
823
Genetic Programming and its Applications to the Synthesis of Digital Logic

Karen M. Dill, James H. Henog*, and Marek A Perkowski

Portland State University
Department of Electrical Engineering

Portland, Oregon 97207
e-mail: dills@worldnet.att.net / mperkows@ee.pdx.edu

Tel: 503-725-541 1 /Fax: 503-725-4882

Abstract: In this research Genetic Programming is
applied to the synthesis of arbitrary logic expressions. As a
new method of logic synthesis, this technique is uniquely
advantageous in its flexibility for both problem applicability
and optimization criterion. A number of experiments were
conducted exploring this method with different types of logic
gates and population sizes While complete function
coverage is not guaranteed, the best experimental test results
over eight randomly designed functions, of four to seven
input variables, have produced logic equations with a 98.4%
function coverage. In addition, the relation between the
training set she for the Genetic Program and function
coverage was also empirically explored. These experiments
showed that only small training sets were necessary for
function recognition.

I. INTRODUCTION
Natural systems are extremely well adapted to their

environments, as living organisms demonstrate the propensity to
solve a multitude of complex problems for both survival and
growth through instinctual, experiential, and intellectual means.
As nature has proven its robust system design, the biologically
inspired evolutiomy process is here applied to the synthesis of
digital hardware circuits.

Genetic Programming (GP) is a means of developing
functions through the evolutionary process of natural selection.
Through a process of emergent intelligence, the GP formulates
solutions based on accumulated knowledge and the merit of
potential solutions. In recent years genetic operators, have been
successllly applied to a wide range of engineering problems.
However, with the realization of computer designed algorithms,
very little research to date has applied these concepts to digital
logic.

An ori@ automated logic design technique of
evolutionary "Genetic Hardware" is herein developed. In this
method, the logic function to be synthesized must be specified
by a tmth table. The input signals and defined gates for the logic
are then automatically encoded as binary strings. Resulting from
the evolutionary process, ''breeding" and evaluating a number of
designs over "genemtions", the synthesized logic function is
derived.

As a new method of logic synthesis, this technique offers
unique advantages. The logic is designed by evolutionary meam
without explicit computer programming making the process
"hands-off' for the user. The technique is applicable to solving a
large number of logic design problems, regardless of function

*Oregon State University
Department of Electrical and Computer Engineering

Corvallis, Oregon 9733 1
herzog@ece.orst .edu

Tel: 541-737-2973 /Fax: 541-737-1300

size and type. It is also a multipurpose design method, offering
great flexibility. In contrast to other means of logic syqthesis,
this new method of circuit design can be completely customized
to optimize for virtually any cost function, i.e. circuit area,
power, delay, number of gates, speed, etc. The desired
optimization goals and their relative importance need only be
described by a numerical value of merit. Currently implemented
only for the correct functionality of Boolean logic with a
minimum number of gates, the method is adaptable for multi-
valued logic. Additionally, any complex gates described by
truth tables can be utilized. As the evolutionary mechanisms
remain unchangN there is no differentiation of problem
difficulty based on these criteria.

With genetic hardware development, the circuit
implementation is often different in appearance from that of a
traditionally designed circuit. Since design verification is
already incorporated into the circuit development algorithm, it is
assured that, if the 100% coverage is achieved, the circuit will
function according to specification, so that no test generations or
simulations are necessary to verify its correctness.

11. GP APPLICATION TO LOGIC SYNTHESIS
Genetic Programming utilizes the process of natural

selection, i.e. survival of the fittest over a period of time, to
develop robust computer code, representative of functions.
Using this technique, hierarchical data structures are encoded as
binary strings, analogous to biological chromosomes, to which
the standard operations of a Genetic Algorithm are applied.
These operations are modeled after natural processes and include
reproduction, crossover, and mutation. As the structure of the
Genetic Program has been implemented with a "rooted, point-
labeled tree with ordered branches", this provides a generic
model for any function or program. Within this model, data
structures are divided into the categories of "functions" and
"terminals". Conventionally the GP paradigm has been applied
to the evolution of LISP code. However, redefining "functions"
as logic gates and "terminals" as binary or multi-valued logic
signals, the data structure can be directly applied to the evolution
of digital logic equations.

The genetic programming code serves as a h e w o r k for
the artificial evolutiomy process. The foundation of the
software code used for this research is a public domain genetic
programming system. It is available via anonymous ftp to
ftp.cc.utexas.edu in the /pub/genetic-programming/code
directory. The particular code which was chosen, "Genetic
Programming in C++, Gpctt- Version 0.40" was written in C*
by Adam Fraser, at the Department of Electronic & Electrical

0-1803-3905- 3/97/$10.00@ 1997 EEE

mailto:dills@worldnet.att.net
mailto:mperkows@ee.pdx.edu
http://ftp.cc.utexas.edu

824

Enginering - Cybemetics Research Institute, University of
Salford, Salford, UK. This software is a very general
evolutionary workhorse and was adapted for the GP-Logic
Synthesis problem.

111. EXPERTMENTAL RESULTS
The GP-Logic Synthesis was applied to a number of

randomly selected 4, 5,6, and 7 variable bmry equations as a
means of obtaining empirical results regarding optimal run
parameters for digital design. Parameters that varied in this
study included the types of logic gates, population sizes, the
number of input variables, and the percentage of truth table
"don't care" outputs.

For the experiments in this research, the fitness function
employed was simply a count of the number of correct function
outputs, which was then directly comparable to the total function
outputs. In actuality, this "counting" of terms and gates is only a
very rough measure of the circuit minimization The real cost
and @ty of a logic synthesis design depds on its matching
with the technology of implementation (PLA, FPGA, etc.). The
fitness could easily be calculated as any value of merit, thus
optimizing for circuit speed, layout area, power consumption, or
testability, in any combination and priority.

The following empirical experiments are an exploration of
the logic synthesis design method proposed. These trials serve
both as an initial experimental indicator of the relation between
GP performance and the control variables in the artificial
evolution system, as well as the merit of this new method of
logic synthesis.

Population Size: 1000
Mutation Prob. 1/1000 I
Rate:
Function Set: Case 1: and, or, not
(all are 2-input Case 2: nand, not
gates, except the Case 3: and, or, not, nand
1-input NOT) Case 4: and, or, not, nand, nor

Case5: and,nor
Case 6: and, or, not, xor
Case 7: an4 or, not, xor, nand, nor
Cases: nand
+lo0 for each correct minterm
-1 for each logic gate/terminal
Fitness is ((2%) - gates/tenninals)* 100
Where n is the number of inmt variables

Fitness Measure:

Criterion:

A. Experimental Run parameters and Logic Functions
There are a number of run parameters for the GP-Logic

Synthesis which were constant for all of the experimentation.
The creation type utilized for the GP was Ramped Half and Half:
half the population is created with an even distribution of
chromosomes ranging in length from the minimum to maximum
depth allowed and the other half of the population contains
chromosomes of the maximum depth only. The maximum tree
depth at creation was 6. The maximum depth at crossover was
17. Details regarding the run parameters are available in the
software documentation, cited in the p a p reference section.

The experiments were conducted on randomly composed 4,
5, 6, and 7 variable functions, hereafter labeled and defined as
follows.
Test 1: f(a,b,c,d) =C(O,4,5,7,8,9,13,15)
Test 2: f(qb,c,d) = ;I=(4,6,7,15)
Test 3: f(qb,c,d,e) = C(5,6,9,10)
Test 4: f(a,b,c,d,e) = ~(1,2,6,7,9,13,14,15,17,22,23,25,29,30,31)
Test 5: f(a,b,c,d,e,f) = X(1,'7,11,21,30)
Test 6: f(a,b,c,d,e,f) = C(lO,12,14,20,21,22,25,33,36,45,55)
Test 7: f(a,b,c,d,e,f,g) = C(20,28,52,60)
Test 8: f(a,b,c,d,e,f,g) = C(20,28,38,39,52,60,102,103,127)

B. Types of Logic Gates
To empirically determine which types of logic gates are

most effective for GP-Logic Synthesis, tests were conducted
with groups of gates with logical closure. AU experiments

utilized two-input gates (with the exception of NOT).
investigation was conducted as follows.

The

ITermination: 150 generations 1
A representative graph showing the evolution of the

synthesized logic is shown for the Test 1 problem.

1600 I 1560 I

The GP tree structure for the logic gate case 7 solution to 1
the Test 1 problem, is the following.

f(a,b,c,d) = C(0,4,5,7,8,9,13,15)

I

B 6 D

825

A representative graph detailing the evolution of the
synthesized logic is shown for the Test 6 problem. None of the
experiments produced a solution with 100% coverage.

Mutation Rate:
Function Set:
Fitness Measure:

Criterion:

The schematic diagram for this synthesized circuit is as follows.

:=3

1/1000 (probability)
and, or, not, xor, nand, nor
+lo0 for each correct truth-table &term
-1 for each logic gate/ter“l

Fitness is ((2%) - gates/terminds)*lOO
Where n is the number of inmt variables

D

6
B

The circuit can be simplitied with other programs, such that
redundant logic is eliminated. For example the “B NAND B
shown here would simplify to “NOT B , as well as the logic
“NOT B XOR NOT D” could be changed to “B XOR D. This
then, creates a practical and good, but not standard solution.
This structure is quite different than that of the human design, in
SOP Form.

The best function coverage results, for each logic gate case
group, are shown in the following table. The number of gates
and terms in the evolved logic function are given for the derived
logic equations.

Total Logic Gates Case:
Minterms

2 116/16 ~ l O O . O % ~ l I ~ 1 8 12115113110 10 119
3 132/32 llOO.O%127lX 29lX IX I18 9 IX
b 131/32 196.9% IX 117117(201X 114113 IX 1 I I I I 1 I I I 1 I

*61/64 mintermss correct
X = Only best function coverage results listed in table.

C. Population Size
The GP Logic Synthesis experiments were next conducted

using different sizes of siring populations. The purpose of this
inquiry was to get a basic understanding of the impact that larger
populations, by introducing a greater breeding selection and
perhaps larger diversity into the gene pool, would have on
function discovery. The complete set of logic gates (AND, OR,
NOT, XOR, NAND, NOR) were utilized

IPodation Sizes: ~1000.2000. 3000.4000.5000 1

ITermination: 150 generations 1

I
m-1 I I I I I I I I I I I I I I I I

I 2 3 4 5 6 7 8 9 1011 1213141516

*Best Fit. (m. size3oOo) +Best Fit. (pcp siae4ooo)

+ B e s t F k . (~ sbE!5ooo) -+-pafectFaness(M/ogdus)

The study was conducted only on those arbitrarily chosen
functions for which incomplete solutions (function coverage of
less than 100%) were obtained in the preceding logic gate study.
These results are given, as follows.

00 2000 3000 4000 5000

X = Only best coverage results listed in table

D. GP Training Set Size
Empirical experiments were also conducted to understand

the relation between GP training set size and function coverage
with the new logic synthesis method. Testing was performed on
the MCNC benchmarks “9sy”’ and “Majority”. 9sym is a
completely defined, g-input, l-output function of 29 = 512 test
vectors, with symmetric properties. The “Majority“ function is a
5-input, l-output function, which is also a well-defined standard
The third test was defined in the previous section as Test 6.
With 6-inputs and 1-output, it is slightly larger than the
“Majority“ benchmark, but not so large as the “9sym” file. As
this function design is completely random, it does not
demonstrate the “pattem-ness” or regularity most often observed
in real-world engineering problems.

For each of the test functions the experimentation was
conducted as follows. In the first iteration of the experiments,
the GP-Logic Synthesis was trained over the benchmark‘s truth
table, with a 0% missing portion (don’t cares) of the complete
training set. (This test was identical in manner to that in ail the
previous experiments.) Subsequent tests were then conducted in
which the GP was only provided a portion (arbitrarily missing

chromosomes from which the best traits can be selected. In the
"Don't Cares" versus Function Coverage experiments, it was
observed that only a small training set is necessary for function
recognition. The number of experiments in this research was
quite small; these results may be highly biased by the degree of
"pattern-ness" inherenl in these functions. However since most
natural functions do exhibit a high degee of pattem, this may
not be an issue.

This empirical experimental evidence is a good, practical,
and effective manner for an understanding of the effectiveness of
GP for the appiication of logic synthesis. It is a first step to an
implementation of a more comprehensive logic synthesis method
and more testing on standard benchmarks is necessary.

t
Test Coverage of Complete Benchmark

Percent don't cares
0 10 20 30 40 50 60 70 80 90 100

826

from 5 to 100%) of the benchmark truth table during the training
session, run for a period of 100 generations. The GP derived
function that was found to provide the best coverage of the
training set, at the end of the final generation (100) was selected.
The logic outputs produced by the synthesized equation, over the
entire range of inputs, were then compared to those of the
benchmark's truth table. This provided a measure of the
complete function coverage in relation to the training set.

It was
observed that for training sets missing fiom 0 to 90% (don?
cares) of the complete benchmark, (or conversely, training sets
that consisted of from 100 to 10% of the benchmark), that
complete function coverage was 80% or greater.

Results are given for the Majority benchmark

Majority: Training Set Size vs. Complete
hnction Coverage

Maj.
Test 6

Missing Portion of Complete Training Set

97% 97% 91% 88% 88% 81% 81% 81% 81% 81% 41%
86% 84% 81% 81% 81% 81% 69% 44% 44% 47% 55%

1 4 Coverage of Complete Benchmark 1

h v m l870/~89%/,186Y0/,l85%184%184%186%(85%18 1% 169Y00(50%1
1

IV. GENERAT, OBSERVATIONS
From the preceding experiments a number of observations

were made. In general, the Genetic Programming demonstrates
certain trends when applied to the logic synthesis problem. The
GP usually tends to do better (hereafter defined as achieving a
higher function coverage) when there is a larger choice of logic
gates. In thls circumstance it can better choose the gate that
meets a specific need by either more efficiency (requiring fewer
gates) or by effecting a particular part of the logic, leading to
more correct outputs. (An exception to this generality is
sometimes observed in the experiments implementing the
synthesis with only NAND gates. Such synthesized equations
can achieve good function coverage, but often have high
structural complexities. The NAND gate was the only gate
tested, that is universal by itself.) The GP also does better with
larger sized populations. This provides a bigger pool of

V. CONCLUSION

Programming was created In this me tha the logic is designed
entirely by evolutionary means, without explicit computer
programming. This technique is uniquely advantageous for its
flexibility, both in its applicability to any type of logic (binary or
multi-valued), and its optimization criterion (correct logic
outputs, minimal layout area, minimal power consumption, etc.)
in addition, it was found that only small training sets are
necessary for the evolutionary function discovery. While
complete function coverage is not guaranteed, the best
experimental test results over eight randomly designed functions
have produced logic equations with a 98.4% function coverage.
Research endeavors continue towards proven coverage by
analyzing the differences between the derived logic and given
truth table. However, this technique is already useful for the
Constructive Induction Approach to Machine Learning, where
the synthesis goal is to minimize the classification error, rather
than attain complete coverage. In Machine Learning, finding a
simpler circuit without full coverage is a way of dealing with the
"over-fitting" problem. I

REFERENCES:
[l] K. M. Dill, Growing Digrtal Circuits: Logrc S'thesis and
Minimization with Genetic Operators, Master of Science Thesis,
Dept. of Electrical and Computer Engineering, Oregon State
University, June 1997.

[2] A. Fraser, "Genetic Programming in C++: (A manual in
progress for e+, a public domain genetic programming 1
system)". Technical Report #040. University of Salford,
Cybemetics Research Institute, 1994.

A new method of logic synthesis utilizing Genetic ~

I

[3] D. E. Goldberg, Genetic Algorithms in Search, Optimization,
& Machine Leaming, New York Addison-Wesley Publishing 1
Company, Inc., 1989.

[4] J. R Koza, Genetic Programming: On the Programming of
Computers by Means of Natural Selection, Cambridge,:
Massachusetts: The MIT Press, 1992.

[5] J. R Koza, Genetic Programming II: Automatic Discovety
of Reusable Programs, Cambridge, Massachusetts: The Pua
Press, 1994.

