1, 724,1}, ...., LI(2)- 
(121,840, 122,840,123,840, 124,8401, or as their polarity matri- 
ces M. Thus, in L1(2)-{?21,1, n z , ~ ,  n3,1,124,1}, the num- 
ber nj,i is a natural number corresponding to the binary 
vector of the j-th colum of the i-th matrix M ,  which 
is read with bottom row as the least significant bit. In 
this way, the (expansion polarity) matrix 

M = [ p ] is represented as a set of 4 natural 

numbers, each corresponding to one L1 function, and 
denoted by LI( 2)-{ 15,3 , 10,7}. 
Definition 3. Linearly Independent Forms (LI Forms) 
are obtained by flattening the LI-Trees, i.e. find- 
ing all ordered product terms obtained by multipli- 
cation of paranthesized expressions corresponding to 
AND/EXOR trees, using recursively the rule a ( b @ c )  = 
ab @ ac. 
The LI Forms are no longer two-level forms, as is the 
case in AND/EXOR flattened forms. They have three 
levels, the first (from output) level are EXOR gates, 
the second are AND gates and the third are arbitrary 
Boolean functions defned on blocks of variables. The 
LI Forms are implemented in a tree-level circuit called 
a LI PLA. 
Definition 4. LI Decision Diagrams (LI DDs) are cre- 
ated by: (1) combining isomorphic nodes of any kind, 
(2) performing standard Ordered Kronecker Functional 
Decision Diagram (OKFDD) transformations [2] on S, 
pD and nD nodes, (3) performing generalizations of 
standard Ordered Kronecker Functional Decision Dia- 

1 0 1 0  

263 



gram (OKFDD) transformations [2] on multi-variable 
nodes. These generalizations remove any node that 
evaluates to its single argument. 
We will say that the node evaluates to a single argument 
if after substituting constants and a single variable value 
Hi to the function realized by this node, after propaga- 
tion of constants, the function evaluates to H,. Observe 
that only multivariable nodes that have only logic con- 
stants and the same signal Hi as arguments should be 
evaluated. 
For instance. Formula h 6H1 @ h bH1 @ a bH1 @ a bH1 
evaluates to H I .  Formula h bO @ a bO @ bH2 @ bH2 
evaluates to H2.  Formula ab0 @ a0 @ bO @ H3 evaluates 
to H3. This method is a generalization of simplification 
rules for S, pD and nD nodes that are applied to create 
the OKFDDs. 
Definition 5. The Linearly Independent Kronecker DDs 
are created from LI Kronecker Trees as described in 
Definition 4. 
Definition 6. The Lznearly Independent Kronecker 
Forms are the forms created by flattening of the LI Kro- 
necker Trees, (or the Linearly Independent Kronecker 
DDs) . 
Example 3.1. Figure 3 presents an example of the LI 
Kronecker Tree. The first level of the tree has Positive 
Davio expansion for variable X I ,  the second level has 
LI(2)-{ 15,3,10,7} expansion for the set of variables { 
x2,x4 }, and the third level has Shannon expansions 
for variable 53. 

The expansion of the node LI(2)-{15,3,10,7} is de- 
scribed by the following formula: 
f0 ($2 23 7 2 4 )  =SF( f 0 )  1 (23) $ 2 2  S F  ( f0  )z, (23)  

@ ~ s F ( f O ) ~ ( X 3 ) @ ( x 2  f x4)SF(fO)z2z4 ( 2 3 )  
where notation S F ( f ) i ( X )  denotes function SF;,  with 
arguments from the set X of variables, applied to 
argument function f .  This formula is a specializa- 
tion of nonsingular expansion (2.3) applied to cofac- 
tor function fo(xz,x3, xq) as F(x1 ,  ... x,), with expan- 
sion variables 2 2 ,  24 in linearly independent func- 
tions. Subfunctions S F i  of the remaining vari- 
ables are calculated for the cofactor function fo (so 
they are denoted as functions S F ( f o ) l ,  SF(fo),,(zcs), 
S F ( f o ) ~ ( x 3 ) ,  S F ( ~ O ) ( ~ ~ + ~ ~ ) ( X ~ )  in this particular 
LI( 2)- { 15,3,10,7} expansion). 
Definitzon 7. A Szngle-Polarity Nonszngular Expanszon 
for a multi-output function is a vector of Nonsingular 
expansions for its component single-output functions, 
all of these expansions have the same polarity. 
Definition 8. A Multz-Polarity Nonsingular Expanszon 
for a multi-output function is a vector of nonsingular 
expansions for its component single-output functions, 
each of them can have different polarity. 
Thus, for a two-input, three-output function, the Polar- 
rty Vector of a Single-Polarity Nonsingular Expansion 
has 4 natural numbers, and the Polarity Vector of o 
Multz-Polarzty Nonsingular Expansion has 3 * 4 = 12 
natural numbers. Let us observe, that in the special 

level 01 X I  

0 

Figure 3: Example of an LI Kronecker Tree 

case of multi-output GRM expansions, Definition 7 is 
in accordance with the definition from [18], while Def- 
inition 8 is in accordance with the definition from [l]. 
Obviously, the minimal DD (or minimal form) obtained 
from Definition 8 is smaller than the one obtained from 
Definition 7. There are, however, some advantages of 
considering representations created according to Defini- 
tion 7; faster algorithms, and simpler circuits to  create 
the polarity-defining functions. In case of AND/EXOR 
forms, these circuits are only invertors in the input level 
so they practically don't count to  the cost of realiza- 
tion. However, for general LI circuits, these circuits 
constitute higher fractions of the total costs, so it is 
reasonable to assume that they are the same for all the 
output functions. 
Definztzon 9. The LI Pseudo-Kronecker Tree is defined 
similarly as the LI Kronecker Tree; the only difference is 
that in every level, any combination of expansions can 
be used. 
The relation between the LI Pseudo-Kronecker Tree and 
the LI Kronecker Tree is exactly the same as the relation 
between the Pseudo-Kronecker Tree and the Kronecker 
Tree. Similarly as the Linearly Independent Kronecker 
Forms and the LI Kronecker Decision Diagrams, the LI 
Pseudo-Kronecker Forms and the LI Pseudo-Kronecker 
Deczsion Diagrams can be defined. Because in case of 
Pseudo-Kronecker trees every node can have a different 
polarity, Definition 7 does no longer apply to Pseudo- 
type representations of multi-output functions. 
Definition 10. A single-output Kronecker Tree is 
specified by a Szngle-Output Polarity List { [var- 
iable-block-1, expansion polarity-1] ..... [variab- 
le-blockr, expansion polarity, }, that associates po- 
larities with blocks. 
A multi-output Kronecker Tree for a function with IC 
outputs is specified by a Multz-Output Polnrzty Lzst 
{ [variable-block-1, expansion polarityl,l,.. . , expan- 
sion polarityl,, ,...., expansion polarityl,k] ,...... [va- 
riable-block-r, expanszon polarity,,l, ..., expansion- 
polarity,.,, ,...., expansion polarity,.,k], } that associates 
polarities with blocks, for each output function sepa- 
rately. Such lists do not exist for Pseudo Kronecker 
Trees because of the total freedom of expansion selec- 
tion for levels. 
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level of C, expansion S 

level of D. expansion pD 

Figure 4: A LIKDD for function from Example 2.1. 

Figure 5: A three-level LI PLA. 

The name LI Trees will be generic to all kinds of LI 
trees (LI Kronecker, LI Pseudo-Kronecker, LI Mixed, 
LI Ordered, LI Free, etc., [lo]). 

Definition 11. By a Shared Ordered Linearly Indepen- 
dent Decision Diagram (SOLIDD) we will understand 
an LI Decision Diagram that is Shared and Ordered in 
the same sense as BDDs are shared and ordered. A 
Shared Linearly Independent Kronecker Decision Dia- 
gram (SLIKDD) is a Shared LI Kronecker DD. A Shared 
Linearly Independent Pseudo-Kronecker Decision Dia- 
gram (SLIPKDD) is a Shared LI Pseudo-Kronecker DD. 
Example 3.2. A LIK Decision Diagram created from 
a LIKT corresponding to the expansion from Example 
2.1 (and Figure 2) ,  is shown in Figure 4. 
Example 3.3. A three-level PLA obtained by flattening 
a Shared LI Pseudo-Kronecker DD for function from 
Fig. 5 is shown in Fig. 6. 

4. CONCLUSIONS 

We created efficient heuristic algorithms to create the 
introduced data structures, but lack of space does not 
allow us to present them here. Based on the previ- 
ous results in Reed-Muller logic (i.e. the AND/EXOR 
subset of the general LI Logic), we can expect that 
the introduced here trees, diagrams, and circuits will 
find applications in Boolean function representation 
and multi-level logic synthesis with arbitrary gates 

(AND/OR/EXOR base). The presented methods can 
be applied to both completely specified and incom- 
pletely specified functions; single-, and multi-output, 
[12]. Both Kronecker-like and Pseudo-Kronecker-like 
diagrams were shown. Further generalization to LI Free 
trees, Forms, and DDs is also possible along the lines 
from [4]. LI expansions can be also used in Ordered 
Lattice diagrams [$I, and generalized to various kinds 
of new types of lattice diagrams, such as: Mixed, and 
Free Lattice Diagrams and other respective representa- 
tions [lo,  11, 121. 
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