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Minimization of Exclusive Sum-of-Products 
Expressions for Multiple-Valued 

Input, Incompletely Specified Functions 
Ning Song and Marek A. Perkowski, Member, ZEEE 

Abstract-This paper presents a new operation (exorlink) and 
an algorithm to minimize Exclusive-OR Sum-of-Products expres- 
sions (ESOP’s) for multiple valued input, two valued output, 
incompletely specified functions. Exorlink is a more powerful op- 
eration than any other existing one for this problem. Evaluation 
on benchmark functions is given and it proves the superiority of 
the program to those known from the literature. 

I. INTRODUCTION 

N RECENT years, the interest in the design of logic I circuits which use Exclusive-OR (EXOR) gates has increased. 
Functions realized by such circuits can have fewer gates, fewer 
connections, and take up less area when realized in VLSI 
circuits. They can have also fewer cells when realized in 
Field Programmable Gate Arrays (FPGA’ s). Circuits with high 
EXOR components are also easily testable [6], [12]. Circuits 
of this type have applications in self-testing schemes, linear 
machines, arithmetic and communication circuits, encrypting 
schemes, coding schemes for error control and synchroniza- 
tion, sequence generation for process identification, system 
testing, etc. It was demonstrated in [17] that on average, 
the AND-EXOR PLA’s require fewer product terms than the 
AND-OR PLA’s. Both AND-OR PLA’s and AND-EXOR PLA’S 
can have input decoders, which lead to the application of 
multiple-valued logic as a mathematical technique for the 
minimization of such binary PLA’s. The studies [15], [18] 
prove that both types of PLA’s with input decoders require 
smaller area than the PLA’s without input decoders. AND- 
EXOR PLA’ s realize Exclusive-OR Sum-of-Product expressions 
(ESOP’s). AND-EXOR PLA’s with n-bit (n  > 1) input decoders 
correspond to multiple-valued input ESOP’s (MIESOP’s). In 
this paper, we focus on the minimization of MIESOP’s. Since a 
binary valued input is a special case of a multiple-valued input, 
MIESOP’s are more general than binary valued input ESOP’s. 
Minimization of ESOP’s is a more difficult problem than that 
of Sum-of-Product expressions (SOP’S) minimization. So far, 
exact solutions for ESOP’s can be found only practically for 
functions with five, or sometimes a few more variables [9], 
[ll],  [19]. Therefore, the interest is mainly in approximate 
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solutions. Two approaches to generate suboptimal solutions 
can be found in the literature. One approach is to minimize 
some canonical subfamilies of ESOP’s (exact or approximate 
solutions). Another approach is to minimize ESOP’s using 
heuristic algorithms. Efficient programs for subfamilies of 
ESOP’s were given in 111, [4], [7], [21]. Heuristic ESOP min- 
imization programs have been presented in [21, 151, [81, [lo], 
[13], [16], [18], [20]. In these programs, two general methods 
have been used. One method is to base the minimization on 
the coefficients of canonical generalizations to Reed-Muller 
forms [l], [13], [24]. Another method is to perform a set of 
cube operations iteratively on ESOP’s (starting from minterms, 
disjoint cubes, ESOP’s, Reed-Muller forms, or other represen- 
tations). Fleisher et al. [5] presented an algorithm which starts 
from positive Reed-Muller forms and performs three cube 
operations iteratively. Helliwell and Perkowski [8] introduced 
new cube operations, “primary xlink” and “secondary xlink,” 
and presented an algorithm based on these operations. The 
algorithm from [8] was next improved in [lo], and also 
extended for the case of logic with multiple-valued inputs. A 
new cube operation, “unlink,” has also been added. The unlink 
operation was efficiently implemented in [20]. A few more 
cube operations were also included in an independent realiza- 
tion by Sasao [16], [18]. So far, this approach has achieved 
better results than other methods [18]. The literature clearly 
demonstrates that the more powerful the cube operations are, 
the better the results [18]. 

Some limitations exist in current programs. Hermes [20] 
is used for binary input functions only. EXMIN2 [18]] does 
not handle incompletely specified functions. In this paper, we 
present a new cube operation, exorlink, for the minimization 
of MIESOP’s. This single operation contains all the cube 
operations presented in [5], [8], [lo], [16], [18]. Based on 
our new cube operation, a new algorithm is also discussed 
in this paper. This new algorithm is more efficient than the 
existing ones [lo], [18]. Our program based on the exorlink 
operation has the following advantages: it is applicable to 
both the binary input functions and the multiple-valued input 
functions; each input variable can have an arbitrary number 
of logic values; the function can be completely specified or 
incompletely specified; and the output can be single output 
or multiple output. To evaluate our program, we collected 
all the published benchmarks that we were able to find. Our 
experimental results show that for both binary input functions 
and multiple input functions, for both single output functions 
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EXMIN-2 
inputs outputs CT I CL 

Adr4 4 5 11 I 60 

TABLE I 
BINARY INPUT EXAMPLES 

EXORCISM-MV-2 
CT I CL I Time (1) 
11 I 60 I 1.8 

(1) CPU seconds on SPARC Station l+. 
(2) CPU seconds on SPARC Station 1. 

TABLE I1 
BINARY INPUT FUNCTIONS 

EALEX 
CT 

HERMES 11 EXORCISM-MV-2 
11 CT I CL I Time (1) CT 

- 
35 
73 
- 

RDM8 1 1  32 1 31 I 
ROT8 
~ 

WGT8 __ E 35 
54 

- 
35 
54 
- 

- I/ 55 I 307 I 122 

(1) CPU seconds on SPARC Station 1. 

and multiple output functions, our program is superior to all 
the existing programs (see Tables I, 11, and 111 for details). We 
also tested out programs extensively on incompletely specified 
functions and obtained very good results. However, there are 
not any published results with which we can compare our 
results. 

Section I1 presents our new cube operation, exorlink. Con- 
trary to the operations in EXORCISM [8], [lo], Hemes [20], 
and EXMIN-2 [ 181, which can be applied under satisfaction 
of certain conditions only, exorlink can be applied to any two 
cubes with arbitrary distance, as it will be shown in Section 11. 
The procedure of the exorlink operation is discussed, different 
examples are presented, and comparisons with operations of 
EXORCISM and EXMIN-2 are given. 

TABLE I11 
MULTIPLE-VALUED INPUT FUNCTIONS 

(1) CPU seconds on SPARC Station 1. 

In Section lTI, our new algorithm used in EXORCISM- 
MV-2 is discussed. The major advantage of this algorithm 
is that it gives priority to those distance two operations which 
will directly reduce the number of cubes in the array. In this 
way, our program can achieve betteli results in shorter time 
as compared to the former algorithms. The new algorithms 
that handle multiple output functions and incompletely spec- 
ified functions are also discussed in this section. They are 
incorporated into EXORCISM-MV-2. Section IV shows the 
experimental results. The conclusion is given in Section V. 

11. THE MULTIPLE-VALUED EXORLINK OPERATION 

In this section, we first give some definitions, and then the 
cost function is discussed. After introducing some basic prop- 
erties of multiple-valued functions, our new cube operation, 
exorlink is presented. The remainder of the section discusses 
particular, special cases of this operation, and illustrates them 
with examples. 

A. Dejinitions I 

Dejinition 1: A multiple-valued input, two-valued output, 
incompletely specified switching function f (also called 
multiple-valued function,) is a mapping f ( X I ,  X2, ’ . ’ , X n )  : 
PI x P2 x . . . P, + B,  yrhere X ,  is a multiple-valued variable, 
P, = { 0,1, . . . , p ,  - 1) is a set of admissible values that this 
variable may assume, and B = {0,1, x} (z denotes a don’t 
care value). 

DeJinition 2: For any subset S, C P,, X? is a literal of 
X ,  representing the function such that 

XB, = { 1 
if X i  E Si 

0 if X i  Si. 
DeJinition 3: A product of literals, X F  X p  . . . X? , is 

referred to as a product term (also called term or product). 
A minterm is a product term that there exists only one value 
in each S, for z = 1 , 2 , .  . . , n. 

Dejinition 4: The EXOR of two products is assigned the 
value 1 if and only if the two products have different values. 
An EXOR of products is called an ESOP. It is also called a 
MIESOP if one wants to emphasize that the input variables 
are multiple valued. 

Example 1: In 4-valued logic, given three terms TI = 
X{1,2>y{2,3), T2 = X{2,3>y{1,2>, and T3 = X{o,1>y{1>3). 
TI @ T2 @ T3 is a MIESOP. We can also call it ESOP. 
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In cube notation [23] ,  a term is represented by a cube, and 
each literal in the term is represented by a vector 

where 

1 if j E Si 
0 i f j $ S i .  

For example, X{O) is denoted by 100...000, X { l }  is de- 
noted by 010.. .OOO, X{Ol2} is denoted by 101 . . .000, and 
X{o>l>”‘>n} is denoted by 111 . . . 111, which represents the 
Boolean universe. A cube is a null cube if one or more 
variables contain all zeros. 

Example 2: In Example 1, the ESOP can be written in cube 
notation as follows 

[ O l l O  - 00111 @ [ O O l l  - 01101 @ [1100 - 01011. 

DeJnition 5: The distance of two terms is the number of 
variables for which the corresponding literals have different 
sets of values. 

Example 3: Given three terms, TI = X { o } Y { l ) ,  T2 = 
X { 1 } Y { o * 2 ) ,  and T3 = X { l } Y { o > l } ,  the distance of TI and 
T2 is 2, because two literals have different sets of values 

for X :  {O} # {l}, 

for Y :  {I} # {0,2}. 

The distance of TZ and T3 is 1, because only one literal has 
different sets of values 

for X :  (1) = {l}, 
for Y: {0,2} # (0, l}. 

We write distance(Ti, Tj) = d to indicate that the distance of 
two terms Ti and Tj is d. 

B. The Cost Function 
The objective of logic minimization is to find a realization 

that reduces certain cost function. Our primary goal of ESOP 
synthesis is to minimize the number of terms in the ESOP 
expression. For the expression with the minimum number of 
terms our secondary goal is to minimize the total number of 
inputs to the AND and EXOR gates. The following costfunction 
C is used in our algorithm 

U L  C = c T + -  
G i n  

where 
CT is the total number of terms in the solution; 
CL is the total number of input wires to the AND and 

 CL^^ is the total number of input wires to the AND and 
EXOR gates in the solution; 

For instance, literal X{09192} as an input to an AND gate 
requires a single wire for the 2-by-4 decoder realization of 
logic with 4-valued inputs [15]. Literal X{071} if realized 
as X { O ~ ~ > ~ } X { O J ~ ~ } ,  requires two wires. Similarly X { O )  = 

According to the cost function, if two solutions have dif- 
ferent number of terms, the better solution is the one that has 
the smaller number of terms, because its CT is smaller. If two 
solutions have the same number of terms, the better solution 
is the one that has the smaller number of inputs, because its 
CL%” 

Example 4: Consider an ESOP X{oi1}Y{2} @ X { 2 } Y { 2 }  @ 
X { o } Y { l }  in 4-valued logic. It has 3 terms and 20 inputs (17 
inputs to the AND gates and 3 inputs to the EXOR gate). The 
cost function is 3 + (20/20) = 4. The ESOP can be minimized 
to X{oi1j2)Y{2} @ X { o ) Y { l } .  It has 2 terms and 12 inputs (10 
inputs to the AND gates and 2 inputs to the EXOR gate). The 
corresponding cost function is 2+(12/20) = 2.6. The function 
can be further minimized to X{o~1~2)Y{1~2}$X{1,2}Y{1}. The 
cost function is 2 + (10/20) = 2.5. 

~ { O , 1 ~ 2 } ~ { O , 1 ~ 3 } ~ { O ~ 2 , 3 )  requires three wires. 

is smaller. 

C. The Formula 

algebra. 
The following properties hold for multiple-valued input 

1) T @ T = 0. Here T denotes a product term. 
2)  1,s; @ x? = X,s;@Ri. 
3 )  x?xSi x?x!j = xY@RixSj xPixSj@Rj = 

3 3 3 2 3  
xfi@Rixflj xSixSj@Rj. 

3 2 3  
The proofs for these properties are straightforward. Properties 
1 and 2 directly result from Definition 4. Property 3 is true 
because 

xfi@RixSj xfztxSi@Rj 
3 2 3  

- - (xfi @ X?)X,”j @ x,fl; (x,”j @ x?) 
- - xS;xSj @ xpx? @ xpx? @ XFXjRi 

= xz”.x,”j @X?Xj”i. 
2 3  

Similarly it is proved that 
xS;@RixjRi xSixSj@Rj = xfix,”j x?x3%. 

2 3  

Extending the property 3 to two terms with n literals, we define 
a new cube operation as follows: 
Let Ts = X f l  . X? and TR = XF1 e X,”- be two terms. 
The exorlink of terms TS and TR is defined by the following 
formula: 

XSi-lXjSi@R%) Ri+l . . . x,”- I 
TS 8 TR = @ { xg1. + . z - l  Xi+l 

for such i = 1,. + , n, that Si # Ri}. 

Here 8 denotes the exorlink operation and @ denotes the 
EXOR operation. 

DeJnition 6: Given terms Ts and TR, if the distance of 
two terms is d ,  then TS 8 TR is a distance d exorlink. It was 
proved in [22] that the exorlink can be applied to any two 
cubes in an array, without regard to their distance. According 
to the above formula, we can observe that distance d exorlink 

EXOR gates in the initial function. generates d resultant terms. 
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A 
Fig. 1. ESOP minimization corresponding to Example 7. 

B 

In the remainder of this section, distance 0, distance 1, 
distance 2, and distance 3 exorlink operations will be dis- 
cussed. These operations are used in our EXORCISM-MV- 
2 algorithm. The comparison of exorlink with the primary 
and secondary xlink operations [lo] and the operations from 
EXMIN-2 [It?] will also be presented in this section. 

D. Distance 0 Exorlink 
If the distance of two terms is 0, exorlink of the terms gen- 

erates no resultant terms. These two terms are then removed 
from the ESOP description. 

E. Distance I Exorlink 

Given two terms TS and TR, let Xsa and X R z  be a 
pair of literals in terms Ts and TR, respectively, such that 
X s z  $3 X R % ,  and the other pairs of literals in the two terms 
are equal. Therefore, these two terms will be called “distance 
I exorlinkable.” The distance 1 exorlink operation of the terms 
generates a single resultant term. 

Example 5: Let TS = X{1>2>3}Y{2>3) and TR = 
x{OJIy{2,31 

Ts @TR = X {1 ,2 ,3 )@{0 ,1 )y{2 ,3 )  = x { O , 2 , 3 } y { 2 , 3 } ,  

F. Distance 2 Exorlink 

Given two terms, if the distance of these two terms is 
2 (assume X s s  # X R t ,  and Ys3 # YR3), then distance 
2 exorlink operation can be performed on them, and two 
resultant terms will be generated. 

Please note that when distance 2 2, exorlink operation is not 
symmetric, which means TS 63 TR is different from TR 8 Ts. 

Example 6: Given two terms Ts = X{01113)Y{1>3} and 
TR = X{2,3>y{o,1}. 

T~ @ T~ = X { ~ J J I Y I L ~ >  8 ~ { 2 , 3 1 y { 0 , 1 1  

- - ~ { 0 , 1 ~ 2 } ~ { 0 ~ 1 )  e ~ { 0 , 1 , 3 l y { O , 3 1  

TR @ Ts = X{2>3}y{o>1> 8 X{o,1,3}y{1,3} 

- - x { 0 , 1 , 2 } y { L 3 )  @ xI2,3)y@,3). 

Distance 2 operations do not directly reduce the number 
of terms in an ESOP. However, these operations reshape 
two terms to two different terms, thus provide opportunities 
for reducing the cost of ESOP’s at some later stages. The 
nonsymmetry property of the distance 2 exorlink gives us two 

/ 
B’ 

A’ 

ways to reshape the two terms, which increases the opportunity 
for searching a better result. Our method on how to apply 
distance 2 and distance 3 exorlink in ESOP minimization is 
discussed in Section III. 

ExampZe 7: Given is an ESOP with three terms: Tl = 

In Fig. 1, the three terms T I ,  T2, and T3 are represented by 
three cubes A, B ,  and C,  respectively. A 63 B generates A’ 
and B’; A’ 8 C generates A”. The ESOP with three cubes 
is minimized to an ESOP with two cubes, B’ corresponding 
to term T4 = X{1>3}Y{1>2} ,  and A” corresponding to term 

X{1721y{2,3}, T2 X{2>3>y{1,2), and T3 = X{o}y{1>32. 

T5 = X{0,1,2}y{1,3)- 

6. Distance 3 Exorlink 

Distance 3 exorlink generates three resultant terms from two 
given terms. Distance 3 exorlink increases the number of terms 
in the ESOP. However, increasing the number of terms may 
help to reduce the number of terms at some later stage, and 
subsequently lead to better results. 

Example 8: In binary logic, a given ESOP with four cubes 
is as follows: 

0002) 0211, 2112, 1010. 

The distances between any pair of cubes from the above 
set is 3. So, there are no distance 1 or distance 2 operations 
that can be applied to this set of cubes. Performing distance 3 
exorlink on the first two cubes leads to three cubes 

0002 8 0211 = 0111 @ 00x1 @ 0000. 

Replacing the first two cubes by these three cubes, a new 
ESOP with five cubes is obtained 

0111, 0021, 0000, 2112, 1010. 

Since the distance of two cubes: 0000 and 1010 is 2, a distance 
2 exorlink can be performed on them 

0000 @ 1010 = Z0lO 

After this operation, the ESOP contains five cubes 

0020. 

0111, 0021, 2010, 2112, 0020. 

Now, the distance of cubes 00x1 and 00x0 is 1, a distance 1 
exorlink can be performed on them 

0021 8 0020 = 0022. 
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The ESOP now contains four cubes 

0111, oozz, 2010, zllz. 

Performing distance 2 exorlink on cubes zOl0 and zllz, we 
obtain 

zOl0 @ zllz = zzl0 e3 2111. 

The ESOP is 

0111, oozz, azlO, 2111. 

Cubes 01 11 and z1 11 can be combined into one cube 

0111 @ zll l  = 1111. 

The final result is an ESOP with three cubes 

oozx, 5210, 1111. 

By using distance 3 exorlink, the number of cubes in the ESOP 
is temporarily increased from 4 to 5,  but this increase helps 
to jump out of a local minimum of the cost function, and 
ultimately achieve a better result of 3 cubes. 

H. Comparison with Other Cube Operations 

In EXORCISM [lo], as well as in Hermes [20], two 
operations are used to link the cubes, the primary xlink and the 
secondary xlink. Both operations can be applied under certain 
conditions [lo], [20]. If two cubes are of the same dimension, 
then the primary xlink operation can be applied. If the distance 
of two cubes is 1, then the secondary xlink can be applied. 
In the above two cases, exorlink generates the same results 
as the primary xlink or secondary xlink operations. Since 
exorlink can be applied without any condition, both primary 
xlink and secondary xlink are special cases of exorlink. In 
EXMIN2 [18], a set of rules are used to link two cubes. Each 
rule can be applied under certain conditions. For instance, 
the rule RESHAPE can be applied on two terms X A Y B  and 
X C Y D  if A n C = q5 and B 3 D [18]. Rule 1 (X-MERGE) 
in EXMIN2 is equivalent to distance 1 exorlink operation. 
Similarly, Rule 2 to Rule 9 in EXMIN2 (RESHAPE, , X- 
REDUCE-3) are all special cases of distance 2 exorlink. Both 
the xlink and the rules in EXMIN2 do not cover all the cases 
for which two cubes are linkable. For instance, if A n C # 4, 
B n D  # 4, A 2 C, C 2 A, B $ D,  and D 2 B, neither xlink 
nor the rules in EXMIN2 can be applied. Since exorlink can be 
applied unconditionally, it covers all the cases including those 
not covered by xlink and the rules in EXMIN2. The operation 
unlink is used in EXORCISM and the rule SPLIT is used 
in EXMIN2, for temporary increase of the number of cubes. 
The same functionality is achieved by distance 3 exorlink 
in EXORCISM-MV-2. Concluding, in our program, all the 
previous operations are combined into a single operation, 
described by one formula. Many particular operations can 
be obtained as special cases of this formula. The number of 
operations in EXMIN2 is larger than that in EXORCISM-this 
is one of the reasons why EXMIN2 generates better results 
than EXORCISM [18]. Similarly, exorlink is superior because 
it is a superset of all operations introduced in EXORCISM, 
Hermes, and EXMIN2. 

111. THE ALGORITHM OF EXORCISM-MV-2 

In this section, our algorithm to minimize MIESOP’s is 
presented. For a completely specified function, the input is 
the array of MIESOP cubes of the function. Since the cubes 
from this array are ON-cubes, we call this array the ON- 
array. One has to keep in mind, however, that contrary 
to the SOP case, this array represents an EXOR of product 
terms (cubes), so it includes also OFF-minterms, since even 
numbers of overlapping ON-cubes produce OFF-minterms in 
their intersection. Thus, for completely specified functions, the 
ON-array specifies all ON-terms and some OFF-terms, and 
all nonspecified minterms are OFF-terms. In the case of an 
incompletely specified function, both the ON-array and the 
DC-array are used as the input to the program. Thus, the ON- 
array specifies the ON-terms and the OFF-terms, the DC-array 
specifies the DC-terms, and all nonspecified minterms are the 
OFF-terms. The MIESOP ON-array being the input to our 
program can represent one of following: 

1) A nondisjoint MIESOP; 
2) An array of disjoint cubes (a particular case of the 

3) A set of minterms (a particular case of a set of disjoint 

If both the ON-array and the DC-array are used, they are 
not necessarily in the same forms. The output of our program 
is in a MIESOP form. Using an option “unlink” from the 
program (which is a set of distance 2 exorlink operations) 
the output can be changed to an array of disjoint cubes. This 
way the output data can be either given back to the input 
of EXORCISM-MV-2 to be further minimized, or it becomes 
an input to other programs. The output MIESOP array can 
be also directly given back again to our program for further 
minimization. Since our algorithm is a heuristic one, the results 
may vary if a different starting point is used. If the initial 
function is in a SOP form, we use disjoint sharp option from 
ESPRESSO [14] to transform it into a disjoint form that is 
next read by our program. 

A. Minimization of Completely Specified Functions 
As we discussed in Section I-F, the main purpose of distance 

2 operations is to provide opportunities for applications of 
distance 1 or distance 0 operations. Both EXORCISM and 
EXMIN-2 perform all the distance 2 operations. Our exper- 
iments show that such a method may not be efficient, and 
it may lead the program to falling into an infinite loop [16]. 
Therefore, in our new algorithm, instead of doing all possible 
distance 2 operations, only those distance 2 operations are 
performed which lead to distance 0 or distance 1 operations. 
More specifically, if the distance of two cubes, A and B, is 
2, then A 18 B generates a pair of resultant cubes C1 and C2, 
while B @ A generates a pair of resultant cubes D1 and D z .  
At this point, there are three choices. 

MIESOP); 

cubes). 

1) Take C1 and C2; 
2) Take D1 and D2; 
3) Take A and B. 

By calculating the distance of each of the cubes C1, C Z ,  D1, 
aad D2 with all the cubes in the ESOP array except cubes A 
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3- Ox10 = Ox10 

0110 oxox 

1 1 1 1  
OlOX 2- OlOX 
10x1 * 10x1 * 10x1 1101 

(a) (b) (4 (d) 

xxxl 
Ox1O oxox 7><1 8,;; Fc :::: & ox00 
lxxl > oxxo Oxlx 

ooxx 2- ooxx 2- ooxx ~ > ooxx 
1101 * 1101 2- 1101 * 1101 

(d) (e) ( f )  (g) 

Fig. 2. Procedure of ESOP minimization. (a) The original ESOP. (b) The 
ESOP after one operation. (c) The ESOP after two operations. (d) The ESOP 
after three operations. ((d) is repeated to continue the flow) (e) The ESOP 
after four operations. (t) The ESOP after five operations. (g) The final ESOP. 

and B,  we know how many cubes in the array can be reduced 
if a pair of resultant cubes is selected. Note that a distance 
0 operation reduces two cubes in the array and a distance 1 
operation reduces one cube. We chose the pair of cubes which 
leads to a larger reduction. If the number of cubes will be 
reduced is the same for both pairs, we randomly select one 
pair. If the cube reduction is 0, cubes A and B are selected. 

Example 9: Given an ESOP with 5 cubes 

0011 0110 1111 OlOz 1021. 

If distance 2 operations were performed under th s  cube 
ordering, the diagram of applying operations would be as 
shown in Fig. 2. 

After six operations, the function would be represented by 
another ESOP with 5 cubes, as shown in Fig. 2(g). The number 
of cubes has not been reduced so far. 

The execution of our algorithm is illustrated in Fig. 3. 
1) Perform all possible distance 0 and distance 1 exorlink 

operations. In this example, none of these operations are 
possible now [see Fig. 3(a)]. 

2) Check if the distance of two cubes is 2. For instance, 
the distance of cubes 0011 and 0110 is 2 as shown in 
Fig. 3(a). 

3) Check the two pairs of resultant cubes with other cubes 
in the array to verify if one can find pairs of cubes whose 
distance is 0 or 1. In the example, cubes 0011 and 0110 
generate two pairs of resultant cubes 

0110 63 0011 = 0211 @ Ollz 

as shown in Fig. 3(bl), and 

0011 63 0110 = 0x10 @ O O l z  

as shown in Fig. 3(b2). Check these four resultant cubes 
with the remaining cubes in the array 

1111 0102 IOzl 

and it can be found that the distance of cubes 0 1 1 ~  and 
OlOz is 1 as shown in Fig. 3(bl). 

0x11 - 0x11 > 0x11 
0110 Ooll = Ollx Olxx 
1 1 1 1  1 1 1 1  -: :::YxD 1x11 

OlOX - OlOX 
10x1 * 10x1 > 10x1 1001 

(a) (31) (C) (d) 

01 10 ::: ‘F: 2 
1x11 

3-c :;: 
1111 - 1111 
OlOX - OlOX 1001 x. 1001 
10x1 > 10x1 (d) (e) 
(a) (32) 

Fig. 3. New procedure of ESOP minimzation. (a) The original ESOP. ((a) 
is duplicated to show two different flows). (bl) The ESOP after one operahon. 
@2) The ESOP after one operation in a different flow. (c) The ESOP after two 
operations. (d) The ESOP after three operations. ((d) is repeated to continue 
the flow) (e) The final ESOP. 

In step 3, if there are pairs of cubes whose distance is 0 
or 1, the distance 2 exorlink is performed and followed 
by the distance 0 or distance 1 exorlink operations. For 
instance, in step 3 the distance of two cubes 011z and 
O l O z  is 1, 

0110 @ 0011 = 0x11 @ Ollz 

is first performed and then followed by 

0112 63 O l O z  = Olzz 

as shown in Fig. 3(c). 
After performing distance 0 or distance 1 exorlink, go 
back to step 1. If there are no any pairs of cubes whose 
distance is 0 or 1 in step 3, do not perform distance 
2 operation, and go back to step 2 to check other two 
cubes. 

The sequence of steps 1-5 is continued as shown in Fig. 3(d) 
and 3(e). This procedure is performed iteratively as long as the 
reduction of component Cy of the cost function is possible. 
Comparing Fig. 2 with Fig. 3, one can appreciate that our new 
approach is more efficient. 

3. Minimization of Multiple Output Functions 
There are two ways to minimize a multiple output function. 
1) Decompose the multiple output function to single output 

functions; minimize each single output function sepa- 
rately; and then minimize jointly the set of functions 
again; 

2) Minimize the multiple output function directly. 
Both the EXORCISM and the EXMIN use the first method. 
In our program, we let the user to select which method to use. 
The following procedure describes our approach, 

1) If the function is a multiple output one and the option 
“decomposition to single output” is selected, then go to 
step 2; otherwise, go to step 5; 

2) Decompose the function to a set of single output func- 
tions; 
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3) Minimize each single output function separately; 
4) Combine the minimized single output functions to a 

5) Minimize the multiple output function. 
Example 10 illustrates the application of this procedure. 

Example 10: Given is a 3-input 2-output binary function 
( f o ,  f l )  = F ( x ,  y, z )  which is represented by the following 
ON-array of cubes 

multiple output function; 

001 10 
010 11 
101 10 
111 11. 

The first three symbols in each cube represent the input 
variables, the last two symbols represent the output variables. 
For instance, the first cube in the array, 001 10, means that 
when the input values combination is x = 0, y = 0, and z = 1, 
the output variables are f o  = 1 and f l  = 0, respectively. 
Since this is a two output function, it can be decomposed 
to two single output functions which are represented by the 
following array of 6 cubes 

001 10 
010 10 
101 10 
111 10 
010 01 
111 01. 

By performing the above procedure, the first four cubes are 
minimized into the following two cubes 

012 10 
xxl  10. 

The last two cubes cannot be minimized at this stage. So these 
two cubes remain the same 

010 01 
111 01. 

Now each single output function has been minimized sepa- 
rately. Next these two single output functions are combined to 
a multiple output function represented by the following four 
cubes 

0lx 10 
xxl  10 
010 01 
111 01. 

By minimizing these four cubes, the final result becomes an 
array of three cubes 

x l l  01 
xxl  10 
0lx 11. 

The last cube is a product term that is common to both output 
f o  and f l .  

"00 01 11 10 ?)r, 

Fig. 4. 
ESOP. (b) The minimized ESOP. 

An example of incompletely specified function. (a) The original 

Fig. 5. The DC-array covers a OFF minterm. 

C. Minimization of Incompletely Specijied Functions 

An incompletely specified function can be represented by 
an ON-array of cubes and a DC-array of cubes. A simple way 
to minimize an incompletely specified function is to assume 
that all the DC-cubes are OFF-cubes. However, linking the 
ON-array of cubes with the DC-array of cubes may generate 
better results. 

Example 11: Given is an ESOP with one ON-cube, 01x1, 
and two DC-cubes, 11x1 and 1x10, as shown in Fig. 4(a). The 
function can be realized by the ON-cube only. By linking the 
ON-cube with one of the DC-cubes, we get the cube x l x l  
as shown in Fig. 4(b), which is a better result than ON-cube 
01x1. 

Saul [20] pointed out that minimization of incompletely 
specified functions in ESOP form is difficult, because of the 
following: 

1) The DC-cubes may cover some OFF minterms, as shown 
in Fig. 5; 

2) The DC-array may not contain a cube that can be directly 
linked with a cube in ON-array because of the positions 
or sizes of the DC-cubes, as shown in Figs. 6(a) and 
7(a), respectively. 

In Fig. 5, cubes xlOl and 01x1 are in the DC-array, and 
cube xl00 is an ON-cube. The DC-cube x l0 l  cannot be linked 
with the ON-cube 2100, because the DC-cube x l0 l  contains 
a minterm 0101, which is an OFT minterm. This problem can 
be solved by making the DC-array disjoint. In a disjoint DC- 
array, each DC-minterm is covered by a cube once, and an 
OFF minterm is not covered by any cube. 

Saul [20] gave the algorithm to link the ON-cubes with the 
DC-cubes. His algorithm can reduce the number of connec- 
tions, but cannot reduce the number of cubes, because only 
distance 1 link is performed between the ON-cubes and the 
DC cubes. Moreover, the distance 1 link may not be found by 
the program due to the position and the size of the DC-cubes. 
In Fig. 6(a), the ON-cube cannot be linked with any one of the 
DC-cubes. If the DC-cubes are in the right position, however, 
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~ o o l o l l  111 10, 

(a) (b) (c) 

Fig. 6.  Position of DC-cubes. (a) No DC-cubes can be linked. (b) One DC-cube can be linked. (c) The final result. 

(a) (b) (C) 

Fig. 7. Size of DC-cubes. (a) The original ESOP. (b) The DC-cube is separated. (c) The final result. 

they can be linked as shown in Fig. 6(b) and (c). In Fig. 7(a), 
the ON-cube cannot be linked with the DC-cube, because the 
size of the DC-cube is larger than the size of the ON-cube, 
which means the distance between the ON-cube and the DC- 
cube is not 1. If we can separate the DC-cube properly, as 
shown in Fig. 7(b), then the ON-cube can be linked with one 
of the DC-cubes, as shown in Fig. 7(c). 

Our approach to minimize incompletely specified functions 
is described by the following procedure: 

function don’t care minimize (ON-array, DC-array) 
for (each ON-cube) { 

R = ON-cube # DC-array 
if ( R  = 4) remove the ON-cube from ON-array 

return ON-array. 
I. 

Here R = ON-cube # DC-array is the sharp operation 
between the ON-cube and the DC-array. If R is an empty cube, 
this means that the ON-cube is covered by the DC-array. The 
ON-cube can then be removed. 

If no more ON-cubes can be removed by this method, we 
can perform distance 2 exorlink on the ON-array in order to 
reshape the ON-cubes. Example 12 shows that reshape may 
help to reduce the ON-cubes. 

Example 12: Given ON-array 

1102 

1) Perform the don’t care minimization procedure. Since 
no ON cubes are covered by the DC cubes, none of the 
ON-cubes can be removed; 

2) Reshape the ON-array as shown in Fig. 8(b). Again, 
none of the ON-cubes can be removed; 

3) Reshape the ON-array as shown in Fig. 8(c), the three 
ON-cubes are 

11x2 
x x l l  
1011. 

Since the DC-cube 10x1 contains the ON-cube 1011, 
the operation 

1011#10z1 

generates an empty cube. So, the ON-cube 1011 can 
be removed. The final result is an array of two cubes: 
llzz and z s l l .  

By performing sharp and distance 2 exorlink iteratively, the 
number of ON-cubes can be reduced, which serves our primary 
goal: minimizing the number of terms in the ESOP’s. The next 
step is to achieve our secondary goal: minimizing the number 
of connections. This is done by trying all possible expanding 
operations on the ON-cubes. 

The next section presents our whole algorithm. 

D. The Algorithm of EXORCISM-MV-2 
When our method is used for a completely specified func- 

tion, it uses an ON-array of cubes (usually, but not necessarily, 
these are disjoint cubes). In the case of an incompletely 
specified function, the function is represented as the ON-array 
of ON-cubes and the DC-array of DC-cubes (DC-cubes are 
cubes of don’t cares). The pairs of equal cubes are removed 
and distance 1 exorlink operations are performed iteratively. 
Then distance 2 exorlink operations are executed which may 

0x11 
1110 

and DC-array 

Ox10 
10x1 

as shown in Fig. 8(a). The minimization is carried out by the 
following steps: 
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4) Improvements of the current solution: By this method, 
the program is controlled by comparing the current result 
with the previous result. If there is no improvement 
for a certain number of iterations, the program goes to 
the next step. This is the method used in ESPRESSO 
and EXMIN. In our program, this is the method used 
by default. The user can also select other methods as 
options. 

The whole algorithm is listed below. 
Input: ON-array of cubes for a multiple-valued input, 

multiple-output function (In addition, a DC-array in the case 
of an incompletely specified function). 

1) F := ON; D := DC. 
2) SOLUTION := F ,  MIN-COST := COST(F). (COST(F) 

is calculated using the cost function shown in Section 
11-B. MIN-COST will be updated in the steps below to 
reflect always the lowest cost of solutions obtained until 
now. This solution is also stored). 

3) If the option “do not decompose the function to single 
output functions” is selected, go to step 5; else go to 

(C) ( 4  

Fig. 8. Minimization of an incompletely specified function. (a) The original 
ESOP. (b) The ESOP after one operation. (c) The ESOP after two operations. 
(d) The final result. 

provide opportunities for distance 0 or distance 1 exorlink. 
If distance 2 exorlink operations cannot further improve the 
cost function, distance 3 exorlink operations are performed. 
Again, only those distance 3 exorlink operations which lead 
to distance 0 or distance 1 exorlink operations are performed. 
After a number of loops, if there is no improvement in the 
number of terms, distance 2 exorlink operations are performed 
to minimize the number of connections. 

In the case of a multiple-output function, by default, the 
function is first transformed from a multiple-output array to a 
set of single-output arrays. Each single-output array is mini- 
mized separately, and then the whole function is minimized 
by using the methods discussed in Section 111-B. 

For incompletely specified functions, the ON-array is min- 
imized first. Then the sharp operation is executed between 
each cube in the ON-array and the cubes in the DC-array. 
If the sharp operation generates an empty cube, the ON-cube 
will be removed from the ON-array. If no more cubes in the 
ON-array can be sharped out, distance 2 exorlink operations 
are performed in order to provide further opportunities. Next, 
we try to expand each ON-cube into DC-cubes. Success- 
ful application of these operations decreases the number of 
connections. 

Since our algorithm is a heuristic one, we do not know 
whether we have obtained the minimum solution or not. 
Therefore, some criteria to stop the program are necessary. 
The following methods can be used as the termination criteria. 

Costfunctions: A cost function can be used in the termi- 
nation criterion. For instance, the program is terminated 
if the number of terms in the current solution meets a 
preset value. 
Number of iterations: The program is terminated after a 
certain number of iterations. This is a simple method, 
but the quality of the results is not guaranteed. 
Execution time: The program is terminated if time limit 
has been exceeded. This is the method used in EXOR- 
CISM. 

step 4. 
4) Decompose the function to a set of single output func- 

tions. For each single output function, perform the steps 
5-8. 

5) Perform all possible distance 0 operations. 
6) Perform all possible distance 1 exorlink operations. 
7) For each pair of cubes in F ,  check if a distance 2 

exorlink is possible. If it is possible, further check 
if it makes a distance 0 operation or a distance 1 
exorlink operation possible. If it is possible, perform 
the distance 2 exorlink operation and then perform 
distance 0 or distance 1 exorlink operation. Otherwise, 
do nothing. 

8) Check the number of cubes (calculate CT). If the 
number of cubes has not been reduced for certain 
number of iterations go to 9, else go to 5. (Currently 
the number of iterations is set to the value of 3.) 

9) If the option “do not decompose the function to single 
output function” is selected, go to step 11; 
else if the single functions have been combined to a 
multiple output function, go to step 11; 
else if all the single output functions are minimized, go 
to step 10; 
else go to step 5 to minimize the next single output 
function. 

10) Combine the single output functions to a multiple output 
function, go to step 5. 

11) For each pair of cubes in F ,  check if a distance 3 
exorlink is possible. If it is possible, further check if 
it makes a distance 0 operation or a distance 1 exorlink 
operation possible. If it does, perform the distance 
3 exorlink operation and then perform distance 0 or 
distance 1 exorlink operation. Otherwise, do nothing. 

12) Check the number of cubes. If the number of cubes has 
not been reduced for certain number of iterations go to 
13, else go to 11.  (Currently the number of iterations 
is set to 3.) 
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distance 2 exorlink operation and then perform the sharp 

Check all possible distance 2 exorlink operations. For 
each distance 2 exorlink operation, if it reduces the cost 

ON-cubes I[ ON- and DC- cubes 

TABLE IV 
FUNCTIONS WITH 3-b DECODERS 

Iv.  EVALUATION OF RESULTS OF EXORCISM-MV-2 

In this section, our experimental results are compared with 
those published previously in the literature. In the following 
tables, inputs means the number of input variables, outputs 
means the number of output variables, time is The CPU 
time in second. CT and CL in the tables are the respective 
components of the cost function (Section 11-B). To evaluate 
our program, we collected all the published benchmarks we 
were able to find, and we grouped them into two categories, 
binary input functions and multiple-valued input functions. 
Since no authors except ourselves have published results on 
incompletely specified functions so far, comparison in this 
category is impossible. Binary input examples are listed in 
Tables I and 11. For multiple-valued input functions, Sasao is 
the only author besides ourselves who has published results. 
The comparison is shown in Table III. Table I compares 
EXORCISM-MV-2 with EXMIN-2 [SAS93b]. In Table I, 
the first three examples are single output functions, and the 
remaining are multiple output functions. Comparing with 
EXMIN-2, EXORCISM-MV-2 generates either the same or 
in most cases better results. 

Table I1 compares our results with other algorithms. 
HEALEX [2] uses a different approach and generates good 
results on some examples. Comparing our results with those 
given in [2], our program in most cases generates better 
results. There is only one example in which our solution has 
one more term. ND is a nondeterministic algorithm given 
in [3]. This method generally generates good results but 
is very time consuming. Although the computation time of 
ND is about 50 times longer than EXMIN2 [18], there are 
still examples (SQR6 and NRM4) that EXORCISM-MV-2 
generates better results. HERMES [20] uses the algorithm 
similar to our previous algorithm [lo]. Table I1 shows that our 
new algorithm of EXORCISM-MV-2 gives better results. 

that for some of the examples, like Adr4, the solution with 
3-b decoders requires more area than the solution with 2-b 
decoders. This is due to the structure of the problem. For 
these problems, it is better to use even bit decoders than to use 
odd bit decoders. While for other problems, odd bit decoders 
are useful. For instance, benchmark 9sym contains nine input 
variables. With 2-b decoders, it requires 18 lines to the AND 
plane, and 21 lines to the EXOR plane. By using three 3-b 
decoders, it requires 24 lines to the AND plane, and only 9 
lines to the EXOR plane. In our program, odd bit decoders can 
be used together with even bit decoders. For instance, Rd53 
contains five input variables. With 2-b decoders, the solution 
has nine terms. The area is 10 (lines to the AND plane) by 9 
(number of terms) = 90. Using one 2-b decoder and one 3-b 
decoder, the solution has six terms. The area is 12 (lines to 
the AND plane) by 6 (number of terms) = 72. 

Table V shows the experimental results for the minimization 
of incompletely specified functions. The results of minimizing 
ON-cubes only are compared with the results of minimizing 
ON- and DC-cubes. The results show that better results are 
achieved when DC-cubes are taken into account. 

V. CONCLUSION 

One approach to minimize ESOP’s is to apply a set of 
cube operations iteratively on each pair of cubes in the array. 
Our new operation--exorlink is the most powerful operation 
in this approach, which can link any two cubes in an array 
of cubes of an arbitrary distance. All the cube operations 
introduced previously for this approach in the literature are 
special cases of the operation introduced by us. The superiority 
of the new cube operation ensures better results than the 
previous operations shown in the literature. Based on our 
new cube operation, a new minimization algorithm is also 
introduced. Our program EXORCISM-MV-2 was tested on 
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many benchmark functions. The program in most cases gives 

specified functions. More importantly, it is able to minimize 
efficiently functions with arbitrary number of values for each 

[I71 T. Sasao and P. W. Besslich, “On the complexity of mod-2 sum plas,” 
IEEE Trans. Comput., vol. 39, pp. 262-266, Feb. 1990. 

of-products expressions for multiple-valued-input two-valued-output 
functions,” IEEE Trans. Computer-Aided Design, vol. 12, pp. 621-632, 

the Same Or better On binary and 4-valued cOmpletely [I81 T. Sasao, “EXMIN2: A simplification algorithm for exclusive.oR-sum- 

variable, which allows to run it with input decoders having May 1993. 
[I91 -, “An exact minimization Of AND-EXOR expressions using BDD’s,” 

in Proc. IFIP WG 10.5 Workshop Appl. Reed-Muller Expansion Circuit more than two binary inputs. Finally, EXORCISM-MV-2 is 
the only available program to minimize multiple-valued input, Design, Wilhelm Schickard-Inst& fuer Informatik, 1993, pp. 91-98. 

[20] J. M. Saul, “An improved algorithm for the minimization of mixed 
polarity Reed-Muller representations,” in Proc. Int. Con$ Comput. multiple-output, incompletely specijied functions. 

REFERENCES 

P. W. Besslich, “Efficient computer method for EXOR logic design,” 
IEE Proc. Pt. E, vol. 130, 1983, pp. 203-206. 
P. W. Besslich and M. W. Riege, “An efficient program for logic 
synthesis of Mod-2 sum expressions,” in Proc. EUROASIC, Paris, 
France, 1991, pp. 136141. 
D. Brand and T. Sasao, “Minimization of AND-EXOR expressions using 
rewrite rules,’’ IEEE Trans. Cornput., vol. 42, pp. 568-576, May 1993. 
L. Csanky, M. A. Perkowski, and I. Schuer, “Canonical restricted 
mixed-polarity exclusive sums of products and the efficient algorithm 
for their minimization,” in Proc. IEEE Int. Symp. Circuits Syst., San 
Diego, CA, May 1992, pp. 17-20. 
H. Fleisher, M. Tavel, and J. Yeager, “A computer algorithm for 
minimizing Reed-Muller canonical forms,” IEEE Trans. Comput., vol. 
C-36, pp. 247-250, Feb. 1987. 
H. Fujiwara, “Logic testing and design for testability,” in Comput. Syst. 
Series. 
D. H. Green, “Reed-Muller canonical forms with mixed polarity and 
their manipulations,” in Proc. IEE, Pt. E vol. 137, Jan. 1990, pp. 
103-113. 
M. Helliwell and M. A. Perkowski, “A fast algorithm to minimize multi- 
output mixed-polarity generalized Reed-Muller forms,” in Proc. 25th 
ACM/IEEE Design Automation Con$, Anaheim, CA, June 1988, pp. 
427432. 
G. Papakonstantinou, “Minimization of modulo-2 sum of products,” 
IEEE Trans. Comput., vol. C-28, pp. 163-167, Feb. 1979. 
M. A. Perkowski, M. Helliwell, and P. Wu, “Minimization of multiple- 
valued input multi-output mixed-radix exclusive sums of products for 
incompletely specified boolean functions,” in Proc. 19th Znt. Symp. 
Multiple-Valued Logic, May 1989, pp. 256-263. 
M. A. Perkowski and M. Chrzanowska-Jeske, “An exact algorithm 
to minimize mixed-radix exclusive sums of products for incompletely 
specified boolean functions,” in Proc. Int. Symp. Circuits Syst., New 
Orleans, LA, May 1990, pp. 1652-1655. 
D. K. Pradhan, Fault-Tolerant Computing, Theory and Techniques, vol. 
I. 
J. P. Robinson and C. L. Yeh, “A method for modulo-2 minimization,” 
IEEE Trans. Comput., vol. C-31, pp. 800-801, Aug. 1982. 
R. Rudell and A. Sangiovann-Vincentelli, “ESPRESSO-MV: Algo- 
rithms for multiple-valued logic minimization,” in Proc. IEEE Custom 
Integrated Circuits Con$, 1985, pp. 230-234. 
T. Sasao, “Multiple-valued decomposition of generalized boolean func- 
tions and the complexity of programmable logic arrays,” IEEE Trans. 
Comput., vol. C-30, pp. 635-643, Sept. 1981. 
___, “EXMIN: A simplification algorithm for eXClUSiVe-OR-SUm- 
of-products expressions for multiple-valued input two-valued output 
functions,” in Proc. 20th Int. Symp. Multiple-Valued Logic, May 1990, 
pp. 128-135. 

Cambridge, MA: Mass. Inst. Tech., 1986. 

Englewood Cliffs, NI: Prentice-Hall, 1987. 

Design: VLSI Comput. Processors, Sept. 1990, pp. 372-375. 
[21] I. Schser and M. A. Perkowslu, “Multiple valued generalized 

Reed-Muller forms,” in Proc. IEEE 21st Int. Symp. Multiple-valued 
Logic, May 1991, pp. 40-48. 

[22] N. Song, “Minimization of exclusive sum of products expressions for 
multiple-valued input incompletely specified functions,” Master’s degree 
thesis, EE Dept., Portland State Univ., OR, 1992. 

[23] S. Y. H Su and P. T. Cheng, “Computer minimization of multivalued 
switching functions,” IEEE Trans. Cornput., vol. C-21, pp. 995-1003, 
Sept. 1972. 

[24] X. Wu, X. Chen, and S. L. Hurst, “Mapping of Reed-Muller coefficients 
and the minimization of exclusive-OR switching functions,” IEEE Proc. 
Pt. E, Jan. 1982, vol. 129, pp. 5-20. 

Ning Song received the M.S. degree in management 
science and computer science from the Shanghai 
Jiaotong University, China, in 1983, and the M.S. 
degree in electrical engineering from Portland State 
University, OR, in 1992, where he is also pursuing 
the Ph.D degree. 

He is currently with Lattice Semiconductor Cor- 
poration, Milpitas, CA. His research interests are in 
logic synthesis, technology mapping, and exclusive- 
or minimization. 

Marek A. Perkowski (M’84) is a Professor with the 
Electrical Engineering Department of Portland State 
University, OR. He has published four books and 
more than 143 refereed papers in the areas of logic 
synthesis, formal method in hardware design, soft- 
ware and microprogram verification, fault-tolerant 
computing, design for testability, state machines, 
petri nets and control models, ovulation monitoring, 
field programmable gate arrays, robotics for hand- 
icapped, medical imaging, and knowledge based 
systems. In the summer of 1994, he was with 

Wright Laboratories of the Air Force on applying functional decomposition 
to machine learning. He has been the Program Chair for the 1995 IEEE 
International Symposium on Multiple-Valued Logic. His research interests 
include functional decomposition, field programmable analog arrays, fail-safe 
design and hardware verification of communicating state machines, abductive 
logic, and linearly independent transforms and logic. 


