
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 4, APRIL 1996 385

Minimization of Exclusive Sum-of-Products
Expressions for Multiple-Valued

Input, Incompletely Specified Functions
Ning Song and Marek A. Perkowski, Member, ZEEE

Abstract-This paper presents a new operation (exorlink) and
an algorithm to minimize Exclusive-OR Sum-of-Products expres-
sions (ESOP’s) for multiple valued input, two valued output,
incompletely specified functions. Exorlink is a more powerful op-
eration than any other existing one for this problem. Evaluation
on benchmark functions is given and it proves the superiority of
the program to those known from the literature.

I. INTRODUCTION

N RECENT years, the interest in the design of logic I circuits which use Exclusive-OR (EXOR) gates has increased.
Functions realized by such circuits can have fewer gates, fewer
connections, and take up less area when realized in VLSI
circuits. They can have also fewer cells when realized in
Field Programmable Gate Arrays (FPGA’ s). Circuits with high
EXOR components are also easily testable [6], [12]. Circuits
of this type have applications in self-testing schemes, linear
machines, arithmetic and communication circuits, encrypting
schemes, coding schemes for error control and synchroniza-
tion, sequence generation for process identification, system
testing, etc. It was demonstrated in [17] that on average,
the AND-EXOR PLA’s require fewer product terms than the
AND-OR PLA’s. Both AND-OR PLA’s and AND-EXOR PLA’S
can have input decoders, which lead to the application of
multiple-valued logic as a mathematical technique for the
minimization of such binary PLA’s. The studies [15], [18]
prove that both types of PLA’s with input decoders require
smaller area than the PLA’s without input decoders. AND-
EXOR PLA’ s realize Exclusive-OR Sum-of-Product expressions
(ESOP’s). AND-EXOR PLA’s with n-bit (n > 1) input decoders
correspond to multiple-valued input ESOP’s (MIESOP’s). In
this paper, we focus on the minimization of MIESOP’s. Since a
binary valued input is a special case of a multiple-valued input,
MIESOP’s are more general than binary valued input ESOP’s.
Minimization of ESOP’s is a more difficult problem than that
of Sum-of-Product expressions (SOP’S) minimization. So far,
exact solutions for ESOP’s can be found only practically for
functions with five, or sometimes a few more variables [9],
[ll], [19]. Therefore, the interest is mainly in approximate

Manuscript received May 3, 1993; revised March 3 , 1994, November 15,
1994, and September 15, 1995. This paper was recommended by Associate
Editor L. Trevillyan.

N. Song is with the Lattice Semiconductor Corporafion, Milpitas, CA 95035
USA.

M. A. Perkowski is with the Department of Electrical Engineering, Portland
State University, Portland, OR 97207 USA.

Publisher Item Identifier S 0278-0070(96)03478-1.

solutions. Two approaches to generate suboptimal solutions
can be found in the literature. One approach is to minimize
some canonical subfamilies of ESOP’s (exact or approximate
solutions). Another approach is to minimize ESOP’s using
heuristic algorithms. Efficient programs for subfamilies of
ESOP’s were given in 111, [4], [7], [21]. Heuristic ESOP min-
imization programs have been presented in [21, 151, [81, [lo],
[13], [16], [18], [20]. In these programs, two general methods
have been used. One method is to base the minimization on
the coefficients of canonical generalizations to Reed-Muller
forms [l], [13], [24]. Another method is to perform a set of
cube operations iteratively on ESOP’s (starting from minterms,
disjoint cubes, ESOP’s, Reed-Muller forms, or other represen-
tations). Fleisher et al. [5] presented an algorithm which starts
from positive Reed-Muller forms and performs three cube
operations iteratively. Helliwell and Perkowski [8] introduced
new cube operations, “primary xlink” and “secondary xlink,”
and presented an algorithm based on these operations. The
algorithm from [8] was next improved in [lo], and also
extended for the case of logic with multiple-valued inputs. A
new cube operation, “unlink,” has also been added. The unlink
operation was efficiently implemented in [20]. A few more
cube operations were also included in an independent realiza-
tion by Sasao [16], [18]. So far, this approach has achieved
better results than other methods [18]. The literature clearly
demonstrates that the more powerful the cube operations are,
the better the results [18].

Some limitations exist in current programs. Hermes [20]
is used for binary input functions only. EXMIN2 [18]] does
not handle incompletely specified functions. In this paper, we
present a new cube operation, exorlink, for the minimization
of MIESOP’s. This single operation contains all the cube
operations presented in [5], [8], [lo], [16], [18]. Based on
our new cube operation, a new algorithm is also discussed
in this paper. This new algorithm is more efficient than the
existing ones [lo], [18]. Our program based on the exorlink
operation has the following advantages: it is applicable to
both the binary input functions and the multiple-valued input
functions; each input variable can have an arbitrary number
of logic values; the function can be completely specified or
incompletely specified; and the output can be single output
or multiple output. To evaluate our program, we collected
all the published benchmarks that we were able to find. Our
experimental results show that for both binary input functions
and multiple input functions, for both single output functions

0278-0070/96$05.00 0 1996 IEEE

386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL 15, NO. 4, APRIL 1996

EXMIN-2
inputs outputs CT I CL

Adr4 4 5 11 I 60

TABLE I
BINARY INPUT EXAMPLES

EXORCISM-MV-2
CT I CL I Time (1)
11 I 60 I 1.8

(1) CPU seconds on SPARC Station l+.
(2) CPU seconds on SPARC Station 1.

TABLE I1
BINARY INPUT FUNCTIONS

EALEX
CT

HERMES 11 EXORCISM-MV-2
11 CT I CL I Time (1) CT

-
35
73
-

RDM8 1 1 32 1 31 I
ROT8
~

WGT8 __ E 35
54

-
35
54
-

- I/ 55 I 307 I 122

(1) CPU seconds on SPARC Station 1.

and multiple output functions, our program is superior to all
the existing programs (see Tables I, 11, and 111 for details). We
also tested out programs extensively on incompletely specified
functions and obtained very good results. However, there are
not any published results with which we can compare our
results.

Section I1 presents our new cube operation, exorlink. Con-
trary to the operations in EXORCISM [8], [lo], Hemes [20],
and EXMIN-2 [181, which can be applied under satisfaction
of certain conditions only, exorlink can be applied to any two
cubes with arbitrary distance, as it will be shown in Section 11.
The procedure of the exorlink operation is discussed, different
examples are presented, and comparisons with operations of
EXORCISM and EXMIN-2 are given.

TABLE I11
MULTIPLE-VALUED INPUT FUNCTIONS

(1) CPU seconds on SPARC Station 1.

In Section lTI, our new algorithm used in EXORCISM-
MV-2 is discussed. The major advantage of this algorithm
is that it gives priority to those distance two operations which
will directly reduce the number of cubes in the array. In this
way, our program can achieve betteli results in shorter time
as compared to the former algorithms. The new algorithms
that handle multiple output functions and incompletely spec-
ified functions are also discussed in this section. They are
incorporated into EXORCISM-MV-2. Section IV shows the
experimental results. The conclusion is given in Section V.

11. THE MULTIPLE-VALUED EXORLINK OPERATION

In this section, we first give some definitions, and then the
cost function is discussed. After introducing some basic prop-
erties of multiple-valued functions, our new cube operation,
exorlink is presented. The remainder of the section discusses
particular, special cases of this operation, and illustrates them
with examples.

A. Dejinitions I

Dejinition 1: A multiple-valued input, two-valued output,
incompletely specified switching function f (also called
multiple-valued function,) is a mapping f (X I , X2, ’ . ’ , X n) :
PI x P2 x . . . P, + B, yrhere X , is a multiple-valued variable,
P, = { 0,1, . . . , p , - 1) is a set of admissible values that this
variable may assume, and B = {0,1, x} (z denotes a don’t
care value).

DeJinition 2: For any subset S, C P,, X? is a literal of
X , representing the function such that

XB, = { 1
if X i E Si

0 if X i Si.
DeJinition 3: A product of literals, X F X p . . . X? , is

referred to as a product term (also called term or product).
A minterm is a product term that there exists only one value
in each S, for z = 1 , 2 , . . . , n.

Dejinition 4: The EXOR of two products is assigned the
value 1 if and only if the two products have different values.
An EXOR of products is called an ESOP. It is also called a
MIESOP if one wants to emphasize that the input variables
are multiple valued.

Example 1: In 4-valued logic, given three terms TI =
X{1,2>y{2,3), T2 = X{2,3>y{1,2>, and T3 = X{o,1>y{1>3).
TI @ T2 @ T3 is a MIESOP. We can also call it ESOP.

SONG AND PERKOWSKI: MINIMIZATION OF EXCLUSIVE SUM-OF-PRODUCTS EXPRESSIONS 387

In cube notation [23] , a term is represented by a cube, and
each literal in the term is represented by a vector

where

1 if j E Si
0 i f j $ S i .

For example, X{O) is denoted by 100...000, X { l } is de-
noted by 010.. .OOO, X{Ol2} is denoted by 101 . . .000, and
X{o>l>”‘>n} is denoted by 111 . . . 111, which represents the
Boolean universe. A cube is a null cube if one or more
variables contain all zeros.

Example 2: In Example 1, the ESOP can be written in cube
notation as follows

[O l l O - 00111 @ [O O l l - 01101 @ [1100 - 01011.

DeJnition 5: The distance of two terms is the number of
variables for which the corresponding literals have different
sets of values.

Example 3: Given three terms, TI = X { o } Y { l) , T2 =
X { 1 } Y { o * 2) , and T3 = X { l } Y { o > l } , the distance of TI and
T2 is 2, because two literals have different sets of values

for X : {O} # {l},

for Y : {I} # {0,2}.

The distance of TZ and T3 is 1, because only one literal has
different sets of values

for X : (1) = {l},
for Y: {0,2} # (0, l}.

We write distance(Ti, Tj) = d to indicate that the distance of
two terms Ti and Tj is d.

B. The Cost Function
The objective of logic minimization is to find a realization

that reduces certain cost function. Our primary goal of ESOP
synthesis is to minimize the number of terms in the ESOP
expression. For the expression with the minimum number of
terms our secondary goal is to minimize the total number of
inputs to the AND and EXOR gates. The following costfunction
C is used in our algorithm

U L C = c T + -
G i n

where
CT is the total number of terms in the solution;
CL is the total number of input wires to the AND and

 CL^^ is the total number of input wires to the AND and
EXOR gates in the solution;

For instance, literal X{09192} as an input to an AND gate
requires a single wire for the 2-by-4 decoder realization of
logic with 4-valued inputs [15]. Literal X{071} if realized
as X { O ~ ~ > ~ } X { O J ~ ~ } , requires two wires. Similarly X { O) =

According to the cost function, if two solutions have dif-
ferent number of terms, the better solution is the one that has
the smaller number of terms, because its CT is smaller. If two
solutions have the same number of terms, the better solution
is the one that has the smaller number of inputs, because its
CL%”

Example 4: Consider an ESOP X{oi1}Y{2} @ X { 2 } Y { 2 } @
X { o } Y { l } in 4-valued logic. It has 3 terms and 20 inputs (17
inputs to the AND gates and 3 inputs to the EXOR gate). The
cost function is 3 + (20/20) = 4. The ESOP can be minimized
to X{oi1j2)Y{2} @ X { o) Y { l } . It has 2 terms and 12 inputs (10
inputs to the AND gates and 2 inputs to the EXOR gate). The
corresponding cost function is 2+(12/20) = 2.6. The function
can be further minimized to X{o~1~2)Y{1~2}$X{1,2}Y{1}. The
cost function is 2 + (10/20) = 2.5.

~ { O , 1 ~ 2 } ~ { O , 1 ~ 3 } ~ { O ~ 2 , 3) requires three wires.

is smaller.

C. The Formula

algebra.
The following properties hold for multiple-valued input

1) T @ T = 0. Here T denotes a product term.
2) 1,s; @ x? = X,s;@Ri.
3) x?xSi x?x!j = xY@RixSj xPixSj@Rj =

3 3 3 2 3
xfi@Rixflj xSixSj@Rj.

3 2 3
The proofs for these properties are straightforward. Properties
1 and 2 directly result from Definition 4. Property 3 is true
because

xfi@RixSj xfztxSi@Rj
3 2 3

- - (xfi @ X?)X,”j @ x,fl; (x,”j @ x?)
- - xS;xSj @ xpx? @ xpx? @ XFXjRi

= xz”.x,”j @X?Xj”i.
2 3

Similarly it is proved that
xS;@RixjRi xSixSj@Rj = xfix,”j x?x3%.

2 3

Extending the property 3 to two terms with n literals, we define
a new cube operation as follows:
Let Ts = X f l . X? and TR = XF1 e X,”- be two terms.
The exorlink of terms TS and TR is defined by the following
formula:

XSi-lXjSi@R%) Ri+l . . . x,”- I
TS 8 TR = @ { xg1. + . z - l Xi+l

for such i = 1,. + , n, that Si # Ri}.

Here 8 denotes the exorlink operation and @ denotes the
EXOR operation.

DeJnition 6: Given terms Ts and TR, if the distance of
two terms is d , then TS 8 TR is a distance d exorlink. It was
proved in [22] that the exorlink can be applied to any two
cubes in an array, without regard to their distance. According
to the above formula, we can observe that distance d exorlink

EXOR gates in the initial function. generates d resultant terms.

388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF LNTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 4, APRIL 1996

A
Fig. 1. ESOP minimization corresponding to Example 7.

B

In the remainder of this section, distance 0, distance 1,
distance 2, and distance 3 exorlink operations will be dis-
cussed. These operations are used in our EXORCISM-MV-
2 algorithm. The comparison of exorlink with the primary
and secondary xlink operations [lo] and the operations from
EXMIN-2 [It?] will also be presented in this section.

D. Distance 0 Exorlink
If the distance of two terms is 0, exorlink of the terms gen-

erates no resultant terms. These two terms are then removed
from the ESOP description.

E. Distance I Exorlink

Given two terms TS and TR, let Xsa and X R z be a
pair of literals in terms Ts and TR, respectively, such that
X s z $3 X R % , and the other pairs of literals in the two terms
are equal. Therefore, these two terms will be called “distance
I exorlinkable.” The distance 1 exorlink operation of the terms
generates a single resultant term.

Example 5: Let TS = X{1>2>3}Y{2>3) and TR =
x{OJIy{2,31

Ts @TR = X {1 ,2 ,3)@{0 ,1)y{2 ,3) = x { O , 2 , 3 } y { 2 , 3 } ,

F. Distance 2 Exorlink

Given two terms, if the distance of these two terms is
2 (assume X s s # X R t , and Ys3 # YR3), then distance
2 exorlink operation can be performed on them, and two
resultant terms will be generated.

Please note that when distance 2 2, exorlink operation is not
symmetric, which means TS 63 TR is different from TR 8 Ts.

Example 6: Given two terms Ts = X{01113)Y{1>3} and
TR = X{2,3>y{o,1}.

T~ @ T~ = X { ~ J J I Y I L ~ > 8 ~ { 2 , 3 1 y { 0 , 1 1

- - ~ { 0 , 1 ~ 2 } ~ { 0 ~ 1) e ~ { 0 , 1 , 3 l y { O , 3 1

TR @ Ts = X{2>3}y{o>1> 8 X{o,1,3}y{1,3}

- - x { 0 , 1 , 2 } y { L 3) @ xI2,3)y@,3).

Distance 2 operations do not directly reduce the number
of terms in an ESOP. However, these operations reshape
two terms to two different terms, thus provide opportunities
for reducing the cost of ESOP’s at some later stages. The
nonsymmetry property of the distance 2 exorlink gives us two

/
B’

A’

ways to reshape the two terms, which increases the opportunity
for searching a better result. Our method on how to apply
distance 2 and distance 3 exorlink in ESOP minimization is
discussed in Section III.

ExampZe 7: Given is an ESOP with three terms: Tl =

In Fig. 1, the three terms T I , T2, and T3 are represented by
three cubes A, B , and C, respectively. A 63 B generates A’
and B’; A’ 8 C generates A”. The ESOP with three cubes
is minimized to an ESOP with two cubes, B’ corresponding
to term T4 = X{1>3}Y{1>2} , and A” corresponding to term

X{1721y{2,3}, T2 X{2>3>y{1,2), and T3 = X{o}y{1>32.

T5 = X{0,1,2}y{1,3)-

6. Distance 3 Exorlink

Distance 3 exorlink generates three resultant terms from two
given terms. Distance 3 exorlink increases the number of terms
in the ESOP. However, increasing the number of terms may
help to reduce the number of terms at some later stage, and
subsequently lead to better results.

Example 8: In binary logic, a given ESOP with four cubes
is as follows:

0002) 0211, 2112, 1010.

The distances between any pair of cubes from the above
set is 3. So, there are no distance 1 or distance 2 operations
that can be applied to this set of cubes. Performing distance 3
exorlink on the first two cubes leads to three cubes

0002 8 0211 = 0111 @ 00x1 @ 0000.

Replacing the first two cubes by these three cubes, a new
ESOP with five cubes is obtained

0111, 0021, 0000, 2112, 1010.

Since the distance of two cubes: 0000 and 1010 is 2, a distance
2 exorlink can be performed on them

0000 @ 1010 = Z0lO

After this operation, the ESOP contains five cubes

0020.

0111, 0021, 2010, 2112, 0020.

Now, the distance of cubes 00x1 and 00x0 is 1, a distance 1
exorlink can be performed on them

0021 8 0020 = 0022.

SONG AND PERKOWSKI: MINIMIZATION OF EXCLUSIVE SUM-OF-PRODUCTS EXPRESSIONS 389

The ESOP now contains four cubes

0111, oozz, 2010, zllz.

Performing distance 2 exorlink on cubes zOl0 and zllz, we
obtain

zOl0 @ zllz = zzl0 e3 2111.

The ESOP is

0111, oozz, azlO, 2111.

Cubes 01 11 and z1 11 can be combined into one cube

0111 @ zll l = 1111.

The final result is an ESOP with three cubes

oozx, 5210, 1111.

By using distance 3 exorlink, the number of cubes in the ESOP
is temporarily increased from 4 to 5, but this increase helps
to jump out of a local minimum of the cost function, and
ultimately achieve a better result of 3 cubes.

H. Comparison with Other Cube Operations

In EXORCISM [lo], as well as in Hermes [20], two
operations are used to link the cubes, the primary xlink and the
secondary xlink. Both operations can be applied under certain
conditions [lo], [20]. If two cubes are of the same dimension,
then the primary xlink operation can be applied. If the distance
of two cubes is 1, then the secondary xlink can be applied.
In the above two cases, exorlink generates the same results
as the primary xlink or secondary xlink operations. Since
exorlink can be applied without any condition, both primary
xlink and secondary xlink are special cases of exorlink. In
EXMIN2 [18], a set of rules are used to link two cubes. Each
rule can be applied under certain conditions. For instance,
the rule RESHAPE can be applied on two terms X A Y B and
X C Y D if A n C = q5 and B 3 D [18]. Rule 1 (X-MERGE)
in EXMIN2 is equivalent to distance 1 exorlink operation.
Similarly, Rule 2 to Rule 9 in EXMIN2 (RESHAPE, , X-
REDUCE-3) are all special cases of distance 2 exorlink. Both
the xlink and the rules in EXMIN2 do not cover all the cases
for which two cubes are linkable. For instance, if A n C # 4,
B n D # 4, A 2 C, C 2 A, B $ D, and D 2 B, neither xlink
nor the rules in EXMIN2 can be applied. Since exorlink can be
applied unconditionally, it covers all the cases including those
not covered by xlink and the rules in EXMIN2. The operation
unlink is used in EXORCISM and the rule SPLIT is used
in EXMIN2, for temporary increase of the number of cubes.
The same functionality is achieved by distance 3 exorlink
in EXORCISM-MV-2. Concluding, in our program, all the
previous operations are combined into a single operation,
described by one formula. Many particular operations can
be obtained as special cases of this formula. The number of
operations in EXMIN2 is larger than that in EXORCISM-this
is one of the reasons why EXMIN2 generates better results
than EXORCISM [18]. Similarly, exorlink is superior because
it is a superset of all operations introduced in EXORCISM,
Hermes, and EXMIN2.

111. THE ALGORITHM OF EXORCISM-MV-2

In this section, our algorithm to minimize MIESOP’s is
presented. For a completely specified function, the input is
the array of MIESOP cubes of the function. Since the cubes
from this array are ON-cubes, we call this array the ON-
array. One has to keep in mind, however, that contrary
to the SOP case, this array represents an EXOR of product
terms (cubes), so it includes also OFF-minterms, since even
numbers of overlapping ON-cubes produce OFF-minterms in
their intersection. Thus, for completely specified functions, the
ON-array specifies all ON-terms and some OFF-terms, and
all nonspecified minterms are OFF-terms. In the case of an
incompletely specified function, both the ON-array and the
DC-array are used as the input to the program. Thus, the ON-
array specifies the ON-terms and the OFF-terms, the DC-array
specifies the DC-terms, and all nonspecified minterms are the
OFF-terms. The MIESOP ON-array being the input to our
program can represent one of following:

1) A nondisjoint MIESOP;
2) An array of disjoint cubes (a particular case of the

3) A set of minterms (a particular case of a set of disjoint

If both the ON-array and the DC-array are used, they are
not necessarily in the same forms. The output of our program
is in a MIESOP form. Using an option “unlink” from the
program (which is a set of distance 2 exorlink operations)
the output can be changed to an array of disjoint cubes. This
way the output data can be either given back to the input
of EXORCISM-MV-2 to be further minimized, or it becomes
an input to other programs. The output MIESOP array can
be also directly given back again to our program for further
minimization. Since our algorithm is a heuristic one, the results
may vary if a different starting point is used. If the initial
function is in a SOP form, we use disjoint sharp option from
ESPRESSO [14] to transform it into a disjoint form that is
next read by our program.

A. Minimization of Completely Specified Functions
As we discussed in Section I-F, the main purpose of distance

2 operations is to provide opportunities for applications of
distance 1 or distance 0 operations. Both EXORCISM and
EXMIN-2 perform all the distance 2 operations. Our exper-
iments show that such a method may not be efficient, and
it may lead the program to falling into an infinite loop [16].
Therefore, in our new algorithm, instead of doing all possible
distance 2 operations, only those distance 2 operations are
performed which lead to distance 0 or distance 1 operations.
More specifically, if the distance of two cubes, A and B, is
2, then A 18 B generates a pair of resultant cubes C1 and C2,
while B @ A generates a pair of resultant cubes D1 and D z .
At this point, there are three choices.

MIESOP);

cubes).

1) Take C1 and C2;
2) Take D1 and D2;
3) Take A and B.

By calculating the distance of each of the cubes C1, C Z , D1,
aad D2 with all the cubes in the ESOP array except cubes A

390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 4, APRIL 1996

3- Ox10 = Ox10

0110 oxox

1 1 1 1
OlOX 2- OlOX
10x1 * 10x1 * 10x1 1101

(a) (b) (4 (d)

xxxl
Ox1O oxox 7><1 8,;; Fc :::: & ox00
lxxl > oxxo Oxlx

ooxx 2- ooxx 2- ooxx ~ > ooxx
1101 * 1101 2- 1101 * 1101

(d) (e) (f) (g)

Fig. 2. Procedure of ESOP minimization. (a) The original ESOP. (b) The
ESOP after one operation. (c) The ESOP after two operations. (d) The ESOP
after three operations. ((d) is repeated to continue the flow) (e) The ESOP
after four operations. (t) The ESOP after five operations. (g) The final ESOP.

and B, we know how many cubes in the array can be reduced
if a pair of resultant cubes is selected. Note that a distance
0 operation reduces two cubes in the array and a distance 1
operation reduces one cube. We chose the pair of cubes which
leads to a larger reduction. If the number of cubes will be
reduced is the same for both pairs, we randomly select one
pair. If the cube reduction is 0, cubes A and B are selected.

Example 9: Given an ESOP with 5 cubes

0011 0110 1111 OlOz 1021.

If distance 2 operations were performed under th s cube
ordering, the diagram of applying operations would be as
shown in Fig. 2.

After six operations, the function would be represented by
another ESOP with 5 cubes, as shown in Fig. 2(g). The number
of cubes has not been reduced so far.

The execution of our algorithm is illustrated in Fig. 3.
1) Perform all possible distance 0 and distance 1 exorlink

operations. In this example, none of these operations are
possible now [see Fig. 3(a)].

2) Check if the distance of two cubes is 2. For instance,
the distance of cubes 0011 and 0110 is 2 as shown in
Fig. 3(a).

3) Check the two pairs of resultant cubes with other cubes
in the array to verify if one can find pairs of cubes whose
distance is 0 or 1. In the example, cubes 0011 and 0110
generate two pairs of resultant cubes

0110 63 0011 = 0211 @ Ollz

as shown in Fig. 3(bl), and

0011 63 0110 = 0x10 @ O O l z

as shown in Fig. 3(b2). Check these four resultant cubes
with the remaining cubes in the array

1111 0102 IOzl

and it can be found that the distance of cubes 0 1 1 ~ and
OlOz is 1 as shown in Fig. 3(bl).

0x11 - 0x11 > 0x11
0110 Ooll = Ollx Olxx
1 1 1 1 1 1 1 1 -: :::YxD 1x11

OlOX - OlOX
10x1 * 10x1 > 10x1 1001

(a) (31) (C) (d)

01 10 ::: ‘F: 2
1x11

3-c :;:
1111 - 1111
OlOX - OlOX 1001 x. 1001
10x1 > 10x1 (d) (e)
(a) (32)

Fig. 3. New procedure of ESOP minimzation. (a) The original ESOP. ((a)
is duplicated to show two different flows). (bl) The ESOP after one operahon.
@2) The ESOP after one operation in a different flow. (c) The ESOP after two
operations. (d) The ESOP after three operations. ((d) is repeated to continue
the flow) (e) The final ESOP.

In step 3, if there are pairs of cubes whose distance is 0
or 1, the distance 2 exorlink is performed and followed
by the distance 0 or distance 1 exorlink operations. For
instance, in step 3 the distance of two cubes 011z and
O l O z is 1,

0110 @ 0011 = 0x11 @ Ollz

is first performed and then followed by

0112 63 O l O z = Olzz

as shown in Fig. 3(c).
After performing distance 0 or distance 1 exorlink, go
back to step 1. If there are no any pairs of cubes whose
distance is 0 or 1 in step 3, do not perform distance
2 operation, and go back to step 2 to check other two
cubes.

The sequence of steps 1-5 is continued as shown in Fig. 3(d)
and 3(e). This procedure is performed iteratively as long as the
reduction of component Cy of the cost function is possible.
Comparing Fig. 2 with Fig. 3, one can appreciate that our new
approach is more efficient.

3. Minimization of Multiple Output Functions
There are two ways to minimize a multiple output function.
1) Decompose the multiple output function to single output

functions; minimize each single output function sepa-
rately; and then minimize jointly the set of functions
again;

2) Minimize the multiple output function directly.
Both the EXORCISM and the EXMIN use the first method.
In our program, we let the user to select which method to use.
The following procedure describes our approach,

1) If the function is a multiple output one and the option
“decomposition to single output” is selected, then go to
step 2; otherwise, go to step 5;

2) Decompose the function to a set of single output func-
tions;

SONG AND PERKOWSKI MINIMIZATION OF EXCLUSIVE SUM-OF-PRODUCTS EXPRESSIONS

~

391

3) Minimize each single output function separately;
4) Combine the minimized single output functions to a

5) Minimize the multiple output function.
Example 10 illustrates the application of this procedure.

Example 10: Given is a 3-input 2-output binary function
(f o , f l) = F (x , y, z) which is represented by the following
ON-array of cubes

multiple output function;

001 10
010 11
101 10
111 11.

The first three symbols in each cube represent the input
variables, the last two symbols represent the output variables.
For instance, the first cube in the array, 001 10, means that
when the input values combination is x = 0, y = 0, and z = 1,
the output variables are f o = 1 and f l = 0, respectively.
Since this is a two output function, it can be decomposed
to two single output functions which are represented by the
following array of 6 cubes

001 10
010 10
101 10
111 10
010 01
111 01.

By performing the above procedure, the first four cubes are
minimized into the following two cubes

012 10
xxl 10.

The last two cubes cannot be minimized at this stage. So these
two cubes remain the same

010 01
111 01.

Now each single output function has been minimized sepa-
rately. Next these two single output functions are combined to
a multiple output function represented by the following four
cubes

0lx 10
xxl 10
010 01
111 01.

By minimizing these four cubes, the final result becomes an
array of three cubes

x l l 01
xxl 10
0lx 11.

The last cube is a product term that is common to both output
f o and f l .

"00 01 11 10 ?)r,

Fig. 4.
ESOP. (b) The minimized ESOP.

An example of incompletely specified function. (a) The original

Fig. 5. The DC-array covers a OFF minterm.

C. Minimization of Incompletely Specijied Functions

An incompletely specified function can be represented by
an ON-array of cubes and a DC-array of cubes. A simple way
to minimize an incompletely specified function is to assume
that all the DC-cubes are OFF-cubes. However, linking the
ON-array of cubes with the DC-array of cubes may generate
better results.

Example 11: Given is an ESOP with one ON-cube, 01x1,
and two DC-cubes, 11x1 and 1x10, as shown in Fig. 4(a). The
function can be realized by the ON-cube only. By linking the
ON-cube with one of the DC-cubes, we get the cube x l x l
as shown in Fig. 4(b), which is a better result than ON-cube
01x1.

Saul [20] pointed out that minimization of incompletely
specified functions in ESOP form is difficult, because of the
following:

1) The DC-cubes may cover some OFF minterms, as shown
in Fig. 5;

2) The DC-array may not contain a cube that can be directly
linked with a cube in ON-array because of the positions
or sizes of the DC-cubes, as shown in Figs. 6(a) and
7(a), respectively.

In Fig. 5, cubes xlOl and 01x1 are in the DC-array, and
cube xl00 is an ON-cube. The DC-cube x l0 l cannot be linked
with the ON-cube 2100, because the DC-cube x l0 l contains
a minterm 0101, which is an OFT minterm. This problem can
be solved by making the DC-array disjoint. In a disjoint DC-
array, each DC-minterm is covered by a cube once, and an
OFF minterm is not covered by any cube.

Saul [20] gave the algorithm to link the ON-cubes with the
DC-cubes. His algorithm can reduce the number of connec-
tions, but cannot reduce the number of cubes, because only
distance 1 link is performed between the ON-cubes and the
DC cubes. Moreover, the distance 1 link may not be found by
the program due to the position and the size of the DC-cubes.
In Fig. 6(a), the ON-cube cannot be linked with any one of the
DC-cubes. If the DC-cubes are in the right position, however,

392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 15, NO. 4, APRIL 1996

~ o o l o l l 111 10,

(a) (b) (c)

Fig. 6. Position of DC-cubes. (a) No DC-cubes can be linked. (b) One DC-cube can be linked. (c) The final result.

(a) (b) (C)

Fig. 7. Size of DC-cubes. (a) The original ESOP. (b) The DC-cube is separated. (c) The final result.

they can be linked as shown in Fig. 6(b) and (c). In Fig. 7(a),
the ON-cube cannot be linked with the DC-cube, because the
size of the DC-cube is larger than the size of the ON-cube,
which means the distance between the ON-cube and the DC-
cube is not 1. If we can separate the DC-cube properly, as
shown in Fig. 7(b), then the ON-cube can be linked with one
of the DC-cubes, as shown in Fig. 7(c).

Our approach to minimize incompletely specified functions
is described by the following procedure:

function don’t care minimize (ON-array, DC-array)
for (each ON-cube) {

R = ON-cube # DC-array
if (R = 4) remove the ON-cube from ON-array

return ON-array.
I.

Here R = ON-cube # DC-array is the sharp operation
between the ON-cube and the DC-array. If R is an empty cube,
this means that the ON-cube is covered by the DC-array. The
ON-cube can then be removed.

If no more ON-cubes can be removed by this method, we
can perform distance 2 exorlink on the ON-array in order to
reshape the ON-cubes. Example 12 shows that reshape may
help to reduce the ON-cubes.

Example 12: Given ON-array

1102

1) Perform the don’t care minimization procedure. Since
no ON cubes are covered by the DC cubes, none of the
ON-cubes can be removed;

2) Reshape the ON-array as shown in Fig. 8(b). Again,
none of the ON-cubes can be removed;

3) Reshape the ON-array as shown in Fig. 8(c), the three
ON-cubes are

11x2
x x l l
1011.

Since the DC-cube 10x1 contains the ON-cube 1011,
the operation

1011#10z1

generates an empty cube. So, the ON-cube 1011 can
be removed. The final result is an array of two cubes:
llzz and z s l l .

By performing sharp and distance 2 exorlink iteratively, the
number of ON-cubes can be reduced, which serves our primary
goal: minimizing the number of terms in the ESOP’s. The next
step is to achieve our secondary goal: minimizing the number
of connections. This is done by trying all possible expanding
operations on the ON-cubes.

The next section presents our whole algorithm.

D. The Algorithm of EXORCISM-MV-2
When our method is used for a completely specified func-

tion, it uses an ON-array of cubes (usually, but not necessarily,
these are disjoint cubes). In the case of an incompletely
specified function, the function is represented as the ON-array
of ON-cubes and the DC-array of DC-cubes (DC-cubes are
cubes of don’t cares). The pairs of equal cubes are removed
and distance 1 exorlink operations are performed iteratively.
Then distance 2 exorlink operations are executed which may

0x11
1110

and DC-array

Ox10
10x1

as shown in Fig. 8(a). The minimization is carried out by the
following steps:

SONG AND PERKOWSKI: MINIMIZATION OF EXCLUSIVE SUM-OF-PRODUCTS EXPRESSIONS 393

4) Improvements of the current solution: By this method,
the program is controlled by comparing the current result
with the previous result. If there is no improvement
for a certain number of iterations, the program goes to
the next step. This is the method used in ESPRESSO
and EXMIN. In our program, this is the method used
by default. The user can also select other methods as
options.

The whole algorithm is listed below.
Input: ON-array of cubes for a multiple-valued input,

multiple-output function (In addition, a DC-array in the case
of an incompletely specified function).

1) F := ON; D := DC.
2) SOLUTION := F , MIN-COST := COST(F). (COST(F)

is calculated using the cost function shown in Section
11-B. MIN-COST will be updated in the steps below to
reflect always the lowest cost of solutions obtained until
now. This solution is also stored).

3) If the option “do not decompose the function to single
output functions” is selected, go to step 5; else go to

(C) (4

Fig. 8. Minimization of an incompletely specified function. (a) The original
ESOP. (b) The ESOP after one operation. (c) The ESOP after two operations.
(d) The final result.

provide opportunities for distance 0 or distance 1 exorlink.
If distance 2 exorlink operations cannot further improve the
cost function, distance 3 exorlink operations are performed.
Again, only those distance 3 exorlink operations which lead
to distance 0 or distance 1 exorlink operations are performed.
After a number of loops, if there is no improvement in the
number of terms, distance 2 exorlink operations are performed
to minimize the number of connections.

In the case of a multiple-output function, by default, the
function is first transformed from a multiple-output array to a
set of single-output arrays. Each single-output array is mini-
mized separately, and then the whole function is minimized
by using the methods discussed in Section 111-B.

For incompletely specified functions, the ON-array is min-
imized first. Then the sharp operation is executed between
each cube in the ON-array and the cubes in the DC-array.
If the sharp operation generates an empty cube, the ON-cube
will be removed from the ON-array. If no more cubes in the
ON-array can be sharped out, distance 2 exorlink operations
are performed in order to provide further opportunities. Next,
we try to expand each ON-cube into DC-cubes. Success-
ful application of these operations decreases the number of
connections.

Since our algorithm is a heuristic one, we do not know
whether we have obtained the minimum solution or not.
Therefore, some criteria to stop the program are necessary.
The following methods can be used as the termination criteria.

Costfunctions: A cost function can be used in the termi-
nation criterion. For instance, the program is terminated
if the number of terms in the current solution meets a
preset value.
Number of iterations: The program is terminated after a
certain number of iterations. This is a simple method,
but the quality of the results is not guaranteed.
Execution time: The program is terminated if time limit
has been exceeded. This is the method used in EXOR-
CISM.

step 4.
4) Decompose the function to a set of single output func-

tions. For each single output function, perform the steps
5-8.

5) Perform all possible distance 0 operations.
6) Perform all possible distance 1 exorlink operations.
7) For each pair of cubes in F , check if a distance 2

exorlink is possible. If it is possible, further check
if it makes a distance 0 operation or a distance 1
exorlink operation possible. If it is possible, perform
the distance 2 exorlink operation and then perform
distance 0 or distance 1 exorlink operation. Otherwise,
do nothing.

8) Check the number of cubes (calculate CT). If the
number of cubes has not been reduced for certain
number of iterations go to 9, else go to 5. (Currently
the number of iterations is set to the value of 3.)

9) If the option “do not decompose the function to single
output function” is selected, go to step 11;
else if the single functions have been combined to a
multiple output function, go to step 11;
else if all the single output functions are minimized, go
to step 10;
else go to step 5 to minimize the next single output
function.

10) Combine the single output functions to a multiple output
function, go to step 5.

11) For each pair of cubes in F , check if a distance 3
exorlink is possible. If it is possible, further check if
it makes a distance 0 operation or a distance 1 exorlink
operation possible. If it does, perform the distance
3 exorlink operation and then perform distance 0 or
distance 1 exorlink operation. Otherwise, do nothing.

12) Check the number of cubes. If the number of cubes has
not been reduced for certain number of iterations go to
13, else go to 11. (Currently the number of iterations
is set to 3.)

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIFCUITS AND SYSTEMS, VOL. 15, NO. 4, APRIL 1996

distance 2 exorlink operation and then perform the sharp

Check all possible distance 2 exorlink operations. For
each distance 2 exorlink operation, if it reduces the cost

ON-cubes I[ON- and DC- cubes

TABLE IV
FUNCTIONS WITH 3-b DECODERS

Iv. EVALUATION OF RESULTS OF EXORCISM-MV-2

In this section, our experimental results are compared with
those published previously in the literature. In the following
tables, inputs means the number of input variables, outputs
means the number of output variables, time is The CPU
time in second. CT and CL in the tables are the respective
components of the cost function (Section 11-B). To evaluate
our program, we collected all the published benchmarks we
were able to find, and we grouped them into two categories,
binary input functions and multiple-valued input functions.
Since no authors except ourselves have published results on
incompletely specified functions so far, comparison in this
category is impossible. Binary input examples are listed in
Tables I and 11. For multiple-valued input functions, Sasao is
the only author besides ourselves who has published results.
The comparison is shown in Table III. Table I compares
EXORCISM-MV-2 with EXMIN-2 [SAS93b]. In Table I,
the first three examples are single output functions, and the
remaining are multiple output functions. Comparing with
EXMIN-2, EXORCISM-MV-2 generates either the same or
in most cases better results.

Table I1 compares our results with other algorithms.
HEALEX [2] uses a different approach and generates good
results on some examples. Comparing our results with those
given in [2], our program in most cases generates better
results. There is only one example in which our solution has
one more term. ND is a nondeterministic algorithm given
in [3]. This method generally generates good results but
is very time consuming. Although the computation time of
ND is about 50 times longer than EXMIN2 [18], there are
still examples (SQR6 and NRM4) that EXORCISM-MV-2
generates better results. HERMES [20] uses the algorithm
similar to our previous algorithm [lo]. Table I1 shows that our
new algorithm of EXORCISM-MV-2 gives better results.

that for some of the examples, like Adr4, the solution with
3-b decoders requires more area than the solution with 2-b
decoders. This is due to the structure of the problem. For
these problems, it is better to use even bit decoders than to use
odd bit decoders. While for other problems, odd bit decoders
are useful. For instance, benchmark 9sym contains nine input
variables. With 2-b decoders, it requires 18 lines to the AND
plane, and 21 lines to the EXOR plane. By using three 3-b
decoders, it requires 24 lines to the AND plane, and only 9
lines to the EXOR plane. In our program, odd bit decoders can
be used together with even bit decoders. For instance, Rd53
contains five input variables. With 2-b decoders, the solution
has nine terms. The area is 10 (lines to the AND plane) by 9
(number of terms) = 90. Using one 2-b decoder and one 3-b
decoder, the solution has six terms. The area is 12 (lines to
the AND plane) by 6 (number of terms) = 72.

Table V shows the experimental results for the minimization
of incompletely specified functions. The results of minimizing
ON-cubes only are compared with the results of minimizing
ON- and DC-cubes. The results show that better results are
achieved when DC-cubes are taken into account.

V. CONCLUSION

One approach to minimize ESOP’s is to apply a set of
cube operations iteratively on each pair of cubes in the array.
Our new operation--exorlink is the most powerful operation
in this approach, which can link any two cubes in an array
of cubes of an arbitrary distance. All the cube operations
introduced previously for this approach in the literature are
special cases of the operation introduced by us. The superiority
of the new cube operation ensures better results than the
previous operations shown in the literature. Based on our
new cube operation, a new minimization algorithm is also
introduced. Our program EXORCISM-MV-2 was tested on

SONG AND PERKOWSKI: MINIMIZATION OF EXCLUSIVE SUM-OF-PRODUCTS EXPRESSIONS 395

many benchmark functions. The program in most cases gives

specified functions. More importantly, it is able to minimize
efficiently functions with arbitrary number of values for each

[I71 T. Sasao and P. W. Besslich, “On the complexity of mod-2 sum plas,”
IEEE Trans. Comput., vol. 39, pp. 262-266, Feb. 1990.

of-products expressions for multiple-valued-input two-valued-output
functions,” IEEE Trans. Computer-Aided Design, vol. 12, pp. 621-632,

the Same Or better On binary and 4-valued cOmpletely [I81 T. Sasao, “EXMIN2: A simplification algorithm for exclusive.oR-sum-

variable, which allows to run it with input decoders having May 1993.
[I91 -, “An exact minimization Of AND-EXOR expressions using BDD’s,”

in Proc. IFIP WG 10.5 Workshop Appl. Reed-Muller Expansion Circuit more than two binary inputs. Finally, EXORCISM-MV-2 is
the only available program to minimize multiple-valued input, Design, Wilhelm Schickard-Inst& fuer Informatik, 1993, pp. 91-98.

[20] J. M. Saul, “An improved algorithm for the minimization of mixed
polarity Reed-Muller representations,” in Proc. Int. Con$ Comput. multiple-output, incompletely specijied functions.

REFERENCES

P. W. Besslich, “Efficient computer method for EXOR logic design,”
IEE Proc. Pt. E, vol. 130, 1983, pp. 203-206.
P. W. Besslich and M. W. Riege, “An efficient program for logic
synthesis of Mod-2 sum expressions,” in Proc. EUROASIC, Paris,
France, 1991, pp. 136141.
D. Brand and T. Sasao, “Minimization of AND-EXOR expressions using
rewrite rules,’’ IEEE Trans. Cornput., vol. 42, pp. 568-576, May 1993.
L. Csanky, M. A. Perkowski, and I. Schuer, “Canonical restricted
mixed-polarity exclusive sums of products and the efficient algorithm
for their minimization,” in Proc. IEEE Int. Symp. Circuits Syst., San
Diego, CA, May 1992, pp. 17-20.
H. Fleisher, M. Tavel, and J. Yeager, “A computer algorithm for
minimizing Reed-Muller canonical forms,” IEEE Trans. Comput., vol.
C-36, pp. 247-250, Feb. 1987.
H. Fujiwara, “Logic testing and design for testability,” in Comput. Syst.
Series.
D. H. Green, “Reed-Muller canonical forms with mixed polarity and
their manipulations,” in Proc. IEE, Pt. E vol. 137, Jan. 1990, pp.
103-113.
M. Helliwell and M. A. Perkowski, “A fast algorithm to minimize multi-
output mixed-polarity generalized Reed-Muller forms,” in Proc. 25th
ACM/IEEE Design Automation Con$, Anaheim, CA, June 1988, pp.
427432.
G. Papakonstantinou, “Minimization of modulo-2 sum of products,”
IEEE Trans. Comput., vol. C-28, pp. 163-167, Feb. 1979.
M. A. Perkowski, M. Helliwell, and P. Wu, “Minimization of multiple-
valued input multi-output mixed-radix exclusive sums of products for
incompletely specified boolean functions,” in Proc. 19th Znt. Symp.
Multiple-Valued Logic, May 1989, pp. 256-263.
M. A. Perkowski and M. Chrzanowska-Jeske, “An exact algorithm
to minimize mixed-radix exclusive sums of products for incompletely
specified boolean functions,” in Proc. Int. Symp. Circuits Syst., New
Orleans, LA, May 1990, pp. 1652-1655.
D. K. Pradhan, Fault-Tolerant Computing, Theory and Techniques, vol.
I.
J. P. Robinson and C. L. Yeh, “A method for modulo-2 minimization,”
IEEE Trans. Comput., vol. C-31, pp. 800-801, Aug. 1982.
R. Rudell and A. Sangiovann-Vincentelli, “ESPRESSO-MV: Algo-
rithms for multiple-valued logic minimization,” in Proc. IEEE Custom
Integrated Circuits Con$, 1985, pp. 230-234.
T. Sasao, “Multiple-valued decomposition of generalized boolean func-
tions and the complexity of programmable logic arrays,” IEEE Trans.
Comput., vol. C-30, pp. 635-643, Sept. 1981.
___, “EXMIN: A simplification algorithm for eXClUSiVe-OR-SUm-
of-products expressions for multiple-valued input two-valued output
functions,” in Proc. 20th Int. Symp. Multiple-Valued Logic, May 1990,
pp. 128-135.

Cambridge, MA: Mass. Inst. Tech., 1986.

Englewood Cliffs, NI: Prentice-Hall, 1987.

Design: VLSI Comput. Processors, Sept. 1990, pp. 372-375.
[21] I. Schser and M. A. Perkowslu, “Multiple valued generalized

Reed-Muller forms,” in Proc. IEEE 21st Int. Symp. Multiple-valued
Logic, May 1991, pp. 40-48.

[22] N. Song, “Minimization of exclusive sum of products expressions for
multiple-valued input incompletely specified functions,” Master’s degree
thesis, EE Dept., Portland State Univ., OR, 1992.

[23] S. Y. H Su and P. T. Cheng, “Computer minimization of multivalued
switching functions,” IEEE Trans. Cornput., vol. C-21, pp. 995-1003,
Sept. 1972.

[24] X. Wu, X. Chen, and S. L. Hurst, “Mapping of Reed-Muller coefficients
and the minimization of exclusive-OR switching functions,” IEEE Proc.
Pt. E, Jan. 1982, vol. 129, pp. 5-20.

Ning Song received the M.S. degree in management
science and computer science from the Shanghai
Jiaotong University, China, in 1983, and the M.S.
degree in electrical engineering from Portland State
University, OR, in 1992, where he is also pursuing
the Ph.D degree.

He is currently with Lattice Semiconductor Cor-
poration, Milpitas, CA. His research interests are in
logic synthesis, technology mapping, and exclusive-
or minimization.

Marek A. Perkowski (M’84) is a Professor with the
Electrical Engineering Department of Portland State
University, OR. He has published four books and
more than 143 refereed papers in the areas of logic
synthesis, formal method in hardware design, soft-
ware and microprogram verification, fault-tolerant
computing, design for testability, state machines,
petri nets and control models, ovulation monitoring,
field programmable gate arrays, robotics for hand-
icapped, medical imaging, and knowledge based
systems. In the summer of 1994, he was with

Wright Laboratories of the Air Force on applying functional decomposition
to machine learning. He has been the Program Chair for the 1995 IEEE
International Symposium on Multiple-Valued Logic. His research interests
include functional decomposition, field programmable analog arrays, fail-safe
design and hardware verification of communicating state machines, abductive
logic, and linearly independent transforms and logic.

