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Abstract

In this paper, the minimization of incompletely speci-
fied multi-valued functions using functional decomposition
is discussed. From the aspect of machine learning, learning
samples can be implemented as minterms in multi-valued
logic. The representation, can then be decomposed into
smaller blocks, resulting in a reduced problem complexity.
This gives induced descriptions through structuring, or fea-
ture extraction, of a learning problem. Our approach to the
decomposition is based on expressing a multi-valued func-
tion (learning problem) in terms of a Multi-valued Decision
Diagram that allows the use of Don’t Cares. The inclusion
of Don’t Cares is the emphasis for this paper since multi-
valued benchmarks are characterized as having many Don’t
Cares.

1. Introduction

This paper explores functional decomposition as it is
extended to the synthesis of Multi-Valued Logic Networks
(MVLNs) and to the concept of Machine Learning (ML).
The two problems are disjoint, given that many synthesis
problems for MVLNs are completely specified or nearly
completely specified functions. While functions in ML tend
to have 99.9% Don’t Cares (DCs) in their respective learning
problems.

Decomposition was proposed by Ashenhurst in the
1950’s [2] as a method of Boolean multi-level logic min-
imization. While this approach has been known for many
years, it wasn’t until recently that this approach could be
utilized because of the large computation procedures that
are required. Lately, though, while much research has fo-
cused on decomposition as applied to FPGA design synthe-
sis, several researchers have shown general decomposition

methods by expressing Boolean functions as Binary Deci-
sion Diagrams (BDDs) [7, 12].

The approach proposed in this paper is to decompose
MVL functions using Multi-valued Decision Diagrams
(MDDs) [10] as the underlying data structure. It was shown
that MDDs have a direct correspondence to the problem
considered (analogously to BDDs in the Boolean domain).
We consider, especially, the aspect of using DCs in the min-
imization process and outline the occurring difficulties. In
contrast to previous papers on MVL decomposition [9, 11]
we consider functions with MV outputs.

The concept of using decomposition in ML is to reduce a
given function specified by a set of care minterms (samples)
to a composition of smaller functions (attributes in ML ter-
minology). The result is a set of expressions that describe
suitable intermediate concepts. Each of these intermediate
concepts can then be further decomposed, leading to ex-
pressions that form a more comprehensible description of
the learned concepts. The advantage of using decomposi-
tion to obtain useful intermediate concepts is that it leads to
a result being in a hierarchy of compositions that could be
illustrated as a tree structure. This tree structure gives the
original function a hierarchy of sub-functions and variables,
which leads to learning that is faster, involves smaller error
and gives better explanation of the learned concepts.

In terms of decomposing functions that are (nearly) com-
pletely specified, the decomposition process involved may
produce functions with DCs. In [8], the authors show that
functions can be minimized by using generalized DC values
to assume any value in the range of the input function (other
than the previously used Boolean values). Thus, the de-
composition algorithms proposed in the paper can be easily
applied to MVLNs. Recently, more and more interest has
been in the design of such networks. Because of this in-
terest, several design methods were proposed to reduce the
final design and size of the network. In these cases, though,



most of them were only of theoretical nature or have not
been applied to large examples.

Experimental results are given to show the efficiency of
our approach. We use a benchmark set from the area of
machine learning that is characterized by the fact that the
functions are “real” MVL functions and that they contain
many DCs.

The paper is structured as follows: In Section 2 pre-
liminaries are given, i.e., notations and definitions are intro-
duced. The method of decomposition is described in Section
3. Section 4 addresses the problem of the implementation
and the choice of the underlying data structure of our al-
gorithm. In Section 5 experimental results are described.
Finally the results are summarized.

2. Preliminaries

This section provides the notations which are the basics of
multi-valued logic and are important for the understanding
of this paper.

���� Multi�valued Decision Diagrams

It is well known that each Boolean function f : Bn � B

can be represented by an ordered BDD [5], i.e., a directed
acyclic graph where a Shannon decomposition is carried out
in each node.

Obviously, BDDs can be extended to represent functions
f : Bn � f0� ��� k�1g and the resulting graphs are denoted
as Multi-Terminal BDDs (MTBDDs). The operations on
MTBDDs can be carried out as efficiently as in the case of
two terminals [6].

It is straightforward to extend MTBDDs to MDDs [10]
representing functions f : f0� ��� k� 1gn � f0� ��� k� 1g.
For this, each internal node has k outgoing edges1. In [10],
it was shown that the efficient operations known for BDDs
can also be carried out on MDDs using a case-operator
(multi-valued Shannon decomposition operator).

The extension or addition of Don’t Cares (DC) to an
MDD is fairly straightforward by representing the function
as f : f0� ��� k� 1gn � f0� ��� kg. Thus, each internal node
still has k outgoing edges, but has the ability of representing
k� 1 values. The (k� 1)-th value is used to represent a DC
value in the function.

A DD is called ordered if each variable is encountered at
most once on each path from the root to a terminal and if the
variables are encountered in the same order on all such paths.
A DD is called reduced if it does not contain vertices either
with isomorphic sub-graphs or with all successors pointing
to the same node.

In this paper, only reduced, ordered MDDs are consid-
ered.

1In our application all variables are defined over the same set of values.
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Figure 1. Curtis Decomposition

3. Functional Decomposition

In this section, the basic principles of the decomposition
of binary and MVL functions are described. For simplicity
of the presentation most of the examples are in the binary
case, but can easily be related directly to MVL cases. Fi-
nally, the influence of DCs used in the decomposition pro-
cess is discussed.

���� Generalized Functional Decomposition

Definition 1 A function f�x0� x1� � � � � xn�1� is decompos-
able under bound set fx0� � � � � xi�1g and free set fxi�l� � � � �
xn�1g , 0 � i � n� 0 � l if and only if f can be repre-
sented as the composite functionF �G0�x0� � � � � xi�1� � � � � �
Gj�1�x0� � � � � xi�1�� xi�l� � � � � xn�1�, where 0 � j � i� l.
If l equals 0 then f is said to be disjunctively decomposable,
otherwise, it is known as non-disjunctively decomposable
[3, 4].

The principle idea of the decomposition using the nota-
tions from Definition 1 is shown in Figure 1. Note, that
because of the complexity of non-disjunctive decomposi-
tions, disjunctive decomposition is the method used in this
paper.

Definition 2 Given a k-valued, completely specified func-
tion f , with a bound set B, and free set A, then for the
partition AjB, a partition matrix representation of f is de-
fined as a rectangular array, where the columns correspond
to the variables in the bound set, and the rows correspond to
the variables in the free set.

Using these definitions the following is found:

1. The array has kfBg columns and kfAg rows.

2. Given a k-valued function f , with a bound set B,
then the corresponding partition matrix has l distinct
columns, where l is known as the Column Multiplicity
(CM) of a partition.

3. The CM for the function can be reduced if the func-
tion is incompletely specified, by finding columns
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Figure 2. Example for MVL decomposition

that are compatible and combining the two columns
by setting don’t care values. By compatible, for every
row, the possible output value-sets of the first col-
umn (a number or a DC) intersect the non-empty sets
of the corresponding output value-sets of the second
column.

4. Thus, to represent f as a composite function in the
form

F �G0��� � � � � Gj�1��� xi� � � � � xn�1�

where each G function has inputs �x0� � � � � xi�1� then
j � dlogkle, G functions are needed.

Example 1 Consider the 4-valued function in Figure 2,
where the partition of a given function is shown in Fig-
ure 2(a). Notice that the number of distinct columns is four
(labeled as A, B, C and D), the function can be represented
as a composite function with dlg3e=2, G functions. The
resulting decomposition is denoted as F �G0�x0� x1�� x2�.

���� BDD�MDD Based Decomposition

In [7], a method for detecting decompositions based on
the concept of a cut set in a BDD representation of Boolean
functions was presented. (In the followingwe briefly review
the main idea as applied to MDDs; for more BDD details
see [7].)

Definition 3 Given a bound set fx0� � � � � xi�1g and free set
fxi� � � � � xn�1g for a function f , then if a DD is constructed
with variable ordering fx0� � � � � xi�1g � fxi� � � � � xn�1g
the cut set(i� 1) is the number of distinct columns (column
multiplicity) for the given bound and free sets. The cut level
is defined as the split between the two sets.

Example 2 Given the multi-valued function from Example
1, the corresponding MDD is created by placing the bound
variables fx0� x1g on the top of the BDD, while the free
variables fx2g are on the bottom. Note, that the order of
the variables within the bound set or the free set has no
effect on the partition found. The MDD obtained is shown
in Figure 2(b). Notice that the number of nodes below the
cut level, i.e., the number of x2 nodes plus the number of
terminal nodes having a pointer cross the cut level, is equal
to four. The resulting decomposition is shown in Figure 2(c).

���� Don�t Cares

One of the biggest advantages of functional decomposi-
tion is that after a function is broken up into smaller blocks,
DCs are (possibly) introduced into these smaller blocks.
These DCs can then be used for optimization in the next
level of decomposition,i.e., decomposing either the result-
ing G functions or the F function.

The following example explores the ideas of DCs in
Boolean functions, but note that the idea can be directly
applied to MVL functions. (A Boolean function and the use
of partitions are for simplicity and ease of explanation.)

Example 3 Given the Boolean function shown in Fig-
ure 3(a) and resulting partition in Figure 3(b), the func-
tion can be decomposed into dlg3e=2, G functions. Using
an encoding scheme of A=f0,0g, B=f0,1g, and C=f1,1g,
G0=0 0 0 1 or G0=x0 AND x1, while G1=0 1 1 1 or G1=x0

OR x1. The resulting partition matrix is shown in Fig-
ure 3(c), where 4 DCs are introduced into the function. The
DCs come from the above encoding, where the case f1,0g
does not exist. Now, by swapping the variables G0 and x3

the partition matrix in Figure 3(d) is found. The partition
fx3G1gjfx2G0g has CM of 2, while fx2G0gjfx3G1g also
has CM of 2. Notice that without the addition of DCs (say
the values were forced to 0 instead) then the resulting CM
would be larger than 2.

The example shows the importance of introducing DCs
into the partition matrix. Notice that encoding is also a big
factor in the final outcome of the decomposition. The con-
cept of encoding, though, has not been evaluated in previous
approaches, where a single output line is constructed with
a multi-valued output to carry all possible data[13]. The
problem with not using the encoding scheme is that it may
lead to functions that do not decompose. The encoding,
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Figure 3. Example for using Don’t Cares

used in this paper, is done by using k-valued logic symbols,
where k is given by the original input function.

A problem arises, though, when functions become in-
completely specified, since the detection of CM becomes
very difficult. From Example 2, the CM was calculated us-
ing by counting the number of “columns” at a certain cut set
level. In determining CM in the presence of DCs, each node
below the cut level may represent an incompletely speci-
fied function. The CM is then determined by computing the
possible compatibilitybetween each of these nodes and then
using some search strategy, find the minimal CM. Possible
approaches include: reducing the problem to set covering,
graph coloring, or heuristic methods[13].

In the case of MVL, the problem of determining a mini-
mal CM (often) becomes reduced because the possibility of
having compatible nodes decreases with an increase in the
number of values represented in the function. But, in the
case of machine learning problems, in general, the functions
are highly unspecified, e.g., for large functions, 99.9% of the
function may be unspecified. Also, by definition, given a
CM for a partition dlogkCMe G functions must be used in
the composite function. As the size of k grows, finding the
exact minimal CM becomes less of an issue because the idea
of reducing CM is to reduce the number of G functions.

Example 4 Given a partition, using 5-valued logic, the
CM is originally found to be 11 (before setting DC val-

ues). To represent this decomposition two G functions
(dlog511e � 2) must be used. The only way that the num-
ber of G functions will be reduced is if 7 columns can be
combined. By analyzing the partition, it might be obvious
that this is an impossible task. (Even if it is possible, many
DC values must be set to literal values.) By not combining
the DC columns the current partition will result in a de-
composition with 52-11=14 columns with DCs. Thus, the
function F, found from f=F �G�A�� B�, will have an addi-
tional 14 � 5fBg DCs. Notice, though, that encoding now

becomes a problem because there are

�
25
11

�
=4,457,400

possible encodings.

4. Implementation

The main goal in logic synthesis is finding a “good” re-
sult through some figure of merit. In this paper, the result
of decomposing a MVL function must be general or robust,
in that, the use of the realization technology for the decom-
posed function is unknown. Also, when using the concept
of functional decomposition in machine learning, the main
concern is determining the "pattern" of the object. Thus,
it is unnecessary to have different figures of merit for each
technology as long as a “good” figure of merit is chosen to
represent the generality of a pattern.

Thus, an appropriate method for representations that do
not require distinction between different gate types is called
Decomposed Function Cardinality (DFC). This idea was
first proposed by Abu-Mostafa in 1988 [1] for binary func-
tions and is extended here for MV logic.

Definition 4 A function f�x0� x1� � � � � xn�1� with k valued
logic and m outputs, has cardinality kn �m. DFC is defined
as the sum of the function cardinality of each decomposed
partial block. A non-decomposable function is defined as a
function that has a DFC� kn �m.

It is a “good” representation of the complexity or "patter-
ness" of a function, since a function is a set of ordered pairs
and, as with any set, has a definite property in its number of
elements or cardinality. Thus, for a function that has multi-
ple decompositions, DFC may be used to find the minimum
combined component cardinality of all the decompositions
of that function. Because of the simplistic representation of
DFC, it is also a “good” figure of merit for evaluating func-
tion implementations in most of the current technologies.

Example 5 Given the multi-
level function f=F �G0�x0� x1�� G1�x2� x3�� x4� x5�, where
f has six primary inputs, is 4-value, and has 1 output. Then
the cardinality of f is 46 � 1=4096 and the DFC of the given
multi-leveled decomposition is 42 + 42 + 4�1�1�2� = 288.



For a function that has multiple decompositions, DFC
may be used to find the minimum combined component car-
dinality of all the decompositions of that function. The ob-
jective of decomposition (in this paper) is to find the decom-
position that produces the smallest DFC. Notice, though,
that finding the exact or smallest DFC is an NP-complete
problem, i.e., evaluating all partitions (discounting the NP-
complete problems involved with CM and encoding).

Column compatibility, in this paper, is found by a very
simple and quick heuristic that attempts at matching columns
in a maximal clique. Encoding is done in a sequential man-
ner, i.e., the column labeled A is given the value 0; B=1;
C=2, etc.

The heuristic for selecting partitions, evaluates all possi-
ble partitions, the partition that results in the smallest DFC,
of a simple decomposition (first level decomposition), is
used in the next level decomposition. Note, that the small-
est level DFC, doesn’t always result in the smallest overall
DFC.

Even if this is still a heuristic, it is not very fast, in
that, it must evaluate on the order of 2n (n-input variables)
partitions, which implies calling a dynamic swap procedure
in the MDD on the order of 2n times. The reason for not
implementing “faster” heuristics is because one of the best
attributes in MVL functions is that it has a reduced number
of input variables, i.e., fewer partitions to evaluate. For
example, given a 10-input, 10-valued, 1-output function,
there are 210 partitions to evaluate, but if the function was
encoded to a Boolean function then there would be 30-input
variables, implying 230 partitions to evaluate. (The solution
may also be constrained to groups of binary variables that
come from encoding the same MV symbol so that they are
always taken all together to bound or free sets.)

The recursive procedure’s pseudo-code of the algorithm
is given in Figure 4. The first statement checks to see
if the number of variables is less than three, if it is, then
this path of the decomposition is completed. The program
then evaluates all the possible (disjunctive) decompositions
for the given function. The partition that has the smallest
(single level) DFC is chosen as the best. This partition is
then used to break up the function f into its components
F and G0 through Gn�1. Each of these new functions is
then decomposed. The resulting DFC returned from each
decomposition process is added up and compared to the car-
dinality of the function. If the DFC found is larger than the
cardinality of the original function then the function is said
to be undecomposable (at whatever level of decomposition).

5. Experimental Results

In this section, the experimental results of our decom-
poser, FREDMVL, while running on a HP 700 workstation
are presented. All run times are given in CPU minutes.

int decompose(function f) {
if (Num_vars<3) then

return cardinality of f;
evaluate all possible partitions;
// given partition with smallest DFC
// create F and G0 through Gn-1
DFC=decompose(F);
for i=0 to (n-1)

DFC=DFC+decompose(G(i));
// if function is non-decomposable
// return cardinality of the f
if (DFC < cardinality of f) return DFC;
else return cardinality of f;

}

Figure 4. Algorithm

name in out k card. DFC time

balance 4 1 5 625 375 0.1
breastc 9 1 10 109 7025 207
flare1 1 10 1 7 710 1797 7
flare1 2 10 1 7 710 3512 8
flare1 3 10 1 7 710 1751 8
flare2 1 10 1 7 710 1413 7
flare2 2 10 1 7 710 2867 9
flare2 3 10 1 7 710 1751 8
hayes 4 1 5 625 314 0.1

Table 1. Benchmark characteristics

The benchmarks are taken from the UCI repository of Ma-
chine Learning2. Some characteristic information about the
benchmarks is given in Table 1. The files labeled flare1 *
and flare2 * come from the same output functions of flare1
or flare2, respectively.

The run times mainly stem from the size of the initial
networks, as in the case of each of the flare benchmarks,
210 partitions are evaluated for the first level decomposition
alone. The reason for the delay in the breastc benchmark is
because of the large number of DCs in the initial network.
Thus, checking for CM is a very difficult task, as there are
many partitions with over 300 columns, that by combining
columns, the CM drops to less than 20. In fact, the partition
that had the smallest DFC in the first level decomposition
originally had a CM of 345 which was reduced to a CM of
7 by setting DC values.

2http://www.ics.uci.edu/ mlearn/MLRepository.html



6. Conclusions

We presented a new approach to functional decomposi-
tion of MVL functions. Our algorithm makes use of MDDs
as the underlyingdata structure and by this becomes applica-
ble to larger problem instances. We considered the problem
of multi-level minimization with special emphasis on using
DCs. The quality of our algorithmhas been demonstrated by
application to a set of benchmarks from the area of machine
learning.

Finally, we want to point out one problem that has to be
faced in our algorithm: The number of nodes in a level of
the MDD might become large. Since our algorithm uses
operations that are linear in the number of nodes per level
the run times may largely increase. In [10], it was reported
that by encoding MDDs on BDDs the runtime of an MDD
package can be much improved. It is the focus of current
work, whether an MDD or a BDD based data structure
should be preferred in decomposing MVL functions.
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