
CUBE DIAGRAM BUNDLES: A NEW REPRESENTATION

AND RELATIONS
OF STRONGLY UNSPECIFIED MULTIPLE-VALUED FUNCTIONS

S. Grygiel, M. Perkowski, M. Marek-Sadowska i, T. Luba 0 , L. Joxwiak +,
Portland State University, Dept. of Electrical Engineering, Portland, Oregon 97207,

Tel: 503-725-541 1, Fax: 503-725-4882, mperkows@ee.pdx.edu,
t Univ. of Calif., Santa Barbara, Electrical and Computer Engineering Dept.,

Santa Barbara, CA 93106, mms@ece.ucsb.edu,
0 Warsaw Univ. of Technology, Dept. of Electronics, Inst. of Telecommunication,

Warszawa, Nowowiej ska 15/ 19, Poland, luba@ t ele. pw .edu. pl,
+ Faculty of Electronics Engineering, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands, lech8eb.ele.tue.nl

ABSTRACT

Efficient function representation is very important for
speed and memory requirements of multiple-valued de-
composers. This paper presents a new representation
of multiple-valued relations (functions in particular),
called Multiple- Valued Cube Diagram Bundles (MVCDB).
MVCDBs improve on Rough Partition representation by
labeling their blocks with variable values and by repre-
senting blocks efficiently. The MVCDB representation is
especially efficient for very strongly unspecified multiple-
valued input, multiple-valued output functions and rela-
tions, typical for Machine Learning applications.

I. INTRODUCTION.

Multiple-valued functions and relations that include
very many don't cares are becoming increasingly impor-
tant in several areas of applications such as Machine
Learning and Knowledge Discovery [16] and also in com-
binational and sequential circuit design. I t is impor-
tant to have an efficient representation for such rela-
tions. For instance, the successes of many binary de-
composers depended on appropriate innovative represen-
tations of Boolean functions for which some properties
could be checked very rapidly: cube calculus 1261, spec-
tral transforms [22], decision diagrams [9, 211, and rough
partitions [13]. Better representation allows storing larger
functions, and also, carrying the appropriate calculations
more efficiently. Our work was motivated by multi-valued
relation decomposition [18]. The aim was to find such a

'This research was partially supported by the Dutch Technology
Foundation (STW) under project EEL 55.3958

representation in which the operations of cofactoring, tau-
tology checking, determining intersections, set and all op-
erations necessary for relations had straightforward rep-
resentations in data structures and could be performed
efficiently. With the exception of [7, 8, 131, the represen-
tation problem has not been investigated for those multi-
valued decomposers that have been practically realized in
computer programs. A new general-purpose representa-
tion of functions and relations proposed here improves on
the representations from [7, 8, 131. It is particularly cru-
cial to speed up the decomposition of large incompletely
specified multiple-valued relations and functions. This
general-purpose represen tation takes good properties of
MV Cube Calculus (MVCC) [4, 231, Decision Diagrams
[l] and Rough Partitions [13, 11, 10, 12, 131, and is related
to Boolean and multiple-valued relations [2, 271. It is espe-
cially useful for very weakly specified relations, and allows
to efficiently implement algorithms which used MVCC,
Decision Diagrams, and 'Calculus of Rough Partitions in
the past.

11. REPRESENTATION OF INCOMPLETELY SPECIFIED
MULTI-VALUED FUNCTIONS

Two essentially different representation methods for
MV functions are used in programs: Multiple-valued
Cube Calculus (MVCC) [23] and Multiple-valued Deci-
sion Diagrams (MVDD) 1:14, 51. These methods have also
been extended to incompletely specified functions. Here
we will focus on the area that has not been researched
until recently: very weakly specified functions, specified
by very many variables but with relatively small percent-
age of care minterms, i.e. input combinations for which
function is specified. We call them the Strongly Unspeci-

0-8186-7910-7197 $10.00 0 1997 IEEE
287

mailto:mperkows@ee.pdx.edu
mailto:mms@ece.ucsb.edu

Table 1: Table of M V relation. Rows correspond to M V
cubes. Output variable g is a function.

fied Functions. Multiple-valued functions of this type oc-
cur in Machine Learning (ML) [16], Knowledge Discovery
in Databases (KDD) [6] , and to a lesser degree in Finite
State Machine design (for instance, the 1993 FSM MCNC
benchmark s8 has 85% next state don’t cares and kirkman
has 71% output don’t cares).

Below, we will give an overview of incompletely speci-
fied function representations considered previously in lit-
erature, and explain why these representations are inade-
quate for our class of problems. Observe, that a discrete
function, or a discrete relation, can be represented as a
two-dimensional table (tables like this are not a part of
the representations, and we use them solely for ease of
explanation). An example is shown in Table 1. There,
the columns correspond to the input variables (a,b), a
3-valued output relation f , and the 3-valued output func-
tion g. The input variables describe the domain, and the
output variable(s) describe the co-domain. A row stores
an element of the domain and a set of the corresponding
function values. Rows are enumerated, each of them is as-
signed a ”row number”. For a function, each minterm has
a single value in the co-domain, for a relation, minterm
may correspond to many values in the co-domain. For in-
stance, the row number 3 in Table 1 states that minterm
11 maps to values 1 or 2 in the 3-valued output relation f
(f(l1) = 1 or f(OlO0) = 2). One can select any of these
values during minimization, whichever simplifies the final
description better. Such entry in the table is called gener-
alized don’t care. For function g, each position in the col-
umn has a single value. Observe that out of 6 minterms of
2 variables the table includes only 4 care cubes (minterms
in this case) - the remaining 2 don’t care minterms are not
listed. This is an implicit way of representing standard
output don’t cares of all output variables. When output
don’t care occurs only for some outputs, an explicit don’t
care symbol ”-” is used for them. For instance, for vari-
able f in row 0. Symbol ”-” means all possible values of
this variable, this is a ”standard don’t care”, representing
”totally unknown” values in ML applications.

Let us denote by n the number of input variables and
by m the number of output variables. The next general-
ization of a table representation is to allow for input don’t
cares. This means, the entries in input variables can take
many values. In particular, if all values of a given variable
are taken, a standard symbol ”-” is used. In such a case,
rows correspond to M V cubes, i.e., certain groups of MV
minterms form complete k-dimensional sub spaces of the

n-dimensional hypercube, k 5 n. When table has many
outputs (m > 1) it stores multi-output MV care cubes. A
care cube is one that has at least one output variable which
is not a standard don’t care ”-”. (It is possible to gener-
alize this representation further by adding more columns
corresponding to intermediate (auxiliary) variables.

The most general relation that can be described using
the table representation, has MV input variables with dif-
ferent number of values each and several MV outputs with
different number of values each. It may also have sets of
values for positions in inputs columns, and sets of values
in positions for output variables (meaning a separate rela-
tion for each output with the inputs). One can argue that
such tables are already realized in MVCC: the rows (with-
out their numbers) would correspond to cubes in an array
of cubes. The disadvantage of cube calculus is, however,
that large initial multilevel netlists or BDDs may produce
too many cubes after flattening, so that their cube arrays
cannot be stored. Even for initial data in forms of large
arrays of cubes in ML or controller design applications,
the cubes can be too slow to manipulate and alternative
representation may improve considerably the processing
speed.

In our approach we will create MVCDB representation
from cubes, in such a way, that during and after its cre-
ation, the MVCDB may occupy less storage than would
be occupied by the corresponding set of cubes. This is
because MVCDBs can be created incrementally, i.e. by
reading a row at a time and updating the data structure.

Below, we will first review the method to store MV
functions, which will conceptually refer to the table pre-
sented above, but which stores the data vertically, not
horizontally. This method represents functions with
Rough Partitions. Next, we will improve on this repre-
sentation and generalize to relations. An early attempt
to improve on the MVCC representation is presented in
[13]. MV functions are represented there by Rough Par-
titions (r-partitions, or RP) for their variables. There
are two blocks for a binary variable, and K blocks for
a K-valued variable. An RP stores the table column-
wise. To every K-valued variable corresponds a column
of the table. In RP with minterms as rows, every K-
valued variable induces with its values a partition on the
set of rows to blocks. For instance, in Table 1 the pri-
mary variable b is the header of column 1001. Partition
for primary input variable b is: I I (b) = {Bo. E l l =

. I ~ ~. -_ . . - -
{0,3, 1,2}, rough-partition for output variable f is: ---
II(f) = {Bo, B1, BSI = { O , L 01 21 31 071,293.

The blocks may overlap. For instance an input binary
don’t care is treated as 0 and 1, so the number of a row
with a ”-” for a binary variable a is included in both blocks
of the partition for this variable. The RP representation
is a set of rough partitions for all variables (input and out-
put) of the function. A similar, double-feature represen-
tation of lists of lists and lists of characteristic functions
(bit vectors) was used in 17, 81 for sequential machines.

288

Observe, that although the RP is a really new and inter-
esting idea, it has the following major drawbacks: (1) RP

of a function. This is because, for blocks in a partition of

gether with the blocks. Thus, some information of a func-

_ _ - - - - - _
I * x y 0 LI .

does not represent a function, but only certain abstraction

variable X , the values of the variable are not stored to-

P---j - - - _ _ El
I ,: - _ -
_ _ _ _ _ - - - - *

3 __-. _ _ _ _ _ _ _ _ - - - - tion is lost when it is represented by a set of partitions
for its variables. (2) Similarly to arrays of cubes, the RP
implementation, as described in [13], is a flat list represen-
tation, with all known disadvantages of such representa-
tions. (3) RP do not represent relations. We believe that
for these reasons the ”pure” partition-based representa-
tions of functions and state machines [13, 7, 81 have been
limited in the past in their applications and popularity.

In both binary and MV cases, an efficient representa-
tion for strongly unspecified relations (and even functions)
has not been yet proposed and this paper tries to fill this
gap. We call our new representation the MV Cube Dia-
gram Bundles (MVCDB): Cube - because it operates on
cubes as atomic representations; Diagrams - because it
uses Decision Diagrams (of any kind) to represent sets;
Bundles - because several diagrams and data are bun-
dled together to specify multi-output Multiple- Valued Re-
lation. The MVCDB representation is general and can
be applied to both binary and multiple-valued functions
(Finite State Machines) and relations (non-deterministic
Finite State Machines) in the same way.

111. MULTIPLE-VALUED C U B E DIAGRAM BUNDLES T O
REPRESENT FUNCTIONS AND RELATIONS

A multi-output MV cube is represented as a row of
the conceptual table introduced in the previous section.
Below, rows and cubes will be treated interchangeably.
Originally, the cubes are expressed in terms of the pri-
mary input variables. In MVCDB representation, each
cube is encoded with new binary variables called the sec-
ondary variables. To each cube corresponds a minterm
in secondary variables. If not specified otherwise, the bi-
nary codes of the secondary variables correspond to the
decimal numbers enumerating the rows in the table.
Example 1. A Kmap with primary input variables a, b,
and c is shown in Fig. la. As the result of encoding of
primary cubes with secondary input variables, x and y , a
new map, Fig. l b , is created. Encoding of variables x and
y corresponds in this case to natural binary codes of the
numbers of rows. Figures la and l b show how cubes of
the first map are encoded into minterms of the secondary
map. In general, this encoding can be arbitrary, and can
be of a non-minimum length. The table for the function
from Fig. la is shown in Fig. IC, and the encodings of its
rows to secondary input variables is shown in Fig. Id.

For each primary input variable VAR a set of Boolean
functions is created; there are as many functions as the
values that the variable can take. These functions are

mi
0 0 -

- I O
1 0 -

) h)) d)

Figure 1: Mapping f r o m primary to secondary variables
for Example 1: (a) origiraal function with primary inputs,
(b) secondary space with secondary input variables x and
y, (c) table of function f, (d) encoding of primary cubes.

Figure 2: Input part of a data structure for the MVCDB
from Example 1

represented as: DDVAI , (VAR) I V A L = 0 , 1 , . . K v ~ ~ ,
where KVAR is the number of values of variable VAR.
The ON-set of each D I ~ A L (V A R) represents a set of
minterms on secondary variables that have value VAL for
variable VAR. The number of rows of the table determines
the number of minterms in secondary variables and thus
the size of the corresponding set called Value DD. For in-
stance, in the MVCDB firom Fig. 2, which corresponds to
the function from Examlple 1, by ”DD for set {0,1,2)” we
understand a Value DD that represents the set of natu-
ral numbers {0,1,2) encoded in (binary) secondary input
variables as {00,01,10), respectively. Assuming secondary
variables x and y, this yields {Z 8, Z y , 28). Ali the Value
DDs are built together from columns of the conceptual ta-
ble, scanned row after row. They are shared and ordered.

For consistency with MV logic, the ON cube will be
called a VALI-cube, and the OFF cube, a VAL,-,-cube. In
a single binary-output function F , each true minterm of
the function represented by D D l (F) of MVCDB(F) cor-
responds to the table’s row, i.e., to an ON cube in function
F on primary variables. Similarly, each false minterm
in DDo(F) corresponds to an OFF cube in function F
on primary variables. In the case of a MVCDB repre-
senting a K-valued logic function, each s-valued minterm
of function represented by D D , (F) of the MVCDB is a
VAL,-cube, s=O, ... K - .L, on primary variables.

MVCDB representation (see Fig. 2) of function F may
be seen as a hierarchy of labeled sets. At the highest
level, there are sets labeled by function’s input and out-

289

Input

variable b
_ _ _ _ _ _ _ _ _ _ _ _ _ _ - - -

E{ E{

Iriables

Figure 3: Data structure for a MVCDB from Table 1 to
Example 2

put variables (variable a, variable b, variable c, on Fig.
2). Each of them consists of sets labeled by the variable’s
value (DDO corresponds to value 0, DD1 corresponds to
value 1). Each of sets labeled by the variable’s value con-
tains corresponding row numbers and is represented by a
decision diagram.
Example 2. An MVCDB for function from Table 1 is
shown in Fig. 3. Here DDo(a) = D D o (f) , DDo(b) =
DDo(g), and DDl(b) = DDz(g) so these sets don’t need
to be repeated in the function F representation saving
memory space. Standard don’t cares for f are treated as
a generalized don’t care and all their values are stored
in the Value DDs. Observe also the pointer to 0 for the
non-used value 1 of output g.

Definition. Given is MV relation R in a form of a ta-
ble. The MVCDB representation of this table is the set
of rough partitions on rows for all its input and output
variables, in which all blocks are labeled with respective
values of these variables. Thus, MVCDB is a set of la-
beled sets. For efficiency of processing and storage, this
set is represented in a compressed form. Any method to
represent sets is possible. In particular, these sets can
be represented as BSs, BDDs, BMDDs, EVDDs, KFDDs,
K*BMDs, ZBDDs, etc. [15].

Now we formally define the MVCDB.

I v . MVCDBS ALLOW EFFICIENT MANIPULATION AND
STORAGE O F FUNCTIONS A N D RELATIONS

If an (implicit) cube has standard output don’t cares for
all its outputs, it is not stored (explicitly) in the MVCDB
at all. This means that only care cubes are stored. Don’t
care minterms are represented implicitly, because every-
thing that is not a care is implied to be a don’t care. This

means, for large functions and relations with many don’t
cares, a big saving of both storage and processing time,
when compared to the representations that store don’t
cares explicitly (such as MVCC in Espresso-MV). Also, a
MVDD has to store pointers to the terminal node “DC”.
If there are L disjoint DC cubes in a map, there would
be L such pointers, and this number can be exponential
in the number of input variables. Moreover, MVDD re-
quires a good ordering of MV input variables, which has
not been successfully solved and can lead to prohibitively
large diagrams. In contrast, the size of MVCDB is in the
worst case of the order of the number of cares, so it does
not depend on the location of the don’t cares. In addi-
tion, for MVCDB, the encoding with secondary variables
is used to decrease the sizes of the DDs. If the secondary
variables are binary, the efficient binary BDD packages
based on sifting or other variable ordering techniques can
be used. In case of using MVCDBs to represent relations,
the generalized don’t care positions are stored in an effi-
cient way, because they are treated in the same way as
the input don’t cares, and the sharing of subsets is used
between all the variables. Also the input and output vari-
ables are represented uniformly.

It is well-known, that there are functions, such as par-
ity, for which BDDs are obviously better, and there are
other functions, such as the one shown by Devadas [3]
(or that occur in ML, logic or controller design [25]), that
are more efficiently described using an array of cubes. It
can be shown that with good selection of Value DDs en-
coding, in these two extreme worst cases the MVCDBs
are comparable in size to the better representation of the
two: arrays of cubes, or BDDs. (1) One extreme exam-
ple is a completely specified binary function, similar to
parity, and with many input variables. Obviously, in this
case, a BDD is better than an array of cubes, because
the BDD has the polynomial number of nodes, and the
array of cubes has an exponential number of cubes. In
this case the original variables are selected as the sec-
ondary variables for the MVCDB. Thus the size of the
Value DD for the ON-set of the output variable is the
same as that of the BDD for this function. All the In-
put Value DDs have one node each. So, disregarding a
small overhead in the top lists of the MVCDB data struc-
ture, both representations are comparable in size. (2) For
the other extreme case, let us consider a binary function

of cubes and exponential number of nodes in BDD. When
the function is specified by cubes, it has n variables and
k cubes, k << 2”. Very conservatively estimating: in
the worst case there are 2(n+ 1) Value DDs, each with k
nodes. So, the total number of DD nodes is O(2nk) while
the number of nodes in the BDD would be O(2”). Exam-
ples of multi-output MV relations can be constructed for
which the advantage over MVDDs would be dramatic for
large values of n and k. It seems, that there exist practical
functions with similar, although not that extreme prop-

like those discussed in [3] that have polynomial number

290

erties [25]. To this category belong functions with many
cubes and many variables, but with still very small ratio
of cares to don’t cares. This category includes the same
kind of functions as those from the ML benchmarks, but
with even larger k, n and number of terms than in all the
functions from U.C. Irvine benchmarks. We expect that
for larger multi-valued functions or relations the advan-
tages of MVCDBs will be even more clearly observable.

We implemented a decomposer, GUD-MV, for MV rela-
tions, [18] which splits up a relation into smaller blocks in
order to minimize the overall relation complexity. Com-
plexity of MV relation is determined by a parameter called
Relation Cardinal i ty (RC) and defined as follows:

Defiition. Relation Cardinali ty (RC) for MV rela-
tion with a set of inputs X = (20, 21, . . . ,2,} and set of
outputs Y = {yo, y1,. . . , ym} is defined by the following

where: wi is multiplicity of variable zi E X ,
is multiplicity of variable yj E Y. myj

The above definition extends Decomposed Function
Cardinal i ty (DFC) [20] on MV relations and is directly
related to the amount of information the relation could
possibly handle.

Concise and elegant solutions were obtained and veri-
fied (for instance, for the difficult example trains). Some
benchmarks are in Tables 3 and 4. Benchmarks run on
SPARC-10 workstations. Times listed are user times.
Result of comparison for selected MCNC benchmarks is
shown in Table 4. [l]-Results not available for this bench-
mark, [2]-Program limited to 32 input and 32 output vari-
ables, TRADE - Program designed a t PSU [26], MIS11 -
Program designed a t UC Berkeley, DSGN174 - Program
designed by B. Steinbach [24], GUD-MV - Program de-
signed at PSU. As we can see from the table, complex-
ity of the functions obtained using GUD-MV is in most
cases smaller than for other decomposers. And smaller
complexity translates directly to smaller circuit area and
power consumption in circuit design and to better gen-
eralisation properties in ML. Table 3 shows the number
of BDD nodes for few ML benchmarks. Note that vari-
ables are multi-valued, so even benchmarks breastc and
balance are strongly unspecified. Observe that even for
the medium size real-life data such as breastc the per-
cent of don’t cares is very high (for nine 10-valued vari-
ables there were los - 699 don’t cares and only 699 cares.
Thanks to our MVCDB representation GUD-MV is fast.
For instance, the benchmarks zoo, shuttle, lenses and
tmins took with BDDs only 9.9, 1.8, 0.3 and 1.8 seconds,
respectively. Other benchmarks, such as breactc and bal-
ance are slower (1880.0s and 44.3s) but these are quite
large examples and the decomposer looks to many parti-
tion candidates.

All MV operations on MVCDBs use set-theoretical op-
erations on the corresponding sets representing biecks.

Therefore, any computer package for representing and
manipulating sets (and in particular any DD package
that allows set-theoretical operations), can be used to
implement MVCDBs with no modification: for instance
the packages for BMDDs, EVDDs, KFDDs, K*BMDs,
ZBDDs, etc. [15]. We plan to compare the efficiency
and storage requirements for MVCDBs with various data
structures for blocks. Especially, we plan to experiment
with these new classes in. our C++ based MVCDB pack-
age.

V. CONCLUSIONS

In this paper we repoirt the following observations re-
lated to application of multiple-valued logic synthesis to
Machine Learning and KDD.

1. The data occuring in these applications are distinctly
difleerent from the most data taken from circuit design.
Some of these data are relations and all are strongly un-
specified.

2. These data should be represented in a special way
in a computer. The improved Rough Partition represen-
tation introduced here, allows not only for faster Ashen-
hurst/Curtis decomposition [18] but also for many other
types of decomposition, such as for instance the binary
AND/OR/EXOR decompositions to two-input gates [24].
Also, our new MVCDB ?representation does not lose any
information, so it is a representation of the function, and
not only some abstraction of the function (as is the RP
representation). The MVCDB representation is especially
good when there exist some variables with few, and other
variables with many valules, and relations are weakly spec-
ified, a situation that is typical in ML. Relations allow to
elegantly formalize many aspects of generalized decom-
positions, and MVCDBs allow to directly translate algo-
rithms to data structures.

3. Finally, for the case of large initial data, the paper
proposed to represent the blocks in a compressed way in
order to further save on ihe memory and gain on the pro-
cessing speed. We compared two data structures for the
compressed blocks: GNIJ++ Bit Sets and Univ. of Cal-
ifornia Berkeley standard BDDs. For some benchmarks,
GUD-MV can decompose functions too large to be solved
by competing methods. The results of comparison, as well
as more detailed presentation of operations on MVCDBs
and benchmarks are presented in [19]. Although large
U.C. Irvine benchmarks seem still to favour Bit Sets, we
believe DDs will be better for even larger benchmarks.
The concept of MVCDB does not specify how the sets
should be represented, so any new improved representa-
tion can be used in the future.

REFERENCES

R.E. Bryant, “Graph-13ased Algorithmsfor Boolean F’unction
Manipulation,” !Iknrm. on Comput., Vol. C-35, No. 8, pp.
667-691, 1986.

29 1

[2] R. Brayton and F. Somenzi, “An Exact Minimizer for
Boolean Relations,” Proc. of ICCAD, pp. 316-320, 1989.

[3] S. Devadas, “Comparing Two-Level and Ordered Binary De-
cision Diagram Representations of Logic Functions,” IEEE
Tmns. on CAD, Vol. 12, No. 5, May 1993, pp. 722-723.

[4] D.L. Dietmeyer, “Logic Design of Digital Systems,” Allyn
and Bacon, Boston, MA, 1971.

[5] R. Drechsler, ‘Verification of Multi-Valued Logic Networks,”
Proc. 26th ISMVL’96, May 29-31, Santiago de Compostela,
Spain, 1996, pp. 10-15.

[6] J. Han, “Data Mining Techniques”, Proc. 1996 ACM-
SIGMOD Int’l Conf. on Management of Data (SIG-
MOD’96), Montreal, Canada, June 1996 (Tutorial).

[7] L. Jozwiak, and F. Vankan, “Bit Full Decompositions of Se-
quential Machines: Algorithms and Results,” Can. Conf.
Electr. Comp. Engn., Sept. 17-20,1989, pp. 1010-1014, Mon-
treal, CA.

[8] L. Jozwiak, “Simultaneous Decompositions of Sequential Ma-
chines,” Microprocessing and Microprogromming, Vol. 30,
pp. 305-312, 1990.

[9] Y.T. Lai, K.R. Pan, M. Pedram, and S. Vrudhula, “FGMap:
A Technology Mapping Algorithm for Look-up Table Type
FPGA Synthesis,” Proc. 30-th DAG, pp. 642-647, 1993.

[lo] T. Luba, and J. Rybnik, “Algorithmic Approach to Discerni-
bility Function with Respect to Attributes and Objects Re-
duction,” Found. of Comp. and Dec. Sciences, Vol. 18, No.
3-4, pp. 241-258, 1993.

[Ill T. Luba, M. Mochocki, and J. Rybnik, “Decomposition of
Information Systems Using Decision Tables,” Bull. PoIish
Acad. Sci., Techn. Sciences, Vol. 41, No.3, 1993.

[I21 T. Luba, R. Lasocki, and J. Rybnik, “An Implementation of
Decomposition Algorithm and its Application in Information
Systems Analysis and Logic Synthesis,” Intern. Workshop
on Rough Sets and Knowledge Discouery, pp. 487-498, Banff
1993,

[13] T. Luba, “Decomposition of Multiple-valued Functions,”
Proc. 25th ISMVL, pp. 256-261, 1995.

[14] D.M. Miller, “Multiple-valued logic design tools,” in Proc.
ISMVL, pp. 2-11, 1993.

[15] S. Minato, “Graph-Based Representations of Discrete Func-
tions,” Proc. Reed-Muller’95 Workshop, Chiba, Japan, Au-
gust 1995, pp. 1-10.

[16] M. Perkowski, T. Ross, D. Gadd, J. A. Goldman, and N.
Song, “Application of ESOP Minimization in Machine Leam-
ing and Knowledge Discovery,” ibidem, pp. 102-109.

(171 M. Perkowski, “A New Representation of Strongly Unspeci-
fied Switching Functions and its Application to Multi-Level
AND/OR/EXOR Synthesis,” ibidem, pp. 143-151.

[18] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S.
Grygiel, M. Nowicka, R. Malvi, 2. Wang, and J. Zhang, “De-
composition of Multiple-Valued Relations,” Proc. ISMVL ‘97.

[19] S. Grygiel, M. Perkowski, M. Marek-Sadowska, L. Jozwiak,
T. Luba, “full version of this paper”.

[20] T. D. Ross, M.J. Noviskey, T.N. Taylor, D.A. Gadd, “Pattern
Theory: An Engineering Paradigm for Algorithm Design,”
Final Technical Report WL- TR- 91- f 060, Wright Laborato-
ries, USAF, WL/AART/WPAFB, OH 45433-6543, Auguat
1991.

zoo
shuttle
breastc
balance
lenses
trains

[21] T. Sasao, “FPGA Design by Generalized Functional Decom-
position,” in “Logic Synthesis and Optimization,” T. S a w .
(Ed), Kluwer Academic Publishers, pp. 233-258, 1993.

[22] V.Y. Shen, A. C. McKellar, and P. Weiner, “An Fast Algo-
rithm for the Disjunctive Decomposition of Switching Func-
tions,’’ IEEE Tmns. on Comput., Vol. (2-20, No. 3, pp. 3 0 4
309, March 1971.

[23] N. Song, and M. Perkowski,“Minimization of Exclusive Sum
of Product Expressions for Multi-Output Multiple-valued In-
put Switching Functions,” IEEE Trans. on CAD, Vol. 15,
No. 4, pp. 385 - 395, April 1996.

[24] B. Steinbach, and A. Wereszczynski, “Synthesis of Multi-
Level Circuits Using EXOR-Gates,” Proc. Reed-Muller’95
Workshop, Chiba, Japan, August 1995, pp. 161-168.

[25] Papers of Steinbach/Hesse, Kempe, Rohde/Barthel, and dis-
cussions a t the 2nd Workshop Boolesche Probleme, 19-20
September, Freiberg, Sachsen, 1996.

[26] W. Wan, and M. Perkowski, “A New Approach to the De-
composition of Incompletely Specified Multi-Output Func-
tion Based on Graph Coloring and Local Transformations
and Its Application to FPGA Mapping,” Proc. Eum-DAC,
pp. 230 - 235, 1992.

[27] Y. Watanabe, and R.K. Brayton, “Heuristic Minimization of
Multiple-Valued Relations,” IEEE Trans. on CAD., Vol. 12,
No. 10, pp. 1458-1472, October 1993.

input file BDD set representation
of #of # of #of #nodes

in/out cubes BDDs nodes per BDD
16/1 101 43 1080 25.1

9/1 699 92 5300 57.6

411 24 10 40 4.0

6/1 15 18 80 4.4

4/1 625 23 768 33.4

32/1 10 107 360 3.4

Table 3: Results on binary function MCNC benchmarks

292

