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ABSTRACT 

Efficient function representation is very important for 
speed and memory requirements of multiple-valued de- 
composers. This paper presents a new representation 
of multiple-valued relations (functions in particular), 
called Multiple- Valued Cube Diagram Bundles (MVCDB). 
MVCDBs improve on Rough Partition representation by 
labeling their blocks with variable values and by repre- 
senting blocks efficiently. The MVCDB representation is 
especially efficient for very strongly unspecified multiple- 
valued input, multiple-valued output functions and rela- 
tions, typical for Machine Learning applications. 

I. INTRODUCTION. 

Multiple-valued functions and relations that include 
very many don't cares are becoming increasingly impor- 
tant in several areas of applications such as Machine 
Learning and Knowledge Discovery [16] and also in com- 
binational and sequential circuit design. I t  is impor- 
tant to have an efficient representation for such rela- 
tions. For instance, the successes of many binary de- 
composers depended on appropriate innovative represen- 
tations of Boolean functions for which some properties 
could be checked very rapidly: cube calculus 1261, spec- 
tral transforms [22], decision diagrams [9, 211, and rough 
partitions [13]. Better representation allows storing larger 
functions, and also, carrying the appropriate calculations 
more efficiently. Our work was motivated by multi-valued 
relation decomposition [18]. The aim was to find such a 
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representation in which the operations of cofactoring, tau- 
tology checking, determining intersections, set and all op- 
erations necessary for relations had straightforward rep- 
resentations in data structures and could be performed 
efficiently. With the exception of [7, 8, 131, the represen- 
tation problem has not been investigated for those multi- 
valued decomposers that have been practically realized in 
computer programs. A new general-purpose representa- 
tion of functions and relations proposed here improves on 
the representations from [7, 8, 131. It is particularly cru- 
cial to speed up the decomposition of large incompletely 
specified multiple-valued relations and functions. This 
general-purpose represen tation takes good properties of 
MV Cube Calculus (MVCC) [4, 231, Decision Diagrams 
[l] and Rough Partitions [13, 11, 10, 12, 131, and is related 
to Boolean and multiple-valued relations [2, 271. It is espe- 
cially useful for very weakly specified relations, and allows 
to efficiently implement algorithms which used MVCC, 
Decision Diagrams, and 'Calculus of Rough Partitions in 
the past. 

11. REPRESENTATION OF INCOMPLETELY SPECIFIED 
MULTI-VALUED FUNCTIONS 

Two essentially different representation methods for 
MV functions are used in programs: Multiple-valued 
Cube Calculus (MVCC) [23] and Multiple-valued Deci- 
sion Diagrams (MVDD) 1:14, 51. These methods have also 
been extended to incompletely specified functions. Here 
we will focus on the area that has not been researched 
until recently: very weakly specified functions, specified 
by very many variables but with relatively small percent- 
age of care minterms, i.e. input combinations for which 
function is specified. We call them the Strongly Unspeci- 
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Table 1: Table of M V  relation. Rows correspond to M V  
cubes. Output variable g is a function. 

fied Functions. Multiple-valued functions of this type oc- 
cur in Machine Learning (ML) [16], Knowledge Discovery 
in Databases (KDD) [ 6 ] ,  and to a lesser degree in Finite 
State Machine design (for instance, the 1993 FSM MCNC 
benchmark s8 has 85% next state don’t cares and kirkman 
has 71% output don’t cares). 

Below, we will give an overview of incompletely speci- 
fied function representations considered previously in lit- 
erature, and explain why these representations are inade- 
quate for our class of problems. Observe, that a discrete 
function, or a discrete relation, can be represented as a 
two-dimensional table (tables like this are not a part of 
the representations, and we use them solely for ease of 
explanation). An example is shown in Table 1. There, 
the columns correspond to the input variables (a,b),  a 
3-valued output relation f ,  and the 3-valued output func- 
tion g. The input variables describe the domain, and the 
output variable(s) describe the co-domain. A row stores 
an element of the domain and a set of the corresponding 
function values. Rows are enumerated, each of them is as- 
signed a ”row number”. For a function, each minterm has 
a single value in the co-domain, for a relation, minterm 
may correspond to many values in the co-domain. For in- 
stance, the row number 3 in Table 1 states that minterm 
11 maps to values 1 or 2 in the 3-valued output relation f 
(f(l1) = 1 or f(OlO0) = 2). One can select any of these 
values during minimization, whichever simplifies the final 
description better. Such entry in the table is called gener- 
alized don’t care. For function g, each position in the col- 
umn has a single value. Observe that out of 6 minterms of 
2 variables the table includes only 4 care cubes (minterms 
in this case) - the remaining 2 don’t care minterms are not 
listed. This is an implicit way of representing standard 
output don’t cares of all output variables. When output 
don’t care occurs only for some outputs, an explicit don’t 
care symbol ”-” is used for them. For instance, for vari- 
able f in row 0. Symbol ”-” means all possible values of 
this variable, this is a ”standard don’t care”, representing 
”totally unknown” values in ML applications. 

Let us denote by n the number of input variables and 
by m the number of output variables. The next general- 
ization of a table representation is to allow for input don’t 
cares. This means, the entries in input variables can take 
many values. In particular, if all values of a given variable 
are taken, a standard symbol ”-” is used. In such a case, 
rows correspond to M V  cubes, i.e., certain groups of MV 
minterms form complete k-dimensional sub spaces of the 

n-dimensional hypercube, k 5 n. When table has many 
outputs (m > 1) it stores multi-output MV care cubes. A 
care cube is one that has at  least one output variable which 
is not a standard don’t care ”-”. (It is possible to gener- 
alize this representation further by adding more columns 
corresponding to intermediate (auxiliary) variables. 

The most general relation that can be described using 
the table representation, has MV input variables with dif- 
ferent number of values each and several MV outputs with 
different number of values each. It may also have sets of 
values for positions in inputs columns, and sets of values 
in positions for output variables (meaning a separate rela- 
tion for each output with the inputs). One can argue that 
such tables are already realized in MVCC: the rows (with- 
out their numbers) would correspond to cubes in an array 
of cubes. The disadvantage of cube calculus is, however, 
that large initial multilevel netlists or BDDs may produce 
too many cubes after flattening, so that their cube arrays 
cannot be stored. Even for initial data in forms of large 
arrays of cubes in ML or controller design applications, 
the cubes can be too slow to manipulate and alternative 
representation may improve considerably the processing 
speed. 

In our approach we will create MVCDB representation 
from cubes, in such a way, that during and after its cre- 
ation, the MVCDB may occupy less storage than would 
be occupied by the corresponding set of cubes. This is 
because MVCDBs can be created incrementally, i.e. by 
reading a row at a time and updating the data structure. 

Below, we will first review the method to store MV 
functions, which will conceptually refer to the table pre- 
sented above, but which stores the data vertically, not 
horizontally. This method represents functions with 
Rough Partitions. Next, we will improve on this repre- 
sentation and generalize to relations. An early attempt 
to improve on the MVCC representation is presented in 
[13]. MV functions are represented there by Rough Par- 
titions (r-partitions, or RP) for their variables. There 
are two blocks for a binary variable, and K blocks for 
a K-valued variable. An RP stores the table column- 
wise. To every K-valued variable corresponds a column 
of the table. In RP with minterms as rows, every K- 
valued variable induces with its values a partition on the 
set of rows to blocks. For instance, in Table 1 the pri- 
mary variable b is the header of column 1001. Partition 
for primary input variable b is: I I (b )  = {Bo.  E l l  = 

. I  ~ ~. -_ . .  - -  
{0,3, 1,2}, rough-partition for output variable f is: --- 
II(f) = {Bo, B1, BSI = { O , L  01 21 31 071,293. 

The blocks may overlap. For instance an input binary 
don’t care is treated as 0 and 1, so the number of a row 
with a ”-” for a binary variable a is included in both blocks 
of the partition for this variable. The RP representation 
is a set of rough partitions for all variables (input and out- 
put) of the function. A similar, double-feature represen- 
tation of lists of lists and lists of characteristic functions 
(bit vectors) was used in 17, 81 for sequential machines. 
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Observe, that although the RP is a really new and inter- 
esting idea, it has the following major drawbacks: (1) RP 

of a function. This is because, for blocks in a partition of 

gether with the blocks. Thus, some information of a func- 

_ _ - - - - - _  
I *  x y  0 LI . 

does not represent a function, but only certain abstraction 

variable X ,  the values of the variable are not stored to- 

P---j - - - _ _  El 
I ,: - _ -  
_ _ _ _ _ - - - - *  

3 __-. _ _ _ _ _ _ _ _ - - - -  tion is lost when it is represented by a set of partitions 
for its variables. (2) Similarly to arrays of cubes, the RP 
implementation, as described in [13], is a flat list represen- 
tation, with all known disadvantages of such representa- 
tions. (3) RP do not represent relations. We believe that 
for these reasons the ”pure” partition-based representa- 
tions of functions and state machines [13, 7, 81 have been 
limited in the past in their applications and popularity. 

In both binary and MV cases, an efficient representa- 
tion for strongly unspecified relations (and even functions) 
has not been yet proposed and this paper tries to fill this 
gap. We call our new representation the MV Cube Dia- 
gram Bundles (MVCDB): Cube - because it operates on 
cubes as atomic representations; Diagrams - because it 
uses Decision Diagrams (of any kind) to represent sets; 
Bundles - because several diagrams and data are bun- 
dled together to specify multi-output Multiple- Valued Re- 
lation. The MVCDB representation is general and can 
be applied to both binary and multiple-valued functions 
(Finite State Machines) and relations (non-deterministic 
Finite State Machines) in the same way. 

111. MULTIPLE-VALUED C U B E  DIAGRAM BUNDLES T O  
REPRESENT FUNCTIONS AND RELATIONS 

A multi-output MV cube is represented as a row of 
the conceptual table introduced in the previous section. 
Below, rows and cubes will be treated interchangeably. 
Originally, the cubes are expressed in terms of the pri- 
mary input variables. In MVCDB representation, each 
cube is encoded with new binary variables called the sec- 
ondary variables. To each cube corresponds a minterm 
in secondary variables. If not specified otherwise, the bi- 
nary codes of the secondary variables correspond to the 
decimal numbers enumerating the rows in the table. 
Example 1. A Kmap with primary input variables a, b, 
and c is shown in Fig. la. As the result of encoding of 
primary cubes with secondary input variables, x and y ,  a 
new map, Fig. l b ,  is created. Encoding of variables x and 
y corresponds in this case to natural binary codes of the 
numbers of rows. Figures la and l b  show how cubes of 
the first map are encoded into minterms of the secondary 
map. In general, this encoding can be arbitrary, and can 
be of a non-minimum length. The table for the function 
from Fig. la is shown in Fig. IC, and the encodings of its 
rows to secondary input variables is shown in Fig. Id. 

For each primary input variable VAR a set of Boolean 
functions is created; there are as many functions as the 
values that the variable can take. These functions are 

mi 
0 0 -  

- I O  
1 0 -  

) h) ) d) 

Figure 1: Mapping f r o m  primary to secondary variables 
for Example 1: (a) origiraal function with primary inputs, 
(b) secondary space with secondary input variables x and 
y, (c) table of function f, (d)  encoding of primary cubes. 

Figure 2: Input part of a data structure for the MVCDB 
from Example 1 

represented as: DDVAI , (VAR)  I V A L  = 0 , 1 , . . K v ~ ~ ,  
where KVAR is the number of values of variable VAR. 
The ON-set of each D I ~ A L ( V A R )  represents a set of 
minterms on secondary variables that have value VAL for 
variable VAR. The number of rows of the table determines 
the number of minterms in secondary variables and thus 
the size of the corresponding set called Value DD. For in- 
stance, in the MVCDB firom Fig. 2, which corresponds to 
the function from Examlple 1, by ”DD for set {0,1,2)” we 
understand a Value DD that represents the set of natu- 
ral numbers {0,1,2) encoded in (binary) secondary input 
variables as {00,01,10), respectively. Assuming secondary 
variables x and y, this yields {Z 8, Z y ,  28). Ali the Value 
DDs are built together from columns of the conceptual ta- 
ble, scanned row after row. They are shared and ordered. 

For consistency with MV logic, the ON cube will be 
called a VALI-cube, and the OFF cube, a VAL,-,-cube. In 
a single binary-output function F ,  each true minterm of 
the function represented by D D l ( F )  of MVCDB(F) cor- 
responds to the table’s row, i.e., to an ON cube in function 
F on primary variables. Similarly, each false minterm 
in DDo(F) corresponds to an  OFF cube in function F 
on primary variables. In the case of a MVCDB repre- 
senting a K-valued logic function, each s-valued minterm 
of function represented by D D , ( F )  of the MVCDB is a 
VAL,-cube, s=O, ... K - .L, on primary variables. 

MVCDB representation (see Fig. 2) of function F may 
be seen as a hierarchy of labeled sets. At the highest 
level, there are sets labeled by function’s input and out- 
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Input 

variable b 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ - - -  

E{ E{ 

Iriables 

Figure 3: Data structure for a MVCDB from Table 1 to 
Example 2 

put variables (variable a, variable b, variable c, on Fig. 
2). Each of them consists of sets labeled by the variable’s 
value (DDO corresponds to value 0, DD1 corresponds to 
value 1). Each of sets labeled by the variable’s value con- 
tains corresponding row numbers and is represented by a 
decision diagram. 
Example 2. An MVCDB for function from Table 1 is 
shown in Fig. 3. Here DDo(a) = D D o ( f ) ,  DDo(b) = 
DDo(g), and DDl(b)  = DDz(g) so these sets don’t need 
to be repeated in the function F representation saving 
memory space. Standard don’t cares for f are treated as 
a generalized don’t care and all their values are stored 
in the Value DDs. Observe also the pointer to 0 for the 
non-used value 1 of output g. 

Definition. Given is MV relation R in a form of a ta- 
ble. The MVCDB representation of this table is the set 
of rough partitions on rows for all its input and output 
variables, in which all blocks are labeled with respective 
values of these variables. Thus, MVCDB is a set of la- 
beled sets. For efficiency of processing and storage, this 
set is represented in a compressed form. Any method to 
represent sets is possible. In particular, these sets can 
be represented as BSs, BDDs, BMDDs, EVDDs, KFDDs, 
K*BMDs, ZBDDs, etc. [15]. 

Now we formally define the MVCDB. 

I v .  MVCDBS ALLOW EFFICIENT MANIPULATION AND 
STORAGE O F  FUNCTIONS A N D  RELATIONS 

If an (implicit) cube has standard output don’t cares for 
all its outputs, it is not stored (explicitly) in the MVCDB 
at all. This means that only care cubes are stored. Don’t 
care minterms are represented implicitly, because every- 
thing that is not a care is implied to be a don’t care. This 

means, for large functions and relations with many don’t 
cares, a big saving of both storage and processing time, 
when compared to the representations that store don’t 
cares explicitly (such as MVCC in Espresso-MV). Also, a 
MVDD has to store pointers to the terminal node “DC”. 
If there are L disjoint DC cubes in a map, there would 
be L such pointers, and this number can be exponential 
in the number of input variables. Moreover, MVDD re- 
quires a good ordering of MV input variables, which has 
not been successfully solved and can lead to prohibitively 
large diagrams. In contrast, the size of MVCDB is in the 
worst case of the order of the number of cares, so it does 
not depend on the location of the don’t cares. In addi- 
tion, for MVCDB, the encoding with secondary variables 
is used to decrease the sizes of the DDs. If the secondary 
variables are binary, the efficient binary BDD packages 
based on sifting or other variable ordering techniques can 
be used. In case of using MVCDBs to represent relations, 
the generalized don’t care positions are stored in an effi- 
cient way, because they are treated in the same way as 
the input don’t cares, and the sharing of subsets is used 
between all the variables. Also the input and output vari- 
ables are represented uniformly. 

It is well-known, that there are functions, such as par- 
ity, for which BDDs are obviously better, and there are 
other functions, such as the one shown by Devadas [3] 
(or that occur in ML, logic or controller design [25]), that 
are more efficiently described using an array of cubes. It 
can be shown that with good selection of Value DDs en- 
coding, in these two extreme worst cases the MVCDBs 
are comparable in size to the better representation of the 
two: arrays of cubes, or BDDs. (1) One extreme exam- 
ple is a completely specified binary function, similar to 
parity, and with many input variables. Obviously, in this 
case, a BDD is better than an array of cubes, because 
the BDD has the polynomial number of nodes, and the 
array of cubes has an exponential number of cubes. In 
this case the original variables are selected as the sec- 
ondary variables for the MVCDB. Thus the size of the 
Value DD for the ON-set of the output variable is the 
same as that of the BDD for this function. All the In- 
put Value DDs have one node each. So, disregarding a 
small overhead in the top lists of the MVCDB data struc- 
ture, both representations are comparable in size. ( 2 )  For 
the other extreme case, let us consider a binary function 

of cubes and exponential number of nodes in BDD. When 
the function is specified by cubes, it has n variables and 
k cubes, k << 2”. Very conservatively estimating: in 
the worst case there are 2(n+ 1) Value DDs, each with k 
nodes. So, the total number of DD nodes is O(2nk)  while 
the number of nodes in the BDD would be O(2”). Exam- 
ples of multi-output MV relations can be constructed for 
which the advantage over MVDDs would be dramatic for 
large values of n and k. It seems, that there exist practical 
functions with similar, although not that extreme prop- 

like those discussed in [3] that have polynomial number 
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erties [25]. To this category belong functions with many 
cubes and many variables, but with still very small ratio 
of cares to don’t cares. This category includes the same 
kind of functions as those from the ML benchmarks, but 
with even larger k, n and number of terms than in all the 
functions from U.C. Irvine benchmarks. We expect that 
for larger multi-valued functions or relations the advan- 
tages of MVCDBs will be even more clearly observable. 

We implemented a decomposer, GUD-MV, for MV rela- 
tions, [18] which splits up a relation into smaller blocks in 
order to minimize the overall relation complexity. Com- 
plexity of MV relation is determined by a parameter called 
Relation Cardinal i ty  (RC) and defined as follows: 

Defiition. Relation Cardinali ty (RC) for MV rela- 
tion with a set of inputs X = (20, 21, . . . ,2,} and set of 
outputs Y = {yo, y1,. . . , ym} is defined by the following 

where: wi is multiplicity of variable zi E X ,  
is multiplicity of variable yj  E Y. myj 

The above definition extends Decomposed Function 
Cardinal i ty  (DFC) [20] on MV relations and is directly 
related to the amount of information the relation could 
possibly handle. 

Concise and elegant solutions were obtained and veri- 
fied (for instance, for the difficult example trains). Some 
benchmarks are in Tables 3 and 4. Benchmarks run on 
SPARC-10 workstations. Times listed are user times. 
Result of comparison for selected MCNC benchmarks is 
shown in Table 4. [l]-Results not available for this bench- 
mark, [2]-Program limited to 32 input and 32 output vari- 
ables, TRADE - Program designed a t  PSU [26], MIS11 - 
Program designed a t  UC Berkeley, DSGN174 - Program 
designed by B. Steinbach [24], GUD-MV - Program de- 
signed at  PSU. As we can see from the table, complex- 
ity of the functions obtained using GUD-MV is in most 
cases smaller than for other decomposers. And smaller 
complexity translates directly to smaller circuit area and 
power consumption in circuit design and to better gen- 
eralisation properties in ML. Table 3 shows the number 
of BDD nodes for few ML benchmarks. Note that vari- 
ables are multi-valued, so even benchmarks breastc and 
balance are strongly unspecified. Observe that even for 
the medium size real-life data such as breastc the per- 
cent of don’t cares is very high (for nine 10-valued vari- 
ables there were los - 699 don’t cares and only 699 cares. 
Thanks to our MVCDB representation GUD-MV is fast. 
For instance, the benchmarks zoo, shuttle, lenses and 
tmins took with BDDs only 9.9, 1.8, 0.3 and 1.8 seconds, 
respectively. Other benchmarks, such as breactc and bal- 
ance are slower (1880.0s and 44.3s) but these are quite 
large examples and the decomposer looks to many parti- 
tion candidates. 

All MV operations on MVCDBs use set-theoretical op- 
erations on the corresponding sets representing biecks. 

Therefore, any computer package for representing and 
manipulating sets (and in particular any DD package 
that allows set-theoretical operations), can be used to 
implement MVCDBs with no modification: for instance 
the packages for BMDDs, EVDDs, KFDDs, K*BMDs, 
ZBDDs, etc. [15]. We plan to compare the efficiency 
and storage requirements for MVCDBs with various data 
structures for blocks. Especially, we plan to experiment 
with these new classes in. our C++ based MVCDB pack- 
age. 

V. CONCLUSIONS 

In this paper we repoirt the following observations re- 
lated to application of multiple-valued logic synthesis to 
Machine Learning and KDD. 

1. The data occuring in these applications are distinctly 
difleerent from the most data taken from circuit design. 
Some of these data are relations and all are strongly un- 
specified. 

2. These data should be represented in a special way 
in a computer. The improved Rough Partition represen- 
tation introduced here, allows not only for faster Ashen- 
hurst/Curtis decomposition [18] but also for many other 
types of decomposition, such as for instance the binary 
AND/OR/EXOR decompositions to two-input gates [24]. 
Also, our new MVCDB ?representation does not lose any 
information, so it is a representation of the function, and 
not only some abstraction of the function (as is the RP 
representation). The MVCDB representation is especially 
good when there exist some variables with few, and other 
variables with many valules, and relations are weakly spec- 
ified, a situation that is typical in ML. Relations allow to 
elegantly formalize many aspects of generalized decom- 
positions, and MVCDBs allow to directly translate algo- 
rithms to data structures. 

3. Finally, for the case of large initial data, the paper 
proposed to represent the blocks in a compressed way in 
order to further save on ihe memory and gain on the pro- 
cessing speed. We compared two data structures for the 
compressed blocks: GNIJ++ Bit Sets and Univ. of Cal- 
ifornia Berkeley standard BDDs. For some benchmarks, 
GUD-MV can decompose functions too large to be solved 
by competing methods. The results of comparison, as well 
as more detailed presentation of operations on MVCDBs 
and benchmarks are presented in [19]. Although large 
U.C. Irvine benchmarks seem still to favour Bit Sets, we 
believe DDs will be better for even larger benchmarks. 
The concept of MVCDB does not specify how the sets 
should be represented, so any new improved representa- 
tion can be used in the future. 
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input file BDD set representation 
# of #of # of #of  #nodes 

in/out cubes BDDs nodes per BDD 
16/1 101 43 1080 25.1 

9/1 699 92 5300 57.6 

411 24 10 40 4.0 

6/1 15 18 80 4.4 

4/1 625 23 768 33.4 

32/1 10 107 360 3.4 

Table 3: Results on binary function MCNC benchmarks 
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