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Abstract— Paper presents a new approach to Gen-
eralized Reed-Muller form minimization. The concept
of adjacent polarity of forms is introduced, that is next
used to generate exact and approximate solutions. An
algorithm to generate a GRM form from any other
form is given. While adjacent polarities are used for
local optimization, global minimum is found using the
adaptation of Genetic Algorithm approach. For the
first time, the problem has been solved for multiple-
output, incompletely specified functions.

I. INTRODUCTION

Mathematically, the Generalized Reed-Muller (GRM)
forms [2, 4, 11] do not exhibit a general structure in the
nested hierarchy of families of canonical forms in [7] be-
cause most of them are not constructed from Kronecker
matrix products [6]. Few computational methods for
GRM forms are in [3, 11, 5, 18, 17]. Let us point out that
from the practical point of view, the GRM forms( 2™} )
are the most interesting because they contain many more
forms than KRM forms( 3" ) when n > 2. Hence,
generally, the minimal GRM form will be closer to the
minimal of ESOP than the minimal KRM form. It was
also clearly shown by the numerical results of Sasao [5, 18],
that for functions of up to 6 variables, the minimal GRMs
found by his exact algorithm are very close to the mini-
mal ESOPs. However, an exhaustive search for a minimal
GRM form becomes computationally unfeasible for more
variables, and heuristic algorithms should be looked for.
In addition, as presented in [20, 16], GRMs are easily
testable, and various test generation algorithms for them
have been created.

The goal of this research is to create a high quality
approximate algorithm for GRMs of many variables for
multi-output incompletely specified functions. The pa-
per is organized as follows. Section 2 introduces basic
concepts and definitions for GRMs. Then, in section 3,
the term-wise complementary expansion diagram is intro-
duced. Using this diagram, one can calculate any GRM
expansion with expected polarity from any other GRM
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expansion. The exact minimum GRM form can be ob-
tained by an exhaustive search through all 2™} Gray
code ordered polarity vectors. A local heuristic minimiza-
tion algorithm is also presented in section 3. Instead of
depending on the number of input variables, the compu-
tation time of this algorithm depends mainly on the com-
plexity of the function, thus it can solve much larger prob-
lems. The algorithm in section 4 uses Genetic Algorithm
for finding good starting point to a local optimization al-
gorithm. Section 5 presents the handling of incompletely
specified functions. Some details of program implementa-
tion are discussed in section 6, and numerical results are
given in section 7.

II. Basic CONCEPTS OF GENERALIZED REED-MULLER

EXPANSION
Literal 2; is a variable z; in either positive (#; = ;) or
negative (£; = &;) form. Literal z; is the complementary

literal of literal Z;. A product of distinct literals is called a
product term (product or term in short). If terms 77 and
T> contain exactly the same literals, they will be called
identical.

The expansion of an n-variable function can be written
as follows:

_ 0,0 ,.0
flz1, 22,y iy ooy ) = bozlzs...z;...
0 0,0 0 .1 e1, e e;
z, © bhzizy..x).. .z, © ... O bjzie’..2. 2> D ... O
byn_1zizi..zl... zl (2.1)
where 29 = 1, 2} = =z, (i = 1,2,...,n); b; € {0,1},

(3=0,1,2,...,2"-1), e; € {0,1}, and (J);, = (e1€2...€;...€5),.

This is defined as the Canonical Reed-Muller Expan-
sion. Since all literals in this expression are positive, Eqn.
(2.1) is also called a Positive Polarity Reed-Muller (RM)
expansion.

Definition 2.1(a). The GRM forms are created by se-
lecting any set of literals in the Positive Polarity (or zero
polarity) RM expansion and replacing these literals with
their inverses [4, 11].

From Eqn. (2.1) we observe that the RM expansion
has 2™ terms. Each term is a product of a subset of the n
variables. This subset can be identified by the ”1’s” in the



corresponding n-bit binary numbers (ejez...ep)2 = (J)10-
Thus, the following definition complies with Definition
2.1(a).

Definition 2.1(b). The form of Eqn. (2.1) in which each
variable can be both positive and negative but in which
there is exactly one coefficient for each subset of variables
of a term will be called a Generalized Reed-Muller expan-
sion.

Definition 2.2. By a Fized- Polarity Reed-Muller Ezpan-
sion (FPRM) one denotes a form of GRM in which the
literals of a variable are either positive or negative, and
cannot stand in both forms in the same expression.

It follows from the preceding definitions that the FPRM
class is properly included in the GRM class.

Definition 2.3. A Reed-Muller ezpansion (also called
Positive Polarity Reed-Muller form) is a GRM form that
consists of only positive literals.

Eqn. (2.1) can be used as the n-variable Generalized
Reed-Muller expansion except for every literal #; is used
instead of z; where for each #; in different terms we have
£; = ®; or ; = ;. If we use T; to represent product
term bﬂ:lmz... i...&n, then the GRM expansion can be
writtenas f = To @ T1 © ... © T; © ... DTomn_1.

Definition 2.4. In a GRM expansion, any literal Z; can
be expressed as z; © § where § € {1,0}. Here 4§ is defined
as the polarity of literal ;.

0 if #; = o (positive);
é = 1 if 2, = & (negative);
— ife; =z or £; = &

Ezample 2.1. A GRM form of a 3-variable function is as
follows: f = foe = 2o @ Zaz3 @© Z1Zo2x3. This expression
can be written as:

fe=0®0: (z3® —) @ (22 ® 0) @& 1 -
(z2® 1)(z3 ©0)© 0 -(z1 © )@0(131@ —)(zz ® —)
B0-(21® )z28 -)B1: (210 1)(z2® 1)(z3 8 0)

Hhhohoh o1 0Ty ©Ts © Ts © Ty

where: To = 0, Ty = 0-(z3® —), T2 = 1-(z29 0),
Tz = 1 (220 1)(zz ® 0), Tu = 0 -(z1 & —),
Ts = 0-(z1® —)(23® —), Te = 0-(z1© —)(z2 ® —),

In the above GRM expansion, if the coefficient of a term
T; is ?17, for instance, T3 = 1 - (23 @ 1)(23 § 0), then
the polarity of each literal in this term has a fixed value,
either positive or negative but cannot take an arbitrary
one. If the coefficient of term T; is ”0”, for instance,
Ts = 0 -(z1® —)(z2 ® —), then the polarity of each
literal in this term can be arbitrary, either negative or
positive. We use ”-” to denote the polarity of a literal
when it can take an arbitrary value.

Definition 2.5. In a complete GRM expansion f. of an
n-variable function, there are 2™ — 1 occurrences of any
literal z;. We define the collection of the 2™ — 1 polarities
of these literals as the Polarity Set of Variable ;. We
denote this polarity set of variable z; as &y, (;).

Definition 2.6. Let T be a product term of n distinct
literals T = 21 3 ... Z; ... £,. The collection of the n
polarities of these n literals is defined as the Polarity Set
of Term T. We use dr to represent this polarity set.

Definition 2.7. A collection of the n polarity sets of
the n variables of a GRM expansion f. is defined as
the Polarity Set of Ezpansion f.. This is denoted as
8¢ (21, @2, ...,%n). The Polarity of a GRM expansion
can also be represented by the Term-wise Polarity Set.
For an n-variable function, the term-wise polarity set is:
{5*111, ---JTJ-, "'5T2W—1}‘

Please note that for any GRM form, term T is a con-
stant Top = bg € {0,1}, so for Ty no polarity set exists.

Definition 2.8. The Coefficient Set of a GRM FEz-
pansion f. 1is a binary vector of length 2™, denoted by
fe(bo, b1, ...,ban_1). This vector Coef_Set represents a
GRM form under the selected polarities of its correspond-
ing subsets of variables in products.

By the definitions above, we see that any GRM form
of function f can be identified by a Polarity Set (being
a binary vector of length n2"~!) and its corresponding
Coefficient Set (being a binary vector of length 2™). The
polarity set can be defined either term-wise or literal-wise.

Thus, the coefficient set of the expansion in Example 2.1
is: f¢(00110001). The polarity set of £3 is 6(z3) = (—0—
0). The polarity set of #; is §(zz) = (01 —1). The
polarity set of zy is §(z1) = (— — —1). The polarity
set of term T% is 7, = (110). The polarity set of term
Ts is 07, = (——). The literal-wise polarity set of the
expansion is §(z1, Z2,23) = (—0—0)(01 — 1)(— — —1).
The term-wise polarity set of the expansion is:

{5T1’ 5*_'[12, JTsa JTM JTsa JTea 5T7}

= {(_)a (O)a (10)a (_)a (_ _)a (_ _)a (110)}
Since in a FPRM expansion, the literals of variable z;
can only take either positive or negative polarity but not
both, only one polarity bit is necessary to denote the po-
larities of the 271 z; literals. The polarity set of a FPRM
expansion can be denoted as: gz, 0,...05, or simply as a
Polarity Vector &¢,. It will be called Polarity, for short.

Ezample 2.2: The polarity of FPRM expansion
f = fe= @:@fzs®a18223 is written as dgapz, OF
05, (£1%2%3) = (110).

Definition 2.9: Let f., and f., be two GRM expan-
sions of the same function. By Adjacent Polarity GRM
Ezpansions we understand expansions f,, and f., such
that there is only one bit difference between the polarity
sets of these two expansions.

Ezample 2.3: In the following, f. and f!' are two GRM
expansions of the same function f:

f = [ = b®bZsDbyzs Dbyrzz Dbz Dbjz1250
bgﬁll‘.z D b;i‘.lﬁzi‘.g
and

[ = fi = bgob{Z3 bz Db3zo23 Dby 21 Obyz123 D
blelill_ll‘.z D b{;flfzfg

The polarity
ft and fl' are 6 (21, @, €3) =

sets of
(0011)(0001)(1001) and



8fv (%1, %2, #3) =(1011)(0001)(1001), respectively. Since
there is only one bit difference between d;: (z1, %3, %)
and dzn (€1, %2,%3), f, and f.' are the Adjacent Polarity
GRM Expansions.

Combining Definition 2.2 and Definition 2.9 we obtain
the definition of the Adjacent Polarity FPRM Expansions.

Definition 2.10: Let f., and f., be two FPRM expan-
sions of the same function. If there is only one bit differ-
ence between the polarity sets of f., and f.,, we define
that f., and f., are the Adjacent Polarity FPRM Ezpan-
sions.

Ezample 2.4: Similar to Example 2.3, f. and f!' are
two FPRM expansions of the same function f

f = fl = boOb|Z30 bz DbszaE3 D byT1 D bYE1Z3 D
bgflll‘.z D b{Ti‘.l:llzi‘.g

and

f = [l = ot zs0b e, Qb z23 OV B QYT 1230
blelflll‘.z D b'7':7:11:21:3.

The polarity sets of f, and f are & (%1,
:1,5'2,:1:'3) = (101) and Jfél(:lfl,:lfz,:lfg) = (100), re-
spectively. Since there is only one different bit between
81 (21, €2, ©3) and 81 (&1, ©2, #3), f, and f.' are the Ad-
jacent Polarity FPRM Expansions.

Our primary goal of this paper is to minimize the num-
ber of terms in GRM expressions. The cost function to
be used here is cost = NT. NT is the total number of
terms in the solution, NT = ijgl b; where b; is the
coefficient of term T;. The secondary goal is literal cost
minimization.

III. THE LocAL MINIMIZATION APPROACH

If we calculate the adjacent polarity GRM expansions
one-by-one and search through all the GRM forms, the
exact minimum GRM is found. In this section identifica-
tion of a quasi-minimal GRM form based on Term-wise
Complementary Expansion Diagrams is presented.

A. Term-wise Complementary Expansion Diagram

Term-wise Complementary Expansion Diagrams are di-
agrams that relate different term-wise complementary ex-
pansions. In this section these diagrams and some related
definitions are presented.

Theorem 3.1 Let fi. and f;. be GRM forms of two
different n-variable functions f; and f;. Let the coef-
ficient sets of fle and f2e be fle(b10b11b12---b12“—1) and
fae(b2ob21baa...boan_1), respectively. If fi. and fz. have
the same polarity, then fo = fie ® f2. is the GRM form
of function f = f; @ fo with the same polarity as fi.
and fz.. The coeflicient set of f. is: fo(bob1...ban_1) =
fre(b1obi1...b12n_1)D fae (b20b21...b22n_1)
= fe(b10® b20, b11 @D ba1y..sb1272 1D boom_1).

Furthermore, let fio, f2e,..., and fme be the GRM
forms of m different n-variable functions with the

same polarity. Then the GRM expansion of func-
tion f = f1® f2 & ..® fin can be obtained by
fe(bobi...ban_1) = fie(b1obi1...b12m_ 1)@ fae(b20b21...b22n_1)
@---@fme(bmobml---bm2“—1)

where bo = b10®@b20D... B brmo, b1 = b11 D21 D... Dby,
by = b12® b2 D ... Dbz ooy ban1 = bran_1 B bagn_y
©...D bm2"—1

Ezample 3.1. Let f; and f; be two 3-variable functions
in GRM forms: fi = fie = 1 ®z3P21 B T122Pe1Z223,
fo = fae = 2@ 21 P Zr23P Z122. The polarity sets
and coeflicients sets of fi. and fi. are dy,, (€1#223) =
(0 — 10)(— — 01)(0 — —0), 5y, (6153d5) = (011—)(0 —
0—)(— —0—) and f1.(11001011), f2.(00101110), respec-
tively. Since in the polarity set a ”-” stands for either a
”1” or a 70”, the common polarity set of the above two
expansions is dy, (#122#3) = (0110)(0 — 01)(0 — 00).

From Theorem 3.1 we obtain the GRM expansion of
function f = f1 @ fo with the polarity of &, (2122 23) =
(0110)(0 — 01)(0 — 00) Hence, fe(b0b1b2b3b4b5b6b7) =
F1e(11001011) @ £2.(00101110) = f£,(11100101).

Definition 3.1: Let T be a product term of n distinct
literals T = #125...%; ...2,. Applyingz = 13 % to all
the literals in 7', the following FPRM expansion results:

T = Z£1%3...8;...2,

= 10T 02 10T, n_1 ©... © L1 Ty ... Tn.

The polarities of all the variables in the above expan-
sion are the complements of the corresponding variables
in product T. This expansion is defined as the Comple-
mentary Ezpansion of Product T. The complementary
expansion of product T can be readily obtained because
it is a FPRM expansion with all the coefficients equal to
” 177‘

Ezample 3.2. The complementary expansion of product
term zizo%3 Is:

1 D T3 D fz D :ll_zl‘.g D :L‘._l D :ll_ll‘.g D :ll_lfz D :ll_lil‘._zillg.

Definition 3.2: Let T = ziZ3...2, be a term and
ki, k3, .., km € {1,2,...,n}. Applying z = 1® z only
to a selected set of literals zg,, zk,, ..., and zg, interm T
results in a FPRM expansion. The polarities of the literals
of z&,, ®k,, ..., Tk, are complements of the correspond-
ing literals in product T. The polarities of other literals
remain the same as those in product T. This expansion
is called the Complementary Ezpansion of T for Literals
Tk, Thky, .., and zg, . The complementary expansion of
T for literals z,, ©k,, ..., Tk, can be obtained by first
calculating the complementary expansion of z, zk,... T
and then multiplying by the other literals.

Ezample 3.3. The complementary expansion of term
212283 for &3 is: z1z2(1 @ 23) = 122 O Z1Z223.

The complementary expansion of term ziz3Z3 for z,
and Zzis: 21 - (1 ® Zo ® z3 © ZTozs) = z1 D 21E, P
123 O £1ZTo23.

The complementary expansion of T can be illustrated
by a subtree where T is the root and the terms in the
complementary expansion are represented by the descen-
dents of T. For instance, the complementary expansion

m



#xsub 1 x bar sub 2 x bar sub 3 x bar sub 4%

#xsub1xbarsub2xbar ub3%  #x sub1x bar sub 2 x bar sub 3 x bar sub 4#

#xsub 1#

A\

1 #xbar sub1# 1

#xsublxsub2#  #xsublxsub3# #xsub 1 x sub 2 x sub 3%

#X bar sub 1# #x bar sub 1 x bar sub 3#
#% bar sub 3¢

1 #x sub 3#

Fig. 1. Complementary Expansion

of T = =zix2%3 for #3 and Z3z can be illustrated by the
diagram from Fig. 1.

By the complementary expansion one can always trans-
form a product term with any polarity into a FPRM ex-
pansion which includes a term 7 Z1%g...L, With ex-
pected polarities. If we apply the complementary expan-
sion to all the terms of a GRM form and to all the terms
of the resulting complementary expansions, then a GRM
form with the expected polarity can be obtained.

Ezample 3.4. Consider a 4-variable function:

f=10230z3240z223DT1DT1Z3DT12223DT1Z2T3T4
—ThoT T & ... Tis

where: Top = 1, Th = 0-(24® -), T2 = 1-(z3® 0),
Tz = 1-(z3® 0)(za® 0), Ty = 0-(z2® —),
Ts = 0-(z228 —)(24a® =), Te = 1-(z2© 0)(z3® 0),
Tr = 0-(220 —)(23® —)(2a® —), Tz = 1-(219 1),
To = 0-(21© —)(24® —), Tio = 1-(z1® 1)(za® 1),
T = 0-(z21® —)es® —)za® —), Tiz2 = 0-
(21® —)(22© =), Tiz = 0-(21© —)(z2® —)(24® —),
Tia = 1-(21® 0)z2® 0)(za® 0), Tis = 1-

Thus, this function can be represented using the coef-
ficient set f(1011001010100011) and a term-wise polarity
set:

{5T1(_)’ 5T2 (0)’ JTS(OO)’ 5T4(_)’ JTS(_ _)’ JTG(OO)’
5T7(_ - _)’ JTS(]')’ JTS(_ _)’ 5T10(11)’ 5T11(_ - _)
5T12(_ _)’ 5T13(_ - _)’ 5T14 (000)’ 5T15 (0111) }

Our goal is to calculate the coefficient set of function f
when one literal in the above expansion changes its po-
larity.

For example, if literal Z4 in term z1Z3Z3Z4 changes its
polarity, that is, dr,,(0111) changes to é7,,(0110). Let
f = f1® f; where f; 1 @ z3 ® z3zg © a3 O
L1 ©Z1 T3 D r1o23 and f2 L1T2T3T4. ObViOUSly,
f1 complies with the expected polarity and f; does not.
In order to transform fs to a GRM form that complies
with the expected polarity, we apply the complementary
expansion to fs recursively and have:

fa T1Z2T3%4 T1T2Z3 O T1Z2T324 (21 @
L1y B 123 D T12223) D 21F2%324 = ((F101) P 122D
(10Z1© T3P 2133) De18223)PB21Z23324 = ((2:01) D
2122 ® (1 D Z1 @ (23 ® 1)DET1Z3) B 12223)  T1T2T324

=1 D T3 D ﬁli‘.g D L1 D L1L2L3 D :L‘.lflzi‘.gilh}

Expected Polarity

Fig. 2. Decomposition of fa

The decomposition of f; can be demonstrated by a di-
agram from Fig. 2. Because f 1 @23 ® 2324 D
Toxs © T1 D T1Z3 O T12223 We obtain:

f =751 © fo = 2324 D2223DZ1 Q2123 D 2183 Taz4.
The diagram from Fig. 2 is defined as a Term-wise Com-
plementary Ezpansion Diagram. We can observe that:

e The diagram is a rooted, directed graph with nodes
set V containing two types of nodes: terminal nodes
and nonterminal nodes.

e All nodes denote terms. Each node has an index as
a reference. Here the reference index is the expected
polarity set of the term denoted by the node.

e A terminal node denotes a term in which each literal
complies with the reference index.

e A non-terminal node denotes a term which has at
least one literal that does not comply with the refer-
ence index.

e A nonterminal node has at least one descendent that
is a terminal node.

e By exoring f; and all the terminal nodes in the dia-
gram we obtain the expected adjacent polarity GRM
expansion.

Algorithm 3.1
(Calculation of the Adjacent Polarity GRM Ezpansion)

Let fe = To@T1 @...0T; ®...0Ton_1 be a GRM expansion of
the function f where T; = bjzflz? zf’zf{” Let the polarity of

z; in T; be inverted without the polarities of other literals changing.
The GRM expansion f. can be calculated from f. under the new
polarity in the following:



1. Let fge = T], fle
2. If b; = O then fa.

= fe D fae.
= 0, fl = f. Exit.
3. If b; # 0, construct the term-wise complementary expansion

diagram for fse. Let fo := T; be the root and node
represents a descendent of T}.

4. Compare node ¢ with the corresponding term in f;.. If the two
terms are identical, 7 is a terminal node. Check other nodes.

5. If two terms are not identical, with literals zz,, zk,,..., and
xy,. differing in their polarities, calculate the complementary
expansion of ¢ for x, , Tiy, ..o, Tk, -

6. Expand the diagram until no further expansion is necessary
(all descendents are terminal nodes).

7. Exor all terminal nodes results in the GRM form of fs. under
the expected polarity.

8. f! := fie® f2c is the GRM expansion of f under the expected

polarity.

As we can see, if b; = 0 the algorithm immediately ex-
its, which makes searching thorugh many polarities more
efficient when the number of terms is low.

By arranging all the GRM polarities of function f in
Gray code order and calculating the adjacent polarity ex-
pansions one by one, the exact minimum GRM form can
be obtained by the exhaustive search of 2™} polarity
vectors. Hopefully, for most of these codes Algorithm 3.1
immediately exits.

Using k number of term-wise complementary expansion
diagrams, one can calculate any GRM form f! with ex-
pected polarity from any initial GRM form f.. Here k is
the number of terms in f. that do not comply with the
expected polarity.

Ezample 3.4. Given is a 3-variable function in GRM
form

f=1FJf = 10230 223D 2182 D 21223

and expected polarity as shown in the following:

[ = f. = bo@®bi1Zs® byzy®bszazs @ baz1Bbsz123 D
beﬁlmz@b7ﬁlﬁzi‘.3.

To calculate the coefficients of f., let fie = 1@ zqzs,
fae = 3, f3e = @1%2 and fi, = #1Zy23. As we can
see, f1. complies with the expected polarity but fae, fse
and fz. do not. Construct the term-wise complementary
expansion diagrams and calculate the GRM forms for fo,,
fse and fi. separately as in Fig. 3. From the above,
we have fo = 1@ Z3, fs = 22 ® 1 © ZF1z2, and fy =
I3 D rors D21 D T12y O T1 T2 Ts3. Since fl =1 D 223,
thus, fT = fl D f2 D f3 D f4 = o D T1T2Z3 . This is done
by Algorithm 3.2.

B. IGRMMIN - The Local Quasi-minimum Algorithm.

This algorithm starts from an initial GRM expansion.
This can be a minimized FPRM form or GRMPRM form
[23, 24], or any other GRM form. Polarity of a single
literal is inverted if this inversion reduces the number of
terms. This procedure is carried out iteratively until no
further improvement can be achieved.

Given an n-variable function in GRM form:

f=fe=THeNo..000. 0T

where: T; = bj@% @,%2...8;% ...2,°".
The coefficient set of the above GRM form is:
f(boby...bj...ban_1). The term-wise polarity set of the
above GRM form is: {ér,,dr,,...01;,...07,._, }. The cost

. 2"—1
of the above expression is: cost(f.) = ijo bj.
x1x2
x3
/\ 1 x1 x2 x1x2
1 xbar3 A
1 x1
X1x2x3
x2 x1x2 X2x3 x1x2x3

1 x2 x2 x1x2 1 X2 x3 X2x3

1 x2 1 x3

Fig. 3. Term-wise Complementary
Expansion Diagram.

If we change the polarity set ér,. , in Gray code
order and keep the other term-wise polarity sets
014,071, , ...07}, ..., 01,._, unchanged, and calculating all
the adjacent polarity expansions, it is possible to find an
optimal expansion f = f! with the best cost function
cost(f.) < cost(f.) under this polarity arrangement. The
term-wise polarity set of f; is {dr,,dr,,...0r;, .0,  }.
If we use f, and {d1,,dr,,...0r;,...07,_ } as the input
vector and apply the above procedure to the polarity set
01,._,, again we have another optimal expansion f = f/
with the cost function cost(f) < cost(f.). Applying the
above procedure to all term-wise polarity sets, finally we
obtain the best GRM expression of this pass fpass1 Wwith
the polarity set d7 ,d7,, ...,5{,11_, .0p_, . If the cost of
frass1 is better than the cost of the initial expression, then
the above procedure is carried out again. This is done re-
cursively until no further improvement can be achieved.

The algorithm is presented as follows.
Algorithm 3.3.

(Quasi-minimization of the GRM ezpansion)
1. Let fe be the initial GRM form. Let 7 := 2" —1. frmin = fe-

2. If b; = 0, no matter how we select the polarities of literals in



Tj, the cost function remains unchanged. 7 := j — 1. Goto

step 2.

3. If b; # 0. Arrange the term-wise polarity set 5Tj in Gray
code order, calculate all GRM forms under each polarity set of
term Tj;. Select the one which has the best cost function. Let
f! be the resulting optimal GRM form. Then the term-wise
polarity set of f] is {dr1,,dr,, ""6”1‘]" ...6,’1.2n_1}

4. Let fe:= fl,7:=3— 1. fmin := f.. Goto step 2.

5. After applying the above procedure to all terms we have a
GRM form fpass1 with the optimal cost of this pass.

6. If COSt(fpassl) < COSt(fmin), then f’m.i'n. =
fe = fpassi, goto step 1.
7. If COSt(fpassl) = COSt(fe) then exit.

fpassly

In Algorithm 3.3, when the coefficient of a term is zero,
the cost functions of all the GRM expansions under each
polarity set of this term will be the same. Thus, the cal-
culation of these expansions is not necessary. Since after
each iteration, the number of terms in the optimal ex-
pansion is reduced, this optimal expansion is used as the
input function to the next iteration. Thus, the computa-
tion time is decreased. As an example, the exact mini-
mum GRM expansion for f = 1@ 23 @ Z1Z3 D z122 D
TiTox3 D 1F2T324 18 fe = ¢1E2Z3Z4. In order to
prove exactness of this solution, the exact algorithm has
to calculate 272" = 232 GRM expansions. The quasi-
minimum algorithm calculates only 2" = 16 expansions
to find this exact form. Experimental results show that
the computation time of the quasi-minimum algorithm
depends mainly on the complexity of the number of input
variables and the number of terms in the input function.

For an n-variable function, the maximum number of
literals in a product term is n. Thus for each iteration
at most 2" GRM expansions are calculated. For an in-
put function with ¢ product terms, the upper bound of
expansions calculated is ¢ - 2”. Therefore, the time com-
plexity of Algorithm 3.3 is O(¢- 2™). The algorithm finds
a local minimum, and to find a global minimum several
good starting points must be generated. This is done by
a Genetic Algorithm.

IV. GRMMIN - THE GLOBAL GENETIC SEARCH

Genetic algorithm is applied with the polarity vectors
as chromosomes, and the crossover operation executed on
these polarities. Each polarity is a binary vector, so find-
ing of new polarities consists in creating new vectors from
old vectors. Given any number of starting points to the
search - the GRM forms, their polarities are found as the
first parent generation of the genetic algorithm.

Let us observe, that while in the known applications
of Genetic Programming to logic synthesis the crossover
operation is performed on functional expressions [9], we
apply the crossover to the polarities. Therefore, in con-
trast to the existing approaches, our technique guarantees
that only functionally correct circuits are created
and their verification is not required nor used as a com-
ponent of the fitness function. This is because for every

created polarity a corresponding Coeflicient Set of GRM
expression (Coef_Set) can be easily calculated as shown
in section 3. The only price paid for this improvement
is that we have to find coefficients (expressions) for po-
larities in order to calculate their values of fitness func-
tion. The calculation of the fitness function becomes more
complex for incompletely specified functions. The fitness

function is the term cost and it should be minimized.
Algorithm gGRMMIN.

1. Create the initial Pool of _Parents from polarities of good
GRM forms and random polarities. The elements of this set
are GRM Triplets = (Polarity;,Coef _Set;,Fitness;). Ini-
tially, only the Coef_Sets and Fitness values for the initial
good GRMs are non-empty.

2. For randomly gener-
ated pairs of parent triplets from Pool of_Parents with polar-
ities Polarity;; and Polarity;s create their offspring polarities
by the Crossover(Polarity;1 ,Polarity;s) operation on parent
chromosomes. The lower is the value of the fitness function
from the triple, the higher the probability of selecting the po-
larity as a parent for crossover. Create set Intermediate_Pool
of all new polarities from crossover.

3. Execute the Mutation operation on some randomly selected
offspring Polarity.p;iq in Intermediate_Pool:
Polarity, := Mutation(Polarity.piiq)-
Add all new polarities to the Intermediate_Pool.

4. For each new Polarity; from the Intermediate_Pool calcu-
late its corresponding Coef_Set; and Fitness; (being its term

cost). In case of incompletely specified functions this step is
done by algorithm iGRMMIN from the next section.

5. Add all the offspring triplets ( Polarity;, Coef_Set;,
Fitness; ) for polarities from Intermediate_Pool to the
Pool of _Parents.

6. Remove from Pool of Parents these GRM-triplets that have
the highest fitness function values. In case of a tie, remove
those that have the highest values of the literal cost. If there
is still not enough triplets to be removed, remove randomly
some of those with higher fitness values in order to keep the
limited size of the Pool_of _Parents.

7. Repeat steps 2 - 6 until the preset time of global optimization
expires.
Algorithm Crossover(Polarity; , Polaritys).

1. Select a random set of literals #; that occur often (above
a threshold parameter value) in Coef_Set(Polarity;) and
Coef_Set(Polaritys).

2. Find all bits {b;} corresponding to these literals in Polarity;
and Polaritys of parents.

3. Create two new polarities, New_Polarity; and New_Polarity;
by replacing mutually the values of these bits in the respec-
tive term-wise polarity sets of parents, keeping their positions,
respectively:

V3 Polarity, [b;] «— Polaritys[b;].
The Coef_Set for the New_Polarity is calculated, us-
ing Algorithm 3.2, from the polarity of that parent that
has the shorter distance to this New_Polarity. A multi-
output completely specified function with r outputs is rep-
resented by a binary vector of single-output Coef_Set?;
Coef_Set = [ Coef _Set!, Coef _Set?,....,Coef_Set™ ], all
of the same polarity. It means, when a new polar-
ity, Polaritychiq, is given as an argument, each single-
output expression Coef_Set?, ., . of the offspring is created



by converting the corresponding C’oef_Set;MEm
Polarityparent to Polaritycpiq, j = 1,...,r. For r-output
function the length of Polarity vector is thus n2"~! and
the Coef_Set has length 72". This means, assuming 32-
bit word, 318k of memory is necessary to store a single
Polarity of 20 variables. The same memory is needed for

a Coef_Set of a 10-output, 20-input function.

from

V. 1GRMMIN - HANDLING OF INCOMPLETELY
SPECIFIED FUNCTIONS.

Few authors, [25, 8, 15, 10, 22] have considered the
problem of PPRM minimization for single-output incom-
pletely specified functions. However, with an exception of
[25], the algorithms are very ineflicient for functions that
have very many don’t cares, since their complexity grows
quickly with the number of don’t cares. Moreover, all
these algorithms cannot be adopted to GRMs, which are
quite different from PPRMs.

The algorithm presented below gives good results for
multi-output functions with very many don’t cares and
it scales well with the increase of the numbers of don’t
cares and output functions. It can be applied to functions
represented by sets ON and OFF of either minterms or
disjoint cubes.

To calculate the quasi-minimum GRM form for a given
polarity, the algorithm creates a table (similar to Quine
table) with all GRM coeflicients for this polarity as
columns and all ON and OFF cubes as rows. The cubes
in various output functions are repeated as separate rows,
one for each function. The set of rows represents there-
fore all output functions. ON cubes are marked as active
by setting value of flag ON to ”1”. Cubes with flag ON
= ”0” are treated as OFF-cubes. Initially the cells of the
table are set to ”0’s”. Whenever an active cube matches a
coefficient, a ”1” is set in a cell on the intersections of this
cube’s row and this coefficient’s column in the table. By
the matching of a cube and a coefficient (also represented
as a cube) we mean a relation when all literals from the
coefficient have the same polarity as their corresponding
literals in the cube. For instance, coefficient bc matches
cube 001X1 = @bce. For all columns that have at least
one ”1” in some of the rows, the cost is calculated. The
Column_Cost(column;) is defined as:

Column_Cost(column;) = a - (No — Ny) + m,
where o is a weighting coeflicient. The column Chs: with
the highest Column_Cost is selected. The coeflicient cube
Coef(Chest) corresponding to Ches: is next exored from
these output functions f7, j = 1,...,r, for the rows of which
there were symbols ”1” in the table, and for which exoring
the cube corresponding to this column with function f7
would bring an improvement in function’s f7 estimated
cost. This is done based on a numbers of ”1’s” and ”0’s”
in f7, the literal costs of the cube, and other evaluations.
If there are no better groups available, any matching cube
is applied. The cost of the cube selected to solution is

calculated across all output functions f*.

The exoring operation converts some of ON-cubes to
OFF-cubes, and vice versa. This is done by activating
and deactivating ON flag for each cube. Each ON-cube
covered by a Coef(Ches:) cube in the header of the se-
lected column Che,: is converted to an OFF-cube. Each
OFF-cube covered by a selected column is converted to
an ON-cube (flag ON is set to 1). (In case that disjoint
cubes are used instead of minterms in ON and OFF sets
the exoring can also split a larger cube to smaller cubes,
and set flags ON of these new cubes accordingly, removing
the original cube). All cubes selected for output function
f?, j =1,..,r, are triggered for this function. It means,
in the first selection, the cube is recorded for this func-
tion (by triggering respective bit from 0 to 1), any next
selection of the same cube triggers the respective bit in
Coef_Set. Sothat an even number of selections means no
selection, and an odd number of selections means a single
selection.

For every new ON cube, the contents of table’s cells
is modified accordingly. The procedure is repeated until
no more ON-cubes remain in the table. The cost of the
solution_Coef _Set is calculated incrementally with selec-
tion of new ON cubes.

Algorithm iGRMMIN is called by algorithm GGRM-
MIN to find the Coef _Set, and cost, (fitness) of the off-
spring’s polarity Polarity,, and store them together with
Polarity, in the GRM-triplet.

Algorithm iGRMMIN(Polarity,, ON, OFF).

1. Create the Table with coefficients of Polarity as
columns and all ON cubes of multi-output function

{f1, .-, fr} as rows (repeated for each function in
which they stand). Set all cells of the table to ze-
ros.

2. New_ON _Cubes := ON. solution_Coef_Set := 0.
solution_cost(solution_Coef _Set) := 0.

For every new cube from New_ON _Cubes mark with
value ”1” in Table every intersection of a column that
matches this cube.

3. For each column C; that has at least one ”1” calculate
Column_Cost(C;).

4. Select column Cpes: with the highest value of
Column_Cost.

5. Mark for Chies: those cubes in output functions
f? (marked functions) that have high scores of
Column_Cost, and those where there are no other
covering groups available for the ON-cubes in a func-
tion f7.

6. For each output function f7 that includes a cube
marked in step 5 do:

fj = f] S Coef(cbest)-



The exoring creates sets New_ ON_Cubes and
New _OFF _cubes. Activate and modify sets ON and
OFF in the Table accordingly.

7. Update the solution_Coef_Set by triggering bit of
cube Ches: in the marked output functions f7 of the
solution_Coef _Set.

min_cost := cost(solution_Coef _Set)

If this cost is higher than the global minimal cost
found until now by gGRMMIN, global_min_cost
then:

goto step 2 (with probability )
goto next step with probability (1 - )

Else goto next step. (The probabilistic selection is
done to avoid creating too many low quality offspring
in the pool, yet to keep some worse chromosomes for
further evolution.)

8. If there still exist some cubes in ON-set goto 3.

9. Iterate steps 2 to 8 unless no cost improvement in
three iterations.

10. Return a GRM-triplet

(Polarity,, solution_Coef_Set, min_cost).

Ezample 5.1. Given is a 2-output function
(fi(a, b,¢), f2(a,b,c)) from Fig. 4a. Assuming minterm
representation of sets ON and OFF and termwise po-
larity (1, (a), (b), (€), (a,b), (a,c), (b,€),(a,b,€)), a Table
from Fig. 4b is created with coefficients as columns, and
minterms of functions f; and fs as rows. The initial states
of flags ON are shown near rows. Assuming o = 1, the
costs of the coefficients are as follows. For function fi:
cost(1) = 1?, cost(a) = 13 , cost(b) = %, cost(¢) = 1;,
cost(ab) = 3, cost(ac) = ;, cost(bc) = %, co (abc) =
2. For function fi: cost(l) = 5, cost(@) = 2, cost(b)
= 1l cost(¢) = —%, cost(ab) = cost(ac) cost(bc)
= ;, cost(abc) = . In the ﬁrst 1terat10n the successive
choices are: abc to fl, a to f1, b to fa, abc to fa, b€ to fi,
abé to fi (toggle back to 0). In result, f =@ @ be, fo =
b @ abc of total term cost = 4. In the second iteration
the choices are: @ to fi, b¢ to f1 and fa, ab to f3. In
result, fi = a@ @ b, fo = ab @ b¢ of total term cost =
3. In the third iteration the choices are: ¢ to f1, b to f
and f3, ab to fi and fs, ab to fa, abc to fi. In result, f;
=C D b D ab, f; =b ® abé of total term cost = 4.

VI. Pseunpo-CoDE FOR ProGRAM LGRMMIN

Algorithm from section 3 is realized as program 1GR-
MMIN. Before we present the pseudo-code of the IGRM-
MIN, let us first explain how to obtain the complementary
expansion of term T. In section 3.2, it was shown that
the complementary expansion of T'is a FPRM with all the
coefficients equal to ”1” and the polarities of variables are

the complement of that in 7. By constituting the vari-
ables in T, we have all the subsets of these variables and
each of these subsets represents a term in the complemen-
tary expansion. For example, if T = & beé ¢, then the set of
constitution is (1,([1,),(11) (&), (a, b) (a,¢), (b é), (a, b, é)).
In the program the constitution is done by function
constttn() which accepts a set of decision variables and
return the constitution result: i.e. the descendent nodes.

@
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0| 1 0| o
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0 101 1
Fig. 4

Fig. 4. Optimization of GRM for
Incomplete Function.

We use two stacks in the construction of the term-wise
complementary expansion diagram and computation of
the adjacent polarity GRM expansion. Stack_A is used
as a dynamic memory to store the generated descendent
nodes, and all the terminal nodes are put in Stack_B.
The procedure is:

1. Push the root into Stack_A. This is the term in which
the polarity of literal z; is changed.

2. Pop Stack_A, we have node i. Check 3.
terminal node, push i to Stack_B. If 7 is a nontermi-
nal node, calculate the complementary expansion of

1, expand the diagram and push the descendents of i
into Stack_A.

Ifiis a

3. If Stack_A is not empty, go to step 2.



4. If Stack_A is empty, pop all nodes in Stack_B and
perform the exor operation with the corresponding
terms in f.

The pseudo-code of IGRMMIN program for quasi-
minimum GRM follows. The function check() accepts
a node(polarity array of a term) and then compares with
the polarity vector. If they are identical, a NULL is re-
turned. Otherwise a set of decision variables is returned

that do not comply with the expected polarities.
IGRMMIN()

read initial GRM{; ;

fmin = fi;
while(improvement == true){
for(j=2™—1; 7 > 1; j - -){/*start pass recursion*/
fe = fmin;

pv = polarity vector;
flag = number of variables in T};
do{
k = count(); /* counting function */
inverse the k** bit in pv;
push T; to Stack_A; /* T; is the root */
while(Stack_A # NULL){
node; = pop(Stack_A);
decision_vars = check(node;);
if(decision_vars # NULL){
descnnts = conttin(decision_vars);
push descnnts to Stack_A;

}

else
push node; to Stack_B;
/* node; is a terminal node */

}
while(Stack_B # NULL)

fe = fo ® pop(Stack B);
if(cost(fe) < cost(fmin))

fmin = fe;

}while(k # flag + 1);

output fmin;
}
}

VII. THE EXPERIMENTAL RESULTS

So far, only program IGRMMIN has been fully imple-
mented and tested. Over 110 single-output functions gen-
erated from MCNC benchmarks have been tested. Some
results of gGRMMIN program for single output examples
are listed in Table 1. In the table, inp means the number
of input variables, Time is the CPU time in seconds (it
does not take into account the time of CGRMIN). The
columns give the numbers of terms in the output files
of our minimizer gGRMMIN (gGRM), as well as FPRM
minimizer CGRMIN [19] (CGR) and ESOP minimizer
EXORCISM [21] (XRC), respectively. Interestingly, for
the functions tested, the gGRMMIN was able to find bet-
ter results on some functions than EXORCISM. Obvi-
ously, since the GRMs are a sub-family of the ESOP, ex-
act GRMs are not better than exact ESOPs. However,
since exact GRMs are close to exact ESOPs, and both
gGRMMIN and EXORCISM are approximate programs,

in some cases EXORCISM, the top ESOP minimizer, was
clearly outperformed. For the 110 functions overall, gGR-
MMIN had 11 results better than EXORCISM, and for 52
functions the two minimizers gave the same results. The
differences were sometimes quite significant. For instance,
for function 5xpl gGRMMIN gave solution with 20 terms
while EXORCISM needed 32. This shows that EXOR-
CISM can be much improved, at least on single-output
functions.

The results were also never worse than those from ex-
act CGRMIN, the exact minimum for FPRM. Comparing
to the two level AND/OR minimizer ESPRESSO [1], for
110 functions overall, while ESPRESSO generated 1336
terms, this number for gGRMMIN was found to be 918.

The scatter plot of the number of input variables ver-
sus program qGRMMIN execution time, and the scatter
plot of the number of terms in the input function versus
gGRMMIN execution time clearly demonstrate that the
execution time of the quasi-minimum GRM minimization
algorithm depends more on the number of input terms
than on the number of input variables [24].

TABLE I
BINARY INPUT EXAMPLES
|| inp | qGRM | CGR | XRC | Time

5x01 7 8 12 6 0.63
5x1 7 23 61 33 12.45
5x2 7 15 30 10 10.2
5x3 7 12 19 9 1.12
5xpl 7 20 61 32 12.67
bwil4 5 4 8 4 0.05
bwlb 5 2 6 3 0.03
bw23 5 5 9 5 0.08
bw6 5 3 6 4 0.05
bw?7 5 5 10 5 0.05
9sym 9 129 173 58 15.3
cml52a 11 8 27 8 4.93
conl 7 10 17 9 0.32
f501 8 17 31 11 12.63
misex20 6 19 62 7 77.43
misex21 6 9 16 8 0.22
misex47 11 7 18 4 116.22
misex48 6 8 16 8 0.33
misex62 10 17 50 7 63.37
misex63 10 20 84 7 78.12
misex64 10 6 28 4 28.25
rd53 5 12 20 15 0.35
sao2l 10 13 36 10 40.78
sao22 10 19 52 13 70.43
sao23 10 16 47 12 133.67
sao24 10 24 55 11 77.08

VIII. CONCLUSIONS

The paper introduced new concepts of the adjacent po-
larity GRM expansion and term-wise complementary ex-
pansion diagrams. These concepts have been next used in
algorithms for the calculation of GRM expansions. The



exact minimum GRM form can be obtained by an ex-
haustive search through all GRM forms. Heuristic min-
imization algorithms have been designed to decrease the
time complexity of the exact algorithm. The computation
times of the quasi-minimum algorithms depend mainly
on the complexity of the input functions, and not on the
number of input variables, contrary to most algorithms
of this type. Thus, larger problems can be solved. More-
over, to our knowledge, for the first time the Genetic Al-
gorithm has been applied to a problem in logic synthesis
represented with polarities and not with functional repre-
sentations, which makes it much more efficient. A new for-
mulation of minimizing multi-output GRM forms for in-
completely specified functions has been introduced in this
paper. This approach can be adopted to PPRM, FPRM,
KRM and other AND/EXOR canonical forms, and also to
any Linearly Independent (LI) Forms [14] (formerly called
the Orthogonal Forms), including the AND/OR/EXOR
forms [12, 13]. The testing results of gGRMIN prove that
our ESOP minimizer, EXORCISM, which is superior to
other ESOP minimizgers, can be still much improved, at
least on some functions. Although preliminary exper-
imental results of qGRMMIN are encouraging, we still
need to complete the implementation.
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