
Multi�level Logic Synthesis Based on Kronecker Decision Diagrams

and Boolean Ternary Decision Diagrams for Incompletely Speci�ed

Functions

Marek A� Perkowski� Ingo Schaefer�

Andisheh Sarabi� and Malgorzata Chrzanowska�Jeske

Department of Electrical Engineering

Portland State University

Portland� OR �����

Abstract

This paper introduces several new families of decision diagrams for multi�output Boolean functions� The in�
troduced by us families include several diagrams known from literature �BDDs� FDDs� as subsets� Due to this
property� our diagrams can provide a more compact representation of functions than either of the two decision
diagrams� Kronecker Decision Diagrams �KDDs� with negated edges are based on three orthogonal expansions
�Shannon� Positive Davio� Negative Davio�� and are created here for incompletely speci�ed Boolean functions as
well� An improved e�cient algorithm for construction of KDD is presented and applied in a mapping program
to ATMEL ���� �ne�grain FPGAs� Four other new families of functional decision diagrams are also presented	
Pseudo KDDs� Free KDDs� Boolean Ternary DDs� and Boolean Kronecker Ternary DDs� The last two families
introduce nodes with three edges and require AND� OR and EXOR gates for circuit realization� There are two
variants of each of the last two families	 canonical and non�canonical� While the canonical diagrams can be used
as e�cient general�purpose Boolean function representations� the non�canonical variants are applicable also to
incompletely speci�ed functions and create don
t cares in the process of diagram
s creation� They lead to even
more compact circuits in logic synthesis and technology mapping�

� Introduction�

Recently� the Atmel ���� series from Atmel �formerly Concurrent Logic ���� has been brought to market� The
AT ���� FPGA series are 	ne
grain FPGAs with a cellular architecture �local connections� and very limited
routing resources� There are also other similar chips� fabricated or in development� by Algotronix ��� �now part of
Xilinx�� Toshiba� Plessey� Pilkington� Motorola ����� and National Semiconductor� in addition to other companies
and Universities� However� high quality logic synthesis software tools for these families are still missing�

One possible approach is to adopt BDD
based methods� However� all these methods are based on the 
unate
paradigm� ���� The 
unate paradigm� is the assumption that most of the practical logic functions occurring in
logic design are unate or nearly unate� The meaning of unate and nearly unate for logic minimization purposes
is that the circuit realization of a �nearly� unate function with AND and OR gates is not greater in terms of
the number of gates than a circuit using the AND and EXOR gates �it is usually smaller�� On the other hand
the meaning of linear or nearly linear for logic minimization purposes is that the circuit realization of a �nearly�
linear function with AND and EXOR gates is not greater in terms of the number of gates than a circuit using the
AND and OR gates �it is usually smaller�� Although the unate paradigm is true for many control logic circuits�
it is de	nitely not true for many data path circuits� Also the theoretical studies in EXOR logic by Sasao ���� ���
and others ���� con	rm the usefulness of EXOR gates� Arithmetic functions like counters� adders� multipliers�
signal processing functions and error correcting logic that belong to the class of �nearly� linear functions ��� ���

LITERATURE JAY�� MISSING
cannot be e�ciently minimized for circuit speed and area using BDDs only� To address these de	ciencies� the

concepts of� Adaptive logic trees ���� and Functional Decision Diagrams �FDDs� ���� ��� have been developed and
applied to FPGA mapping� The adaptive logic trees were introduced for multi
level representation of switching
functions based on Reed
Muller ���� canonical expansion� The Functional Decision Diagrams were introduced
for completely speci	ed functions as a generalization of adaptive logic tree structures into directed acyclic graph
�DAG� structures�

�yThe work presented in this paper was partially supported by NSF grant MIP���������



Free� multiple
valued decision diagrams for incompletely speci	ed functions were 	rst introduced in ����� These
diagrams� called orthogonal� include binary Kronecker Functional Decision Diagrams and other diagrams pre

sented here� Paper ���� presented also an e�cient algorithm for construction of diagrams� in which variable order
and expansion type selections were based on self
learning� A comprehensive presentation of various tree� DAG
and �attened structures for AND�EXOR networks was given in ���� ��� ���� These papers introduced for the 	rst
time several new decision diagrams and synthesis algorithms� both for binary and multiple
valued logic�

Some of these concepts were next implemented in software tools� Permuted �free� Reed
Muller trees ���� use
Positive and Negative Davio expansions and were applied for technology mapping to CLI ���� for completely
speci	ed functions� Kronecker Functional Decision Diagrams �KFDDs� introduced in ���� ��� ��� were used for
CLI ����� Actel and Xilinx technology mapping for both completely and incompletely speci	ed functions� Pseudo
KDDs and Free KDDs were introduced in ���� and were used for ATMEL ���� technology mapping for completely
speci	ed functions�

While the number of families of canonical and non
canonical diagrams introduced in the above papers is very
large� and most of them have been not yet implemented in programs� we continue here our more detailed study
of some of these families� This paper has two main contributions� an e�cient algorithm for generating KDDs

 in sections � 
 �� and the introduction of several e�cient new families of decision diagrams 
 in sections �� ��
and �� Section � de	nes the Kronecker Decision Diagrams �KDDs�� the Pseudo Kronecker Decision Diagrams
�PKDDs�� the Free Kronecker Decision Diagrams �FKDDs�� and some other types of diagrams� The basic ideas of
the algorithm to create KDDs for incompletely speci	ed multi
output functions are presented in section �� This
algorithm uses the new concept of constrained don
t cares� also explained in section �� Section � discusses one
more important aspect of this algorithm� redundancy conditions for the selection of expansion variables� Section
� presents another aspect� selection of expansion types� Analysis of benchmark results is given in section ��

Compared to other algorithms for generation of decision diagrams �DD�� our algorithm proves that particularly
compact KDD diagrams can be obtained for the incompletely speci�ed functions� Encouraged by this result�
which points to the usefulness of don�t cares and constrained don�t cares� in section � we develop new families
of decision diagrams which make additional advantage of these don�t cares� We create families of non
canonical
variants that are applicable to both incompletely speci	ed functions and completely speci	ed functions� The
algorithms to construct such diagrams create don�t cares and constrained don�t cares in the process of creating
the diagrams� The 	rst class of diagrams are called Boolean Ternary DDs �BTDDs�� The word 
Boolean� is to
denote that they are for Boolean logic� the word 
Ternary� denotes that there are three outgoing edges from each
node� instead of the usual two edges� The second class are called Boolean Kronecker Ternary DDs �BKTDDs��
Those are diagrams which have two kinds of nodes� binary nodes as in KDDs� and ternary nodes as in BTDDs�
BKTDDs are better for e�cient logic optimization and technology mapping by creating diagrams with even more
reduced numbers of nodes� In section � we introduce certain diagrams which are canonical counterparts of BTDDs
and BKTDDs� and are used for e�cient general
purpose representation and manipulation of switching functions�

Nodes in KDD diagrams correspond to two
input multiplexers and AND�EXOR gates� Nodes in BTDDs are
combinations of multiplexers and AND�EXOR gates with two
input OR� EXOR and inhibition �A � B� gates�
Therefore� all these nodes can be readily realized with cells of the AT ���� series� Motorola�s MPA��XX� or other
	ne
grain FPGAs� This makes the new diagrams a useful tool for 	ne
grain FPGA synthesis�

� De�nitions of Various Types of Kronecker Functional Decision Diagrams

In this section� the representation of switching functions based on various Kronecker Functional Decision
Diagrams will be presented� The de	nitions of decision diagrams are essentially due to Bryant ��� and will be
reviewed in the following� All decision diagrams will be introduced systematically� Because many di�erent names
are used now in papers� we will refer to the names assigned by the original creators of the diagrams� or to names
that are already used by more than one author� Some names used here are the result of discussions at the First
International Workshop of Applications of the Reed
Muller Expansion in Circuit Design� Hamburg� September
���� �����

De�nition � A decision diagram is a rooted� directed acyclic graph with vertex set V containing two types of
vertices� A terminal vertex v has as attribute a value value�v� � f�� �g� A non
terminal vertex v has as attributes
an argument index index�v� � f�� ���� ng and two successors low�v�� high�v� � V �

De�nition � A Binary Decision Diagram �BDD� is a decision diagram having root vertex v denoting a function
fv de�ned recursively as	

�� If v is a terminal vertex	
a� If value�v� � �� then fv � ��
b� If value�v� � �� then fv � ��

�� If v is a non�terminal vertex with index�v� �
i� then fv�x�� � � � � xn� is the function	
�x � flow�v��x�� � � � � xn� � x � fhigh�v��x�� � � � � xn��



where the cofactors are de�ned as
flow�v��x�� � � � � xn� 
 �x�� � � � � xi��� �� � � � � xn� and fhigh�v��x�� � � � � xn� � �x�� � � � � xi��� �� � � � � xn��

De�nition � An Adaptive Logic Tree �ALT� is a decision diagram having root vertex v denoting a function fv
denoted recursively as	

�� If v is a terminal vertex	
a� If value�v� � �� then fv � ��
b� If value�v� � �� then fv � ��

�� If v is a non�terminal vertex with index�v� 
 i� then fv�x�� � � � � xn� is the function	
fv�x�� � � � � xn� � flow�v��x�� � � � � xn� � x � �fhigh�v��x�� � � � � xn� � flow�v��x�� � � � � xn���

where � is the Exclusive�OR operator�

ALT is also known as Permuted Reed�Muller Tree �����

De�nition � A Kronecker Functional Decision Diagram �KFDD� is a decision diagram having root vertex v
denoting a function fv denoted recursively as	

�� If v is a terminal vertex	
a� If value�v� � �� then fv � ��
b� If value�v� � �� then fv � ��

�� If v is a non�terminal vertex with index�v� �
i� then fv is one and only one of the functions	
a� fv�x�� � � � � xn� � flow�v��x�� � � � � xn�� x � �fhigh�v��x�� � � � � xn�� flow�v��x�� � � � � xn���
b� fv�x�� � � � � xn� � fhigh�v��x�� � � � � xn�� �x � �fhigh�v��x�� � � � � xn�� flow�v��x�� � � � � xn���
c� fv�x�� � � � � xn� � �x � flow�v��x�� � � � � xn�� x � fhigh�v��x�� � � � � xn��

It is possible to put set restrictions on the decision diagrams based on the order and the number of times
the variables are encountered� The 	rst of these classi	es the DDs according to the number of times they are
encountered�

De�nition � A free decision diagram is a decision diagram such that every variable occurs at most once in any
path from the root to the terminal vertices� A repeated decision diagram is one which a variable x occurs more
than once in a path from the root to the terminal vertices�

Letter F will stand for free in various DDs�
A di�erent restriction is based on the order which the variables are encountered�

De�nition � An ordered decision diagram is a decision diagram such that for any nonterminal vertex v� if
low�v� is also nonterminal� then index�v� � index�low�v��� Similarly� if high�v� is nonterminal� then index�v� �
index�high�v���

De�nition 	 An ordered BDD is called an Ordered Binary Decision Diagram �OBDD�� An ordered KFDD is
called an Ordered Kronecker Functional Decision Diagram �OKFDD��

An ordered PRMT was called a Reed�Muller Tree �RMT� in ����� PRMT with Negative Davio vertices was
also described in �����

Furthermore� an ordered decision diagram can be reduced� This reduction� as given by Bryant� is due to
removing isomorphic subgraphs and redundant vertices�

De�nition 
 An ordered decision diagram is reduced if it contains no vertex v with low�v� 
 high�v�� nor does
it contain distinct vertices v and v� such that the subgraphs rooted by v and v� are isomorphic�

De�nition � A reduced OBDD is called a Reduced Ordered Binary Decision Diagram �ROBDD�� A reduced
RMT is called a Functional Decision Diagram �FDD�� A reduced OKFDD is called a Reduced Ordered Kronecker
Functional Decision Diagram �ROKFDD��

Further restrictions are still possible for decision diagrams based on the type of decompositions�

De�nition �� A decision diagram is homogeneous �HDD� if for every variable x in the diagram there exists
only one type of relation for fv� described by one of forms �a� �b� �c�

Letter H will stand for Homogeneous in names of DDs�
Similar to the concept of Shared Binary Decision Diagrams ��� ��� Shared KFDDs �SKFDD� can be de	ned

for multi
output switching functions�



De�nition �� A Kronecker Decision Diagram �KDD� is a Shared Reduced Ordered Homogeneous Non�repeatable
Kronecker Decision Diagram �SROHNKFDD��

This decision diagram has been also called SROKFDD� Shared Reduced Ordered Kronecker Decision Diagram
�����

Having thus de	ned syntactically the decision diagrams� we will now relate them to Boolean functions� It is
known ���� ��� that there exist three single
variable decompositions over Galois Field ����

Let xi be an input variable of function f �
��� f � xifxi

� xifxi

this is called a Shannon Expansion
��� f � fxi

� xi�fxi
� fxi

� � fxi
� xigi

Positive Davio Expansion
��� f � fxi

� xi�fxi
� fxi

� � fxi
� xigi

Negative Davio Expansion
fxi

� f � xi jxi��� f jxi��
where fxi

and fxi
are the positive and negative cofactors�

One important property of these three expansions is that the functions fxi
and fsi obtained by applying any

of the three expansions for xi will be independent of the variable xi� The circuit realization of Equation ��� is
given by a multiplexer gate� while Equations ��� and ��� describe an AND
EXOR gate structure� shown in Figure
��

Figure ��
The repeated applications of the Shannon expansion� Equation ���� to all variables of a function leads to the

construction of a BDD� The application of the positive Davio expansion to each variable generates an adaptive
logic tree ���� � The FDD is created from an ordered free adaptive logic tree by using reduction operations� �The
concept of FDD has also been expanded to Negative Davio nodes�� If all three expansions are applied to all
variables� the Kronecker Reed
Muller tree ���� ��� ��� is obtained�

LITERATURE PERK��� PERK�� IS MISSING�
and next reduced with standard DD reductions to a KDD�
There are two interesting binary families of KFDDs that include KDDs as a special case� Pseudo
KDDs� and

Free KDDs�

De�nition �� A Pseudo
Kronecker Decision Diagram �PKDD� is a shared reduced ordered non�repeatable Kro�
necker Functional Decision Diagram�

This decision diagram is obtained by recursively applying expansions ���� ��� and ���� and preserving the same
order of variables in all branches of the diagram� In addition� for any variable �in an ordered DD a variable
corresponds to a level of the diagram� any combination of expansion types can be applied to the nodes on this
level �this will be de	ned as a non
homogeneous DD��

De�nition �� A Free Kronecker Decision Diagram �FKDD� is a SRNKFDD�

This decision diagram is obtained by recursively applying expansions ���� ��� and ��� and allowing no 	xed
order of expansion variables in the diagram �allowing free order of variables in the branches�� For any node of
the tree� any expansion variable and expansion type can be applied� so the orders of variables can be di�erent in
various branches� �The FKDD is thus not homogeneous and not ordered��

As we see� the FKDD is the most general kind of the above
introduced KFDDs� It includes all the FDDs
���� ���� the OKFDDs from ���� ���� and the Permuted RMTs from ���� as its special cases� The PKDDs and
FKDDs are reduced� Similar to BDDs with negated edges ���� ��� one can de	ne the PKDDs with negated edges
and the FKDDs with negated edges� �In DDs with negated edges additional inverters may exist on inputs and
outputs of the DD nodes��

The concept of a free diagram can be applied to a decision diagramwith any type of expansion nodes� Similarly�
the concept of a Non
repeatable DD can be applied to any type of a diagram� In free diagrams every variable
occurs at most once along a branch� In repeated�variable decision diagrams �RVDDs�� a variable can occur more
than once along a branch� Those are the DDs that are not Non
repeatable� �Repeated variables are necessary
when new types of DDs are created by combining non
isomorphic subgraphs of the initial decision diagram��

�

Such concepts of free diagrams and repeated
variable decision diagrams are applicable to all kinds of diagrams�
hence also to BDDs� However� the concept of Kronecker Functional Decision Diagrams is a di�erent kind of
generalization� since it involves many expansion types� The non
homogeneous type of diagrams can be thus
de	ned only for diagrams that include more than one type of expansion� Non
homogeneous KDDs allow for
mixing Shannon� Positive Davio and Negative Davio expansion on a same level� Similarly other non
homogeneous
types can be de	ned that mix Shannon with Positive Davio� Shannon with Negative Davio� and Positive Davio

�In certain regular architectures� it is possible to combine non�isomorphic nodes� For integrity of the function� however� it would

be necessary to re�introduce some of the used variables again�



with Negative Davio on a same level ���� ��� ���� Not much has been yet published on such diagrams� as well as
on free diagrams and repeated
variables diagrams�

These three types of generalization�

 free order�

 repetition of variables�

 non
homogeneous�
can be used for any of the decision diagrams introduced in sections �� and � since each of these decision

diagrams has more than one expansion type�
From now on� it will be assumed that all the decision diagrams are reduced� shared� free and with negated

edges�

� Basic Algorithm for KDD Generation

The crucial part of the KDD synthesis is the determination of the expansion variable ordering and the expansion
type selection� In our algorithm for the KDD generation� the expansion variable order selection and the expansion
type selection are performed concurrently� However� in the variable selection process� the same expansion variable
is tested with each of the three expansions� Therefore� we 	rst discuss the expansion variable selection while the
expansion type selection methods are given in section ��

There has been already formidable e�orts to determine a good variable ordering ��� ��� ��� for BDDs� In contrast
to these methods� we investigated the synthesis methods developed for the multiplexer circuits ���� �� �� ��� ����
Inspired by the multiplexer synthesis algorithms developed by Almaini and Lloyd ��� ��� we adopted a breadth

	rst� top
down algorithm for the KDD generation�

The basic algorithm to obtain a good variable ordering is based on 	nding the expansion variable and the
selection of the expansion type of the current level nodes such that the number of necessary next level nodes is
minimal� The basic procedure� compute next level�f� type� from Fig� �� illustrates the calculation of the expansion
variable� where f is the multi
output function describing the function of the current level of the KDD�

Figure ��
For the computation of a SROBDD� only the Shannon expansion has to be applied� This is realized in

the routine Shannon decompose�x� f�� The three functions fxi
� fxi

� and g are computed in the subroutine
Davio decompose�s� f� for each of the output functions f �k� of the current level� Next� the subroutine expan�
sion select�ms� determines an expansion type for each node of the current level� such that the number of the
next
level nodes for the chosen expansion variable xi is minimal� By node we denote a container of functions fxi

�
fxi

� and g� node set is the set of all nodes in current level� split var is the expansion variable for minimal number
of next level nodes� type is SROKDD or SROBDD� Three heuristics for the expansion type selection are given in
section ��

To determine the minimal number of the next
level nodes� it is necessary to 	nd the redundant nodes on the
next level� A node is redundant if it is trivial �it is either �� �� or equal to xi� or if it can be merged with the
existing node on this level �this node can belong to any output function f �k��� Therefore� Section � investigates
the conditions for the next level node to be redundant�

When calculating Davio expansions� the function g � fxi
�fxi

is calculated� Let us observe� that when function
f has don�t cares� the operations

fxi
� fxi

� �� ��
fxi

� fxi
� ����

fxi
� fxi

� �� ��
and
fxi

� fxi
� ���

have to be calculated� At the same time� the value of the respective parent function� fxi
or fxi

will be used
for the other branch of the Davio expansion selected�

While the values of fxi
� fxi

for all other combinations of �� �� and 
 arguments are determined independently
on the assignment of logic values ��� to don�t cares in fxi

and fxi
� the value of fxi

� fxi
for each of the above

four cases depends on the choice of the possible initial value of a don�t care in function fxi
or fxi

� For instance�
in the case of the Positive Davio expansion� when values fxi

and fxi
� fxi

are concurrently calculated� assuming
fxi

� 
� and fxi
� �� the following cases are possible�

fxi
� �� then fxi

� fxi
� ��

fxi
� �� then fxi

� fxi
� ��

Denoting thus fxi
by U� the value of fxi

� fxi
becomes U �see Fig� �a��

The values of fxi
and fxi

� fxi
are� therefore� mutually constrained� This fact must be used in any synthesis

program that attempts at optimal results for incompletely speci	ed functions using Davio expansions�
Similarly� when fxi

and fxi
� fxi

are calculated for the Positive Davio Expansion� fxi
� 
 and fxi

� �� the
following cases are possible�

if fxi
� �� then fxi

� fxi
� ��

if fxi
� �� then fxi

� fxi
� ��



Denoting thus fxi
by U� the value of fxi

� fxi
becomes U�

This is also illustrated in Fig� �a� Value U serves thus as a 
constrained don�t care�� Every symbol U can
take an arbitrary value �don�t care� in function fxi

� But� when� as a result of logic minimization� a value of zero
or one is assigned to this symbol U for certain cube C �minterm C� in fxi

� this cube in function fxi
� fxi

must
take the respective constrained value �U or U �� as in one of the above two cases� This value is next used in the
minimization of fxi

� fxi
� The order of minimizing the functions fxi

� fxi
� and fxi

� fxi
is arbitrary� but the

constraint symbols U must be always propagated between the functions�
Figure ��
Example� Let the function f be as shown in Fig� �b� Its cofactor fa is shown in Fig� �c� The method to

calculate fa�fa is illustrated in Fig� �d� Applying rules in Fig� �a to the map in Fig� �d produces the equivalent
map shown in Fig� �e� Value U is treated in all minterms as a don�t care� and the function in Fig� �e is minimized
to constant value �� This requires treating symbols U for both minterms as �� so U � � in these minterms� These
values of U � � are now transmitted to the map for fa of Fig� �c which leads to an equivalent map shown in Fig�
�f� By minimizing the map of Fig� �f� one gets f � a � �� �bcd� bcd� bcd� � a� �bcd� bcd� bcd��

In another variant� the function from Fig� �e is minimized to �� so symbols U for both minterms are assigned
values of �� Respectively� values U in both 
constrained don�t care� minterms in function from Fig� �c obtain
value �� This leads to a new map for fa from Fig� �g� Thus f � a ��� �cd�bcd�bc�bd� � cd�bcd�bc�bd� This
variant is selected as the better choice� and its corresponding speci	cation of constrained don�t cares to values �
and � is preserved in functions fxi

� fxi
� and fxi

� fxi
� Other don�t care cubes remain as standard don�t cares to

be used at lower levels�

� Redundancy Conditions for the Splitting Variable Selection�

A sub
function at a node will be referred to as its 
input function�� Every KDD node has two such functions�
Every BTDD node has three such functions� By � we denote the sharp operation ����� We assume that the
initial function is represented with the ON �true cubes� and DC �don�t care cubes� sets� While creating a KDD
from a root vertex� in some cases it is not necessary to realize the input functions � fx� fx� or g� of a node with
some additional nodes� Whether it is necessary or not� depends on the selected expansion type and the selected
expansion variable� For brevity� fi and fj stand for any of the three functions fx� fx� and g� We will also de	ne�
f �x � f �x� f �

x
� f �x� g� � �f �x�� �f �x�� Analogously� f �i and f �j stand for any of the three functions f �x� f

�

x
� and

g�� This section investigates how to specify the don�t care part of the incompletely speci	ed Boolean function in
order to select the expansion variable to obtain the minimal KDD�

There exist three basic conditions for which a next
level node is redundant�
Condition �� an input function fi is a trivial function
��� fi � �
��� fi � �
��� fi � xj
���� fi � xj
Condition �� two input functions� fi and fj � at the same level of the KDD are identical
���� fi � fj i �� j
Condition �� two input function fi and fj at the same level of the KDD are the complements of one another�

���� fi � fj i �� j
The above conditions can be veri	ed by the following cube calculus operations�
Veri�cation of Condition �� The case that an incompletely speci	ed input function fi can be speci	ed such

that fi � � can be checked by
���� f �i � fdc
where fdc is a function that consists of only don�t care cubes�
The case that an input function can be speci	ed such that fi � � can be veri	ed by
���� ON �fj� �DC�fj� � �
To improve the program�s e�ciency� all veri	cations of conditions are based on the formula f �xi

� �f �xi� jxi���
f jxi��� and a fast operation of intersection is calculated for all the attempts �which do not occur too often�� A
slower operation of substitution is calculated much more rarely� only when the expansion type and its variable
have been 	nally selected�

Thus for veri	cation of ���� we use the formula
���a� f �j � xi
where xi is the corresponding expansion variable�
An incompletely speci	ed function fi can be speci	ed to be dependent on only one variable xj when Equations

���� and ���� are both satis	ed�
���� f �xl

� xl
and



���� f �xl
� fdc

Here fdc consists only of the 
don�t
care� cubes� Similarly for the complement� xl�
Veri�cation of Condition �� For incompletely speci	ed Boolean functions� it needs to be investigated

whether the don�t care parts of the functions f �i and f �j can be speci	ed in such a way that f �i � f �j � This can be

veri	ed by the complement f �c of the intersection of the two incompletely speci	ed functions
���� f �c � f �i � f

�

j

having no common cubes in the ON part of function f �i �
���� f �i � f

�

c � f �i�f �c � fdc�
and having no common cubes in the ON part of function f �j �

���� f �j � f
�

c � f �j�f �c � fdc�
where fdc� and fdc� are some functions of only don�t care cubes and � stands for the sharp operation� If the

Equations ���� and ���� are true� the don�t care parts of f �i and f �j can be speci	ed in such a way that f �i � f �j �
Veri�cation of Condition �� For the assignment of the don�t care part of the incompletely speci	ed Boolean

function such that the two input functions are complements of one another� Equations ���� and ���� have to be
true�

���� f �i � f
�

j � fdc
to verify that the ON parts of both functions have no common cubes� and
���� f �i�� � f �j�� � xi
in order to verify that the sum of both functions is dependent only on the chosen expansion variable� Here

� � means the assignment of the don�t care cubes of the function to true cubes� If both formulas are satis	ed�
the don�t care part of the input functions f �i and f �j can be chosen in such a way that f �i � f �j �

� Selection of the Expansion Type

The heuristics applied to select the expansion type include the following�
HEURISTIC h�� If the expansion variable occurs mostly in a positive form in the output function� the

Positive Davio expansion is selected� If the expansion variable occurs mostly in the negative form� the Negative
Davio expansion is selected� For a tie� the Shannon expansion is chosen�
HEURISTIC h�� The expansion type of a node is selected based on the two functions out of three� fxi

� fxi
�

and g� having the least total number of product terms�
HEURISTIC h�� The expansion type of a node is selected based on the two functions out of three� fxi

� fxi
�

and g� having the highest fan
out� In the case of a tie the heuristic h� is applied�

� Evaluation of Benchmark Results

The results obtained by our implementation of the algorithm to obtain a KDD for several MCNC benchmark
functions are given in Table �� The column ASYL gives the number of nodes in the ASYL SROBDD� ���� The
columns d�� d�� and d� give the number of nodes in the KDD if only Shannon� Positive Davio� or Negative Davio
expansions are applied� respectively� Thus� column d� gives the number of nodes in a SROBDD with negated
edges and the columns d� and d� give two special cases of the FDDs ���� ��� ���� The sub
column neg in each of
the columns d�� d�� d� gives the respective number of negated edges� The results in the column mix are obtained
by selecting the expansion at each level that leads to the least number of next level nodes�

Table ��
It can be seen that out of the functions that were also minimized in ���� our program gave a better solution in �

cases� with ASYL giving a better solution in � and two functions being of the same cost� As it can be seen� in one
case� apex�� the solution is �� percent better that in ASYL� This kind of improvement may be very important
for large functions�

Since ASYL uses SROBDDs and our program uses KDDs that are more general� the only reason that our
program gives sometimes worse result is the non
optimal selection of variables and expansions for them�

Table ��
Table � gives the corresponding timing results� The time in seconds was obtained on a Sun Sparc ����� with

memory limit set to �� Mbytes� The results for ASYL �in seconds� were obtained on a Sun ���� with �� Mbytes
����



� Non	canonical Boolean Ternary Decision Diagrams and Boolean Kronecker Ternary
Decision Diagrams

Through introduction of additional expansions� it is possible to generate more general types of decision diagrams
for both completely and incompletely speci	ed Boolean functions� These decision diagrams will be referred to as
Boolean Ternary Decision Diagrams and they are non
canonical� In order to construct a BTDD� 	rst a variable
xi is selected� Then one of the possible three expansions of OR type� INHIBITION type� or EXOR type are
applied to this variable� Each of these expansions is realized with a corresponding gate with two inputs find and
fdep� find denotes the part of the function which is not dependent on variable xi� and fdep denotes the part of
the function which is dependent on variable xi� While the OR and EXOR type expansions are realized by an
OR or EXOR of find and fdep respectively� the INHIBITION type expansion is realized as an INHIBITION of

the form find � fdep� EXOR type expansion is realized as an EXOR gate of find and fdep� These expansions are
called dependency expansions since they separate the output function f into function find that does not depend
on variable xi� and function fdep that depends on variable xi�

Next� any of the three expansions used in KDDs� Shannon� Positive Davio� and Negative Davio� is applied to
fdep function� This adds up to � � � � � possible di�erent combined expansions� The � possibilities come from one
out of three dependency expansions and one out of three KDD
type expansions� A BTDD node corresponding to
this equation has three input functions� find� flow � and fhigh� All nine types of nodes� represented by a circuits
with one expansion variable and three input functions� are presented in Fig� ��

The main idea here is that in all previous decision diagrams� the find part of the function is carried through
all levels� Here� it is proposed that this part of the function be decomposed separately�

Figure ��
The non
canonical OR type expansion is de	ned as follows�
���� DC�find� � DC�fx� � DC�fx�
���� ON�find� � � ON�fx� � DC�fx� � � � ON�fx� � DC�fx� � � DC�find�
���� ON�fdep� � ON�f� � ON�find�
���� DC�fdep� � DC�f� � ON�find�
The non
canonical INHIBITION type expansion is de	ned as follows�
���� DC�find� � DC� fx� � DC�fx�
���� ON�find� � � ON�fx� � DC�fx� � ON�fx� � DC�fx� � � DC�find�
���� ON�fdep� � ON�find� � ON�f�

���� DC�fdep� � DC�f� � ON �find�
The non
canonical EXOR type expansion is de	ned as follows�
���� ON�find� � � ON�fx� � � ON�fx� � DC�fx� � � � � � ON�fx� � DC�fx� � � ON�fx� �
���� DC�find� � DC� fx� � DC�fx�
���� ON�fdep� � � ON�f� � � ON�find� � DC�find� � � � � � ON�f� � DC�f� � � ON�find� �
���� DC�find� � DC�fx� � DC�fx�
Let us observe that the OR expansion above� ���� 
 ����� results in ON set of find having the largest function

included in the ON set of the function f � Therefore� assumig OR gate� this expansion is unique �canonical��
Function f can then be considered as an OR of find and a 
remainder� function� called fdep� In a similar way�
for the AND expansion� the ON set of find will be the smallest function that includes the ON set of function f �
Therefore� this expansion is also unique for an INHIBITION gate �a similar expansion can also be de	ned for an
AND gate�� Thus� the above two combined expansions are canonical�

However� in the case of the EXOR gate� in principle any two
input function of functions fx and fx can be
applied for find� since each of these functions is independent of xi� Hence there are many more possible canonical
dependency expansions for EXOR� Our choice of EXOR as such two
input function is� in a sense� arbitrary� but
is is motivated by function EXOR being simple and distinctly di�erent from OR and INHIBITION� so possibly
leading to searching larger space�

Example� Let function f be given as shown in Fig� �a� By applying OR type expansion to variable a� one
obtains function find shown in Fig� �b and function fdep in Fig� �c� �In the 	gures� empty cells represent the
OFF sets�� As shown in Fig� �� f � find � fdep� Similarly� applying an INHIBITION type expansion� function
f can be represented as a product

f � find � fdep�
where functions find and fdep are as in Figs� �d� and �e� respectively�
Figure ��
Fig� �a presents the realization of f using an OR gate and a MUX� By combining the OR gate and the MUX

to an OR�MUX� the realization of Fig� �a is transformed to that of Fig� �b� By treating the OR�MUX gate as
a node� and rotating Fig� �b so that OR�MUX node would be on the top� one creates the 	rst node of a BTDD�
Next the expansions are applied to circuits described by the AND gates from Fig� �b� and a complete BTDD is
created�

Figure ��
Fig� �c presents the same function f in Fig� �a� realized using a standard MUX �a BDD node�� This Figure

illustrates the advantage of the BTDD nodes over standard MUX nodes used to implement BDDs� the product



cd� independent on variable a� is split in MUX realization to two products� acd and acd� which are realized by
the paths through the 
high� and 
low� inputs to the MUX� respectively� These two paths have a common part
cd which would be present at both inputs of the MUX� As it can be seen� this approach makes the MUX circuit
both slower and larger� It would be slower since signal cd has to go through the OR gates and the MUX �which
is slower than the OR�� It would be larger since the OR gates on the inputs of the MUX are now necessary� This
advantage of BTDD over BDD can be also illustrated on other types of functions�

Fig� �d presents a circuit for the same function f � realized according to Figs� �d and �e� with INHIBIT�MUX
gate for variable a and OR�MUX gate for variable b�

The Non�canonical BKTDDs have two types of nodes� binary KDD nodes �Shannon� Positive Davio� Negative
Davio�� and ternary nodes as in BTDDs� Binary nodes are evaluated as described in sections � 
 ��

In general� for both incompletely speci	ed and completely speci	ed Boolean functions� these expansions are
not unique and thus lead to non
canonical diagrams� The expansions for completely speci	ed functions are not
canonical since the OR and INHIBITION expansions produce don�t care cubes in the expansion process� Starting
with a completely speci	ed function f � every level of variable expansions brings more and more don�t care cubes
to find and fdep functions of lower levels� This property� not shared by the algorithms to create DDs� is very
advantageous in synthesis� since functions with many don�t cares can be now better minimized� However� the
same property causes these diagrams to be non
canonical� so they can not be used for a general
purpose Boolean
function representation�

All standard concepts for DDs� free� ordered� reduced� shared� repeated variable� pseudo� can be applied to
the non
canonical diagrams created as above�

BTDDs and BKTDDs can now be formally de	ned as below�

De�nition �� A ternary decision diagram is a rooted� directed acyclic graph with vertex set V containing two
types of vertices� A terminal vertex v has as attribute a value value�v� � f�� �g� A non
terminal vertex v has as
attributes an argument index index�v� � f�� ���� ng and three successors deplow�v�� dephigh�v�� ind�v� � V �

De�nition �� A non�canonical Boolean Ternary Decision Diagram �BTDD� is a decision diagram having root
vertex v denoting a function fv denoted recursively as	

�� If v is a terminal vertex	
a� If value�v� � �� then fv � ��
b� If value�v� � �� then fv � ��

�� If v is a non�terminal vertex with index�v� �
i� then fv is one and only one of the functions	
a� fv�x�� � � � � xn� � find OPER ffdeplow�v��x�� � � � � xn�� x � �fdephigh�v��x�� � � � � xn�� fdeplow�v��x�� � � � � xn��g�
b� fv�x�� � � � � xn� � find OPER ffdephigh�v��x�� � � � � xn�� �x � �fdephigh�v��x�� � � � � xn�� fdeplow�v��x�� � � � � xn��g�

c� fv�x�� � � � � xn� � find OPER f�x � fdeplow�v��x�� � � � � xn� � x � �fdephigh�v��x�� � � � � xn�g�

where�
OPER � OR� INHIBITION� or EXOR�
fdep� find are functions calculated in ����
����� corresponding to the selected operator type OPER� Expan


sions for fdephigh�v��x�� � � � � xn�� fdeplow�v��x�� � � � � xn�� and �fdephigh�v��x�� � � � � xn�� fdeplow�v��x�� � � � � xn��g� are

calculated according to �constrained don�t care method� from section ��

De�nition �� A non�canonical Pseudo
Boolean Ternary Decision Diagram �PBTDD� is a Shared Reduced Or�
dered Boolean Ternary Decision Diagram�

Similar de	nitions of non
canonical� Free Boolean Ternary Decision Diagrams �FBTDD�� Pseudo
Boolean Kro

necker Ternary Decision Diagrams �PBKTDD�� Free Boolean Kronecker Ternary Decision Diagrams �FBKTDD��
and other diagrams can be introduced�


 Canonical Boolean Ternary Decision Diagrams and Boolean Kronecker Ternary
Decision Diagrams

The concept of canonical BTDDs and BKTDDs are created for completely speci	ed Boolean functions by
de	ning OR� INHIBITION� and EXOR expansions that create no don�t care cubes and thus make each of functions
fdep and find completely speci	ed� and thus unique�

The canonical OR type expansion for canonical BTDDs is de	ned as follows�
���� find � fx � fx
���� fdep � f � �fx � fx�



The canonical INHIBITION type expansion for canonical BTDDs is de	ned as follows�
���� find � fx � fx
���� fdep � �fx � fx� � f
The canonical EXOR type expansion for canonical BTDDs is de	ned as follows�
���� find � fx � fx
���� fdep � f��fx � fx�
It can be easily proved that for every completely speci	ed Boolean function all of these expansions are unique

and thus� combined with unique expansions� Shannon� Positive Davio and Negative Davio for fhigh� lead to
canonical trees� Analogous to section �� one applies next the standard DD reductions to transform these trees to
canonical DDs ����

By de	ning the nine ternary nodes in BKTDDs with expansions ���� 
 ���� and the three binary nodes as in
KDDs� canonical BKTDDs are created�

Similar to de	nitions from section �� canonical BTDDs� BKTDDs� Free BTDDs� Free BKTDDs� Pseudo
BTDDs� and Pseudo BKTDDs can be formulated�

Boolean Ternary DDs are a particular case of Boolean Multiple Decision Diagrams 
 diagrams for Boolean
functions that have more than two edges in nodes� Other example of the Boolean Multiple Decision Diagrams
are the Orthogonal Decision Diagrams from ���� ����

� Conclusions

In this paper families of decision diagrams were introduced that are generalizations or extensions to both BDDs
and FDDs� Some of these families� such as the KDDs� include all types of nodes from the BDDs and FDDs� It is
then obvious that KDD diagrams are always more compact� The questions are only� how much percent decrease
in the number of nodes can be obtained by constructing KDDs for industrial benchmark logic functions Can
one represent with the KDDs some large functions than are not able to be represented by BDDs Although our
numerical results are very good for some benchmarks� especially the incompletely speci	ed and arithmetical� it
results from the comparison with ASYL that there is still much space for improvement in our algorithm� since the
exact KDD diagram should have at most as many nodes as a BDD diagram for the same function� One possibility
is to add the variable sifting mechanism ���� ����

KDD diagrams allow also to represent some especially constructed large functions that can not be represented
by BDDs and FDDs� An example of a such function is given in ���� An important question remains� 
are there
such functions among industrial benchmarks �

Pseudo
KDDs and Free KDDs make further use of the possibility of mixing types of expansions on a graph�s
level� and changing orders of variables in its sub
graphs� The PKDDs and FKDDs are more di�cult to be used
as canonical representations than the KDDs� Further work must be thus devoted to create standard DD type
algorithms to manipulate such diagrams� However� the PKDDs and FKDDs are already very useful for synthesis
����� since they produce diagrams with clearly less nodes than all the other diagrams�

The Boolean Ternary Diagrams have more powerful nodes than KDDs� so it is very likely that they will have
less nodes� Since there are � instead of � possible expansion types for every expansion variable� the solution space
of all diagrams is much larger� and we expect that more compact diagrams will be generated if good heuristics for
variable selection and expansion type selection were found� The canonical BTDDs may be thus good candidates for
canonical representations� Similarly� since the circuit realization of a BTDD node is not much more complicated
than the realization of a KDD node� and because of decreased diagram size� the canonical BTDDs may be good
candidates for synthesis of both completely and incompletely speci	ed Boolean functions�

Finally� the canonical Boolean Ternary Kronecker Decision Diagrams include all the node types of KDDs� and
still preserve their canonicity� For selecting the expansion type� one has � choice in BDDs and original FDDs� �
choices in PRMTs and modi	ed FDDs� � choices in KFDDs� � choices in BTDDs� and �� choices in BKTDDs�
There is no danger of loosing good choices in BKTDDs� since the three standard expansions of the KDD are still
available in them� Therefore� the exact BKTDD is always not worse than the exact KDD�

Concluding� the introduced classes of decision diagrams open a very wide research area with many possible
applications� It should be investigated whether they can drastically improve over BDD
based algorithms in such
applications as spectral methods� mapping� decomposition� factorization� transduction� cellular logic synthesis
methods� veri	cation� testing� modeling and simulation� and technology mapping to FPGAs� especially 	ne
grain
FPGAs�

References

��� Algotronix� 
The CHS ���� The world�s 	rst custom computer�� Algotronix Ltd� Kings Buildings 
 TTC�
May	eld Road� Edinburgh EH� �JL� Scotland� �����

��� A� E� A� Almaini� and M� E� Woodward� 
An Approach to the Control Variable Selection Problem for
Universal Logic Modules�� Digital Processes� Vol� �� pp� ���
���� �����



��� L� A� M� Bennett� 
The Application of Map
Entered Variables to the Use of Multiplexers in the Synthesis
of Logic Functions�� Int� J� Electronics� Vol� ��� No� �� ����� pp� ���
����

��� B� Becker� R� Drechsler� and R� Wechner� 
On the Relation Between BDDs and FDDs�� Technical Report�
University of Frankfurt� ������ �����

��� T� Besson� H� Bousouzou� M� Crastes� and G� Saucier� 
Synthesis on Multiplexer
based Programmable
Devices Using �Ordered� Binary Decision Diagrams�� Proc� EURO�ASIC� pp� �
��� June ����� Paris� France�

��� T� Besson� H� Bousouzou� M� Crastes� and G� Saucier 
Synthesis on Multiplexer
based F�P�G�A� Using Binary
Decision Diagrams�� Proc� of IEEE ICCD� pp� ���
���� �����

��� R� K� Brayton� G� D� Hachtel� and A� L� Sangiovanni
Vincentelli� 
Multilevel Logic Synthesis�� Proc of the
IEEE� Vol� ��� No��� pp� ���
���� February �����

��� R� E� Bryant� 
Graph
Based Algorithms for Boolean Function Manipulation�� IEEE Trans� on Comput��
Vol� ��� No� �� pp� ���
���� August �����

��� Concurrent Logic Inc� 
CLi���� Series Field Programmable Gate Array�� Preliminary Information� Decem

ber �����

���� M� Davio� J� P� Deschamps� and A� Thayse� 
Discrete and Switching Functions�� Mc�Graw
Hill� �����

���� D� L� Dietmayer� 
Logic Design of Digital Systems�� Allyn and Bacon� �����

���� R� Drechsler� A� Sarabi� M� Theobald� B� Becker and M�A� Perkowski� 
E�cient Representation and Manip

ulation of Switching Functions Based on Ordered Kronecker Functional Decision Diagrams�� Proceedings of
DAC 
��� San Diego� CA� June �����

PAGE NUMBERS ABOVE 

���� M� Fujita� Y� Matsunga� and T� Kakuda� 
On variable ordering of binary decision diagrams for the application
of multi
level synthesis�� European Conf� on Design Automation� pp� ��
��� �����

���� D�H� Green and P�W� Foulk 
Adaptive Logic Trees for Use in Multilevel
Circuit Design�� Electr� Letters�
Vol� �� pp� ��
��� �����

���� Ph� Ho� and M� A� Perkowski� 
Minimization of Fine
Grain FPGAs Using Free Kronecker Decision Dia

grams�� Report� Department of Electrical Engineering� PSU� �����

���� C� Jay� 
XOR PLDs Simplify Design of Counters and Other Devices�� EDN� May� �����

���� K� Karplus� 
ITEM� An If
Then
Else Minimizer for Logic Synthesis�� Proc� EURO�ASIC� pp� �
�� June �����
Paris� France�

���� U� Kebschull� E� Schubert� and W� Rosenstiel� 
Multilevel Logic Synthesis Based on Functional Decision
Diagrams�� Proc� IEEE Euro�DAC� pp� ��
��� �����

���� A� M� Lloyd� 
Design of Multiplexer Universal
Logic
Module Networks Using Spectral Techniques�� IEE
Proc� Pt� E�� Vol� ���� pp� ��
��� January �����

���� S� Malik� A� R� Wang� R� K� Brayton� and A� Sangiovanni
Vincentelli� 
Graph
Based Algorithms for Boolean
Function Manipulation�� IEEE Proc� of� Int� Conf� on CAD� pp� �
�� �����

���� S� Minato� N� Ishiura� and S� Yajima� 
Shared Binary Decision Diagram with Attributed Edges for E�cient
Boolean Function Manipulation�� Proc� ��th ACM�IEEE DAC� pp� ��
��� �����

���� Motorola MPA��XX Data Sheet� �����

���� M�A� Perkowski� P� Dysko� and B�J� Falkowski� 
Two Learning Methods for a Tree
Search Combinatorial
Optimizer�� Proc� of IEEE Int� Conf� on Comput� and Comm�� Scottsdale� Arizona� ����� pp� ���
����

���� M�A� Perkowski� and P� D� Johnson� 
Canonical Multi
Valued Input Reed
Muller Trees and Forms�� Proc�
�rd NASA Symposium on VLSI Design� Moscow� Idaho� October ����� pp� ������ 
 ��������

���� M� A� Perkowski� 
The Generalized Orthonormal Expansions of Functions with Multiple
Valued Inputs and
Some of its Applications�� Proc� ��nd ISMVL� pp� ���
���� May� ����� Sendai� Japan�

���� M� A� Perkowski� 
A Fundamental Theorem for Exor Circuits�� Proc� of the IFIP WG ���� Workshop on
Applications of the Reed�Muller Expansion in Circuit Design� Hamburg� Germany� September �����



���� W� Rosenstiel �Ed��� Proceedings of the IFIP WG ���� Workshop on Applications of the Reed
Muller Ex

pansion in Circuit Design� Hamburg� Germany� September �����

���� R� Rudell� 
Dynamic Variable Ordering for Ordered Binary Decision Diagrams�� Proc� Int� Conf� on Com�
puter Aided Design� pp� ��
��� �����

���� A� Sarabi� P�F� Ho� K� Iravani� W�R� Daasch� and M� Perkowski� 
Minimal Multi
level Realization of Switch

ing Functions based on Kronecker Functional Decision Diagrams�� Proc� IWLS 
��� International Workshop
on Logic Synthesis�

PAGE NUMBERS ABOVE 

���� T� Sasao� and Ph� Besslich� 
On the Complexity of MOD
� Sum PLAs�� IEEE Trans� on Comput�� Vol� ���
No� �� pp� ���
���� �����

���� T� Sasao �ed��� 
Logic Synthesis and Optimization�� Kluwer Academic Publishers� �����

���� I� Schaefer� M� A� Perkowski� and H� Wu� 
Multilevel Logic Synthesis for Cellular FPGAs Based on Orthogo

nal Expansions�� Proceedings of the IFIP WG ���� Workshop on Applications of the Reed�Muller Expansion
in Circuit Design� Hamburg� Germany� September �����

���� E� Schubert� U� Kebschull� and W� Rosenstiel� 
FDD Based Technology Mapping for FPGA�� Proc� EURO�
ASIC� pp� ��
��� June ����� Paris� France�

���� Tabloski� T�F�� and F� J� Mowle� 
A Numerical Expansion Technique and Its Application to Minimal Mul

tiplexer Logic Circuits�� IEEE Trans� on Comput�� Vol� ���� No� �� ����� pp� ���
����

���� A� J� Tosser� and D� Aoulad
Syad� 
Cascade Networks of Logic Functions Built in Multiplexer Units�� IEE
Proc� Pt� E� Vol� ���� No� �� pp� ��
��� March �����

���� L�
F� Wu� and M� A� Perkowski 
Minimization of Permuted Reed
Muller Trees for Cellular Logic Pro

grammable Gate Arrays�� �nd Int� Workshop on FPGAs� September ����� Vienna� Austria�


