
International Conference on
Information, Communications and Signal Processing
ICICS ‘97
Singapore, 9-12 September 1997

lC2.5

ORDERED AND SHARED, LINEARLY-INDEPENDENT, VARIABLEPAIR DECISION
DIAGRAMS

Marek Perkowski, Lech Jozwiak t, Rolf Drechsler +, Bogdan Falkowski &,
Portland St. Univ. Dept. Electr. Engn., Portland, OR 97207, Tel: 503-725-5411, mperkows@ee.pdx.edu,

t Faculty of Electr. Engng., Eindhoven Univ. of Techn., P.O.Box 513, 5600 MB Eindhoven, The Netherlands, + Inst. of Comp. Sci., Albert-Ludwigs Univ., 79110 Freiburg in Breisgau, Germany,
& Nanyang Techn. Univ., Sch. Electr. and Electrn. Engng., Nanyang Avenue, Singapure 639798.

Abstract.
The paper presents a new kind of decision tree: it
is based on nonsingular expansions for pairs of vari-
ables. Such trees are next used to create Linearly In-
dependent (LI) Decision Diagrams (LI DDs). There
are 840 nonsigular expansions for a pair of vari-
ables, so number of nodes in such (exact) diagrams is
never larger than that of trees with single-variable
Shannon, Positive Davio, and Negative Davio ex-
pansions. The LI Diagrams are a starting point in
a synthesis of multilevel AND/OR/EXOR circuits
and can potentially achieve better results than the
well-known Pseudo-Kronecker Functional Decision
Diagrams. They introduce also other gates than
AND and EXOR to the synthesis process.

1. INTRODUCTION

It is known that the Linearly Independent Logic (LI)
can create circuits that are superior to AND/EXOR
circuits, but there have been no efficient algorithms for
the calculation of nonsingular expansions of LI logic.
The approach from [7] only outlined some efficient ap-
proaches, but no deta.iled examples were presented. Pa-
per [3] presented a ”fast transform” method to find a
single expansion for some of the polarities, but still the
problem of selecting the best polarity among all polari-
ties of two-variable nonsingular expansions was not dis-
cussed. Therefore, although there exist fast transforms,
there is still no method to select a good one among a
huge number of such transforms. Applying ”fast” trans-
forms for all possible polarities would be too inefficient
as well.
In this paper we will develop a new representation that
is based on the Linearly Independent logic and that can
be used in the fiist stage of logic synthesis - the ”tech-
nology independent, EXOR synthesis” phase, which is
next followed by the ” EXOR-related technology map-
ping” [14, 17, 13, 161, not discussed here. In section
2 we introduce the LI Universal Logic Module (node)
and present the theory how to compute the expansion
data functions for such two-variable nodes in the pro-
cess of tree creation. Section 3 introduces the LI Trees,
LI Decision Diagrams, and LI Forms.

2. THE NON-SINGULAR EXPANSION

To introduce the ideas of Linearly Independent (LI)
logic and nonsingular expansions, we will solve a simple

\ drl
A\

In11

1x11

111 I

010

I I O

111

. IXYI I Y I I 1111 11111 1111 III 1111 Itn , I .~ . ~ . . l...iilll,
IO II I O I I Ill I O 111 111

I O I I Ill I I Ill Ill 111

G,H
Figure 1: (a) Function f (A , B , C, D) to Example 2.1,
(b) Function to Example 3.3

example first.
Example 2.1. Given is function !(A, B , C, D) from Fig-
ure 1. Lkt us assume that we want to expand this func-
tion with respect to variables { A , B}.
Let us first find the standard expansion with respect
to cofactors on variables A , B. The first expansion will
use the, computable from function f(A, B , C, D), stan-
dard cofactors: fx E(C, D) , f;i B(C1 D), !A s (C , D),
! A B (~ , D). We calculate: !(A, B, C, D) = A B

A B ~ A B (C , D) = A B ~ (A , B , C , D) I A = O , E = O GI A - B
f (A , B , c, D)IA=o,B=i @ A B
f(&B_LC, D)IA=I,B=o @ AB f (A , B , C, D)IA=I,B=I
= A B (C + D) @
AB (CO)
The second expansion, called a nonsingular expansions,
will use unknown functions SF,-(C, D):
- f (A , B , C, D) = (A + B) - SFA+B (C, D) CB
B SFF(C,D) CB A SF;i-(C,D) @ SFi(C,D)
(2.1)
The basis of the functions on variables A and B for
which we are expanding is here arbitrarily selected as:
f A + B = A + B , fE = B , and fz = A, and f1 = 1.
In order to calculate the unknown functions SFj (C, D)
we will compare the expansions for all possible com-
binations of values of A and B. This will lead to a
set of linear logic equations, which after solving will
give the values to the unknown functions SFi(C, D).
Thus comparing the two expansions for !(A, B , C, D)
w e h a v e x B (C + D) $ x B (D @ C) $ AB(CD)$
- AB (DC) = (A+B) SFA+B(C, D) @ B SFE(C, D) @
A SJ’x(C, D) CB SFI (C, D)
By substituting in the above equation A = 0, B = 0, we
get the following equation 1 for cofactor f;i- E(C’ D):

- -
fx B (C , D) @ B f x -- B(clD) @ A B f A E(c ,D) - @

B(C @ D) @ A B(CD) @

-

0-7803-3676-3/97/$10.00 0 1997 IEEE
26 1

mailto:mperkows@ee.pdx.edu

(C + D) = f X g (C , D) = S F z @ S F x @ S F 1 .
By substituting A = 0, B = 1, we obtain equation 2:
(C D) = fx B(C, D) = SFA+B@ SFx$ SFi
By substituting A = 1, B = 0, we obtain equation 3:
(CD) = fA B(C, D) = SFA+BCB S F z $ 5'8'1.
By substituting A = 1, B = 1, we obtain equation 4:
(CD) = ~ A B (C , D) = SFA+B CB SFi.
The last four equations for cofactors fAt BJ (C, D) can
be rewritten to the matrix form of equation:
F V = M x CV =

Now, that the unknown data input functions SF; have
been found, they are substituted into the nonsingular
expansion (2.1) to create the expansion formula (2.2).
The coefficients S F { (C , D) are taken from the above
vector CV.
From Figure 1, the function F be represented by a vector
FVT = [(C + D) (C $ D) (C B) (C D) 1 .

Then f (A , B , C , D) =

Concluding, we were able to expand the original func-
tion with respect to four functions on variables A, B.
We will call these functions (in our case, functions
A + B , A, B, and l), the Linearly Independent Func-
tions, since the columns corresponding to them in ma-
trix M are linearly independent with respect to the op-
eration of EXOR-ing of columns. For comparison, the
same function was expanded for classical AND/EXOR
logic in [9]. Observe, that a unique expansion was pos-
sible because the set of equations had exactly one solu-
tion, which is equivalent to matrix M being nonsingular.
Hence, the name " nonsingular" used for our expansion.
Moreover, our method of solving this example can be
generalized to arbitrary sets of Linearly Independent
functions.

This nonsingular expansion with functional coefficients
is realized using an universal logic module with control
variables A , B (illustrated in Figure 2). This way, for
the set of LI functions { z , B , (A + B) , l}, there exists
only one nonsingular expansion specified by its matrix

(A+ B) (C+ D) $B(C@ D)&(CD) CB 1 (C) (2.2).

~

262

A B

..
C I

._____~.____._______~~~~...~~~~~~~...~...~....~~...~
Figure 2: Nonsingular expansion module to Example 2.1
M - l . The module from Figure 2 is a generalization
of modules for Shannon Expansion (multiplexer) and
Davio Expansion (AND/EXOR gate).
Let us observe that formula (2.2) describes only one of
the 840 nonsingular expansions for variables A, B [6, 31.
In addition, any set of two, three, or four variables out
of set {A , B , C , D } can be selected for the first level
expansion. So, there are very many different trees rep-
resenting successive expansions. Even if the problem of
fast calculating of a single expansion were solved, the
more important problem remains: how to select the best
one of all the nonsingular expansions (or nonsingular ex-
pansions of certain kind). This problem is difficult, be-
cause there are very many of such expansions [6]. Our
approach will be to modify some methods known the
from Reed-Muller logic. First, we will formally define
the representations of Boolean functions that we will be
next used in functions' optimization.
Linearly Independent logic [5, 6, 71 allows to uniquely
derive data functions SF; for universal expansion mod-
ules from the original function f(z1,22, ..., zn), assum-
ing given sets of linearly independent functions of m
variables (m 5 n) . We will review these methods
briefly below. We create a 2" x 2" matrix M with
rows corresponding to minterms (for a subfunction fi
with m variables we have 2" columns). The columns
correspond then to some Boolean functions fe of m vari-
ables. A 1 in the intersection of a column "2' and row
"7 means that minterm " j " is in function "i". The
set of columns should be linearly independent with re-
spect to EXOR operation (i.e. columns are bit-by-bit
exored). If a set of 2" columns is linearly independent
then there exists one and only one matrix M - l , inverse
to M with respect to the exoring operation. In such
case, the family of Boolean functions fi corresponding
to columns will be called the "linearly independent fam-
ily of Boolean functions" (or set of LI (Boolean) func-
tions, or LI set). We will call them LI functzons, for
short. The matrix will be called a "nonszngular ma-
trzx".
Let us denote the vector of cofactors with respect to
variables (2 1 , ... z,} by F V . CV denotes the vector of
coefficients for some given canonical form represented
by nonsingular M . Given is an arbitrary linearly inde-
pendent (LI) set of 2" Boolean functions f% of m vari-
ables. This set can be represented as a 2" x 2, non-
singular matrix M with basis functions fi as columns,

i = 0, ..., 2, - 1.

Theorem 1. Given is afunction F(z1, ..., z,, ..., z,) such
that the set of input variables { z1 , ..., z,} includes prop-
erly the set (2 1 , ..., zm}. There exists an unique expan-
sion

F(z1, ... 1 4 = fo(z1, . . . , z m) S F o (z m + 1 , .-, zn)

f2"-1(21, * e * , zm)SFP-l(Zm+l , ... 1 Zr6)

@fl(21, ..., ~ m) S F l (z m + l , ... ,2,) e... @
(2.3)

where functions fi are the given basis LI functions of
m variables, and the coefficient functions (called also
the "data input functions") SFi of the remaining input
variables are determined from the coefficient vector CV
= M-' x F V , where FV(zm+l , ..., zn) is a vector of
all 2, cofactors of F with respect to variables froin the
set (2 1 , ..., zm}.
Proof. Proof is a generalization of the method of solving
EXOR logic equations from the above example. The
method as above would work for any basis LI functions
as columns of nonsingular matrix AI.
We will call (2.3) the nonsingular expansion with func-
tional coefficients. f i (z l , zm), i = 0 , ...2n-1. This
is a unique expansion for the set of variables 2 1 , ..., zm
and the set of functional coefficients. This means, the
data functions on variables zm+l , ..., z, for given basis
LI functions of matrix M are uniquely determined by
expansion (2.3).

3. LINEARLY INDEPENDENT TREES, DE-
CISION DIAGRAMS AND FORMS.

The (standard) Kronecker Tree has levels that corre-
spond to single (input) variables. Only one of three
types of binary expansions (S,pD, and nD) is used in
every level of the tree [15]. Kronecker Trees are quite
useful to obtain high-quality multi-level circuits. They
can be also generalized to Pseudo-Kronecker Trees, 1141,
that lead to even better circuits. The decision diagrams
are created from such trees by applying reductions to
nodes of such trees.
It can be observed, however, that one may allow to have
nodes in the trees for sets of variables, instead for sin-
gle variables only. These sets will be called blocks. The
concept of a tree is now generalised, and the tree is
no longer a binary tree, but has multz-varzable nodes.
Moreover, arbitrary nonsingular expansions are
now allowed in the nodes. The number of such expan-
sions is very large, even for small blocks of grouped
variables. For instance, let us observe that in the case
of two successive levels of a (standard) Kronecker Tree,
there are three nodes for a pair of variables, and each
node can have S, pD or nD expansion. Thus, the to-
tal number of expansions for a pair of variables in the
Kronecker tree is 33 = 27. In contrast, there are 840
various nonsingular expansions for a pair of variables in
a LI tree. This new type of a tree will be called the
Lznearly Independent Iironeclcer Tree, (LIKT). It is a
special case of LI Tree, which means, a tree that uses
nonsingular expansions.

Definition 2. The LI Kronecker Tree (LIKT) is a tree
with multi-variable expansion nodes, created as follows:
1) The set of all n input variables is partitioned into a
set of disjoint and nonempty subsets Sj such that the
union of all these subsets forms the initial set. (This
is a partition of the set of input variables). The sub-
sets will be called blocks. If each block includes just a
single variable, the tree reduces to the special case of
a KRO Tree. If there is only one block that includes
all variables, the tree reduces to the special case of a
nonsingular form [5, 6, 71.
2) The sets (blocks) are ordered, each of them corre-
sponds to a level of the tree.
3) For every level, if the block involves a single vari-
able, S, nD, or pD is selected for its nodes. If the block
is multi-variable, one nonsingular expansion polarity is
selected for the nodes of the tree at the level correspond-
ing to this block.

In LIKTs, the set of all input variables is thus par-
titioned to several disjoint blocks, each correspond-
ing to a level of the tree. For every block with a
single variable, the corresponding expansions are S,
pD and nD. For a block with two variables there
are 840 .nonsingular expansions. Therefore, for the
two-variable nodes there are 840 types of nodes,
called LI(2) nodes (expansion types). They will
be denoted by L1(2)-{721,1, 722,1,n3,1, 724,1},, LI(2)-
(121,840, 122,840,123,840, 124,8401, or as their polarity matri-
ces M. Thus, in L1(2)-{?21,1, n z , ~ , n3,1,124,1}, the num-
ber nj,i is a natural number corresponding to the binary
vector of the j-th colum of the i-th matrix M , which
is read with bottom row as the least significant bit. In
this way, the (expansion polarity) matrix

M = [p] is represented as a set of 4 natural

numbers, each corresponding to one L1 function, and
denoted by LI(2)-{ 15,3 , 10,7}.
Definition 3. Linearly Independent Forms (LI Forms)
are obtained by flattening the LI-Trees, i.e. find-
ing all ordered product terms obtained by multipli-
cation of paranthesized expressions corresponding to
AND/EXOR trees, using recursively the rule a (b @ c) =
ab @ ac.
The LI Forms are no longer two-level forms, as is the
case in AND/EXOR flattened forms. They have three
levels, the first (from output) level are EXOR gates,
the second are AND gates and the third are arbitrary
Boolean functions defned on blocks of variables. The
LI Forms are implemented in a tree-level circuit called
a LI PLA.
Definition 4. LI Decision Diagrams (LI DDs) are cre-
ated by: (1) combining isomorphic nodes of any kind,
(2) performing standard Ordered Kronecker Functional
Decision Diagram (OKFDD) transformations [2] on S,
pD and nD nodes, (3) performing generalizations of
standard Ordered Kronecker Functional Decision Dia-

1 0 1 0

263

gram (OKFDD) transformations [2] on multi-variable
nodes. These generalizations remove any node that
evaluates to its single argument.
We will say that the node evaluates to a single argument
if after substituting constants and a single variable value
Hi to the function realized by this node, after propaga-
tion of constants, the function evaluates to H,. Observe
that only multivariable nodes that have only logic con-
stants and the same signal Hi as arguments should be
evaluated.
For instance. Formula h 6H1 @ h bH1 @ a bH1 @ a bH1
evaluates to H I . Formula h bO @ a bO @ bH2 @ bH2
evaluates to H2. Formula ab0 @ a0 @ bO @ H3 evaluates
to H3. This method is a generalization of simplification
rules for S, pD and nD nodes that are applied to create
the OKFDDs.
Definition 5. The Linearly Independent Kronecker DDs
are created from LI Kronecker Trees as described in
Definition 4.
Definition 6. The Lznearly Independent Kronecker
Forms are the forms created by flattening of the LI Kro-
necker Trees, (or the Linearly Independent Kronecker
DDs) .
Example 3.1. Figure 3 presents an example of the LI
Kronecker Tree. The first level of the tree has Positive
Davio expansion for variable X I , the second level has
LI(2)-{ 15,3,10,7} expansion for the set of variables {
x2,x4 }, and the third level has Shannon expansions
for variable 53.

The expansion of the node LI(2)-{15,3,10,7} is de-
scribed by the following formula:
f0 ($2 23 7 2 4) =SF(f 0) 1 (23) $ 2 2 S F (f0)z, (23)

@ ~ s F (f O) ~ (X 3) @ (x 2 f x4)SF(fO)z2z4 (2 3)
where notation S F (f) i (X) denotes function SF;, with
arguments from the set X of variables, applied to
argument function f . This formula is a specializa-
tion of nonsingular expansion (2.3) applied to cofac-
tor function fo(xz,x3, xq) as F(x1 , ... x,), with expan-
sion variables 2 2 , 24 in linearly independent func-
tions. Subfunctions S F i of the remaining vari-
ables are calculated for the cofactor function fo (so
they are denoted as functions S F (f o) l , SF(fo),,(zcs),
S F (f o) ~ (x 3) , S F (~ O) (~ ~ + ~ ~) (X ~) in this particular
LI(2)- { 15,3,10,7} expansion).
Definitzon 7. A Szngle-Polarity Nonszngular Expanszon
for a multi-output function is a vector of Nonsingular
expansions for its component single-output functions,
all of these expansions have the same polarity.
Definition 8. A Multz-Polarity Nonsingular Expanszon
for a multi-output function is a vector of nonsingular
expansions for its component single-output functions,
each of them can have different polarity.
Thus, for a two-input, three-output function, the Polar-
rty Vector of a Single-Polarity Nonsingular Expansion
has 4 natural numbers, and the Polarity Vector of o
Multz-Polarzty Nonsingular Expansion has 3 * 4 = 12
natural numbers. Let us observe, that in the special

level 01 X I

0

Figure 3: Example of an LI Kronecker Tree

case of multi-output GRM expansions, Definition 7 is
in accordance with the definition from [18], while Def-
inition 8 is in accordance with the definition from [l].
Obviously, the minimal DD (or minimal form) obtained
from Definition 8 is smaller than the one obtained from
Definition 7. There are, however, some advantages of
considering representations created according to Defini-
tion 7; faster algorithms, and simpler circuits to create
the polarity-defining functions. In case of AND/EXOR
forms, these circuits are only invertors in the input level
so they practically don't count to the cost of realiza-
tion. However, for general LI circuits, these circuits
constitute higher fractions of the total costs, so it is
reasonable to assume that they are the same for all the
output functions.
Definztzon 9. The LI Pseudo-Kronecker Tree is defined
similarly as the LI Kronecker Tree; the only difference is
that in every level, any combination of expansions can
be used.
The relation between the LI Pseudo-Kronecker Tree and
the LI Kronecker Tree is exactly the same as the relation
between the Pseudo-Kronecker Tree and the Kronecker
Tree. Similarly as the Linearly Independent Kronecker
Forms and the LI Kronecker Decision Diagrams, the LI
Pseudo-Kronecker Forms and the LI Pseudo-Kronecker
Deczsion Diagrams can be defined. Because in case of
Pseudo-Kronecker trees every node can have a different
polarity, Definition 7 does no longer apply to Pseudo-
type representations of multi-output functions.
Definition 10. A single-output Kronecker Tree is
specified by a Szngle-Output Polarity List { [var-
iable-block-1, expansion polarity-1] [variab-
le-blockr, expansion polarity, }, that associates po-
larities with blocks.
A multi-output Kronecker Tree for a function with IC
outputs is specified by a Multz-Output Polnrzty Lzst
{ [variable-block-1, expansion polarityl,l,.. . , expan-
sion polarityl,, ,...., expansion polarityl,k] ,...... [va-
riable-block-r, expanszon polarity,,l, ..., expansion-
polarity,.,, ,...., expansion polarity,.,k], } that associates
polarities with blocks, for each output function sepa-
rately. Such lists do not exist for Pseudo Kronecker
Trees because of the total freedom of expansion selec-
tion for levels.

264

level of C, expansion S

level of D. expansion pD

Figure 4: A LIKDD for function from Example 2.1.

Figure 5: A three-level LI PLA.

The name LI Trees will be generic to all kinds of LI
trees (LI Kronecker, LI Pseudo-Kronecker, LI Mixed,
LI Ordered, LI Free, etc., [lo]).

Definition 11. By a Shared Ordered Linearly Indepen-
dent Decision Diagram (SOLIDD) we will understand
an LI Decision Diagram that is Shared and Ordered in
the same sense as BDDs are shared and ordered. A
Shared Linearly Independent Kronecker Decision Dia-
gram (SLIKDD) is a Shared LI Kronecker DD. A Shared
Linearly Independent Pseudo-Kronecker Decision Dia-
gram (SLIPKDD) is a Shared LI Pseudo-Kronecker DD.
Example 3.2. A LIK Decision Diagram created from
a LIKT corresponding to the expansion from Example
2.1 (and Figure 2) , is shown in Figure 4.
Example 3.3. A three-level PLA obtained by flattening
a Shared LI Pseudo-Kronecker DD for function from
Fig. 5 is shown in Fig. 6.

4. CONCLUSIONS

We created efficient heuristic algorithms to create the
introduced data structures, but lack of space does not
allow us to present them here. Based on the previ-
ous results in Reed-Muller logic (i.e. the AND/EXOR
subset of the general LI Logic), we can expect that
the introduced here trees, diagrams, and circuits will
find applications in Boolean function representation
and multi-level logic synthesis with arbitrary gates

(AND/OR/EXOR base). The presented methods can
be applied to both completely specified and incom-
pletely specified functions; single-, and multi-output,
[12]. Both Kronecker-like and Pseudo-Kronecker-like
diagrams were shown. Further generalization to LI Free
trees, Forms, and DDs is also possible along the lines
from [4]. LI expansions can be also used in Ordered
Lattice diagrams [$I, and generalized to various kinds
of new types of lattice diagrams, such as: Mixed, and
Free Lattice Diagrams and other respective representa-
tions [lo, 11, 121.

References
[l] D. Debnath, T. Sasao, “GRMIN: A Heuristic Simplification
Algorithm for Generalised Reed-Muller Expressions,” Proc. IFIP
WG 10.5 Workshop on Applications of the Reed Muller Expan-
sion in Circuit Design, (RM’95), pp. 257-264.
[2] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M.A.
Perkowski, “Efficient representation and manipulation of switch-
ing functions based on Ordered Kronecker Functional Decision
Diagrams,” Proc. DAG, 1994, pp. 415-419.
[3] B. J. Falkowski, S. Rahardja, “Family of fast transforms for
GF(2) orthogonal logic,” Proc. RM’95, pp. 273-280.
[4] P. Ho, M.A. Perkowski, “Free Kronecker Decision Diagrams
and their Application to ATMEL 6000 FPGA Mapping,” Proc.
Euro-DAC/VHDL’94, Sept. 19-23, 1994, Grenoble, France, pp.
8 - 13.
[5] M. Perkowski, “A Fundamental Theorem for Exor Circuits,”
Proc. RM’93, pp. 52-60.
[6] M. Perkowski, A.Sarabi, F. Beyl, “XOR Canonical Forms of
Switching Functions,” Proc. RM’93, pp. 27-32.
[7] M. Perkowski, A.Sarabi, F. Beyl, “Fundamental Theorems
and Families of Forms for Binary and Multiple-Valued Linearly
Independent Logic,” Proc. RM’95, pp. 288-299.
[SI M.A. Perkowski, M. Chnanowska-Jeske, and Y. Xu, “Lattice
Diagrams using Reed-Muller Logic,” Proc RM’97, Oxford Univ.,
U.K., Sept. 19 - 20, 1997.
[9] M.A. Perkowski, L. Jozwiak, R. Drechsler, “A Canonical
AND/EXOR Form that Includes both the Generalized Reed-
Muller Forms and Kronecker Reed-Muller Forms,” Proc. RM’97.
[lo] M.A. Perkowski, L. Jozwiak, R. Drechsler, “TWO Hierarchies
of Generalized Kronecker Trees, Forms, Decision Diagrams, and
Regular Layouts,” Proc. RM’97.
[11] M. Perkowski, E. Pierzchala, and R. Drechsler, “Layout
Driven Synthesis for Submicron Technology: Mapping Expan-
sions to Regular Lattices,” Proc. of 7th Intern. Symp. on I C
Technology, Systems, and Applications (ISIC-97), Sept. 10 - 12,
1997, Singapure.
[12] M. Perkowski, E. Pierzchala, and R. Drechsler, “Ternary and
Quaternary Lattice Diagrams for Linearly-Independent Logic,
Multiple-Valued Logic, and Analog Synthesis,” Proc. of 1 s t In-
tern. Conj, on Information, Communication and Signal Pro-
cessing (ICICS’97), Sept. 9 - 12, 1997, Singapure.
[13] A. Sarabi, N. Song, M. Chrzanowska-Jeske, M. A. Perkowski,
” A Comprehensive Approach to Logic Synthesis and Physical De-
sign for Two-Dimensional Logic Arrays,” Proc. DAC ’94, San
Diego, June 1994, pp. 321 - 326.
[14] T. Sasao, H. Hamachi, S. Wada, M. Matsuura, “Multi-Level
Logic Synthesis Based on Pseudo-Kronecker Decision Diagrams
and Local Transformation,” Proc. RM’95, pp. 152-160.
[15] T. Sasao, “Representation of Logic Functions using EXOR
Operators,” Proc. RM’95, pp. 11-20.
[16] I. Schaefer, M. Perkowski, “Synthesis of Multi-Level Multi-
plexer Circuits for Incompletely Specified Multi-Output Boolean
Functions with Mapping Multiplexer Based FPGAs,” IEEE
Trans, on CAD,, Vol. 12, No. 11, Nov. 1993. pp. 1655-1664.
[17] Ch. Tsai and M. Marek-Sadowska, “Multilevel Logic Syn-
thesis for Arithmetic Functions,” Proc. DAC’96, pp. 242-247.
[18] X. Zeng, M. Perkowski, K. Dill, A. Sarabi, “Approximate
Minimization of Generalized Reed-Muller Forms,” Proc. RM’95,
pp. 221-230.

265

