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Abstract: In this research Genetic Programming is 
applied to the synthesis of arbitrary logic expressions. As a 
new method of logic synthesis, this technique is uniquely 
advantageous in its flexibility for both problem applicability 
and optimization criterion. A number of experiments were 
conducted exploring this method with different types of logic 
gates and population sizes While complete function 
coverage is not guaranteed, the best experimental test results 
over eight randomly designed functions, of four to seven 
input variables, have produced logic equations with a 98.4% 
function coverage. In addition, the relation between the 
training set she for the Genetic Program and function 
coverage was also empirically explored. These experiments 
showed that only small training sets were necessary for 
function recognition. 

I. INTRODUCTION 
Natural systems are extremely well adapted to their 

environments, as living organisms demonstrate the propensity to 
solve a multitude of complex problems for both survival and 
growth through instinctual, experiential, and intellectual means. 
As nature has proven its robust system design, the biologically 
inspired evolutiomy process is here applied to the synthesis of 
digital hardware circuits. 

Genetic Programming (GP) is a means of developing 
functions through the evolutionary process of natural selection. 
Through a process of emergent intelligence, the GP formulates 
solutions based on accumulated knowledge and the merit of 
potential solutions. In recent years genetic operators, have been 
successllly applied to a wide range of engineering problems. 
However, with the realization of computer designed algorithms, 
very little research to date has applied these concepts to digital 
logic. 

An ori@ automated logic design technique of 
evolutionary "Genetic Hardware" is herein developed. In this 
method, the logic function to be synthesized must be specified 
by a tmth table. The input signals and defined gates for the logic 
are then automatically encoded as binary strings. Resulting from 
the evolutionary process, ''breeding" and evaluating a number of 
designs over "genemtions", the synthesized logic function is 
derived. 

As a new method of logic synthesis, this technique offers 
unique advantages. The logic is designed by evolutionary meam 
without explicit computer programming making the process 
"hands-off' for the user. The technique is applicable to solving a 
large number of logic design problems, regardless of function 
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size and type. It is also a multipurpose design method, offering 
great flexibility. In contrast to other means of logic syqthesis, 
this new method of circuit design can be completely customized 
to optimize for virtually any cost function, i.e. circuit area, 
power, delay, number of gates, speed, etc. The desired 
optimization goals and their relative importance need only be 
described by a numerical value of merit. Currently implemented 
only for the correct functionality of Boolean logic with a 
minimum number of gates, the method is adaptable for multi- 
valued logic. Additionally, any complex gates described by 
truth tables can be utilized. As the evolutionary mechanisms 
remain unchangN there is no differentiation of problem 
difficulty based on these criteria. 

With genetic hardware development, the circuit 
implementation is often different in appearance from that of a 
traditionally designed circuit. Since design verification is 
already incorporated into the circuit development algorithm, it is 
assured that, if the 100% coverage is achieved, the circuit will 
function according to specification, so that no test generations or 
simulations are necessary to verify its correctness. 

11. GP APPLICATION TO LOGIC SYNTHESIS 
Genetic Programming utilizes the process of natural 

selection, i.e. survival of the fittest over a period of time, to 
develop robust computer code, representative of functions. 
Using this technique, hierarchical data structures are encoded as 
binary strings, analogous to biological chromosomes, to which 
the standard operations of a Genetic Algorithm are applied. 
These operations are modeled after natural processes and include 
reproduction, crossover, and mutation. As the structure of the 
Genetic Program has been implemented with a "rooted, point- 
labeled tree with ordered branches", this provides a generic 
model for any function or program. Within this model, data 
structures are divided into the categories of "functions" and 
"terminals". Conventionally the GP paradigm has been applied 
to the evolution of LISP code. However, redefining "functions" 
as logic gates and "terminals" as binary or multi-valued logic 
signals, the data structure can be directly applied to the evolution 
of digital logic equations. 

The genetic programming code serves as a h e w o r k  for 
the artificial evolutiomy process. The foundation of the 
software code used for this research is a public domain genetic 
programming system. It is available via anonymous ftp to 
ftp.cc.utexas.edu in the /pub/genetic-programming/code 
directory. The particular code which was chosen, "Genetic 
Programming in C++, Gpctt- Version 0.40" was written in C* 
by Adam Fraser, at the Department of Electronic & Electrical 
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Enginering - Cybemetics Research Institute, University of 
Salford, Salford, UK. This software is a very general 
evolutionary workhorse and was adapted for the GP-Logic 
Synthesis problem. 

111. EXPERTMENTAL RESULTS 
The GP-Logic Synthesis was applied to a number of 

randomly selected 4, 5,6, and 7 variable bmry equations as a 
means of obtaining empirical results regarding optimal run 
parameters for digital design. Parameters that varied in this 
study included the types of logic gates, population sizes, the 
number of input variables, and the percentage of truth table 
"don't care" outputs. 

For the experiments in this research, the fitness function 
employed was simply a count of the number of correct function 
outputs, which was then directly comparable to the total function 
outputs. In actuality, this "counting" of terms and gates is only a 
very rough measure of the circuit minimization The real cost 
and @ty of a logic synthesis design depds  on its matching 
with the technology of implementation (PLA, FPGA, etc.). The 
fitness could easily be calculated as any value of merit, thus 
optimizing for circuit speed, layout area, power consumption, or 
testability, in any combination and priority. 

The following empirical experiments are an exploration of 
the logic synthesis design method proposed. These trials serve 
both as an initial experimental indicator of the relation between 
GP performance and the control variables in the artificial 
evolution system, as well as the merit of this new method of 
logic synthesis. 

Population Size: 1000 
Mutation Prob. 1/1000 I 
Rate: 
Function Set: Case 1: and, or, not 
(all are 2-input Case 2: nand, not 
gates, except the Case 3: and, or, not, nand 
1-input NOT) Case 4: and, or, not, nand, nor 

Case5: and,nor 
Case 6: and, or, not, xor 
Case 7: an4 or, not, xor, nand, nor 
Cases: nand 
+lo0 for each correct minterm 
-1 for each logic gate/terminal 
Fitness is ((2%) - gates/tenninals)* 100 
Where n is the number of inmt variables 

Fitness Measure: 

Criterion: 

A. Experimental Run parameters and Logic Functions 
There are a number of run parameters for the GP-Logic 

Synthesis which were constant for all of the experimentation. 
The creation type utilized for the GP was Ramped Half and Half: 
half the population is created with an even distribution of 
chromosomes ranging in length from the minimum to maximum 
depth allowed and the other half of the population contains 
chromosomes of the maximum depth only. The maximum tree 
depth at creation was 6. The maximum depth at crossover was 
17. Details regarding the run parameters are available in the 
software documentation, cited in the p a p  reference section. 

The experiments were conducted on randomly composed 4, 
5, 6, and 7 variable functions, hereafter labeled and defined as 
follows. 
Test 1: f(a,b,c,d) =C(O,4,5,7,8,9,13,15) 
Test 2: f(qb,c,d) = ;I=(4,6,7,15) 
Test 3: f(qb,c,d,e) = C(5,6,9,10) 
Test 4: f(a,b,c,d,e) = ~(1,2,6,7,9,13,14,15,17,22,23,25,29,30,31) 
Test 5: f(a,b,c,d,e,f) = X(1,'7,11,21,30) 
Test 6: f(a,b,c,d,e,f) = C(lO,12,14,20,21,22,25,33,36,45,55) 
Test 7: f(a,b,c,d,e,f,g) = C(20,28,52,60) 
Test 8: f(a,b,c,d,e,f,g) = C(20,28,38,39,52,60,102,103,127) 

B. Types of Logic Gates 
To empirically determine which types of logic gates are 

most effective for GP-Logic Synthesis, tests were conducted 
with groups of gates with logical closure. AU experiments 

utilized two-input gates (with the exception of NOT). 
investigation was conducted as follows. 

The 

ITermination: 150 generations 1 
A representative graph showing the evolution of the 

synthesized logic is shown for the Test 1 problem. 

1600 I 1560 I 

The GP tree structure for the logic gate case 7 solution to 1 
the Test 1 problem, is the following. 

f(a,b,c,d) = C(0,4,5,7,8,9,13,15) 

I 

B 6 D 
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A representative graph detailing the evolution of the 
synthesized logic is shown for the Test 6 problem. None of the 
experiments produced a solution with 100% coverage. 

Mutation Rate: 
Function Set: 
Fitness Measure: 

Criterion: 

The schematic diagram for this synthesized circuit is as follows. 

:=3 

1/1000 (probability) 
and, or, not, xor, nand, nor 
+lo0 for each correct truth-table &term 
-1 for each logic gate/ter“l 

Fitness is ((2%) - gates/terminds)*lOO 
Where n is the number of inmt variables 

D 

6 
B 

The circuit can be simplitied with other programs, such that 
redundant logic is eliminated. For example the “B NAND B 
shown here would simplify to “NOT B ,  as well as the logic 
“NOT B XOR NOT D” could be changed to “B XOR D. This 
then, creates a practical and good, but not standard solution. 
This structure is quite different than that of the human design, in 
SOP Form. 

The best function coverage results, for each logic gate case 
group, are shown in the following table. The number of gates 
and terms in the evolved logic function are given for the derived 
logic equations. 

Total Logic Gates Case: 
Minterms 

2 116/16 ~ l O O . O % ~ l I ~ 1 8  12115113110 10 119 
3 132/32 llOO.O%127lX 29lX IX I18 9 IX 
b 131/32 196.9% IX 117117(201X 114113 IX 1 I I I I 1 I I I 1  I 

*61/64 mintermss correct 
X = Only best function coverage results listed in table. 

C. Population Size 
The GP Logic Synthesis experiments were next conducted 

using different sizes of siring populations. The purpose of this 
inquiry was to get a basic understanding of the impact that larger 
populations, by introducing a greater breeding selection and 
perhaps larger diversity into the gene pool, would have on 
function discovery. The complete set of logic gates (AND, OR, 
NOT, XOR, NAND, NOR) were utilized 

IPodation Sizes: ~1000.2000. 3000.4000.5000 1 

ITermination: 150 generations 1 

I 
m-1 I I I I I I I I I I I I I I I I 

I 2 3 4 5 6 7 8 9 1011 1213141516 

*Best Fit. (m. size3oOo) +Best Fit. (pcp siae4ooo) 

+ B e s t F k . ( ~  sbE!5ooo) -+-pafectFaness(M/ogdus) 

The study was conducted only on those arbitrarily chosen 
functions for which incomplete solutions (function coverage of 
less than 100%) were obtained in the preceding logic gate study. 
These results are given, as follows. 

00 2000 3000 4000 5000 

X = Only best coverage results listed in table 

D. GP Training Set Size 
Empirical experiments were also conducted to understand 

the relation between GP training set size and function coverage 
with the new logic synthesis method. Testing was performed on 
the MCNC benchmarks “9sy”’ and “Majority”. 9sym is a 
completely defined, g-input, l-output function of 29 = 512 test 
vectors, with symmetric properties. The “Majority“ function is a 
5-input, l-output function, which is also a well-defined standard 
The third test was defined in the previous section as Test 6. 
With 6-inputs and 1-output, it is slightly larger than the 
“Majority“ benchmark, but not so large as the “9sym” file. As 
this function design is completely random, it does not 
demonstrate the “pattem-ness” or regularity most often observed 
in real-world engineering problems. 

For each of the test functions the experimentation was 
conducted as follows. In the first iteration of the experiments, 
the GP-Logic Synthesis was trained over the benchmark‘s truth 
table, with a 0% missing portion (don’t cares) of the complete 
training set. (This test was identical in manner to that in ail the 
previous experiments.) Subsequent tests were then conducted in 
which the GP was only provided a portion (arbitrarily missing 



chromosomes from which the best traits can be selected. In the 
"Don't Cares" versus Function Coverage experiments, it was 
observed that only a small training set is necessary for function 
recognition. The number of experiments in this research was 
quite small; these results may be highly biased by the degree of 
"pattern-ness" inherenl in these functions. However since most 
natural functions do exhibit a high degee of pattem, this may 
not be an issue. 

This empirical experimental evidence is a good, practical, 
and effective manner for an understanding of the effectiveness of 
GP for the appiication of logic synthesis. It is a first step to an 
implementation of a more comprehensive logic synthesis method 
and more testing on standard benchmarks is necessary. 

t 
Test Coverage of Complete Benchmark 

Percent don't cares 
0 10 20 30 40 50 60 70 80 90 100 
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from 5 to 100%) of the benchmark truth table during the training 
session, run for a period of 100 generations. The GP derived 
function that was found to provide the best coverage of the 
training set, at the end of the final generation (100) was selected. 
The logic outputs produced by the synthesized equation, over the 
entire range of inputs, were then compared to those of the 
benchmark's truth table. This provided a measure of the 
complete function coverage in relation to the training set. 

It was 
observed that for training sets missing fiom 0 to 90% (don? 
cares) of the complete benchmark, (or conversely, training sets 
that consisted of from 100 to 10% of the benchmark), that 
complete function coverage was 80% or greater. 

Results are given for the Majority benchmark 

Majority: Training Set Size vs. Complete 
hnction Coverage 

Maj. 
Test 6 

Missing Portion of Complete Training Set 

97% 97% 91% 88% 88% 81% 81% 81% 81% 81% 41% 
86% 84% 81% 81% 81% 81% 69% 44% 44% 47% 55% 

1 4 Coverage of Complete Benchmark 1 

h v m  l870/~89%/,186Y0/,l85%184%184%186%(85%18 1% 169Y00( 50%1 
1 

IV. GENERAT, OBSERVATIONS 
From the preceding experiments a number of observations 

were made. In general, the Genetic Programming demonstrates 
certain trends when applied to the logic synthesis problem. The 
GP usually tends to do better (hereafter defined as achieving a 
higher function coverage) when there is a larger choice of logic 
gates. In thls circumstance it can better choose the gate that 
meets a specific need by either more efficiency (requiring fewer 
gates) or by effecting a particular part of the logic, leading to 
more correct outputs. (An exception to this generality is 
sometimes observed in the experiments implementing the 
synthesis with only NAND gates. Such synthesized equations 
can achieve good function coverage, but often have high 
structural complexities. The NAND gate was the only gate 
tested, that is universal by itself.) The GP also does better with 
larger sized populations. This provides a bigger pool of 

V. CONCLUSION 

Programming was created In this me tha  the logic is designed 
entirely by evolutionary means, without explicit computer 
programming. This technique is uniquely advantageous for its 
flexibility, both in its applicability to any type of logic (binary or 
multi-valued), and its optimization criterion (correct logic 
outputs, minimal layout area, minimal power consumption, etc.) 
in addition, it was found that only small training sets are 
necessary for the evolutionary function discovery. While 
complete function coverage is not guaranteed, the best 
experimental test results over eight randomly designed functions 
have produced logic equations with a 98.4% function coverage. 
Research endeavors continue towards proven coverage by 
analyzing the differences between the derived logic and given 
truth table. However, this technique is already useful for the 
Constructive Induction Approach to Machine Learning, where 
the synthesis goal is to minimize the classification error, rather 
than attain complete coverage. In Machine Learning, finding a 
simpler circuit without full coverage is a way of dealing with the 
"over-fitting" problem. I 
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