
Approximate Minimization Of Generalized Reed�Muller Forms

Xiaoqiang Zeng� Marek Perkowski� Karen Dill Andisheh Sarabi

Portland State University� Viewlogic Systems� Inc�
Dept� of Electr� Engn� ����� Lakeview Blvd��
Portland� Oregon ����� Fremont� CA ���	


Tel� ��	���������� Tel� 
���� ��������x		��
Fax� ��	������

� Fax� 
���� ��������

e�mail� mperkows�ee�pdx�edu e�mail� andisheh�wcdf�viewlogic�com

Abstract� Paper presents a new approach to Gen�

eralized Reed�Muller form minimization� The concept

of adjacent polarity of forms is introduced� that is next

used to generate exact and approximate solutions� An

algorithm to generate a GRM form from any other

form is given� While adjacent polarities are used for

local optimization� global minimum is found using the

adaptation of Genetic Algorithm approach� For the

�rst time� the problem has been solved for multiple�

output� incompletely speci�ed functions�

I� Introduction

Mathematically� the Generalized Reed�Muller 
GRM�
forms ��� �� ��� do not exhibit a general structure in the
nested hierarchy of families of canonical forms in ��� be�
cause most of them are not constructed from Kronecker
matrix products ���� Few computational methods for
GRM forms are in �	� ��� �� �
� ���� Let us point out that

from the practical point of view� the GRM forms
 �n�
n��

�
are the most interesting because they contain many more
forms than KRM forms
 	n � when n � �� Hence�
generally� the minimal GRM form will be closer to the
minimal of ESOP than the minimal KRM form� It was
also clearly shown by the numerical results of Sasao ��� �
��
that for functions of up to � variables� the minimal GRMs
found by his exact algorithm are very close to the mini�
mal ESOPs� However� an exhaustive search for a minimal
GRM form becomes computationally unfeasible for more
variables� and heuristic algorithms should be looked for�
In addition� as presented in ���� ���� GRMs are easily
testable� and various test generation algorithms for them
have been created�
The goal of this research is to create a high quality

approximate algorithm for GRMs of many variables for
multi�output incompletely speci�ed functions� The pa�
per is organized as follows� Section � introduces basic
concepts and de�nitions for GRMs� Then� in section 	�
the term�wise complementary expansion diagram is intro�
duced� Using this diagram� one can calculate any GRM
expansion with expected polarity from any other GRM

expansion� The exact minimum GRM form can be ob�
tained by an exhaustive search through all �n�

n��

Gray
code ordered polarity vectors� A local heuristic minimiza�
tion algorithm is also presented in section 	� Instead of
depending on the number of input variables� the compu�
tation time of this algorithm depends mainly on the com�
plexity of the function� thus it can solve much larger prob�
lems� The algorithm in section � uses Genetic Algorithm
for �nding good starting point to a local optimization al�
gorithm� Section � presents the handling of incompletely
speci�ed functions� Some details of program implementa�
tion are discussed in section �� and numerical results are
given in section ��

II� Basic Concepts of Generalized Reed�Muller

Expansion

Literal �xi is a variable xi in either positive 
 �xi � xi� or
negative 
 �xi � �xi� form� Literal xi is the complementary
literal of literal �xi� A product of distinct literals is called a
product term 
product or term in short�� If terms T� and
T� contain exactly the same literals� they will be called
identical�
The expansion of an n�variable function can be written

as follows�
f
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where x�i � �� x�i � xi� 
i � �� �� ���� n�� bj � f���g�

j����������� �n���� ei � f���g� and 
j��� � 
e�e����ei���en���
This is de�ned as the Canonical Reed�Muller Expan�

sion� Since all literals in this expression are positive� Eqn�

���� is also called a Positive Polarity Reed�Muller �RM�
expansion�
De�nition ����a�� The GRM forms are created by se�

lecting any set of literals in the Positive Polarity 
or zero
polarity� RM expansion and replacing these literals with
their inverses ��� ����
From Eqn� 
���� we observe that the RM expansion

has �n terms� Each term is a product of a subset of the n
variables� This subset can be identi�ed by the ���s� in the



corresponding n�bit binary numbers 
e�e����en�� � 
j����
Thus� the following de�nition complies with De�nition
���
a��
De�nition ����b�� The form of Eqn� 
���� in which each

variable can be both positive and negative but in which
there is exactly one coe�cient for each subset of variables
of a term will be called a Generalized Reed�Muller expan�
sion�
De�nition ���� By a Fixed�Polarity Reed�Muller Expan�

sion �FPRM� one denotes a form of GRM in which the
literals of a variable are either positive or negative� and
cannot stand in both forms in the same expression�
It follows from the preceding de�nitions that the FPRM

class is properly included in the GRM class�
De�nition ���� A Reed�Muller expansion 
also called

Positive Polarity Reed�Muller form� is a GRM form that
consists of only positive literals�
Eqn� 
���� can be used as the n�variable Generalized

Reed�Muller expansion except for every literal �xi is used
instead of xi where for each �xi in di�erent terms we have
�xi � xi or �xi � �xi� If we use Tj to represent product
term bj �x� �x���� �xi��� �xn� then the GRM expansion can be
written as f � T� � T� � ��� � Tj � ��� � T�n���
De�nition ���� In a GRM expansion� any literal �xi can

be expressed as xi � � where � � f���g� Here � is de�ned
as the polarity of literal �xi�

� �

��
�

� if �xi � xi 
positive��
� if �xi � �xi 
negative��
� if �xi � xi or �xi � �xi

Example ���� A GRM form of a 	�variable function is as
follows� f � fe � x� � �x�x� � �x��x�x�� This expression
can be written as�
fe � � � � � 
x� � �� � � � 
x� � �� � � �


x� � ��
x� � �� � � �
x� � �� � � �
x� � ��
x� � ��
� � �
x� � ��
x� � �� � � � 
x� � ��
x� � ��
x� � ��
� T� � T� � T� � T� � T� � T� � T� � T�
where� T� � � � T� � � �
x�� ��� T� � � �
x�� ���

T� � � � 
x� � ��
x� � ��� T� � � � 
x� � ���
T� � � �
x�� ��
x�� ��� T� � � �
x� � ��
x� � ���
T� � � � 
x� � ��
x� � ��
x� � ���
In the above GRM expansion� if the coe�cient of a term

Tj is ���� for instance� T� � � � 
x� � ��
x� � ��� then
the polarity of each literal in this term has a �xed value�
either positive or negative but cannot take an arbitrary
one� If the coe�cient of term Tj is ���� for instance�
T� � � � 
x� � ��
x� � ��� then the polarity of each
literal in this term can be arbitrary� either negative or
positive� We use ��� to denote the polarity of a literal
when it can take an arbitrary value�
De�nition ��	� In a complete GRM expansion fe of an

n�variable function� there are �n � � occurrences of any
literal xi� We de�ne the collection of the �n� � polarities
of these literals as the Polarity Set of Variable xi� We
denote this polarity set of variable xi as �fe 
 �xi��

De�nition ��
� Let T be a product term of n distinct
literals T � �x� �x� ��� �xi ��� �xn� The collection of the n
polarities of these n literals is de�ned as the Polarity Set
of Term T � We use �T to represent this polarity set�
De�nition ���� A collection of the n polarity sets of

the n variables of a GRM expansion fe is de�ned as
the Polarity Set of Expansion fe� This is denoted as
�fe 
 �x�� �x�� ���� �xn�� The Polarity of a GRM expansion
can also be represented by the Term�wise Polarity Set�
For an n�variable function� the term�wise polarity set is�
f�T� � ����Tj� ����T�n��

g�
Please note that for any GRM form� term T� is a con�

stant T� � b� � f���g� so for T� no polarity set exists�
De�nition ���� The Coe
cient Set of a GRM Ex�

pansion fe is a binary vector of length �n� denoted by
fe
b�� b�� ���� b�n���� This vector Coef Set represents a
GRM form under the selected polarities of its correspond�
ing subsets of variables in products�
By the de�nitions above� we see that any GRM form

of function f can be identi�ed by a Polarity Set 
being
a binary vector of length n�n��� and its corresponding
Coe
cient Set 
being a binary vector of length �n�� The
polarity set can be de�ned either term�wise or literal�wise�
Thus� the coe�cient set of the expansion in Example ���

is� fe
���������� The polarity set of �x� is �
x�� � 
���
��� The polarity set of �x� is �
x�� � 
�� � ��� The
polarity set of �x� is �
x�� � 
� � ���� The polarity
set of term T� is �T� � 
����� The polarity set of term
T� is �T� � 
���� The literal�wise polarity set of the
expansion is �
 �x�� �x�� �x�� � 
�� � ��
�� � ��
� � ����
The term�wise polarity set of the expansion is�
f�T� � �T� � �T� � �T� � �T� � �T� � �T�g

� f 
��� 
��� 
���� 
��� 
� ��� 
� ��� 
���� g
Since in a FPRM expansion� the literals of variable xi
can only take either positive or negative polarity but not
both� only one polarity bit is necessary to denote the po�
larities of the �n�� xi literals� The polarity set of a FPRM
expansion can be denoted as� � �x�� �x� ���� �xn or simply as a
Polarity Vector �fe � It will be called Polarity� for short�
Example ���� The polarity of FPRM expansion

f � fe � �x�� �x�x�� �x� �x�x� is written as � 	x� 	x�x� or
�fe 
 �x� �x� �x�� � 
�����
De�nition ���� Let fe� and fe� be two GRM expan�

sions of the same function� By Adjacent Polarity GRM
Expansions we understand expansions fe� and fe� such
that there is only one bit di�erence between the polarity
sets of these two expansions�
Example ���� In the following� f �e and f ��e are two GRM

expansions of the same function f �
f � f �e � b���b���x��b��x��b��x�x��b��x��b��x�x��

b���x�x� � b���x��x��x�
and
f � f ��e � b����b

��

� �x��b���x��b���x�x��b��� �x��b���x�x��
b��� �x�x� � b��� �x� �x� �x�
The polarity sets of

f �e and f ��e are �f �e 
 �x�� �x�� �x�� � 
�����
�����
����� and



�f ��e 
 �x�� �x�� �x�� �
�����
�����
������ respectively� Since
there is only one bit di�erence between �f �e 
 �x�� �x�� �x��
and �f ��e 
 �x�� �x�� �x��� f �e and f ��e are the Adjacent Polarity
GRM Expansions�

Combining De�nition ��� and De�nition ��� we obtain
the de�nition of the Adjacent Polarity FPRMExpansions�

De�nition ����� Let fe� and fe� be two FPRM expan�
sions of the same function� If there is only one bit di�er�
ence between the polarity sets of fe� and fe� � we de�ne
that fe� and fe� are the Adjacent Polarity FPRM Expan�
sions�

Example ���� Similar to Example ��	� f �e and f ��e are
two FPRM expansions of the same function f

f � f �e � b��� b���x�� b��x�� b��x��x�� b���x�� b���x��x��
b���x�x� � b���x�x��x�
and

f � f ��e � b����b���x��b���x��b���x�x��b��� �x��b����x�x��
b��� �x�x� � b����x�x�x��

The polarity sets of f �e and f ��e are �f �e 
 �x��
�x�� �x�� � 
���� and �f ��e 
 �x�� �x�� �x�� � 
����� re�
spectively� Since there is only one di�erent bit between
�f �e 
 �x�� �x�� �x�� and �f ��e 
 �x�� �x�� �x��� f

�

e and f ��e are the Ad�
jacent Polarity FPRM Expansions�

Our primary goal of this paper is to minimize the num�
ber of terms in GRM expressions� The cost function to
be used here is cost � NT � NT is the total number of
terms in the solution� NT �

P�n��

j
� bj where bj is the
coe�cient of term Tj � The secondary goal is literal cost
minimization�

III� The Local Minimization Approach

If we calculate the adjacent polarity GRM expansions
one�by�one and search through all the GRM forms� the
exact minimumGRM is found� In this section identi�ca�
tion of a quasi�minimal GRM form based on Term�wise
Complementary Expansion Diagrams is presented�

A� Term�wise Complementary Expansion Diagram

Term�wise Complementary Expansion Diagrams are di�
agrams that relate di�erent term�wise complementary ex�
pansions� In this section these diagrams and some related
de�nitions are presented�

Theorem ��� Let f�e and f�e be GRM forms of two
di�erent n�variable functions f� and f�� Let the coef�
�cient sets of f�e and f�e be f�e
b��b��b�����b��n��� and
f�e
b��b��b�����b��n���� respectively� If f�e and f�e have
the same polarity� then fe � f�e � f�e is the GRM form
of function f � f� � f� with the same polarity as f�e
and f�e� The coe�cient set of fe is� fe
b�b����b�n��� �
f�e
b��b�����b��n����f�e
b��b�����b��n���
� fe
b��� b��� b�� � b��� ����b��n��� b��n����

Furthermore� let f�e� f�e� ���� and fme be the GRM
forms of m di�erent n�variable functions with the

same polarity� Then the GRM expansion of func�
tion f � f� � f� � ��� � fm can be obtained by
fe
b�b����b�n��� � f�e
b��b�����b��n����f�e
b��b�����b��n���
�����fme
bm�bm����bm�n���

where b� � b���b��� ����bm�� b� � b���b��� ����bm��
b� � b�� � b�� � ���� bm� � ������ b�n�� � b��n�� � b��n��
����� bm�n��

Example ���� Let f� and f� be two 	�variable functions
in GRM forms� f� � f�e � � �x��x�� �x�x��x��x�x��
f� � f�e � x� � x� � �x�x� � �x�x�� The polarity sets
and coe�cients sets of f�e and f�e are �f�e 
 �x� �x� �x�� �

� � ���
� � ���
� � ���� �f�e 
 �x� �x� �x�� � 
�����
� �
���
� � ��� and f�e
���������� f�e
���������� respec�
tively� Since in the polarity set a ��� stands for either a
��� or a ���� the common polarity set of the above two
expansions is �fe
 �x� �x� �x�� � 
�����
�� ���
�� ����
From Theorem 	�� we obtain the GRM expansion of

function f � f��f� with the polarity of �fe 
 �x� �x� �x�� �

�����
� � ���
� � ���� Hence� fe
b�b�b�b�b�b�b�b�� �
f�e
���������� f�e
��������� � fe
����������
De�nition ���� Let T be a product term of n distinct

literals T � �x� �x���� �xi ��� �xn� Applying �x � �� �x to all
the literals in T � the following FPRM expansion results�
T � �x� �x���� �xi��� �xn

� �� �xn � �xn�� � �xn �xn�� � ��� � �x� �x� ��� �xn�
The polarities of all the variables in the above expan�

sion are the complements of the corresponding variables
in product T � This expansion is de�ned as the Comple�
mentary Expansion of Product T � The complementary
expansion of product T can be readily obtained because
it is a FPRM expansion with all the coe�cients equal to
����
Example ���� The complementary expansion of product

term x�x� �x� is�
�� x� � �x� � �x�x� � �x� � �x�x� � �x� �x� � �x� �x�x��
De�nition ���� Let T � �x� �x���� �xn be a term and

k�� k�� ���� km � f�� �� ���� ng� Applying �x � �� ��x only
to a selected set of literals �xk�� �xk� � ���� and �xkm in term T

results in a FPRM expansion� The polarities of the literals
of �xk� � �xk�� ���� �xkm are complements of the correspond�
ing literals in product T� The polarities of other literals
remain the same as those in product T � This expansion
is called the Complementary Expansion of T for Literals
�xk�� �xk� � ���� and �xkm � The complementary expansion of

T for literals �xk� � �xk� � ���� �xkm can be obtained by �rst
calculating the complementary expansion of �xk� �xk���� �xkm
and then multiplying by the other literals�
Example ���� The complementary expansion of term

x�x��x� for �x� is� x�x�
� � x�� � x�x� � x�x�x��
The complementary expansion of term x�x��x� for x�

and �x� is� x� � 
� � �x� � x� � �x�x�� � x� � x��x� �
x�x� � x��x�x��
The complementary expansion of T can be illustrated

by a subtree where T is the root and the terms in the
complementary expansion are represented by the descen�
dents of T � For instance� the complementary expansion



#x sub 1 x bar sub 2 x bar sub 3 x bar sub 4#

#x sub 1 x bar sub 2 x bar sub 3 x bar sub 4#

#x sub 1 x bar sub 2 x bar sub 3#

#x sub 1# #x sub 1 x sub 2# #x sub 1 x sub 3# #x sub 1 x sub 2 x sub 3#

1 #x bar sub 1# 1
#x bar sub 1#

#x bar sub 3#
#x bar sub 1 x bar sub 3#

1 #:x sub 3#

Fig� �� Complementary Expansion

of T � x�x��x� for x� and �x� can be illustrated by the
diagram from Fig� ��
By the complementary expansion one can always trans�

form a product term with any polarity into a FPRM ex�
pansion which includes a term T � � �x� �x���� �xn with ex�
pected polarities� If we apply the complementary expan�
sion to all the terms of a GRM form and to all the terms
of the resulting complementary expansions� then a GRM
form with the expected polarity can be obtained�
Example ���� Consider a ��variable function�

f � � �x��x�x��x�x���x���x��x��x�x�x��x��x��x��x�
� T� � T� � T� � ��� � T��
where� T� � � � T� � ��
x�� ��� T� � ��
x�� ���

T� � � � 
x� � ��
x� � ��� T� � � � 
x� � ���
T� � � � 
x�� ��
x�� ��� T� � � � 
x�� ��
x�� ���
T� � � � 
x�� ��
x�� ��
x�� ��� T� � � � 
x�� ���
T� � � � 
x�� ��
x�� ��� T�� � � � 
x�� ��
x�� ���
T�� � � � 
x� � ��
x� � ��
x� � ��� T�� � � �

x�� ��
x�� ��� T�� � � �
x�� ��
x�� ��
x�� ���
T�� � � � 
x� � ��
x� � ��
x� � ��� T�� � � �

x� � ��
x� � ��
x� � ��
x� � ���
Thus� this function can be represented using the coef�

�cient set f
����������������� and a term�wise polarity
set�
f�T�
��� �T� 
��� �T�
���� �T� 
��� �T� 
���� �T�
����

�T�
� ���� �T�
��� �T�
� ��� �T�	 
���� �T��
� ����
�T�� 
� ��� �T�� 
� � ��� �T�� 
����� �T�� 
����� g

Our goal is to calculate the coe�cient set of function f
when one literal in the above expansion changes its po�
larity�
For example� if literal �x� in term x��x��x��x� changes its

polarity� that is� �T�� 
����� changes to �T��
������ Let
f � f� � f� where f� � � � x� � x�x� � x�x� �
�x� ��x� �x� � x�x�x� and f� � x��x��x��x�� Obviously�
f� complies with the expected polarity and f� does not�
In order to transform f� to a GRM form that complies
with the expected polarity� we apply the complementary
expansion to f� recursively and have�
f� � x��x��x��x� � x��x��x� � x��x��x�x� � 
x� �

x�x�� x�x�� x�x�x��� x��x��x�x� � 

�x�� ���x�x��

�� �x�� �x�� �x��x���x�x�x���x��x��x�x� � 

�x�� ���
x�x� � 
� � �x� � 
x� � ����x��x�� � x�x�x�� � x��x��x�x�

� �� x� � �x��x� � x�x� � x�x�x� � x��x��x�x�

Expected Polarity

Fig� �� Decomposition of f�

The decomposition of f� can be demonstrated by a di�
agram from Fig� �� Because f� � � � x� � x�x� �
x�x� � �x� � �x��x� � x�x�x� we obtain�
f � f� � f� � x�x��x�x���x��x�x��x��x� �x�x��

The diagram from Fig� � is de�ned as a Term�wise Com�
plementary Expansion Diagram� We can observe that�

� The diagram is a rooted� directed graph with nodes
set V containing two types of nodes� terminal nodes
and nonterminal nodes�

� All nodes denote terms� Each node has an index as
a reference� Here the reference index is the expected
polarity set of the term denoted by the node�

� A terminal node denotes a term in which each literal
complies with the reference index�

� A non�terminal node denotes a term which has at
least one literal that does not comply with the refer�
ence index�

� A nonterminal node has at least one descendent that
is a terminal node�

� By exoring f� and all the terminal nodes in the dia�
gram we obtain the expected adjacent polarity GRM
expansion�

Algorithm ���
�Calculation of the Adjacent Polarity GRM Expansion�
Let fe � T��T�� ����Tj� ����T�n�� be a GRM expansion of

the function f where Tj � bjx
e�
�
xe�
�
���xei

i
���xenn � Let the polarity of

�xi in Tj be inverted without the polarities of other literals changing�
The GRM expansion f �e can be calculated from fe under the new
polarity in the following�



�� Let f�e �� Tj� f�e �� fe � f�e�

�� If bj � � then f�e �� �� f �e �� fe� Exit�

�� If bj �� �� construct the term	wise complementary expansion
diagram for f�e� Let f�e �� Tj be the root and node i
represents a descendent of Tj�


� Compare node i with the corresponding term in f�e� If the two
terms are identical� i is a terminal node� Check other nodes�

�� If two terms are not identical� with literals �xk� � �xk� � ���� and
�xkm di�ering in their polarities� calculate the complementary

expansion of i for �xk� � �xk� � ���� �xkm �


� Expand the diagram until no further expansion is necessary
�all descendents are terminal nodes��

�� Exor all terminal nodes results in the GRM form of f�e under
the expected polarity�

�� f �e �� f�e�f�e is the GRM expansion of f under the expected
polarity�

As we can see� if bj � � the algorithm immediately ex�
its� which makes searching thorugh many polarities more
e�cient when the number of terms is low�
By arranging all the GRM polarities of function f in

Gray code order and calculating the adjacent polarity ex�
pansions one by one� the exact minimum GRM form can
be obtained by the exhaustive search of �n�

n��

polarity
vectors� Hopefully� for most of these codes Algorithm 	��
immediately exits�
Using k number of term�wise complementary expansion

diagrams� one can calculate any GRM form f �e with ex�
pected polarity from any initial GRM form fe� Here k is
the number of terms in fe that do not comply with the
expected polarity�
Example ���� Given is a 	�variable function in GRM

form
f � fe � �� x� � x�x� � x��x� � x��x�x�
and expected polarity as shown in the following�
f � f �e � b� � b��x�� b�x��b�x�x� � b�x��b�x�x��

b��x�x��b��x��x��x��
To calculate the coe�cients of f �e� let f�e � �� x�x��

f�e � x�� f�e � x��x� and f�e � x��x�x�� As we can
see� f�e complies with the expected polarity but f�e� f�e
and f�e do not� Construct the term�wise complementary
expansion diagrams and calculate the GRM forms for f�e�
f�e and f�e separately as in Fig� 	� From the above�
we have f� � � � �x�� f� � x� � x� � �x�x�� and f� �
�x� � x�x� � x� � �x�x� � �x� �x� �x�� Since f� � � � x�x��
thus� fT � f�� f�� f�� f� � x�� �x��x��x� � This is done
by Algorithm 	���

B� lGRMMIN � The Local Quasi�minimum Algorithm�

This algorithm starts from an initial GRM expansion�
This can be a minimized FPRM form or GRMPRM form
��	� ���� or any other GRM form� Polarity of a single
literal is inverted if this inversion reduces the number of
terms� This procedure is carried out iteratively until no
further improvement can be achieved�
Given an n�variable function in GRM form�
f � fe � T� � T� � ���� Tj � ���� T�n��

where� Tj � bj �x�
e� �x�

e� ��� �xi
ei ��� �xn

en �
The coe�cient set of the above GRM form is�

f
b�b����bj���b�n���� The term�wise polarity set of the
above GRM form is� f�T	 � �T� � ����Tj � ����T�n��

g� The cost

of the above expression is� cost
fe� �
P�

n
��

j
� bj �

x3

1 xbar3

x1x2

1 x1 x2 x1x2

1 x1

x1x2x3

x2 x1x2 x2x3 x1x2x3

1 x2 x2 x1x2 1 x2 x3 x2x3

1 x2 1 x3

Fig� �� Term	wise Complementary
Expansion Diagram�

If we change the polarity set �T�n��
in Gray code

order and keep the other term�wise polarity sets
�T	 � �T� � ����Tj� ���� �T�n��

unchanged� and calculating all
the adjacent polarity expansions� it is possible to �nd an
optimal expansion f � f �e with the best cost function
cost
f �e� � cost
fe� under this polarity arrangement� The
term�wise polarity set of f �e is f�T	 � �T� � ����Tj � ����

�

T�n��
g�

If we use f �e and f�T	 � �T� � ����Tj � ����
�

T�n��
g as the input

vector and apply the above procedure to the polarity set
�T�n��

� again we have another optimal expansion f � f ��e
with the cost function cost
f ��e � � cost
f �e�� Applying the
above procedure to all term�wise polarity sets� �nally we
obtain the best GRM expression of this pass fpass� with
the polarity set ��T	 � �

�

T�
� ���� ��Tj� ����

�

T�n��
� If the cost of

fpass� is better than the cost of the initial expression� then
the above procedure is carried out again� This is done re�
cursively until no further improvement can be achieved�
The algorithm is presented as follows�

Algorithm ����
�Quasi�minimization of the GRM expansion�

�� Let fe be the initialGRM form� Let j �� �n��� fmin �� fe�

�� If bj � �� no matter how we select the polarities of literals in



Tj� the cost function remains unchanged� j �� j � �� Goto
step ��

�� If bj �� �� Arrange the term	wise polarity set �Tj in Gray
code order� calculate all GRM forms under each polarity set of
term Tj� Select the one which has the best cost function� Let
f �e be the resulting optimal GRM form� Then the term	wise
polarity set of f �e is f�T	� �T� � ���� �

�

Tj
� �����

T�n��

g


� Let fe �� f �e� j �� j � �� fmin �� f �e� Goto step ��

�� After applying the above procedure to all terms we have a
GRM form fpass� with the optimal cost of this pass�


� If cost�fpass�� � cost�fmin�� then fmin �� fpass��
fe �� fpass�� goto step ��

�� If cost�fpass�� � cost�fe� then exit�

In Algorithm 	�	� when the coe�cient of a term is zero�
the cost functions of all the GRM expansions under each
polarity set of this term will be the same� Thus� the cal�
culation of these expansions is not necessary� Since after
each iteration� the number of terms in the optimal ex�
pansion is reduced� this optimal expansion is used as the
input function to the next iteration� Thus� the computa�
tion time is decreased� As an example� the exact mini�
mum GRM expansion for f � � � x� � �x��x� � x�x� �
x�x�x� � x��x��x�x� is fe � x��x��x��x�� In order to
prove exactness of this solution� the exact algorithm has
to calculate �n�

n��

� ��� GRM expansions� The quasi�
minimum algorithm calculates only �n � �� expansions
to �nd this exact form� Experimental results show that
the computation time of the quasi�minimum algorithm
depends mainly on the complexity of the number of input
variables and the number of terms in the input function�
For an n�variable function� the maximum number of

literals in a product term is n� Thus for each iteration
at most �n GRM expansions are calculated� For an in�
put function with t product terms� the upper bound of
expansions calculated is t � �n� Therefore� the time com�
plexity of Algorithm 	�	 is O
t � �n�� The algorithm �nds
a local minimum� and to �nd a global minimum several
good starting points must be generated� This is done by
a Genetic Algorithm�

IV� gGRMMIN � The Global Genetic Search

Genetic algorithm is applied with the polarity vectors
as chromosomes� and the crossover operation executed on
these polarities� Each polarity is a binary vector� so �nd�
ing of new polarities consists in creating new vectors from
old vectors� Given any number of starting points to the
search � the GRM forms� their polarities are found as the
�rst parent generation of the genetic algorithm�
Let us observe� that while in the known applications

of Genetic Programming to logic synthesis the crossover
operation is performed on functional expressions ���� we
apply the crossover to the polarities� Therefore� in con�
trast to the existing approaches� our technique guarantees
that only functionally correct circuits are created

and their veri�cation is not required nor used as a com�
ponent of the �tness function� This is because for every

created polarity a corresponding Coe�cient Set of GRM
expression 
Coef Set� can be easily calculated as shown
in section 	� The only price paid for this improvement
is that we have to �nd coe�cients 
expressions� for po�
larities in order to calculate their values of �tness func�
tion� The calculation of the �tness function becomes more
complex for incompletely speci�ed functions� The �tness
function is the term cost and it should be minimized�

Algorithm gGRMMIN�

�� Create the initial Pool of Parents from polarities of good
GRM forms and random polarities� The elements of this set
are GRM Triplets � �Polarityi�Coef Seti�F itnessi�� Ini	
tially� only the Coef Sets and Fitness values for the initial
good GRMs are non	empty�

�� For randomly gener	
ated pairs of parent triplets from Pool of Parents with polar	
ities Polarityj� and Polarityj� create their o�spring polarities
by the Crossover�Polarityj� �P olarityj�� operation on parent
chromosomes� The lower is the value of the �tness function
from the triple� the higher the probability of selecting the po	
larity as a parent for crossover� Create set Intermediate Pool
of all new polarities from crossover�

�� Execute the Mutation operation on some randomly selected
o�spring Polaritychild in Intermediate Pool�

Polaritym �� Mutation�Polaritychild��

Add all new polarities to the Intermediate Pool�


� For each new Polarityi from the Intermediate Pool calcu	
late its correspondingCoef Seti and Fitnessi �being its term
cost�� In case of incompletely speci�ed functions this step is
done by algorithm iGRMMIN from the next section�

�� Add all the o�spring triplets � Polarityi� Coef Seti�
Fitnessi � for polarities from Intermediate Pool to the
Pool of Parents�


� Remove from Pool of Parents these GRM	triplets that have
the highest �tness function values� In case of a tie� remove
those that have the highest values of the literal cost� If there
is still not enough triplets to be removed� remove randomly
some of those with higher �tness values in order to keep the
limited size of the Pool of Parents�

�� Repeat steps � 	 
 until the preset time of global optimization
expires�

Algorithm Crossover�Polarity�� P olarity���

�� Select a random set of literals �xi that occur often �above
a threshold parameter value� in Coef Set�Polarity�� and
Coef Set�Polarity���

�� Find all bits fbjg corresponding to these literals in Polarity�
and Polarity� of parents�

�� Create two new polarities�New Polarityi andNew Polarityj
by replacing mutually the values of these bits in the respec	
tive term	wise polarity sets of parents� keeping their positions�
respectively�

�j Polarity��bj� �� Polarity��bj��

The Coef Set for the New Polarity is calculated� us�
ing Algorithm 	��� from the polarity of that parent that
has the shorter distance to this New Polarity� A multi�
output completely speci�ed function with r outputs is rep�
resented by a binary vector of single�output Coef Seti�
Coef Set � � Coef Set�� Coef Set�� ����� Coef Setr �� all
of the same polarity� It means� when a new polar�
ity� Polaritychild� is given as an argument� each single�
output expression Coef Set

j
child of the o�spring is created



by converting the corresponding Coef Set
j
parent from

Polarityparent to Polaritychild� j � ������r� For r�output
function the length of Polarity vector is thus n�n�� and
the Coef Set has length r�n� This means� assuming 	��
bit word� 	�
k of memory is necessary to store a single
Polarity of �� variables� The same memory is needed for
a Coef Set of a ���output� ���input function�

V� iGRMMIN � Handling of Incompletely

Specified Functions�

Few authors� ���� 
� ��� ��� ��� have considered the
problem of PPRM minimization for single�output incom�
pletely speci�ed functions� However� with an exception of
����� the algorithms are very ine�cient for functions that
have very many don�t cares� since their complexity grows
quickly with the number of don�t cares� Moreover� all
these algorithms cannot be adopted to GRMs� which are
quite di�erent from PPRMs�
The algorithm presented below gives good results for

multi�output functions with very many don�t cares and
it scales well with the increase of the numbers of don�t
cares and output functions� It can be applied to functions
represented by sets ON and OFF of either minterms or
disjoint cubes�
To calculate the quasi�minimumGRM form for a given

polarity� the algorithm creates a table 
similar to Quine
table� with all GRM coe�cients for this polarity as
columns and all ON and OFF cubes as rows� The cubes
in various output functions are repeated as separate rows�
one for each function� The set of rows represents there�
fore all output functions� ON cubes are marked as active
by setting value of �ag ON to ���� Cubes with �ag ON
� ��� are treated as OFF�cubes� Initially the cells of the
table are set to ���s�� Whenever an active cube matches a
coe�cient� a ��� is set in a cell on the intersections of this
cube�s row and this coe�cient�s column in the table� By
the matching of a cube and a coe�cient 
also represented
as a cube� we mean a relation when all literals from the
coe�cient have the same polarity as their corresponding
literals in the cube� For instance� coe�cient �bc matches
cube ���X� � �a�bce� For all columns that have at least
one ��� in some of the rows� the cost is calculated� The
Column Cost
columns� is de�ned as�
Column Cost
columns� � � � 
N� � N�� �

�
N	
N�

�
where � is a weighting coe�cient� The column Cbest with
the highest Column Cost is selected� The coe�cient cube
Coef
Cbest� corresponding to Cbest is next exored from
these output functions fj � j � ������r� for the rows of which
there were symbols ��� in the table� and for which exoring
the cube corresponding to this column with function fj

would bring an improvement in function�s fj estimated
cost� This is done based on a numbers of ���s� and ���s�
in fj � the literal costs of the cube� and other evaluations�
If there are no better groups available� any matching cube
is applied� The cost of the cube selected to solution is

calculated across all output functions f i�
The exoring operation converts some of ON�cubes to

OFF�cubes� and vice versa� This is done by activating
and deactivating ON �ag for each cube� Each ON�cube
covered by a Coef
Cbest� cube in the header of the se�
lected column Cbest is converted to an OFF�cube� Each
OFF�cube covered by a selected column is converted to
an ON�cube 
�ag ON is set to ��� 
In case that disjoint
cubes are used instead of minterms in ON and OFF sets
the exoring can also split a larger cube to smaller cubes�
and set �ags ON of these new cubes accordingly� removing
the original cube�� All cubes selected for output function
fj � j � ������r� are triggered for this function� It means�
in the �rst selection� the cube is recorded for this func�
tion 
by triggering respective bit from � to ��� any next
selection of the same cube triggers the respective bit in
Coef Set� So that an even number of selections means no
selection� and an odd number of selections means a single
selection�
For every new ON cube� the contents of table�s cells

is modi�ed accordingly� The procedure is repeated until
no more ON�cubes remain in the table� The cost of the
solution Coef Set is calculated incrementally with selec�
tion of new ON cubes�
Algorithm iGRMMIN is called by algorithm GGRM�

MIN to �nd the Coef Setv and costv 
�tness� of the o��
spring�s polarity Polarityv� and store them together with
Polarityv in the GRM�triplet�
Algorithm iGRMMIN�Polarityv� ON� OFF��

�� Create the Table with coe�cients of Polarity as
columns and all ON cubes of multi�output function
ff�� ���� frg as rows 
repeated for each function in
which they stand�� Set all cells of the table to ze�
ros�

�� New ON Cubes �� ON� solution Coef Set �� ��

solution cost
solution Coef Set� �� ��

For every new cube fromNew ON Cubes mark with
value ��� in Table every intersection of a column that
matches this cube�

	� For each columnCi that has at least one ��� calculate
Column Cost
Ci��

�� Select column Cbest with the highest value of
Column Cost�

�� Mark for Cbest those cubes in output functions
fj 
marked functions� that have high scores of
Column Cost� and those where there are no other
covering groups available for the ON�cubes in a func�
tion fj �

�� For each output function fj that includes a cube
marked in step � do�

fj �� fj � Coef
Cbest��



The exoring creates sets New ON Cubes and
New OFF cubes� Activate and modify sets ON and
OFF in the Table accordingly�

�� Update the solution Coef Set by triggering bit of
cube Cbest in the marked output functions fj of the
solution Coef Set�

min cost �� cost
solution Coef Set�

If this cost is higher than the global minimal cost
found until now by gGRMMIN� global min cost

then�

goto step � 
with probability ��

goto next step with probability 
� � ��

Else goto next step� 
The probabilistic selection is
done to avoid creating too many low quality o�spring
in the pool� yet to keep some worse chromosomes for
further evolution��


� If there still exist some cubes in ON�set goto 	�

�� Iterate steps � to 
 unless no cost improvement in
three iterations�

��� Return a GRM�triplet


Polarityv� solution Coef Set�min cost��

Example 	��� Given is a ��output function

f�
a� b� c�� f�
a� b� c�� from Fig� �a� Assuming minterm
representation of sets ON and OFF and termwise po�
larity 
�� 
�a�� 
b�� 
�c�� 
a� b�� 
a� c�� 
b��c�� 
a� b� �c��� a Table
from Fig� �b is created with coe�cients as columns� and
minterms of functions f� and f� as rows� The initial states
of �ags ON are shown near rows� Assuming � � �� the
costs of the coe�cients are as follows� For function f��
cost
�� � ��

�
� cost
�a� � ��

�
� cost
b� � �

�
� cost
�c� � ��

�
�

cost
ab� � �
�
� cost
ac� � ��

�
� cost
b�c� � �

�
� cost
ab�c� �

�� For function f�� cost
�� � ��
�
� cost
�a� � �

�
� cost
b�

� ��
�
� cost
�c� � ��

�
� cost
ab� � �

�
� cost
ac� � �

�
� cost
b�c�

� �
�
� cost
ab�c� � ��

�
� In the �rst iteration the successive

choices are� ab�c to f�� �a to f�� b to f�� ab�c to f�� b�c to f��
ab�c to f� 
toggle back to ��� In result� f� � �a � b�c� f� �
b � ab�c of total term cost � �� In the second iteration
the choices are� �a to f�� b�c to f� and f�� ab to f�� In
result� f� � �a � b�c� f� � ab � b�c of total term cost �
	� In the third iteration the choices are� �c to f�� b to f�
and f�� ab to f� and f�� ab to f�� ab�c to f�� In result� f�
� �c � b � ab� f� � b � ab�c of total term cost � ��

VI� Pseudo�Code for Program lGRMMIN

Algorithm from section 	 is realized as program lGR�
MMIN� Before we present the pseudo�code of the lGRM�
MIN� let us �rst explain how to obtain the complementary
expansion of term T � In section 	��� it was shown that
the complementary expansion of T is a FPRM with all the
coe�cients equal to ��� and the polarities of variables are

the complement of that in T � By constituting the vari�
ables in T � we have all the subsets of these variables and
each of these subsets represents a term in the complemen�
tary expansion� For example� if T � �a �b �c� then the set of
constitution is 
�� 
 �a�� 
�b�� 
 �c�� 
 �a� �b�� 
 �a� �c�� 
�b� �c�� 
 �a� �b� �c���
In the program the constitution is done by function
constttn
� which accepts a set of decision variables and
return the constitution result� i�e� the descendent nodes�
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Fig� 
� Optimization of GRM for
Incomplete Function�

We use two stacks in the construction of the term�wise
complementary expansion diagram and computation of
the adjacent polarity GRM expansion� Stack A is used
as a dynamic memory to store the generated descendent
nodes� and all the terminal nodes are put in Stack B�
The procedure is�

�� Push the root into Stack A� This is the term in which
the polarity of literal xi is changed�

�� Pop Stack A� we have node i� Check i� If i is a
terminal node� push i to Stack B� If i is a nontermi�
nal node� calculate the complementary expansion of
i� expand the diagram and push the descendents of i
into Stack A�

	� If Stack A is not empty� go to step ��



�� If Stack A is empty� pop all nodes in Stack B and
perform the exor operation with the corresponding
terms in f �

The pseudo�code of lGRMMIN program for quasi�
minimum GRM follows� The function check
� accepts
a node
polarity array of a term� and then compares with
the polarity vector� If they are identical� a NULL is re�
turned� Otherwise a set of decision variables is returned
that do not comply with the expected polarities�

lGRMMIN��
f
read initial GRMfi �
fmin � fi�
while�improvement �� true�f

for�j��n� �� j � �� j 	 	�f��start pass recursion��
fe � fmin�
pv � polarity vector�
flag � number of variables in Tj�
dof

k � count��� �� counting function ��
inverse the kth bit in pv�
push Tj to Stack A� �� Tj is the root ��
while�Stack A �� NULL�f

nodei � pop�Stack A��
decision vars � check�nodei��
if�decision vars �� NULL�f

descnnts � contttn�decision vars��
push descnnts to Stack A�

g
else

push nodei to Stack B�
�� nodei is a terminal node ��

g
while�Stack B �� NULL�
fe � �fe � pop�Stack B��

if�cost�fe� � cost�fmin��
fmin � fe�

gwhile�k �� flag � ���
g

output fmin�
g

g

VII� The Experimental Results

So far� only program lGRMMIN has been fully imple�
mented and tested� Over ��� single�output functions gen�
erated from MCNC benchmarks have been tested� Some
results of qGRMMIN program for single output examples
are listed in Table �� In the table� inp means the number
of input variables� Time is the CPU time in seconds 
it
does not take into account the time of CGRMIN�� The
columns give the numbers of terms in the output �les
of our minimizer qGRMMIN 
gGRM�� as well as FPRM
minimizer CGRMIN ���� 
CGR� and ESOP minimizer
EXORCISM ���� 
XRC�� respectively� Interestingly� for
the functions tested� the qGRMMIN was able to �nd bet�
ter results on some functions than EXORCISM� Obvi�
ously� since the GRMs are a sub�family of the ESOP� ex�
act GRMs are not better than exact ESOPs� However�
since exact GRMs are close to exact ESOPs� and both
qGRMMIN and EXORCISM are approximate programs�

in some cases EXORCISM� the top ESOP minimizer� was
clearly outperformed� For the ��� functions overall� qGR�
MMIN had �� results better than EXORCISM� and for ��
functions the two minimizers gave the same results� The
di�erences were sometimes quite signi�cant� For instance�
for function �xp� qGRMMIN gave solution with �� terms
while EXORCISM needed 	�� This shows that EXOR�
CISM can be much improved� at least on single�output
functions�
The results were also never worse than those from ex�

act CGRMIN� the exact minimum for FPRM� Comparing
to the two level AND�OR minimizer ESPRESSO ���� for
��� functions overall� while ESPRESSO generated �		�
terms� this number for qGRMMIN was found to be ��
�
The scatter plot of the number of input variables ver�

sus program qGRMMIN execution time� and the scatter
plot of the number of terms in the input function versus
qGRMMIN execution time clearly demonstrate that the
execution time of the quasi�minimumGRM minimization
algorithm depends more on the number of input terms
than on the number of input variables �����

TABLE I
Binary Input Examples

inp qGRM CGR XRC Time

�x�� � � �� 
 ��
�
�x� � �� 
� �� ���
�
�x� � �� �� �� ����
�x� � �� �� � ����
�xp� � �� 
� �� ���
�
bw�
 � 
 � 
 ����
bw�� � � 
 � ����
bw�� � � � � ����
bw
 � � 
 
 ����
bw� � � �� � ����
�sym � ��� ��� �� ����
cm���a �� � �� � 
���
con� � �� �� � ����
f��� � �� �� �� ���
�
misex�� 
 �� 
� � ���
�
misex�� 
 � �
 � ����
misex
� �� � �� 
 ��
���
misex
� 
 � �
 � ����
misex
� �� �� �� � 
����
misex
� �� �� �
 � �����
misex

 �� 
 �� 
 �����
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VIII� Conclusions

The paper introduced new concepts of the adjacent po�
larity GRM expansion and term�wise complementary ex�
pansion diagrams� These concepts have been next used in
algorithms for the calculation of GRM expansions� The



exact minimum GRM form can be obtained by an ex�
haustive search through all GRM forms� Heuristic min�
imization algorithms have been designed to decrease the
time complexity of the exact algorithm� The computation
times of the quasi�minimum algorithms depend mainly
on the complexity of the input functions� and not on the
number of input variables� contrary to most algorithms
of this type� Thus� larger problems can be solved� More�
over� to our knowledge� for the �rst time the Genetic Al�
gorithm has been applied to a problem in logic synthesis
represented with polarities and not with functional repre�
sentations� which makes it muchmore e�cient� A new for�
mulation of minimizing multi�output GRM forms for in�
completely speci�ed functions has been introduced in this
paper� This approach can be adopted to PPRM� FPRM�
KRM and other AND�EXOR canonical forms� and also to
any Linearly Independent �LI� Forms ���� 
formerly called
the Orthogonal Forms�� including the AND�OR�EXOR
forms ���� �	�� The testing results of qGRMIN prove that
our ESOP minimizer� EXORCISM� which is superior to
other ESOP minimizers� can be still much improved� at
least on some functions� Although preliminary exper�
imental results of qGRMMIN are encouraging� we still
need to complete the implementation�
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