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� Introduction�

One of the most general approaches to solve engineering and science optimization problems is to
apply the principle of decomposition� a problem of larger dimension is decomposed to several problems
of smaller dimensions� which can be solved separately and with a smaller e�ort� The problem of
decomposition of a Boolean function F is to �nd a realization of F which is a composition of simpler
Boolean functions� In the late ����
s� Ashenhurst and Curtis determined the necessary and su�cient
conditions for the existence of a given type of decomposition� These decomposition types are now
being called Ashenhurst Decomposition and Curtis Decomposition� respectively� In a related e�ort�
Roth and Karp developed a method using covers of onset and o�set of the function� This method
used cube calculus instead decomposition charts� and generalized the Curtis method for incompletely
speci�ed functions� Although popularly called the Roth�Karp decomposition� this is basically a Curtis
Decomposition with di�erent representation of Boolean functions� Therefore� from the perspective of
this report� this is still a Curtis Decomposition type� We will talk� however� about the Roth�Karp
decomposition method�
The goal of this report is to create a general decomposition model� that will be more powerful than

the existing ones� and will include many of them as particular cases� In order to do this� we will have
�rst to present in a uni�ed way the known decompositions� We will characterize them from various
orthogonal points of view�
For instance� we will distinguish below the decomposition type from the representation of data in the

decomposition�

By a decomposition method� we will understand the ordered quadruple of�

� the decomposition type� which is the basic rule of decomposing a function block to more than one
function blocks�

� the representation of functions in the decomposition� which is� what kind of data structure is the
function represented with �arrays� lists� trees� graphs� spectra� etc���

� the type of functions � the functions may be� binary� multiple�valued� fuzzy� and continuous� binary
functions may be completely speci�ed or incompletely speci�ed� multiple�valued functions may be
completely speci�ed� have standard don
t cares� or have generalized don
t cares� Until now� only
completely speci�ed fuzzy and continuous functions have been presented in the literature�

� the method to solve the column multiplicity problem�

Therefore�

DECOMPOSITION METHOD �
�decomposition type� function representation� function type� column multiplicity solver�

Most� if not all� approaches to decomposition have been described in a recent extensive survey on
this subject by Perkowski et al� ���	�� The special emphasis there was on the decomposition types� and
decomposition representations� In the present report� however� we will concentrate on these methods
and ideas only� that are directly relevant to our uni�ed decomposition method presented below�

In ���� Perkowski� Uong and Brown� created a decomposition method for multi�output� multi�valued
functions based on graph coloring ��� ����� The method had two variants of the decomposition type�
One was based on a bond set �columns of the map� and was the same as Curtis� but was using the
graph coloring instead of the set covering for the Column Multiplicity Index minimization problem in
case of incompletely speci�ed functions� Part of this variant has been next programmed by Wei Wan
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���� Another variant� which we will call here the Perkowski�Uong�Brown Decomposition type �PUB De�
composition� for short�� was based on minimizing the Row Multiplicity Index� and the so�called trivial
functions� �All notions used here will be explained in the next sections�� If a cofactor can be realized in
an easy way �be one of trivial functions�� then it is not counted to the Row Multiplicity Index� Although
similar to Curtis� the PUB Decomposition is di�erent� since it is based on patterns in a free set and not
on patterns in the bond set� In addition� PUB Decomposition does not require to encode the bond set�
as Curtis does� and has some strong relation to multi�level design with multiplexers� Some functions
decomposable in the sense of Curtis are not decomposable in PUB sense� and vice versa� Therefore� one
can talk about the PUB decomposition type� While for a random function F the number of all Curtis
and Roth�Karp decompositions is the same� the number of PUB decompositions is di�erent� Therefore�
we can talk about di�erent decomposition type here�

Concluding� the decomposition methods presented by Perkowski� Uong� Brown and Wan included
Curtis types and PUB types� and can be characterized as follows�

�fdisjoint Curtis� non�disjoint Curtis� disjoint PUB� non�disjont PUB� column multiplicity based EXORg�
fminterms� cube arraysg�fbinary� multiple valued� complete� incompleteg� fclique partitioning� graph
coloringg �

�Of course� the Ashenhurst decomposition is a special cases of the Curtis decomposition� so it is not
separately mentioned here��
A similar variant of a method was also created by these authors to be applied for the design of

PLAs with pair decoders �such PLAs were presented by T� Sasao ������ A generalized decomposition�
as discussed in �	��� but for incompletely speci�ed functions� was also developed�

Independently� Luba et al created a complete decomposition theory based on partition calculus ��	���
Luba
s method is basically a classical Curtis decomposition� but it uses a new representation� A dis�
tinguishing feature of this method is an original calculus based on the representation of a function
by a family of partitions over the set of cubes �or minterms�� Their decomposition procedure can be
also applied to incompletely speci�ed� multiple�valued functions� In addition� it is suitable for various
implementation styles� including standard PLAs� PLDs� PLAs with two�bit decoders� FPGAs� and in�
formation systems� Some stimulus for Luba et al work comes also from the data compressing problems
in machine learning� pattern recognition and in other areas of AI� In machine learning the idea of
reduction of instance space is well known� an approach to compress sets of examples� attributes and
attribute�value tuples was presented in a technique called a partition triple ����� or other appproaches
to reduction of an instance space can also be found in ������ Concluding� the decomposition methods
presented by Luba� Rybnik� Lasocki et al can be characterized as follows�

�fdisjoint Curtis� non�disjoint Curtisg� fpartitions of minterms� partitions of cubesg� fbinary� multiple
valued� complete� incompleteg� fclique partitioning�set covering�concurrent minimization and encodingg
�

In another independent e�ort� Wright Laboratories created a program FLASH� based on classical
Ashenhurst�Curtis decomposition� but oriented towards applications in machine learning� The decom�
position methods presented by Ross et al in WL can be characterized as follows�

�fdisjoint Curtis� non�disjoint Curtisg� fmintermsg�fbinary� multiple valued output� continuous� com�
plete� incompleteg� fclique partitioning� graph coloringg�

Bochmann and Steinbach developed a system XBOOLE that includes a non�standard approach to
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decomposition� based on a new class of AND�OR�EXOR decompositions for two�input gates� The
decomposition methods presented by Bochmann and Steinbach can be characterized as follows�

�fstrong AND�OR�EXOR� weak AND�OR�EXORg� fcube arraysg� fbinary� complete� incompleteg�
fBoolean function manipulationg�

Therefore� XBOOLE decomposition is an essentially new decomposition type�
As the result of the analysis of the above approaches� as well as other most successful decomposition

methods and programs for Ashenhurst�Curtis Decomposition� we arrived at several conclusions that
we next used to create a new uni�ed theory and program� This new program� called Generalized Uni�
�ed Decomposer �GUD�� is currently being designed with the goal of outperforming all the existing
approaches to those decompositions that are not technology�related but minimize certain general cost
functions related to function complexity� Creating such a superior program was requested for high de�
mand applications that are of interest to Pattern Theory group at Avionics Labs of Wright Laboratories�
U�S� Air Force�
In a similar ways we generalized the decompositions for multiple�valued logic� fuzzy and continuous

logic� and information systems as well� We created variants that can be used also for designs imple�
mented with multiplexers and generalized multiplexers� However� at present these variants are not as
general as our binary decomposition�
In this report only binary and somemultiple�valued decompositions will be discussed� Other multiple�

valued decompositions� fuzzy and continuous decompositions will be presented in separate reports�
In this report we totally unify the methods developed in past by four aforementioned research groups�

Portland State University� Warsaw Technical University� XBOOLE group at the Freiberg University in
Germany� and Wright Laboratories� and we add several new methods not known from the literature�
Therefore� the GUD program will be also able to solve problems that have never been formulated before�
It will be a test�bed to develop and compare several known and new partial ideas related to decompo�
sition� Concluding� the decomposition methods presented in this paper can be characterized as follows�

�fdisjoint Curtis� non�disjoint Curtis� disjoint PUB� non�disjont PUB� strong AND�OR�EXOR� weak
AND�OR�EXOR� column multiplicity based EXOR�column multiplicity based AND� column multiplic�
ity based ORg� fminterms� cube arrays� partitions of minterns� partitions of cubesg� fbinary� multiple
valued output� fuzzy� continuous� complete� incomplete� generalized don�t caresg� fBoolean function ma�
nipulation� weighted clique partitioning� weighted graph coloringg�

While creating the GUD program� our emphasis has been on the following topics�

�� representation of data and e�cient algorithms for data manipulation�

�� variable ordering methods for variable partitioning to create bond and free sets of input variables�
heuristic approaches and their comparison�

�� column compatibility problem�

�� subfunction encoding problem �column encoding problem��

�� combined column compatibility and subfunction encoding problems�

	� use of partial and total symmetries in data to decrease the decomposition search space�


� methods of dealing with strongly unspeci�ed functions which are typical for machine learning
applications�

�� other decomposition types� especially XBOOLE decompositions and their generalizations�
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�� controlling strategies to select decomposition types and decomposition variable sets� such strate�
gies allow to create some kinds of decomposed structures �such as cascades� trees without variable
repetition� etc���

Since we have to introduce many di�erent subjects in this report� some of them quite complex� and
on the other hand we would like this report to be understood with less than ordinary e�ort also by
non�specialists in logic synthesis� we will apply a tutorial approach below� The report will be full of
examples and graphical illustrations� This report is only a �rst draft and we welcome our readers to
provide us with a strong criticizm�

The plan of this �white paper� report is the following�
First we introduce� in an elementary way� various types of decomposition known from the literature�

The groups of these decompositions are�

� disjoint Ashenhurst decomposition�

� non�disjoint Ashenhurst decomposition�

� disjoint Curtis decomposition�

� non�disjoint Curtis decomposition�

� disjoint PUB decomposition�

� non�disjoint PUB decomposition�

� strong AND� OR� EXOR decomposition of Bochmann and Steinbach�

� weak AND� OR� EXOR decomposition of Bochmann and Steinbach�

� multiplicity�based AND� OR� EXOR decomposition of Wei Wan and Perkowski�

Next we introduce the Partition Calculus of Luba and our new Cube Diagram Bundles �CDBs for
short�� and demonstrate how all these decompositions can be implemented using CDBs�
In a separate paper� �� we discuss the very important problem of �nding good free and bond sets of

variables� We discuss a new method and compare it with the well�known methods�

� r�admissability �Luba et al��

� symmetries �Kim and Dietmeyer��

� heuristic search in tables �C� Files� H� Wu��

� cube calculus based correlation between variables �Wei Wan��

� entropy �C��� of Quinlan� the method of Zwick��

� reuse of the previously found partitions �Ashenhurst� Curtis� Walliuzzaman��

The problem of bond set encoding� and the related problem of function reusing� will be described
in a separate� accompanying paper ��� One more paper describes the concurrent column minimiza�
tion�encoding approach ��� Finally� a paper is devoted to solving the column compatibility problem
���
This report is organized as follows�
In section � we introduce a new representation of Boolean and Multi�valued Functions � Cube Di�

agram Bundles �CDBs�� This general�purpose representation combines Cube Calculus ���� Decision
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Diagrams ��� and Rough Partitions ��� ��� 	
�� and is especially e�cient for very strongly unspeci�ed
functions� CDBs incorporate also a new concept of generalized don
t cares for multiple�valued logic�
This representation is next used to solve various decomposition problems that are important for Machine
Learning and circuit design applications�
Sections � to 
 introduce several types of decompositions based on patterns found in this represen�

tation�
In section � general decomposition patterns with respect to EXOR� OR and AND gates are presented�
Section � presents the Immediate Decompositions that happen rarely but are of a good quality�

Strong Gate Decompositions� and the Ashenhurst Decomposition� A new approach to Ashenhurst
Decomposition ��� is also presented � it is shown that contrary to the more general case of Curtis
Decomposition ���� the column minimization problem is polynomially complete� and we give an e�cient
algorithm to solve it�
Section � presents a new approach to Curtis Decomposition� which belong to the Basic Decompo�

sitions of the system� Although in some respects similar to the approach from ���� we use the new
representation� and several of its partial problems are signi�cantly improved� For instance� a new very
e�cient algorithm for coloring of the Column Incompatibility Graph is proposed� that utilizes the sim�
ilarity of the graph coloring and the set covering problems� and thus gives an exact minimal coloring
for any graph that corresponds to a non�cyclic set covering problem�
Section 	 introduces another new concept in logic synthesis� goal�oriented reduction schemes� which

generalize the EXOR transformation of Curtis�nondecomposable functions from ���� Any function can
serve as a goal function� and three reduction types �EXOR� OR and AND� of reducing a given function
to a goal function are presented�
Section 
 presents the �last�resort� decompositions and synthesis methods� used when all other

e�orts fail to �nd a good decomposition� They include Weak AND and Weak OR Decompositions�
EXOR� SOP synthesis �this is a two�input EXOR gate of two SOP circuits used in several PLDs��
ESOP� and other�
Section � presents the search strategy of using all the above decompositions and reductions�
In section � we present several applications of the presented approach to various known logic synthesis

problems�
When reading this report� the reader has to bear the following in mind�

� We will refer to Karnaugh maps only for illustration and dydactic purposes�

� Multiplexers and logic gates such as AND or OR in decomposed functions are also mostly used
only for illustration� They will not imply the realization method of the function�
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��� Towards a Uni�ed Approach to Decomposition�

Among several types of decomposition of single�output Boolean functions the most familiar is a
simple disjoint decomposition� Let F be a multiple�value or binary function representing functional
dependence Y � F �X�� where X is a set of multiple�value or binary variables and Y is a set of binary
output variables� Let X � A �B�A �B � � and C � A�
Then there is a functional decomposition of F i�

F � H�A�G�B�C�� � H�A�Z� ���

where G and H denote functional dependencies� G�B�C� � Z and H�A�Z� � Y � Z is a set of
two�valued variables� If C � � then H is called a simple disjoint decomposition of F � B is called a
bond set� and A is called a free set�
Example of such a decomposition is shown in the block diagram from Fig� ��
The function F of inputs a� b� c� and d is decomposed to two subfunctions�

� Subfunction �� denoted by G�c� d� of inputs c� d� This subfunction will be called a predecessor
function �a predecessor block� a recoder�� Set of variables fc� dg is a bond set�

� Subfunction � of inputs a� b and G�
This subfunction� denoted by H� will be called a successor function �a successor block� an image
function�� Set of variables fa� bg is a free set�

As we see� instead of realizing a four variable function we have now to realize one two�input function
and one three�input function� Both functions can be next either directly realized� minimized using other
circuit optimization techniques� or further decomposed�
Since each of the subfunctions can be further decomposed� a multi�level� tree�like implementation

structure is created� �If the same function is used twice� the two instances can be merged �factorized��
leading to blocks with higher than one fan�out � the circuit is thus no longer a tree� and it becomes a
Directed Acyclic Graph �DAG��
Because in the area of circuit synthesis many computer programs for Boolean minimization� especially

those that attempt at �nding optimal solutions� are practicaly able to solve problems of limited size or
even have constraints on the number of inputs� the decomposition into smaller circuits not only produces
results of a smaller cost� but can also leads to optimal solutions sooner� Sometimes� the decomposition
becomes the only way to obtain any results from the minimization programs�
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Decomposition can also assume speci�c kind of realization of a block� PLA� CLB of FPGA or PLD�
standard cell libraries� etc�

Similarly� many problems related to decision making in the area of AI or data base design� are of
the following nature� given a decision table � �nd the minimal decision algorithm associated with the
table� This process includes reduction of attributes as well as reduction of decision rules and removing
all super�uous decision rules from the algorithm� Again the above methodology when compared with
circuit design approaches su�ers from absence of functional decomposition strategies� as those applied
for binary functions� especially for FPGA�based implementations ����� ��� ���� Their promising results
seem to indicate that the concept of functional decomposition should be investigated more generally
and in more detail�

Understanding the principles of Boolean decomposition is therefore important for everybody who
is interested in circuit synthesis� partitioned PLAs� FPGAs� automatic acquisition of rules for expert
systems� machine learning� data�base compression� etc�

In some of our explanations below we will use multiplexers� A topic of design using multiplexers is
closely related to decomposition and �nds applications both in VLSI design and FPGA design� They
are also closely linked to Binary Decision Diagrams �BDDs�� since it is straightforward to implement a
BDD with multiplexers� Use of multiplexers and generalized multiplexers in this paper will be applied
by us as a dydactic method to simplify our explanations� and make them intuitive� Multiplexers will
make also an easy link to multiple�valued� fuzzy and continuous logic� and the if�then�else rules�

One important topic related to decomposition is the representation of the Switching Functions� both
binary� multiple�valued� fuzzy and continuous� We will illustrate the functions with Maps �both binary
and multiple�valued�� Cube Calculus Arrays� Decision Diagrams� and Partitions� It is very important
that the reader is be able to make mental transitions from any of these representation models to any
other� To help him to do this� we use the graphical methods� We will pay much attention in this paper
to graphical methods� not to expect the reader to use them in hand design� but rather to help him in
creating mental analogies that may be next instrumental in designing new methods and algorithms for
decomposition�
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� Cube Diagram Bundles to Represent Discrete Mappings�

In this section we will present a new representation of Boolean and multiple�valued functions� called
Cube Diagram Bundles� This representation is especially good for functions that are both very strongly
unspeci�ed and multiple�valued� The disjoint cubes of the original function as well as the original
variables are re�encoded with a smaller number of new variables� so that several smaller BDDs are used
to represent the function� This representation allows to e�ciently implement algorithms based on the
Cube Calculus and calculus of Rough Partitions�
As an application of this new general�purpose representation method we discuss in subsequent sec�

tions a generalized� goal�oriented multi�level decomposition� that makes special use of EXOR gates and
EXOR�based decompositions� This uni�ed approach includes the decompositions of Ashenhurst� Curtis�
Steinbach et al� Luba et al� and Perkowski et al as special cases�
The presented representation can be applied to binary� multiple�valued� and fuzzy functions� both

completely speci�ed� incompletely speci�ed� and with generalized multiple�valued don
t cares� Other
applications of the new representation� such as synthesis of EXOR of SOPs circuits� are presented brie�y
in ��
	��
Boolean and multiple�valued functions that include very many don
t cares are becoming increasingly

important in several areas of applications ������ The new representation and several synthesis methods
based on it will be very useful in the minimization of such functions� and� as we believe� also in general�
purpose logic synthesis�
In principle� two essentially di�erent representation methods for Boolean functions have been suc�

cessfully used in logic synthesis software� Cube Calculus �CC�� and Decision Diagrams �DDs�� Similarly�
for multiple�valued logic� two representation methods have been proposed� Multiple�Valued Cube Cal�
culus �Positional Notation�� and Multiple�Valued Decision Diagrams� Various methods have been also
proposed to extend these representations for standard input and output don
t cares of multiple�valued
functions�
All these representations are being contiuously improved with time� and several variants of them have

been invented and proved superior in some applications� For instance� XBOOLE system of Bochmann
and Steinbach ��� introduces Ternary Vector Lists �TVLs�� a variant of Cube Calculus with disjoint
cubes� new position encoding and new operations� and demonstrates its superiority on some applications�
Similarly� Functional Decision Diagrams �FDDs�� Kronecker Decision Diagrams �KDDs�� Algebraic
Decision Diagrams �ADDs�� Moment Decision Diagrams �MDDs�� and other Decision Diagrams �DDs�
have been introduced and shown superior to the well�known Binary Decision Diagrams �BDDs� in
several applications� In other related e�orts� Luba et al ��� introduced a new representation of Rough
Partitions and used it in few successful programs for Boolean and multiple�valued decomposition� and
Truth Table Permutations to create BDDs are recently investigated ��
�� �
���
Cube calculus representation seems superior in problems where the synthesized circuit has a limited

number of levels� Such problems include� Sum�of�Products �SOP� synthesis� Exclusive�Or�Sum�of�
Products �ESOP� synthesis� state assignment for PLA realization� Conditional Decoder �CDEC� net�
works synthesis ������ Three level AND�NOT Networks with True inputs �TANT� networks synthesis
������ and other�
On the contrary� the Decision Diagrams are superior for general�purpose Boolean function manipu�

lation� tautology� technology mapping� and veri�cation� They are also becoming a general tool in many
areas� also outside circuit design� that deal with discrete functions�
This section introduces a new represention of binary and multiple�valued functions� More generally

� a representation for discrete mappings and for some restricted class of discrete relations� We call
this new representation the Cube Diagram Bundles �CDB�� Cube � because they operate on cubes as
atomic representations� Diagrams � because they use Decision Diagrams �of any kind� to represent sets�
Bundles � because several diagrams and other data are used together to specify a function or a set of
functions�
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CDBs are related to four representations known from literature�

� Cube Calculus ����

� Decision Diagrams ����

� Rough�Partitions ����

� and Boolean Relations ��
���

This new representation is general and can be applied to both binary and multiple�valued functions
in the same way �multiple�valued functions can also represent �nite state machines�� The CBD
representation allows to add and remove variables �i�e�� inputs and functions� during the synthesis
process� which would be di�cult or ine�cient using other representations� All operations are reduced
in CBDs to set�theoretical operations on decision diagrams that constitute their part�
Let us observe� that the meaning of a representation in an algorithm is two�fold� First� it allows to

compress data � the switching functions � so that the algorithm becomes tractable in time or in space�
Secondly� any representation introduces certain bias for function processing� making some algorithms
particularly suited for some representations� and less for the other ones� For instance� it is very easy
to �nd a supercube of two cubes in Cube Calculus� but it is more di�cult to accomplish this using
the representation of Rough Partitions� While �nding prime implicants� cubes are naturally suited to
search for prime implicants from the smallest to the largest cubes� while the rough partitions are better
suited to generate primes from the largest to the smaller ones� Rough partitions and BDDs are better
than Cube Calculus to �nd cofactors� and so on�
We believe that it is not possible to create a single represention that will be good for all applications�

and the progress of various representation methods in past years seems to support this opinion� There�
fore� here we concentrate on an area that has not found su�cient interest until very recently� but one
that in our opinion will be quickly gaining in importance� namely� the binary and multiple�valued� very
strongly unspeci�ed functions� We will call this class SUF � Strongly Unspeci�ed Functions� Such func�
tions occur in Machine Learning �ML� ���� ����� Knowledge Discovery in Databases �KDD�� Arti�cial
Intelligence �AI�� and also in some problems of circuit design� such as realization of cellular automata�
One can observe that many well known problems in logic synthesis can be also converted to binary SUF
functions� for instance every multi�output function can be converted to a single output binary SUF�
SUF functions are manipulated while solving some decision problems and Boolean equations� Also�
every multiple�valued input function can be converted to a binary SUF� Multiple�Valued SUF occur in
ML and KDD areas� Since state machines can be represented as Multiple�Valued SUF� we believe that
there exist applications where state machines with very many don
t cares are processed� Multiple�valued
functions occur also in many problems of logic synthesis �such as for instance encoding for multiple�level
logic�� and are thus not necessarily related to designing circuits that have multiple�valued signals� We
believe� therefore� that the concepts that we introduce here� mainly to use them in Machine Learning
applications� will �nd in future more applications in circuit design problems as well�
One can think about a discrete function as a two�dimensional table � see Table �� in which the

�enumerated� rows correspond to the elements of the domain �the minterms� or to certain groups of
elements of the domain �the cubes�� The columns of the table correspond to the input and output
variables� Sometimes� they correspond also to intermediate �auxiliary� variables� which can be �tem�
porarily� treated as input or output variables� Let us observe� that such table is in a sense realized
in cube calculus� where the cubes correspond to the rows� The disadvantages of cube calculus include
however�

� some large multilevel functions� such as an EXOR of many variables� produce too many cubes
after �attening� so that their cube arrays cannot be created�

� it is di�cult to add and remove input and output variables to the cubes dynamically in the
synthesis process�
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Table �� Table �� A Table of a mv�output Function with Generalized Don
t Cares�

� in strongly unspeci�ed functions we would need relatively few but very long cubes�

� column�based operations are global� and therefore slow�

Luba invented a new function representation called Rough Partitions �r�partitions� or RP� ���� R�
partition is also called a cover� This representation stores r�partitions ��vi� for all input and output
variables vi as lists of ordered lists� Each upper level list represents an r�partition ��vi� for variable
vi� and lower level lists correspond to the blocks of this partition� A block of partition ��vi� includes
numbers of rows of the table that have the same value V AL in the column corresponding to variable
vi� For instance� in ternary logic there are three blocks that correspond to values V AL � �� V AL �
�� and VAL � �� respectively� All operations are next performed on these r�partitions using r�partition
operations that extend the classical Partition Calculus operations of product� sum and relation � of
Hartmanis and Stearns� Blocks included in other blocks are removed� The origination of a block is lost
�by the origination of a block we mean which values of input variables this block comes from�� This
makes some operations in this representation not possible� and some other not e�cient�
Our other source of inspiration while creating this representation was the concept of the Generalized

Don
t Cares ���	�� In binary logic� a single�output function F has two values� F � and F �� and there
exists one don
t care F f���g that corresponds to a choice of any of these two values� Analogously� in a
three�valued logic� function F has three values� F �� F �� F � and there exist the following combinations
of values� F f���g� F f���g� F f���g� and F f�����g� The last one corresponds to a classical don
t care� and
will be called a standard don
t care in the text� The other three combinations� however� have been
not discussed before� We will de�ne them all as the generalized don�t cares� Similarly� the concept of
generalized don
t cares can be applied to k�ary logic for any value of k� This concept has applications
for instance in Machine Learning and Knowledge Discovery from Databases� It has also some link to
Boolean Relations� In this section� a multi�valued� multi�output function F with generalized don
t cares
will be referred to as a function�
In CDB representation function F is represented as a record of�

�� A pointer to a list V ar�F � of primary input variables on which the function depends� The variables
are sorted lexicographically�

�� A pointer to a list Inp�F � of vectors of primary input columns� The vectors are in the same
order as the input variables� Each vector has as many positions as the corresponding variable has
values� and the positions are sorted starting from � to k��� where k is the number of values� Each
position of the vector is a pointer to a DD� These are called �input value DDs��
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�� A pointer to a list Out�F � of vectors of output columns� This list is analogical to the Inp�F � list�
The DDs in the vectors in this list are called �output value DDs�� The �input value DDs� and
the �output value DDs� are called �value DDs��

The representation of Luba has been used only for decomposition� and CDBs are a general�purpose
function representation designed for speed and data compression � there are then several di�erences
of CDBs and the representation of Luba� For e�ciency of operations� the CDB of F stores also the
list of primary input variables on which F depends �some of them can be still vacuous�� It stores
vectors of function values� and not rough partitions� This means� inclusion operations on blocks are not
performed� and we keep track on the origin of each block � what value of the variable it corresponds
to� In case of cofactors� we store then the cofactor functions� and not their equivalence classes� CDBs
represent functions with generalized don
t cares� while Luba represents only classical don
t cares �this
is re�ected in the way how DDs for output variables are created in CDBs�� The rows �their numbers�
correspond in Luba
s approach to minterms or arbitrary cubes� while they correspond to disjoint cubes
in CDBs� All sets are represented as ordered lists in RP and as Decision Diagrams in CDBs� Currently
we use standard BDDs� but any kind of decision diagrams can be used� Because the sets are represented
as DDs� CDBs introduce new variables to realize these DDs with� They are called the secondary input
variables� The number of these variables is usually much smaller than the number of primary input
variables� and the complete freedom of encoding rows with these new variables allows to minimize the
size of all BDDs� This property is totally missing in Rough Partitions and exists only in ��
�� �
���
While the authors from ��
�� �
�� solve it as a truth�table permutation problem� we solve it as a cube
encoding problem� which is more general�

Example 	
 Tables and encodings of functions� The �rst example illustrates a table and encoding
for a binary�input� binary�output completely speci�ed function� A Kmap with primary input variables
a� b� and c is shown in Fig� ref�g��g�ma� This table has four disjoint cubes� Two are OFF cubes�
enumerated � and �� and two are ON cubes� encoded by � and �� As the results of encoding of primary
cubes with secondary input variables� x and y� a new map from Fig� ��b is created� Figure �a�b shows
clearly how cubes of the �rst map are mapped �encoded� to the minterms of the secondary map� The
table for the function from Fig� ��a is shown in Fig� ��c� and the encodings of its rows to secondary
input variables is shown in Fig� ��d�
The function is speci�ed as the following CDB�
V ar�F � � fa�b�cg�
Inp�F � � f � pointer to BDD for f�����g� pointer to BDD for f�����g �� ���� for variable a�

� pointer to BDD for f���g� pointer to BDD for f���g �� ���� for variable b�
� pointer to BDD for f�����g� pointer to BDD for f�����g � g ���� for variable c�

Out�F � � f � pointer to BDD for f���g� pointer to BDD for f���g � g ���� for variable f �
The second example� see Table �� presents a table for a binary�input� ��valued�output incompletely

speci�ed function with generalized don
t cares� The map for this function is in Fig� �a� In this case�
Out�F � � f � pointer to BDD for f����������	��g� pointer to BDD for f����
�����g�
pointer to BDD for f������g� pointer to BDD for f����	�
�����g� pointer to BDD for f����g � g
������ for ��valued output variable f �
The third example presents a table� Fig� ��f� for an incompletely speci�ed function with standard

don
t cares from Fig� ��e� It has two binary input variables� a and b� a ternary input variable c� and a
��valued�output� The encoding of primary cubes with secondary inptut variables x and y is shown in
Fig� ��g�
The function is speci�ed as the following CDB�
V ar�F � � fa�b�cg�
Inp�F � � f � pointer to BDD for f�����g� pointer to BDD for f���g �� ���� for binary variable a�

� pointer to BDD for f���g� pointer to BDD for f���g �� ���� for binary variable b�
� pointer to BDD for f���g� pointer to BDD for f���g� pointer to BDD for f�g � g

���� for ternary variable c�
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Out�F � � f � pointer to BDD for f�g� pointer to BDD for f�g� pointer to BDD for f���g � g
���� for ternary variable f �

Let us observe� that standard don
t care positions are not stored in tables and CDBs� but generalized
don
t care positions are stored�
The following points about CDBs are important to note�

�� The de�nition of a Binary Cube Diagram Bundles and Multiple�valued Cube Diagram Bundles
�mvCDBs� are exactly the same� Therefore� the same manipulations can be applied to them�

�� All Boolean operations on CDBs can be easily realized as set�theoretical operations on corre�
sponding DDs� Therefore� part of our research plan is to test which of the known DDs are the
best ones to represent the sets that occur in logic decomposition�

�� The important concept of a cofactor is calculated� that also uses only the set�theoretical operations�
The cofactor CF of F with respect to cube C is calculated as follows�

CF �� DD�F � � DD�C�� V ar�CF � �� V ar�F � � V ar�C��

�� The concepts of derivative� di�erential� minimum� maximum� k�di�erential� k�minimum� and k�
maximum of a function ��� are also realized� Since all these operations are based on the cofactor
operator and the set �Boolean� multi�valued� operations� they can be easily realized with respect
to points � and � above�

�� A CDB represents a set of cubes� Each true minterm in DD�F� is an ON cube in function F on
primary variables� and each false minterm in DD�F� is an OFF cube�

	� There is no di�erence in the representation of primary input variables� auxiliary variables and
output variables� For instance� CDBs are good to represent functions de�ned on Boolean operators
on input variables� one can just add new �columns� representing these operators to the CBD�
This means� new sets of �value DDs� are added for auxiliary variables� For instance� to check a
separability of a function to unate functions� one just introduces new input variables� like A� �
A� Similarly� one can create new variables A� � a � b� A� � a � b� A� � a � b by adding them
to the CDB� This property allows also to realize algorithms that operate on output functions as
on variables� to use auxiliary functions for synthesis� and to re�use the existing functions in the
synthesis process�


� There exist one more variant of CDBs� that we call encoded CDBs� or ECDBs� For instance�
when there are four values of variable vi� the standard CDB would create four DDs for this
variable� However� the ECDB would create only two �encoded� DDs� This obviously saves space�
Operations on ECDBs are very similar to those on CDBs� and they will be discussed more detail
in one of subsequent paragraphs�

The input data are being read incrementally in the form of disjoint cubes of primary variables �rows
of the �table��� During this process� the primary cubes are being heuristically encoded as minterms in
the new space of secondary variables� The goal of this encoding is to simplify all DDs of the CDB�
This is done in such a way that false minterms being encodings of all primary OFF cubes� are grouped
near cell ����� �the minimum minterm in the space of new variables�� Similarly� true minterms of new
space being encodings of all primary ON cubes� are grouped near cell ����� �the maximum minterm in
the new space�� In addition� the larger the cube� the closer it should be located to the minimum or the
maximum cell� respectively� If a cube is an ON cube is some and an OFF cube in some other output
functions it is located closer to cell ����� or ������ depending in how many functions it is ON or OFF � the
predominantly ON cubes are placed near to ������ and so on� Moreover� the cube encoding algorithm
attempts to �ll those cubes in the new space that are of smaller Hamming distances with either the
minimum or the maximum minterm� in such a way that as many as possible of these cubes become
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completely �lled with the same types of minterms� These all attempts are done for all value DDs of the
CDB in parallel�
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� Designs Realized With Multiplexers�

Let us �rst describe how Karnaugh maps �K�maps for short� can be used to implement a single�
output function using multiplexers�

Example ��� Let us assume that we want to realize the four�input function f��a� b� c� d�� shown in
Fig� �a� using a � 	 � multiplexer with two select lines �� bit address��

ab
cd

00 01 11 10

00

01

11

10

0        1       0        1

1         0       1        0

0         0        0       0

1         1        1       1

f1

f1(o,o,c,d)

f1(0,1,c,d)

f1(1,0,c,d)

f1(1,1,c,d)

1

2

3

a b

f1(a,b,c,d)

0

Figure ��

Let as further assume that inputs a� b were selected as address inputs of the multiplexer� We will
say that the set of address variables is fa� bg or that variables a and b are the address variables� Then�
for a � � and b � � a function described in row ab of the K�map should be realized as the function
f��a � �� b � �� c� d�� Let as denote the function from row a b as f���� �� c� d�� The other used by
notation will be f���c� d�� To realize function f��a� b� c� d� we will then provide a function f���� �� c� d�
on the data input number � �which denotes �a� b� � ��� ��� in the multiplexer� Similarly� the function
from row �� a � �� b � �� will be provided at data input �� the function from row �� a � �� b � ��
will be provided at data input � of the multiplexer� and the function from row � ��a� b� � ��� ���� will be
provided at data input �� This is shown in Figure �b�
Now our task is to �nd the realizations of the functions�

f���� �� c� d� � f���c� d��
f���� �� c� d� � f���c� d��
f���� �� c� d� � f���c� d��
f���� �� c� d� � f���c� d��

These functions� called cofactors with respect to set of �address� variables fa� bg� are speci�ed by the
corresponding loops in the K�map� a b� a b� a b� and a b� respectively� The functions a b� a b� a b� and
a b we will denote as loop functions� For better manipulation� the inexperienced user can rewrite each
cofactor in the form of a separate K�map� As we see� all of these cofactors are functions of the variables
c and d only� as shown in the K�maps in Fig� ��

Before getting some experience in manipulating such maps� we can transfer these functions to K�
maps of a more familiar form� as shown in Fig� �� After solving few examples� however� the reader
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should get enough pro�ciency to be able to omit this step and operate directly on the initial submaps
of the K�map�
The data input functions f��� f��� f��� f�� can be now realized using any of the well�known Boolean

minimization methods� The corresponding circuit realization is shown in Fig� ��
Note that� in contrast to the well�known approaches to decomposition� we do not need to use Mar�

quand or decomposition charts to �nd multiplexer realizations for other sets of address variables� The
process of �nding the circuit when some other input variables� c and d� are assumed as the address
variables is shown in Fig� 	�
This realization costs less than the previous one since an inverter is used instead of an equivalence gate

�EXNOR�� Similarly� assuming address variables a and c �Fig� 
a�� the functions f���b� d�� f���b� d��
f���b� d�� f���b� d� will be as shown in Fig� 
b and the realization as shown in Fig� 
c� Note the inverse
order of variables in the headings of some of maps from Fig� 
b� If the designer has di�culties in using
the �inverse� K�maps� he can rewrite some of them as shown in Fig� 
d� After solving few examples�
however� the reader achieves enough pro�ciency to be able to omit this step� and operate directly on
the �inverse submaps� of the K�map� The realization shown in Fig� 
c has the same cost as one from
Fig� ��
We are now able to formulate the design method for designs implemented with multiplexers� For

each possible subset of variables that are used as the address variables� the corresponding loops in the
K�map must be drawn� Fig� � shows loops for all the possible sets of address variables for ��variable
functions� It is easy to start with the loop corresponding to the product made up of noninverted address
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variables �such products are shown in bold � for instance group � for ab in Fig� �a�� Drawing of the
remaining loops for these variables can be quickly achieved by taking the mirror image of the initial
loop with respect to all the possible combinations of values of corresponding address variables� For
instance the group � in Fig� �a is a mirror image with respect to variable a� the group � with respect
to variable b� and group � with respect to both variable a and variable b�
We denote the set of address variables by ADDR�
The design method for circuits implemented with multiplexers can be then summarized as follows�

�� Draw the K�map for the function F �X��

�� Find all the possible subsets ADDR of input variables to be used as the address variables�

�� Draw the initial loop and then all the remaining loops for each set ADDR of address variables�
as shown in Fig� ��

�� For each subset ADDR of address variables�

� draw loop functions fi�X 
 ADDR� for all the cofactors of this address set�

� realize loop functions fi�X 
 ADDR� using any Boolan minimization method �including
realization with multiplexer� recursively�� but use the same function for as many multiplexer
inputs as possible�

� evaluate the cost of the solution by adding the realization costs of various cofactors�

�� Select the best solution for all the address sets out of those found in step ��

Experienced designers can practically apply this method in K�maps using not more than ten vari�
ables� In the age of computers� of course� we do not advocate to use K�maps� we would like to point
out� however� that good understanding of maps� decision diagrams and partitions is crucial in quick
acquisition of ideas from the research literature and also in creating new� improved and more general
decompositions� Many design short�cuts are possible to �nd good solutions without investigating all
address sets�
In paper �� we illustrate how the above method can be extended to design with generalized multi�

plexers in multiple�valued� fuzzy and continuous logics�
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� Basic Patterns for Decompositions�

The authors are aware of only three types of decomposition in the literature that are essentially
distinct and that make use of the concept of partitioning of input variables to bond and free sets�
Curtis Decomposition ���� Steinbach et al �XBOOLE� Decomposition ���� and Perkowski et al �PUB�
Decomposition ����� ��
� ��	�� The decompositions of Ashenhurst ���� Luba et al ���� Lai� Pedram
et al ���� and many other are just special cases� or di�erent realizations� of the Curtis decomposition
���	�� While most authors di�erentiate between disjoint and non�disjoint decompositions� the concept
of the Repeated Variable Maps �RVMs�� introduced below� allows to explain them in a uniform way�
and the CDBs allow to realize all these decompositions uniformly in software �including those from
��� ���� ��
� ��	���
In RVM� the rows of the map correspond to the Row Variables� and the columns correspond to

the Column Variables� As we see� the Row Variables can be represented as A � C� and the Column
Variables can be represented as B � C� Using Curtis terminology� set B � C is a bond set� and set A �
C is a free set� If C � � the decomposition is disjoint and the RVM becomes a standard Karnaugh Map�
If C �� � the decomposition is non�disjoint and the RVM is incompletely speci�ed� even if the original
function is completely speci�ed� Every variable in C is called a repeated variable� Let us observe� that
every repeated variable creates a map of one dimension higher� in which all newly introduced cells are
don
t cares� For instance� if the original map is completely speci�ed and has � variables� a� b� c� d� the
bond set is fa� c� dg and the variable a is a repeated variable� the new � � � map will have three variables
for columns and two variables for rows �variable a stands in both rows and columns�� Half of the RVM
are don
t cares� If variables a and c were repeated� and fa� c� dg were a bond set� the new � � � map
will have three variables for columns� and three variables for rows� It will have 
� of don
t cares� As
we see� even starting with a completely speci�ed function� by repeating variables� very quickly one has
to deal with very strongly unspeci�ed functions� In addition� in ML applications� even the initial data
can have more than ����� of don
t cares� It is than absolutely crucial to be able to represent and
manipulate such functions e�ciently�
The main observation of our uni�ed and generalized approach is the observation that all decompo�

sitions ��� �� ���� ��
� ��	� �� use certain fundamental patterns in cofactors� These patterns can be
easily observed in rows and columns of the RVM� Let us remind that both the rows and the columns of
RVM correspond to cofactors with respect to cubes on literals created from row and column variables�
respectively�
Let us concentrate in this section on binary�valued�output multi�valued input functions� We will

distinguish the following patterns in cofactors�

�� Pattern of don
t cares� We will call it the DC Pattern�

�� Pattern of ones �and possibly don
t cares�� We will call it the ON Pattern�

�� Pattern of zeros �and possibly don
t cares�� We will call it the OFF Pattern�

�� Pattern of function F with zeros� ones� �and possibly don
t cares�� We will call it the F Pattern�

�� Pattern of function F with zeros� ones� �and possibly don
t cares� We will call it the F Pattern�

	� Pattern being either the DC Pattern or the ON Pattern� We will call it the DC�ON Pattern�

Similarly we can de�ne other combined patterns of DC� ON� OFF� F � and F � Let us observe that
if a function has DC�ON�OFF pattern on columns then it is independent on the variables from the
bond set� Analogically� if a function has DC�ON�OFF pattern on rows then it is independent on the
variables from the free set� Let us observe� that some column can be characterized as having either
an ON pattern or an F pattern� There exist more characteristic patterns that we do not discuss here
for the lack of space� and all possible decomposition methods are based on �nding these patterns in
functions�
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De�nitions of Patterns� Row OR decomposition exists with respect to the set of row variables RV if
there exists at least one row that has the ON Pattern� Row AND decomposition exists with respect to
the set of row variables RV if there exists at least one row that has the OFF Pattern� Let us observe
that in the above two cases� patterns OR and AND can be found immediately� without comparing them
to other patterns of rows� Row EXOR decomposition exists with respect to the set of row variables RV if
all patterns for rows can be Patterns F and F � Let us observe� that in this case every DC� ON and OFF
row must be here characterized as either an F or F pattern� if possible� This case is then more di�cult
than the �rst two� Column OR decomposition exists with respect to the set of column variables RV if
there exists at least one column that has the ON Pattern� Analogically one can de�ne the Column AND
decomposition and the Column EXOR decomposition� Row and Column decompositions are also called
Weak Decompositions ���� There exist then Weak AND� Weak OR� and Weak EXOR decompositions�

Strong OR decomposition exists with respect to a set of row variables RV and a set of column
variables CV if there exists Row OR Decomposition� and next� after replacing the ON rows with don
t
cares� there exists a DC�ON�OFF Pattern on columns� Equivalently� Strong OR decomposition exists
with respect to a set of column variables CV and a set of row variables RV if there exists Column OR
Decomposition� and next� after replacing the ON columns with don
t cares� there exists a DC�ON�OFF
Pattern on rows� Strong AND decomposition exists with respect to a set of row variables RV and a
set of column variables CV if there exist Row AND Decomposition� and next� after replacing the OFF
rows with don
t cares� there exists a DC�ON�OFF Pattern on columns� Equivalently� Strong AND
decomposition exists with respect to a set of column variables CV and a set of row variables RV if
there exist Column AND Decomposition� and next� after replacing the OFF columns with don
t cares�
there exists a DC�ON�OFF Pattern on columns� Strong EXOR decomposition exists with respect to
a set of row variables RV and a set of column variables CV if there exist Row EXOR Decomposition�
and Column EXOR Decomposition� Strong OR�AND decomposition exists with respect to a set of
row variables RV and a set of column variables CV if there exist ON Patterns of rows� and next�
after replacing the ON rows with don
t cares� there exists a Strong AND decomposition� Or� Strong
OR�AND decomposition exists with respect to a set of column variables CV and a set of row variables
RV if there exist ON Patterns of columns� and next� after replacing the ON columns with don
t cares�
there exists a Strong AND decomposition� There are several other complex patterns of this type� AND�
OR and EXOR decompositions will be called the Basic Gate Decompositions� OR�AND� AND�OR
and other of this type will be called the Complex Gate Decompositions� They are all called Immediate
Decompositions�
An example of the RVM is shown in Figure ��� Fig� ��a presents a standard Kmap of ��input

function f � Assuming b to be a repeated variable� the Bond Set fb�cg �the columns� and the Free Set
as fa�bg� one creates a RVM from Fig� ��b� Let us observe that ON Patterns b c and a b exist in this
RVM� which lead to Strong OR Decomposition� f � b c � a b� Similarly� for the same RVM in Fig� ��c�
the OFF Patterns �a � b� and �b c� are found� which lead to the Strong AND Decomposition� �a � b�
� �b c�� Finally� for the same RVM in Fig� ��d� the Column Patterns F � and F and the Row Patterns
G� and G are found as shown with loops on the map in Fig� ��d� These patterns lead to Strong EXOR
Decomposition� �b c� � �a � b� from Fig� ��e� Fig� �e clearly shows the incomplete patterns from
Fig� ��d after their completion with �
s and �
s� Bold symbols correspond to original cares from the
RVM�
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� Ashenhurst Decompositions for Completely Speci�ed Functions�

��� Disjoint Ashenhurst Decomposition of Completely Speci�ed Functions�

Example ��� Let us �rst observe that function f���c� d� in Fig� � is the negation of function f���c� d��
Therefore� the realization from Fig� � can be re�drawn as shown in Fig� ��
Next� the function from Fig� � can be represented in a block diagram form as in Fig� �� This �gure

represents a general scheme of the classical �simple� disjunctive decomposition of a single output Boolean
function with the set of bond variables fc� dg and the set of free variables fa� bg� Such decompositions
are discussed� among others� in ��	���

At this point the question arises �

�How to �nd from the function
s K�map whether this function is decomposable for the set of address
variables selected��

It is obvious from Figs� � and �� that if we want to have a single connection from predecessor to
successor then all of the data inputs to the multiplexer have to be a constant �� a constant �� an output
of predecessor or a negation of predecessor �the negation is created inside of the successor�� This is
basically a proof of the Ashenhurst theorem ����
The well�known Ashenhurst theorem can now be expressed as follows�

The function f�X� is decomposable with free set A and bond set B if each of the subfunctions fi�B��
called cofactors of the free set� is at most one of the following types�

� constant ��

� constant ��

� some function� call it G�B��

� negation G�B� of this said function G�B��

Let us observe� that the above condition is equivalent to the following�

The function f�X� is decomposable with free set A and bond set B if each of the subfunctions fi�B�
is at most one of the following types�

c

d
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G

a b

f1(a,b,c,d)

Figure ��
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� some function� call it K�B��

� some other function� call it L�B��

If one draws a K�map with set of colums corresponding to bond set variables� the functions K�B�
and L�B� will be called column functions� and the number of di�erent column functions will be called
the column multiplicity index� Analogously� for a given map� one can de�ne the row multiplicity index�
Function is Ashenhurst�decomposable with a bond set B if the column multiplicity index is equal to
two�
Let us now observe that the decomposition process can be performed graphically with use of K�maps

even faster than the process of design with multiplexers� First� all the loops are drawn for the selected
free variables� as previously� Next� we discard all the loops that include only zeros or only ones� Next�
we denote one of the remaining loop functions as G� When all the remaining loops describe functions
that are either G or G� we have found a decomposition� If we �nd at least one function that is not a G
and not a G either � then the Ashenhurst decomposition does not exist for the selected free variables�
We can often quickly establish that the decomposition for a given set of free variables does not exist
without checking too many loops for this set� Therefore with some experience the designer can quickly
scan the loops to �nd nonexistence of a decomposition� He does this subsequently for all other sets of
free variables� There is no need to redraw the sub�K�maps� To �nd the existence of the decomposition
can be more time consuming and it may require� for K�maps with many variables� re�drawing of some
submaps�

Example ��� Let us go back to function f��a� b� c� d� from example ���� We assume address variables
a� b� Loop a b of ones and loop a b of zeros are discarded so only loops a b and a b remain� Let us
assume that G � f��� Now it is easy to check that f�� � G and the theorem is therefore satis�ed� The
decomposed realization of this function is shown in Fig� ���
The K�map of successor is created from the K�map of Fig� �� G� and G� as in Fig� ��a� This function

is minimized using two�level Boolean minimization to the circuit from Fig� ��b�

Example ��� For the same function let us now select variables c and d as address variables �Fig� 	a��
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No loops can be discarded� Assuming G � f��a� b� in column � �loop c d� we immediately see that
function from loop c d is neither G nor G� so no decomposition exists with c and d as free variables�
Let us observe that if the decomposition exists the designer has a choice to implement each function

either with a multiplexer for successor and e�cient realization of data input functions� or successor
can be realized using any other Boolean minimization method� for instance as a PLA� minimized with
a two�level Boolean minimization program �as in Example ����� If the decomposition does not exist�
the results of the above cofactor comparison are still useful for e�cient design with multiplexers� Such
designs can be found when simple cofactor functions exist� and only few types of cofactors exist �say�
half of data inputs to a multiplexer � see section 
�� Such functions are more likely to �nd when the
function is strongly unspeci�ed�

��� Non�disjoint Ashenhurst Decomposition of Completely Speci�ed Functions�

Example ��	 Let us again consider the function from Fig� �a with variables c and d forming free set
A � fc� dg and variables a and b forming bound set B � fa� bg� For such de�ned free and bound sets
no disjoint Ashenhurst decomposition exists �see Example ��
�� However� function may be decomposed
using non�disjoint Ashenhurst decomposition technique� Let us consider decomposition scheme showed
in Fig� ��a where variable a belongs to both free and bound sets a � A�B and A � fc� d� ag�B � fa� bg�
K�map for this scheme is shown in Fig� ��b� Don
t cares in that map correspond to situations which

never happen� For instance� in loop c da situation where bound set a � � never happens for loop
de�nition assumes free set a � � and� a is the same variable for both free and bound sets� Let us denote
the loop function c da as G� To make the function decomposable� we have to �ll up DCs in such a way
that each loop function be either equal to G or G� That condition is met for G � b �A � fc� d� ag and
B � fbg� and G � a� b �A � fc� d� ag� B � fa� bg��

Fig� �� shows a di�erent way of using K�map to make the same decomposition� Decomposition
scheme from Fig� ��a is equivalent to the scheme from Fig� ��a� K�map is shown in Fig� ��b� The loops
drawn in K�map correspond to free set variables A � fc� d� ag�
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To form K�maps for loop functions however� we procede in a way which is slightly di�erent from the
one used in former examples� K�map for the loop function c da for instance� contain DCs for a � � �for
a � � from the loop de�nition� and whatever is in the loop� for a � �� The K�maps for all the loops
are shown in Fig� ��c� If the DCs in these K�maps may be �lled up in such a way that we end up with
a function G �and possibly G� then Ashenhurst decomposition exists� In our case we may �ll up DCs
to get G � b �A � fc� d� ag� B � fbg� or G � a� b �A � fc� d� ag� B � fa� bg��
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� Ashenhurst Decomposition of Incompletely Speci�ed Functions�

��� Disjoint Ashenhurst Decomposition of Incompletely Speci�ed Functions�

Let us observe that our graphical method can be� with very little modi�cation� applied to incompletely
speci�ed functions as well� First we remove loops that can be completed to all zeros� or that can be
completed to all ones� Next we check whether the remaining loops can be completed to functions G and
G�

Example ��� Given is function f��a� b� c� d� e� f� from Fig� ���
Assuming address variables a and b� the loops are as shown in Fig� ��� We can immediately discard

loop a b that can be completed to all zeros� as well as the loop a b that can be completed to all ones�
To help the reader the loops functions a b and a b are rewritten to these of Fig� ��� It can be seen that
both of them can be completed to the same function

G � c d e f � c d e f � c d e f � c d e f � c d e f � c d e f � c d e f � c d e f � c� d� e� f
It is important to note that with some experience one does not have to draw all the loops in the

K�map� but� remembering their shapes� can verify directly the existence of functions G and G�
Also� when checking the decomposition possibility �decomposability� for free �bond� sets� it is often

not neccessary to generate loops systematically for all the possible free �bond� sets� Since we know
that the existence of loops of zeros and loops of ones for some free set increases the possibility of a
decomposition� we shall �rst �nd a large loop of zeros or large loop of ones� or a loop that can be
completed to a loop of one of these types� Next we shall test the decomposition possibility for other
loops created for the free set of the variables from this loop� If no decomposition exists for this free
�bond� set� the decomposition for the next large loop of the above types is investigated�

Example ��� We will solve the example from p� �
� in ��	���
f�v� w� x� y� z� �

P
��� �� �� 
� ������
��������������

P
����� ��� ��� �������
�������

The K�map for this function is shown in Fig� ���
First we try to �nd large loops that can be completed to loops of all zeros or to loops of all ones� A

loop x z is found as a loop that can be completed to ones � see Fig� �	� This suggests selecting the set
fx� zg as a free set� By examining the other loops for this set we �nd that loop x z can be completed to
all zeros� Now the remaining loops are found and compared �Fig� �
�� As we see� assuming that loop
x z corresponds to G� we notice that the loop x z will correspond to G� The completion is shown in
Fig� ��a�
Therefore the decomposition for free set fx� zg is found� as shown in Fig� ��a� Fig� ��b� c presents

two methods for realization of function f�x� z�G�� The �nal circuit is presented in Fig� ��e�

001

011

010

111

100

101

110

000

000 001 011 010 110 111 101 100abc

def

1 - 1 0 1

1 1

1 1 1

1 1 1

1

1 1

1 1

0 0

0 0 0

0 0 0

0 0 0 0 0

0 0

0 0

0

0

-

- - -

- - - - -

- - -

- - - - -

- - - - -

- -

- - -

loop a b

loop a b

loop a b

loop a b

f2

Figure ���

�����



000   001    011   010   110    111   101   100c
def

0

1 0

0 0 0

0 0

1 1 1

1 1

- -

- - -

000   001    011   010   110    111   101   100c
def

0

1 0

0 0

0

1 1

1 1

- -- -

- 0 1 -

Figure ���

vw     
xyz

000    001   011    010  110    111   101    100

00

01

11

10

0

10

0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

Figure ���

vw     
xyz

000    001   011    010  110    111   101    100

00

01

11

10

0

10

0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

Figure �	�

����	



vw     
xyz

000    001   011    010  110    111   101    100

00

01

11

10

0

10

0

0

0

0

0

0

0

0

0

01

1

1

1

1

1

1

1

1

1

-

-

-

-

-

-

-

-

-

Figure �
�

��� Non�disjoint Ashenhurst Decomposition of Incompletely Speci�ed Boolean
Functions�

See section ��� example ���� and section 	���

��� Non�disjoint Ashenhurst Decomposition of Incompletely Speci�ed Multiple�
Valued Functions�

To determine whether a function is decomposable we may use mv extension of the Ashenhurst
theorem� Ashenhurst theorem for binary functions states that a function is decomposable if the column
multiplicity of its K�map is less then or equal to two� Multiple valued logic function exension of this
theorem states that column multiplicity must be less than or equal to n� where n is the number of
values the function can take �for binary function n � ���
Multiple�valued function �three possible values� �� �� �� which is de�ned in Fig� �� is Ashenhurst

decomposable because the column multiplicity is equal to three ��������� � �������� � ����������
Incompletely speci�ed �with �don
t cares�� mv function however� requires mv don
t care de�nition�
In the case of binary function� DC in the function output means that the output is either � or ��

For mv function there are two ways of generalizing the concept of DC� One is� that any possible output
value of the function may be taken �as for binary function�� The other is that any subset of more than
one value may be taken� For instance� in three�valued logic� the logic values are �� �� and �� and the
generalized don
t cares are�

� f���g � function may take either � or � value

� f���g � function may take either � or � value

� f���g � function may take either � or � value

� f�����g � function may take any out of �� �� � values

As an example� let us again consider the function from Fig� �� with DC of type f�� �g in the �eld ���
�a��� b��� c���� Since this �eld can only take � or � value the function in not decomposable �column
multiplicity is equal to four�� However� if we put DC of any other type �containing �� in the same �eld�
the function will become decomposable�

Non�disjoint Ashenhurst decomposition is the one having non disjoint bound �B� and free �A� sets�
If we choose A � fa� bg and B � fb� cg for the function from Fig� �� we will come out with K�map in
Fig� ��� The empty �elds are DC �elds of type f�� �� �g� which means that they may be replaced by �� �
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or � value� Since the disjoin decomposition exists non�disjoint decomposition exists either� Non�disjoint
decomposition however� is usually used to decompose functions which are not disjoint decomposable�
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� Analytical Decomposition of Incompletely Speci�ed Single	Output Boolean
Functions�

The analytical method presented below serves to explain the computer algorithm from next sections�
Our goal is to �nd an analysis method to check if the completion to G and G exists for a given free set
A�

De�nition 
�� By a loop pair we will understand a pair


�loop� respective loop function� � �loop� f�loop��

De�nition 
�� Two functions are called the compatible functions when they can be completed to the
same function�

De�nition 
�� Two loop pairs p� � �l�� f�l��� and p� � �l�� f�l��� are called compatible loop pairs
when f�l�� and f�l�� are compatible functions�

De�nition 
�	 The operation of merging� with two functions f� and f� as arguments� produces the
least de�ned function f � f��f� that completes both of them by replacing dont�cares with zeros or ones�

This is done on a cell�by�cell basis� If a cell has the same value in both functions� this value is
retained� don
t care and cell will give the value of this cell� ��� � �� ��� � �� ��
 � �� ��
 � �� If
the respective cells have values � and �� the merging cannot be done �we denote this by ��� � e� and
we say that functions f� and f� are not compatible�

De�nition 
�� Two loop pairs p� � �l�� f�l��� and p� � �l�� f�l��� are merged to a loop pair
�fl�� l�g� f�l���f�l��� if f�l�� and f�l�� are compatible functions�

The reason to introduce loop pairs is to allow performing operations on the respective loop functions
but keeping track of what loops are the merged functions coming from�
Let us �rst observe that the relation of loop pair compatibility is not an equivalence relation�

Example 
�� Let us consider a function given in a Karnaugh map of Fig� ��� assuming B � fc� d� eg�
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The free set B � fc� d� eg� so the loop functions correspond to the columns of the map� After
removing the loop c d e of �
s and the loop c d e of �
s� the loop pair Compatibility Graph of Fig� �� is
created with the remaining loop pairs as nodes�
Let us observe� that one can create a Compatibility Graph for nodes found from the free set and

for nodes found from the bond set� We will call them� Free Set Compatibility Graph� and Bond Set
Compatibility Graph� respectively�
The compatibility of two loop pairs in the graph is denoted by an edge between the corresponding

nodes� Let us for instance compare loop functions for columns ��� and ��� �loops c d e and c d e��
The loop function for a column will be denoted in the current section� for the sake of explanation� as
the string of symbols �� �� and � � in the same order� as they are in the column from the top to the
bottom� The computer representation of loop functions will be discussed in the next section� when the
computer program will be presented� The loop function for column ��� �loop c d e� is ����� and the
loop function for column ��� is ����� These loop functions are compatible� This is denoted in cube
calculus as� ���� � ���� � ����� By � we denote the merging �common minimal completion� operation
of functions represented as cubes� The respective loop pairs are then compatible as well�
�c d e� ����� �c d e� ����� � �c d e� c d e� ������
Compatibility of loop pairs is denoted as an edge between nodes
�c d e� f�c d e�� and �c d e� f�c d e���
In our notation� the nodes� �c d e� ����� and �c d e� �
 �
� �see Fig� ����
Similarly� loop pairs �c d e� ����� and �c d e� ����� are compatible� since ���� ���� � ����� However

loop pairs �c d e� ����� and �c d e� ����� are not compatible since ���� ���� � ���e �by e we denote the
incompatible � and � in the lowest row of the K�map��

Therefore� the relation of compatibility is not transitive and hence it is not an equivalence relation�
Let us observe� that for a completely speci�ed function the relation of compatibility is an equivalence

relation� which makes the whole problem much easier�
Using the method shown above one can create the loop pair compatibility graph from Fig� ��� The

next stage is to �nd a partition of this graph to two maximum cliques� A clique of a graph is a subgraph
with any two nodes linked by an edge �a complete graph�� The maximum clique is a clique with the
maximum number of nodes �a clique that is not included in another clique�� If after merging the loop
functions from the �rst clique we would create function G then the merging from the another clique
should be G� otherwise there is no decomposition� The classical decomposition of the function does not
exist in one of the following two cases�

� there is more than two cliques in the minimal partition�

� �ci�C�
ci �� �cj�C�

cj

�����



i�e� the two mergings from the cliques C� and C� can not be completed to functions G and G
being the mutual negations�

The fact that the relation of compatibility is not an equivalence relation makes the search for maxi�
mum cliques more di�cult�
We can create a simple sequential clique�growing algorithm in which the two cliques are extended

step�by�step� starting from any loop pair� For instance� by selecting �rst the loop pair �c d e� ����� and
next the pair �c d e� ����� we create a merged loop pair �c d e� c d e� ������ Now �c d e� ����� is selected
and we join it to this loop pair� �c d e� c d e� c d e� ������ Now we select �c d e� ������ This cannot be
merged with the previous merged loop pair� so is becomes a beginning of the new merged loop pair�
Next we select �c d e� ������ creating the merged loop pair �c d e� c d e� ������ When next the pair

�c d e� ����� is selected it is joined to the last merged loop pair� creating a pair� �c d e� c d e� c d e�
������ After scanning all loop pairs two merged loop pairs� �c d e� c d e� c d e� ����� and �c d e� c d e�
c d e� ����� have then been created� They are mutual negations� so the respective decomposition exists�
Let us however observe� that this method would not work for another order of selection� By selecting

�rst the loop pair �c d e� ����� and next the pair �c d e� ����� we would create the pair �c d e� c d e� ������
Now we select loop pair �c d e� ����� and we see that the loop functions� ����� from this pair� and

���� from the pair �c d e� c d e� ����� cannot be mutual negations and cannot be merged either� For
this order of loop pairs selection the decomposition was then not found� even if it exists� as we have for
another order�
The problem of �nding maximum clique partitioning is in general an NP�hard one� but we will

propose below a simple and fast algorithm that gives good results for ��coloring�


 Immediate Decompositions�

Immediate Decompositions are those that are very good� happen relatively rarely� and if encountered�
should be immediately executed� The Immediate Decompositions are� Strong Basic Gate Decomposi�
tions �Strong EXOR Decomposition� Strong AND Decomposition� Strong OR Decomposition�� Strong
Complex Gate Decompositions� Strong PUB Decompositions� and the Ashenhurst Decomposition� �The
PUB decompositions will be not discussed because of lack of space�� All these decompositions can be
e�ciently found in CDBs using cofactors and set�theoretical operations ���	��

��� Ashenhurst Decomposition�

Existence of Ashenhurst Decomposition can be checked either using Property �� or Property ��
Property 	� Ashenhurst Decomposition with bond set B and free set A exists if all row patterns are�

ON Pattern� OFF Pattern� F Pattern and F Pattern�
Property �� Ashenhurst Decomposition with bond set B and free set A exists if all column patterns

are F Pattern and G Pattern� G �� F � In other words� column multiplicity index � � ��
Both these properties can be used to verify the existence of Ashenhurst Decomposition� depending

on the sizes of row and column sets of variables� Traditionally� for incompletely speci�ed functions� the
Ashenhurst and Curtis decompositions were reduced either to the clique partitioning of the Column
Compatibility Graph or the graph coloring of the Column Incompatibility Graph ��� ��� 	
� �� ��
� ����
��	� ��� All these problems are in general NP�hard� However� in case of Ashenhurst decomposition� the
problem can be solved by a polynomial algorithm� The following algorithm is based on Property ��

Algorithm ��� 	� Remove from RVM all rows that correspond to ON� OFF and DC Patterns�

�� Find two rows� ri and rj that are incompatible� and remove them�


� From remaining rows create the set Remaining Rows�

�� Pair Counter 
� 	�

�����



�� Put row ri to LEFT�Pair Counter� and row rj to RIGHT�Pair Counter��

�� Take next row rs in set Remaining Rows and remove it from set Remaining Rows�

�� Compare rs with arrays LEFT and RIGHT�

a� If there exists a pair �LEFT�k�� RIGHT�k�� such that rs is incompatible

with both LEFT�k� and RIGHT�k��

then exit �No Ashenhurst Decomposition��

b� Else if

for all v from 	 to Pair Counter

rs is compatible with LEFT�v� and rs is compatible with RIGHT�v�

then

if RIGHT�Pair Counter� �� � then

Pair Counter 
� Pair Counter � 	�

put rs to LEFT�Pair Counter��

else

LEFT�Pair Counter� 
� Combine Rows�rs� LEFT�Pair Counter���

c� Else Combine�LEFT�RIGHT�rs��

�� If there are still rows in Remaining Rows� go to ��

�� Combine all sets LEFT�i� �i�	�����Pair Counter� to set LEFT�

Combine all sets RIGHT�i� �i�	�����Pair Counter� to set RIGHT�

	�� Return pair � LEFT� RIGHT � as the ��coloring of the Compatibility Graph�

Procedure Combine Rows�rs
 rv� combines row rs with row rv� position by position in a row�
using the combining rules�

symboli �� symboli combine symboli � symbolj �� symbolj combine dont
care�
Procedure Combine�LEFT
RIGHT
rs� does the following�

�� Find set of such indices vl�������Pair Counter that rs is incompatible with LEFT�vl�

Combine all their RIGHT�vl� to RIGHT� and all their LEFT�vl� to LEFT��

RIGHT� �� Combine Rows�rs� RIGHT���

�� Find set of such indices vr�������Pair Counter that rs is incompatible with RIGHT�vr�

Combine all their RIGHT�vr� to RIGHT� and all their LEFT�vr� to LEFT��

LEFT� �� Combine Rows�rs� LEFT���

�� RIGHT� �� Combine Rows�RIGHT�� LEFT���

LEFT� �� Combine Rows�RIGHT�� LEFT���

�� Remove all rows vl and vr from arrays LEFT and RIGHT� append combined

row RIGHT� to the end of array RIGHT� append combined row LEFT� to the end of array
LEFT�

�����



The second method� based on Property �� can be applied to mv�output functions� and has a very
similar algorithm� Algorithm ��� is usually more e�cient� but can be applied only to binary�output
functions�

Example ��� We continue the previous example� and solve it with algorithm ���
Let us assume� that �rst loop pair �c d e� ����� is selected� It is marked as G� Let us assume now�

that as a second� we select the pair �c d e� ������ The function from this pair has no common speci�ed
bits with function G� so the pair is added to set UNSPECIFIED� The next selected pair is �c d e� ������
Negation of function from this pair has a common complement with function G so G �� ����� The
pair �c d e� ����� selected as the next one is compatible with G� so now G � � 
 ������
 � ����� so
G � �����
Next pair �c d e� ����� is selected and merged with G� Next �c d e� ����� is merged with G� Now the

functions from the set UNSPECIFIED are taken into consideration again� The pair �c d e� ����� can be
joined with G only� Decomposition exists with G � ���� and G � �����

�����



� PUB Decompositions�

	�� Disjoint PUB Decomposition�

The method shown here was �rst introduced by Perkowski� Uong and Brown in ���
� ���
� �����
It can use arbitrary representation of switching functions� Although this method is similar to Curtis
Decomposition� it di�ers from it� Curtis Decomposition uses multiplexer for bond set and encodes
outputs of the bond set� PUB Decomposition uses free set variables for multiplexers and does not use
encoding� Thus� it creates functions with higher value of DFC� but possible from simpler gates� It must
be then still investigated� which of the decompositions creates less expensive realizations from gates of
small fan�in� Below� PUB type of decomposition will be explained using cube calculus� but� like any
other decomposition� it can be executed in arbitrary function representation�
A Boolean function of n input variables� X�� X�� � � � � Xn will be given in a form of arrays of cubes�

Each cube will have n positions� Each position of a cube can be a value of the respective variable�

� � � in negative form�

� � � in positive form�

� X � don
t care form�

The function will be speci�ed as ON�array and OFF�array� ON�array is an array of ON�cubes� OFF�
array is an array of OFF�cubes� ON�cube is a cube with value �� OFF�cube is a cube with value �� By
ON���XXX� we will denote the set of ON�cubes of f��� �� c� d� e�� Similarly by OFF�XX���� we will
denote the set of OFF�cubes of f�a� b� �� �� ���

Theorem ��� Two functions f� and f� are compatible if and only if
�ON�f�� � OFF�f�� � �� and �ON�f��� � OFF�f�� � ��

De�nition ��� The loop pair incompatibility graph is an undirected graph

G � �N�RS�

de�ned as follows


� N � is the set of loops�

� RS � is the set of edges�

� E � �c�� c�� 
 RS �� loop functions f�c�� and f�c�� are not compatible �such functions are
called incompatible��

The nodes of the graph are loops �cofactors�� The edge E is created in the incompatibility graph
between two nodes when the corresponding loop functions of these loops are not compatible�
Let us observe that the Loop�Pair�Incompatibility�Graph is a complement of the Loop�Pair�Compatibility�

Graph� i�e� has an edge betwen two nodes if there is no edge in the other graph� and vice versa�
The optimal algorithm for Loop�Pair�Compatibility�Graph clique partitioning is based on minimal

coloring of the Loop�Pair�Incompatibility�Graph� The coloring is an assignment of colors to graph
nodes in which any nodes linked by an edge receive di�erent colors� Minimal coloring is a coloring
with the minimum number of colors� If the number of colors is two then the classical decomposition
is possible� Function F� being the merging of loop functions from all nodes of color � is found� Next
function F� being the merging of loop functions from nodes of color �� If F� and F� are compatible
then decomposition exists� Otherwise� even when the number of colors exceeds two � the minimal color�
ing result can still be used for the e�cient realization with multiplexers� or general PUB Decompositions�

����	
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Example ��� Let us assume a function f�a� b� c� d� e� speci�ed as follows�

ON�f� � f������ ���X�� ��X��� ������ ������ �����g
OFF�f� � f���X�� X����� �XX��� ���X�� ����X� X����� ������ �����g

The function is presented in a Karnaugh map from Fig� ���
We illustrate application of the optimal graph�coloring algorithm for B � fc� d� eg�

�� Find cofactors in the form of arrays of cubes�

ON�xx���� � f��xxxg OFF�xx���� � f��xxx� ��xxxg
ON�xx���� � f��xxxg OFF�xx���� � f��xxxg
ON�xx���� � fg OFF�xx���� � f�xxxx� x�xxx� ��xxxg
ON�xx���� � f��xxx� ��xxxg OFF�xx���� � fg
ON�xx���� � f��xxxg OFF�xx���� � f��xxxg
ON�xx���� � f��xxxg OFF�xx���� � fx�xxxg
ON�xx���� � f��xxxg OFF�xx���� � f�xxxxg
ON�xx���� � f��xxxg OFF�xx���� � f��xxxg

�� Discard cofactors of only zeros and cofactors of only ones�

After removing the loop XX��� of ones and the loop XX��� of zeros �such loops can be easily
found� since they have empty sets OFF�XX���� and ON�XX����� respectively� we obtain the
following set of loops�

fXX���� XX���� XX���� XX���� XX���� XX���g

These loops become the nodes of the incompatibility graph�

�� Create the graph of loop pair incompatibility�

For the pair of loops XX���� XX��� we have�

����
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ON�XX���� � OFF�XX���� � f��XXXg � f��XXXg � �
OFF�XX���� � ON�XX���� � f��XXX� ��XXXg � f��XXXg � f��XXXg �� �

then these loops are incompatible and an edge is added to the graph� Similarly� using this method
the entire loop pair incompatibility graph from Fig� �� is created�

�� Find minimal coloring of the loop pair incompatibility graph�

After coloring with a minimum number of colors the graph is as in Fig� ���

The minimal coloring has then � colors� AA� BB� and CC� The decomposition thus does not exist
but this result is useful to minimize the design with the multiplexer� We have then to realize only
three di�erent functions� AA� BB� and CC to feed the output successor �multiplexer� for B � fc�
d� eg� The set of columns colored with color AA is � fXX���� XX���g� The set of columns with
color BB is fXX���� XX���� XX���g and the set for color CC is fXX���g�

The next stage is to merge the compatible loop pairs�

For color AA�

ON�XX���� � ON�XX���� � f��XXXg � f��XXXg � f��XXXg
OFF�XX���� � OFF�XX���� � f��XXX� ��XXXg � f�XXXXg � f�XXXX� ��XXXg �since
��XXX � �XXXX�

Let us observe that this is not a set of prime implicants for this column�

For color BB�

ON�XX���� � ON�XX���� � ON�XX���� � f��XXXg � f��XXXg � f��XXXg � f��XXX�
��XXXg
OFF�XX���� � OFF�XX���� � OFF�XX���� � f��XXXg � f��XXXg � f��XXXg � f��XXX�

�����
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��XXXg

For color CC�

ON�XX���� � f��XXXg
OFF�XX���� � fX�XXXg

�� Complete the function f according to the optimal coloring found in the previous step� functions
being mergings of all loop functions of the same color replace the original loop functions� Now
our K�map looks as in Fig� �	�

	� Depending on the number of colors and compatibility of F� and F�� either �nd classical decom�
position or �nd a realization using a multiplexer that minimizes the number of various functions
given on this multiplexer
s data inputs�

The respective realization with multiplexers is shown in Fig� �
� The names of the wires� AA� BB�
and CC correspond to the colors of the combined functions� Let us observe that the don
t cares have
been utilized to simplify function CC�

The above method based on minimal graph coloring of the loop pair incompatibility graph is a start�
ing point to generalized decompositions introduced in ���
��

In PUB decomposition� a function is called r�k��decomposable when the row multiplicity on non�
trivial functions is r�k�� It means that r�k� or less data inputs to the multiplexer are non�trivial
functions� where k is the number of address variables to this multiplexer�

The Strong PUB Decomposition� the most similar to Curtis from the DFC�minimization point of
view� assumes that r�k� � �k��� We created also the concept of the Weak PUB Decomposition� or
r�k��decomposition� where r�k� is an integer 
 � �k��� �k
� �� de�ned by the user for each value of k�

�����
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The trivial functions are de�ned here for PUB decompositions as any functions that are trivial or
easy to realize� For instance� the following sets of trivial functions have been considered ���
��

�� constants � and ��

�� constants � and �� and literals �variables and their negations��

�� constants � and �� products of arbitrary number of literals� sums of arbitrary number of literals�
EXORs of arbitrary number of literals�

�� In the �rst two cases it is very easy to �nd trivial functions� Costant � is assigned� when the
ON�set of the cofactor function fCOFi is empty� Costant � is assigned� when the OFF�set of the
cofactor function fCOFi is empty� Literal xr

i� i � �� �� is assigned� when the intersection of xii

with the OFF�set of cofactor function fCOFi is empty� and the intersection of xi with the ON�set
of cofactor function fCOFi is non�empty�

�� To �nd if fCOFi is a product of literals� the supercube SUP�fCOFi � of all true minterms in fCOFi is
found� If SUP�fCOFi � � OFF�fCOFi � �� � then SUP�fCOFi � or a product of any subset of literals
from SUP�fCOFi � that does not intersect OFF�fCOFi � is a product of literals data function for
fCOFi �

�� To �nd if fCOFi is a sum of literals� the supercube SUP�fCOFi � of all false minterms in fCOFi
is found� If SUP�fCOFi � � ON�fCOFi � �� � then SUP �fCOFi � or a complement of any subset of
literals from SUP�fCOFi � that does not intersect ON�fCOFi � is a sum of literals data function for
fCOFi �

�����
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�� To �nd if fCOFi is an EXOR of literals fxj� xk� xlg� one has to calculate the expression�

EXOR EXPR � fCOFi � xj � xk � xl ���

If the ON�set of EXOR EXPR � �� then xj � xk � xl is an exor of literals data function for
fCOFi � Let us observe� that it is su�cient to check exors of literals with only one literal negated�

It is obvious� that all the above conditions can be tested on K�maps� arrays of cubes� partitions� or
any other representation of Boolean functions�
In addition� these rules can be extended to take into account not only the original input variables�

but also any intermediate variables created in the decomposition process and the output variables �i�e�
output functions��

Figure �� presents di�erent views at the Disjoint PUB Decomposition�

	�� Non�disjoint PUB Decomposition�

When bound and free sets are non disjunctive� PUB function decomposition is refered to as non�
disjoint PUB decomposition� To ilustrate the decomposition process let us use an example�

Example ��� Let us analyse the function from Example ��	 and de�ne bound �B� and free �A� sets
as being� B � fa� b� eg� A � fc� d� eg� Function
s K�map is shown in Fig� �� and the ON and OFF sets
are�

ON�f� � f���x��� ������� ������� ������� ������� ������� �����xg
OFF�f� � f������� x������ �x�x��� x������ ������� ������� ������� �����xg

�����



Following the procedure described in section ��� we then �nd cofactors ���� Cofactors xxx��� and
xxx��� may be discarded as they contain only �
s and �
s�
The incompatibility graph for the function cofactors is shown in Fig� ��� We need only two colors to

color the graph which means that the function may be decomposable� It is decomposable if functions
F� and F� coresponding to color � and color � meet the following condition� F� is compatible to F �� Let
us now determine F� and F�� Merging all the loop functions of the same color we obtain new functions
�speci�ed by ON and OFF sets��

AA�
ON�xxx���� � ON�xxx���� � ON�xxx���� � f���xxx� ���xxxg
OFF�xxx���� � OFF�xxx���� � OFF�xxx���� � f�x�xxx� ���xxx� ���xxx� ���xxxg

BB�
ON�xxx���� � ON�xxx���� � ON�xxx���� � f���xxx� ���xxx� ���xxxg
OFF�xxx���� � OFF�xxx���� � OFF�xxx���� � f���xxx� ���xxx� ���xxxg

K�map coresponding to the new functions is shown in Fig� ��� Functions F� and F� coresponding
to colors AA and BB are� F� � a� b� e � a� b� e � �a � b��a � c��b � e�� F� � a� b � a� b � a� b� The
condition F� compatible to F� is not met in our case so the function is not decomposable� Realization
of our function using multiplexer is shown in Fig� ���

Fig� �� compares the disjoint and non�disjoint Curtis and PUB decompositions�
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�� Curtis Decomposition

�
�� Disjoint Curtis Decomposition�

A decomposition approach based on Graph Coloring� very similar to the one from section 
� can
be applied to Curtis Decomposition� It will not be repeated it here� since it was presented in detail
in ��� ��� Instead of �nding cofactors for free variables� one �nds cofactors for bond variables� Next�
there is no need to remove cofactors of ones and cofactors of zeros� The graph is colored as previously�
Analogously� one can �nd a Compatibility Graph and �nd its minimumdisjoint covering with maximum
cliques�
Fig� �� ��� shows the stages of decomposing function from example ���� solved using the Curtis

Decomposition�

Fig� ����

Let us observe that for both PUB and Curtis decompositions� we have two pairs of graphs�
For free sets in PUB Decomposition we had�

� Free Set Compatibility Graph � optimized by clique partitioning� or clique partitioning of �care
columns� with similarity constraints �the �care columns� are columns other than the �don�t care
columns�� where the dont
t care columns are columns that only don
t cares��

� Free Set Incompatibility Graph � optimized by graph coloring� or graph coloring of care columns
with similarity constraints�

For bond sets in Curtis Decomposition we have�

� Bond Set Compatibility Graph � optimized by clique partitioning� or clique partitioning of care
columns with similarity constraints�

� Bond Set Incompatibility Graph � optimized by graph coloring� or graph coloring of care columns
with similarity constraints�

Comparison of PUB Decomposition and Curtis Decomposition for small number of address variables
�bond variables in case of Curtis� is shown in Figure ��� Indices � denote values of column multiplicity
indices for bond sets for Curtis Decomposition� Indices � denote values of row multiplicity indices for
free �address� sets for PUB Decompositions�
We can see that a successful PUB Decomposition creates more functions� but simpler� than the func�

tions created by the Curtis Decomposition� PUB decomposition is a link between Curtis Decomposition
and multiplexer�based design and orthogonal expansions�

�
�� Non�disjoint Curtis Decomposition�

In non�disjoint Curtis decomposition� bound and free sets overlap i�e�� have common elements� Such
arrangement often simpli�es decomposition blocks or makes decomposition possible if disjoint decom�
position does not exist�

Example ���� Let us consider the function from Example ��� where bound �B� and free set �A� are
de�ned as follows�

A � fa� b� eg� B � fc� d� eg
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K�map of this function is repeated in Fig� ��a� Column multiplicity �CM� for this K�map is equal
to � �f����������������������� � �������g�� so the function is Ashenhurst decomposable �special case
of Curtis decomposition�� K�map obtained by �lling DCs with �s and �s to get CM � � is shown in
Fig� ��b� Loops ���� ��� and ��� contain only �s and loop ��� contain only �s� If we de�ne the loop
function corresponding to a � �� b � �� e � � as G we will see from Fig� ��b that any other loop
function �di�erent from �s or �s� is either equal to G or to G�
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�� Basic Decompositions�

The Basic Decompositions of the GUD program are�

� Curtis Decomposition �above section��

� PUB Decomposition ���	��

They happen more often than the Immediate Decompositions presented in section �� Hower� when
executed with large value of multiplicity index � they lead to di�cult encoding problems and not
necessarily minimum circuits �especially that we are never able to perform exhaustive search of sets A�
B and C�� We execute these decompositions only with small values of the multiplicity index � � �������

���� Curtis Decompositions�

Only Curtis Decomposition will be discussed in this section� We have three variants of the algorithm�
called� Curtiscolor � Curtisclique� and Curtisconcurrent� respectively�
Following the approach from ���� given the bond set B �C and the free set A �C� the stages of the

Curtiscolor decomposition are the following�

�� Find a fast approximate graph coloring of the Incompatibility Graph�

�� Use the encoding method that is similar to the input encoding algorithm for function H from ����

This algorithm is designed to minimize only the logic of function H�

�� Find functions G and H�

The reason to use here graph coloring instead of Clique Partitioning �as in literature� is to dra�
matically decrease the size of the memory� Let us assume that the N columns of the covering table
correspond to the columns of the RVM� and the rows of the covering table correspond to the maximal
cliques� Thus� for strongly unspeci�ed functions� the number of rows is exponential� while the graph
has only N � �N��� � � edges�
Well known is a set covering algorithm that makes use of essential rows� secondary essential rows

and dominations of rows and columns ������ In case of non�cyclic covering tables� this algorithm �nds
the exact solution without backtracking� We created a similar algorithm for graph coloring�
Node G� of the graph is dominated by node G� if the set of incident nodes of G� includes �properly

or not� the set of incident nodes of node G�� In such case� any color of node G� can be also applied to
node G�� Thus� this fact can be stored� and the node G� can be removed from the graph� together with
all its incident edges� This leads to a new graph� that can possibly have new dominated nodes� and so
on� until the graph is reduced to a complete graph� for which every node is colored with a di�erent color�
When there are no dominated nodes in the graph �a counterpart of a cyclic set covering�� a coloring
choice is done as in ���� This can lead to dominated nodes� and the node dominations are propagated
and removals are done as presented above� until a new branching choice is necessary� There is a perfect
analogy of this coloring approach with methods of solving both cyclic and non�cyclic covering problems�
but our approach is faster and does not require creating large covering tables� Moreover� it was found
experimentally that most column incompatibility problems are non�cyclic�

Example 
� We will illustrate how to convert the covering problem to the coloring problem using
a Kmap of a non�cyclic function f � Fig� ����a� Numbers denote the true minterms� All other cells
are false minterms� Obviously in this case� after sharping essential primes abc and acd� the secondary
essential primes abd and bcd are created� After sharping these secondary essential primes no true
minterms remain� so the exact solution was found for a non�cyclic function f without backtracking�
The Incompatibility Graph corresponding to this map is shown in Fig� ����b� The stages of coloring
the graph are shown in Fig� ����b � ����e� In Fig� ����b node � has neighbors ����	�
� and node � has
neighbors ������	�
� Therefore� node � dominates node �� and � is removed from the graph� leading to
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Figure 3. Stages of exact graph coloring
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the graph from Fig� ����c� Now node 	 has neighbors ����� and node 
 has neighbors �������� Thus
node 
 dominates node 	 and node 	 is removed� This leads to the graph from Fig� ����d� Now node �
has neighbors ����
 and node � has neighbors ��
� So� node � dominates node � and node � is removed�
Now� Fig� ����e� the graph is a complete graph� Its nodes are colored with di�erent colors� as shown�
With respect to dominations� node � is colored with the same color as node �� which is color a� node �
is colored with color b� and node 	 is colored with color d�
In some covering problems� like in SOP minimization� a group of nodes colored with the same color

are not necessarily all compatible� and group compatibility must be checked ��
��� It can be proven�
however� that in the Column Compatibility problem for both binary and mv cases� if columns in a set
are pairwise compatible the set of all these columns is compatible as well� This is� however� no longer
true for the generalized don
t cares � see section ����
In the second variant of Curtis Decomposition� Curtisclique� given the bond and free sets� the stages

of the decomposition are the following� First a fast clique covering of the Column Compatibility Graph
is found� The nodes of this graph correspond to the columns of the original RVM� Note� that this is
the Clique Covering �not Clique Partitioning as elsewhere�� so the cliques in the solution overlap� and
a column may be included in more than one clique� Next the encoding algorithm is used that is similar
to the approach for concurrent state and input minimization and assignment from ������ This approach
can be summarized as follows� For every node of the graph� a set of symbols of all maximum cliques
that cover this node is created� In a Kmap of function G with inputs from the bond set� every cell
corresponds to a column of the RVM� and to a node of the graph� Every cell includes the set of clique
symbols� selected in Clique Covering� that cover the corresponding node� This map represents then a a
symbolic output relation for function G� The choice of one of these symbols is done for every cell
in such a way that the two following goals are achieved concurrently for the logic of function G� ��
the good output encoding of G is found to simplify functions corresponding to the new binary variables
between G and H� �� after the encoding� the symbolic output relation changes to a standard Boolean
relation� One wants to �nd such encoding that the relation can be next minimized to as simple Boolean
functions as possible� In particular� we want these functions to have as many output don
t cares as
possible� for instance� codes �� and �� are combined to ���
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The third variant� Curtisconcurrent� assumes the �overlapping� bond and free sets as well� It uses the
method that is similar to the concurrent state minimization and state assignment for state machines
from ��
��� It is based on the analogy that states of the machine can be compared to columns in the
decomposition RVM� This way� concurrent state minimization and state assignment for a state machine
is translated to a concurrent column minimization and column encoding problem � combining of the
columns and encoding them is done in parallel� by �nding the set f�i� i������kg of partitions of the
set of columns� such that in every block in partition product

Q
i������k �i every two elements �columns�

included in the block are compatible�

�� Goal	Oriented Reduction Decompositions�

These decompositions are used in two cases�

�� When some already realized function FG is close to the function F to be decomposed �we mean
by this a high correlation of variables FG and F in CDB�� This function is then treated as a goal
function FG�

�� When some of the previously attempted �Immediate or Basic� decompositions of F was �nearly
possible�� which means� many columns had patterns corresponding to the given type of decom�
position� In such case� the method from ��� is used to create the goal function FG and select the
Reduction Type Operator�

In both above cases� the procedure Reduction is next called� to execute the reduction� possibly also
the decomposition� and put all newly created subfunctions to stack OPEN of functions to realize�
Procedure Reduction�F � FG� Reduction Type Operator��
Function FG is a goal function� F is the decomposed function� FC is the correcting function�

�� If Reduction Type Operator � !OR


then ON�FC� �� ON�F � � OFF�FG� � OFF�FC� �� OFF�F ��

If Reduction Type Operator � !AND


then ON�FC� �� ON�F � � OFF�FC � �� ON�FG� � OFF�F ��

If Reduction Type Operator � !EXOR


then ON�FC� �� ON�FG� � OFF�F � � OFF�FG� � ON�F � �

OFF�FC � �� ON�FG� � ON�F � � OFF�FG� � OFF�F ��

�� If FG was a decomposable function� execute its corresponding decomposition and put the correct�
ing function FC to OPEN stack� Otherwise� put FC to OPEN stack�

�� Put expression � F �� FG Reduction Type Operator FD � to DONE stack� that collects pieces
of the entire circuit for solution�

�� Last	Resort Methods�

If all the above methods fail to give a good decomposition� the so�called �Last�Resort methods�
are used� There are two types of Last�Resort design methods� Last�Resort Decompositions� and Few�
level�circuit Syntheses� A decomposition for F creates the function� F � FG OPERATOR FC� where
OPERATOR 
 fAND�OR�EXORg� and puts FC and FG to OPEN stack� A few�level�circuits synthesis
realizes F completely in a few level circuit�
The Last�Resort Decompositions include Weak AND and Weak OR Decompositions� as introduced

in section �� Other weak decompositions include Weak PUB Decompositions from ���
� ���� ��	��
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Although these decompositions occur quite often� there exist still functions� for which none of these
weak decompositions exists� �The weak EXOR decomposition from ��� exists for all functions� but we
do not use it��
The few�level�circuits synthesis methods include� besides the EXOR� SOP circuit synthesis method

discussed in ���� the Sum�of�Products �SOP� synthesis� and the Product of Sums �POS� synthesis�
Greedy algorithms are used to create candidate solutions of low complexity� All these methods are
always applicable� but are not actually applied� if the circuit realization is too complex�
Other weak decompositions are similar to �multiplexer�like� or �Shannon�like� decompositions from

��	�� ��
� ���� ��	�� These decompositions are really the �absolutely last resort� strategies� when no
better methods were found� Such decompositions can be always found� but hopefully they are very
rarely used in our overall top�down decomposition strategy�
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�� Decomposition of Multiple	Valued Logic Functions and Information Sys	
tems�

Decompositions of Multiple�Valued Functions have been discussed by�

� Thelliez ��� �only for ternary logic��

� Walliuzzaman and Vranesic ��
��

� Fang and Wojcik ����

� Luba� Mochocki and Rybnik ����� ���� ����

� Abugharrbieh and Lee ��� ���

Similarly to the binary case� there are two types of decompositions for multiple�valued functions� the
AC�like decompositions� and the Dietmeyer�like decompositions�

One approach to decomposition of multiple�valued logic functions is to extend the AC binary ap�
proach� This approach is represented by Walliuzzaman and Vranesic� ��
�� and Thelliez� ���� for ternary
logic� Especially the partition�based approach of Luba allows him to create an algorithm that is a
straightforward adaptation of his former binary algorithms� Another approach is represented by Fang
and Wojcik� ���� Their paper is a very good reference for some non�FD approach to Boolean Decompo�
sition� but it is not of an interest to this paper� because it is so di�erent in principle�

Papers by Luba et al on decomposing multiple�valued functions are connected to �machine learning�
��� ��� On one hand� their approach to decomposition is similar to both classical Curtis� and Walliuzza�
man
s or Abugharrbieh
s and Lee
s approaches to mv decomposition� The di�erence is that they apply
the partition theory� The su�cient condition in this approach leads to the calculation of minimal cover
of the maximum compatible classes� Some new results are obtained by using the method described by
Selvaraj in his Ph�D� Thesis ��	��� The new idea is to combine the parallel and serial decompositions
in a single program� These ideas can be extented to multiple�valued logic�

Many problems related to decision making are of the following nature� Given a decision table � �nd
all minimal decision algorithms associated with the table� This problem can also be seen as learning
from examples� or� as its is often called� decision rules generation from examples � Grzymala�Busse�
��
� ��� ���� These problems have been investigated from a number points of view� one of them is
whether the whole set of attributes is always necessary to de�ne a given partition of an universe and
the other concerns the simpli�cation of decision tables� namely the reduction of condition attributes in
a decision table�

The concept of information system decomposition can be treated as an aid in analyzing the existing
system ��� or as a base for design a new one ��� ��� Quality of decomposition depends mainly on ana�
lyst
s experience� Some authors try to provide a formal approach to decomposition ���� Decompositional
approach similar in essence to one proposed earlier by Armstrong ��� was presented by Luba� Mochocki
and Rybnik in ����� Avoiding data redundancy is an important problem in the implementation of of in�
formation systems� The problem is usually overcome by devising simpler rules and removing redundant
rules� as well as minimizing the number of attributes� The importance of decomposition is emphasized
by Courtois ���� �Decomposition has long been recognized as a powerful tool for the analysis of large
and complex systems��

From the technical point of view� the decomposition phase for information systems is exactly the
same as in the multiple�valued decomposition with no constraint on the number of values of the output
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from the predecessor block�

Partition Based decomposition is just a representation of Switching Functions used in decomposition�
so it can be applied to mv generalizations any of the previously described types of decomposition� thus
creating�

� mv Curtis �a generalization of mv Ashenhurst��

� mv PUB �another generalization of mv Ashenhurst��

� mv strong decomposition � for quaternary gates�

� mv generalization of XBOOLE decomposition for AND� OR and EXOR gates� In this generaliza�
tion� these gates become MIN� MAX and MODM gates in M�valued logic� respectively�
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�� Fundamental Formalisms for Partition	Based Decomposition�

Below we will introduce a formalism that will be used to represent all above decompositions using
partitions� and next BDD�realized� double�coded partitions�
Let xi be a multiple�valued variable� and Ci � f�� �� ���� ci��g be a set of values that it may assume�

De�nition ���� A Multiple�Valued input� binary output function with n input� m output variables is
de�ned as a mapping


F �x�� ���� xn� � C� 	 C� 	 � � �	 Cn 
� Dm ���

where D � f�� ��
g represents the binary value of the function �� or 	�� The value � �don�t care� at
one of the outputs means that the value is unspeci�ed� and a value of � or 	 will be accepted to realize
this part of the function�

Let Dj � f
� �� �� ���� dj��g be a set of values that output variable j can take�

De�nition ���� A Multiple�Valued input� Multiple�Valued output function with n input� m output
variables is de�ned as a mapping


F �x�� ���� xn� � C� 	C� 	 � � �	Cn 
� D� 	D� 	 � � �	Dm ���

Every element of the domain C�	C�	� � �	Cn is called a minterm or a sample� A listing of minterms
with the value of the function is called a truth table� Truth tables do not include minterms with the
function value not speci�ed for all outputs� Set of minterms for which the function value is unspeci�ed
is called a DC�set �Don
t Care�set�� Functions with non empty DC�set are called incompletely speci�ed�
Let us observe that in case of binary logic� a concept of an output don
t care in output Oj can be

understood that output Oj is either � or �� Let us observe also� that for mv�logic there are two ways of
generalizing the concept of don
t care� One is� that all possible values are taken� as above� The other
is that any subset of more than one values is taken� For instance� in three�valued logic� the logic values
are �� �� and �� and the generalized don
t cares are�

� f���g�

� f���g�

� f���g�

� f�����g � ��

This leads to a concept of a Generalized MV function� that is located between a mv function and a
mv relation�
Let Dj � f
� �� �� ���� dj��g be a set of values that it
s output variable j can take and

De�nition ���� A Generalized Multiple�Valued input� Multiple�Valued output function with n input�
m output variables is de�ned as a mapping


F �x�� ���� xn� � C� 	 C� 	 � � �	Cn 
� �D� 	 �C� 	 � � �Dm ���

For the sake of clarity truth tables may be viewed as four�tuple T � �M�A�X� Y �� where

� M � is a non�empty� �nite set of minterms�

� A � is a �nite set of arguments i�e� input and output variables� A � X � Y � where X is the set of
input variables and Y is the set of output variables� X � Y � �� Moreover
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� a � is a function which maps the argument a 
 A into their values for every minterm v 
M � i�e��

a �M 
� Va �	�

where Va is a domain �set of possible values� of argument a� The set of values of output variables
Vy � f�� ��
g�

In general� any pair of minterms in a speci�cation table of Multiple�Valued Function may have
identical values for some number of input variables� A convenient way to re�ect such similarities can
be introduced with the help of the so called indiscernibility relation ������

De�nition ���	 The indiscernibility relation� denoted by IND� is associated with any subset of input
variables as follows


Let B � X�m��m� 
M�
�m��m�� 
 IND�B� if and only if x�m�� � x�m�� for all x 
 B�

This means� that �m��m�� 
 IND�B� if the values of the arguments belonging to B are identical
for both m� and m�� Minterms m� and m� are said to be indiscernible by arguments from B�
The indiscernibility relation is an equivalence relation on M and

IND�B� �
�

x�B

IND�x� �
�

Thus� the relation IND partitions M into equivalence classes M�IND�B�� Such partitions are of
primary importance in logic synthesis ��� ����� To simplify� we shall denote partition M�IND�B� by
P �B� and call such a partition as an input partition generated by set B� Then� the formula equivalent
to those of ��� may be written as

P �B� �
Y

x�B

P �x� ���

where
Q
denotes the product of partitions�

De�nition ���� Two output vectors of a function� p and q� are said to be consistent if their respective
entries� which are de�ned� are equal� i�e�

�i 
 f�� ����mg �m is the number of output variables� �pi � qi� � �pi � 
� � �qi � 
��
Consistency relation of the output vectors is denoted by p � q�

In general� every pair of minterms in the speci�cation table may have consistent output values for
some output variables yi� Therefore the output�consistency relation� denoted by CON � can be related
to every subset B of output variables� This relation can be formally de�ned as follows�
Let B 
 Y and p� q 
 M � Minterms p� q 
 CON �B� i� y�p� � y�q� for every y 
 B� where a�a�

means that a� and a� are equal if de�ned�
If every pair of minterms in a set is consistent� then the set constitutes a consistence class� The

classes which are not the subsets of any other consistent class are called Maximal Consistent Classes
�MCCs��
The CON relation is not an equivalence relation on the set M� as the consistence classes of the setM

can be overlapping� However� a unique set of maximal consistence classes of minterms exists for every
given CON relation� Thus� the same notation as de�ned earlier for the inputs can also be used for the
output consistence classes� i�e� PF �B�� where the index F di�erentiates the IND and CON relations�
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When B � Y � the CON relation is denoted as PF and is called the output partition of the function F �
As the blocks of output partition PF are conjunct� the consistence classes of their CON relation are
called an r�partition on the set M �
Conventions used in denoting r�partitions and their typical operators are the same as in the case of

partitions i�e� an r�partition on a set M may be viewed as a collection of non�disjoint subsets of M �
where the set union is M � Thus r�partition concepts are simple extensions of the partition algebra �����
with which reader
s familiarity is assumed�
Especially the relation less than or equal to holds between two r�partitions �� and �� ��� � ��� i�

for every block of ��� in short denoted by Bi����� there exists a Bj���� such that Bi���� � Bj�����
If �� and �� are partitions� this de�nition reduces to the conventional ordering relation between two

partitions�
This points out the main di�erence between completely and incompletely speci�ed Boolean functions�

While the equivalence classes of partitions in completely speci�ed functions consist of disjoint subsets�
the subsets of consistent minterms for partially speci�ed functions may be overlapping� This is the
reason for generalizing the typical partition description�
To present a Boolean function F � i�e�� functional dependence between outputs Y and inputs X�

usually described by formula Y � F �X�� the table speci�cation should be consistent�
A logic speci�cation table is consistent i� for every pair of row vectors r� � �x�� y��� r� � �x�� y���

the equality x� � x� implies y� � y� �i�e� for every m��m��m� � m� implies F �m�� � F �m���
Example ��	�
Consider a multiple�valued function F given in Table ����a�
Using the notations already de�ned for T �

� M � f�� ���� ��g�

� X � fx�� ���� x�g�

� Y � fy�� y�� y�g�

and Vx� � f�� �� �g� Vx� � f�� �� �g� Vx� � f�� �g� Example IND relations for B� � fx�g and
B� � fx�� x�g can be written as �

P �B�� � ff�� �� �� �����g�f��	� 
g�f��gg

P �B�� � ff�g� f�� �g� f�� 	� 
���g� f�g� f�� �gg

Proceeding in the same way for the output�consistency relation CON � we obtain the following r�
partitions�

PF �y�� � ff�� �� �� 
��g�f����	� �� ��gg

PF �y�� � ff�� �� �� ��	� 
� �� ��g� f�� �gg

PF � ��� �� 
� �� �� 	� ���� �����

On the other hand� if the respective output vectors are as it is shown in Table ����b� then the
corresponding r�partition PF can be written�

PF � ��� �� 
� �� ��	� �� �� ��
��� ���

De�nition ���� Two output vectors of a generalized function� p and q� are said to be consistent if
their respective entries� which are de�ned� are equal� i�e� �i 
 f�� ����mgpi� qi �� � �m is the number of
output variables�
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X� X� X� Y� Y�
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
	 � � � � �

 � � � � �

Table �� Another Truth Table

Consistency relation of the output vectors for generalized functions is denoted by p � q� the same
symbol as one used before for the consistency relation of output vectors for functions�
Let us do one more example �table ���
Some of the indiscernibility relations for input variables are�
The partition of input variable X� is the following�

P �X�� � ��� �� �� �� �� �� �� ����	�
��

The partition of input variables X� and X� is the following�

P �X� X�� � ��� 	� 
� �� 	� 
� ������ 
� ������
�

The partition of output signals is�

PF � P �Y� Y�� � ��� �� �� �� 
� ������ �� 	�
�

This is called the consistency relation of output signal�
As we can see fromPF � its sets are non�disjoint� we call this relation as a rough�partition �r�partition��
The corresponding Karnaugh map is�

01 11 1000

0

X1X2

X0

1

10

-0

10

-0

00 00 0-

-0

01
00

0-01
0-

0-

Figure �	�

Sometimes this notation can lead to troubles� For example� if we have cube ��� with output �� and
cube ��� with output ��� since this two cubes intersect� there is a con�ict� We should watch for this in
the situation of having DC sets both in input and output� This must be taken care of by the Reader
program that will read some �les taken from other sources�
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�� BDD Representation for Integer Sets Representing Blocks of Partitions�

There exists three kinds of operations in partition�based decompositions�

� partition product�

� partition sum�

� relation not�greater�than on partitions�

These partition operations use set operations�

� set intersection�

� set union�

� set inclusion�

These operations can be easily realized in the existing BDD packages� thus making it possible to use
BDDs to represent set operations�
For example�

P �X�� � ��� �� �� �� �� ���� �� ��	�
�

Use the following encoding method�

� � 
 

 ���

� � 
 

 ���

� DC 

 
 ���

we obtain the Karnaugh maps as follows�
The corresponding function is� P��X�� � �b� �a�c�

The corresponding function is� P��X�� � a � b

Their respective BDDs are as follows�

G

H

Y

Y

X
0

1

1

0X

Figure �
� Decomposition of f
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Using this method� we can use BDDs to represent sets� Therefore for a partition� there exists corre�
sponding BDDs to represent the sets corresponding to blocks of this partition�

Set Operations�

�� Set intersection�

Set intersection is equivalent to do AND operation on BDDs which is an operation in BDD package�

For example�

�G � ��� �� 	� 
� �������� 
�

let �� and �� represent BDDs respectively�
Then with a BDD package� we can get P���� P���� P���� P��� which correspond to the four sets

�����	�
���������������
� after set intersection of P �X�� and �G�

�� Set Union�

Set Union is equivalent to the OR operation on BDDs which could be realized with a BDD package�

For example� P �B� � ��� 	� 
� �� 	� 
� ������ 
� �� ����
�� when merging B� and B� together� the BDD
for the new set �����	�
� is the same as the BDD obtained from OR operation on the two BDDs of
���	�
� and ���	�
��
�� Relation less than or equal to�

If set B� � B�� then B��B� � � 	�
 B�

T �B� � �� With this method� it is easy to check if one
set is less than or equal to another because we know BDD package can do AND operation� and we can
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realize inverter just by exchanging the position of leaf node � and ��
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�� Basic Theorem�

Let F be a multiple�valued function representing functional dependency Y � F �X�� where X is the
set of multiple�valued input variables and Y is the set of binary output variables� Let X � A � B�
A �B � � and C � A�
We say that there is a functional decomposition of F i�

F � H�A�G�B�C�� � H�A�Z� ���

where G and H denote functional dependencies� G�B�C� � Z and H�A�Z� � Y and Z is the set of
two�valued variables� If in addition� C � �� then H is called a simple disjoint decomposition of F �
In other words we try to �nd functions G and H� such that G depends on variables in B�C� whereas

H depends on variables in A and variables in Z� where Z is the set of binary outputs of G� The outputs
of the function H are consistent with those of function F � So the function F can be implemented
as a multi�level PLA structure� but in contrary to the method proposed by Ciesielski ��	�� circuits
implementing components G and H are� in general� circuits with multiple�valued input� two�valued
output variables� Moreover as the decomposition process can be applied iteratively� the �rst level may
contain an arbitrary number of PLAs �components G� and the second level contains a single PLA� The
structure of the decomposed circuit is not limited to that of PLAs and standard decoders as in �����
however the PLAs with decoders are the most suitable devices for implementing MVL circuits� So the
method is not con�ned to PLA synthesis and can be considered as a general function decomposition
approach�
Particularly the proposed decomposition process can be applied to circuits following the assignment

of the input variables to the decoders which additionally reduces the area of the �nal circuit� With
the proposed structure� a multilevel circuit can be realized as serially connected components G and H�
where the outputs of G form intermediate variables� Thus we will refer to this process as to a serial
decomposition�
The following theorem ��	�� states the su�cient condition for the existence of a serial decomposition�

Theorem �
�� Function G and H represent a serial decomposition of function F � i�e� F � H�A�G�B�C��
� if there exists a partition �G � P �B � C� such that

P �A� ��G � PF ����

where all the partitions are over the set of cubes and the number of two�valued output variables of
component �G is equal to �log�L��G��� here L��� denotes the number of blocks of partition �� and �x�
denotes the smallest integer equal to or large than x�

Here �log� L��G�� gives us the number of output signals from function G�

It is evident that partition �G represents component G� and the product of partitions P �A� and
�G corresponds to H� The truth tables of the resulting components can thus be obtained from these
partitions�

Example �
�� Let us decompose the function F of Table ����� For A � fx�� x�g� B � fx�� x�� x�� x�g�
C � �� we have

P �A� � ��� �� �� �� 
� �� �� �� 	� ���

P �B� � ��� �� �� �� �� �� 	���� 
� ��

Consider

PiG � ��� �� �� �� 	������ ��
� ���
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It can be easily veri�ed that since P �A���G � PF � function F is decomposable as F � H�x�� x�� G�x�� x�� x�� x����
where G is a one�output function of four variables�
The truth tables of components G and H can be obtained from partitions P �A�� �G� and PF �

Encoding the blocks of �G respectively as � and �� we immediately obtain the truth table of function
G� it is presented in Table ����� The truth table of function H can be derived by reencoding input
vectors of F using an intermediate variable g� The truth table obtained in this way is shown in Table
�����

Example �
�� For another example� in Table ����� we have�

P �B� � P �X�X�� � ��� 	� 
� �� 	� 
� ���� �� 
� ������ 
��

P �A� � P �X�� � ��� �� �� �� �� ������ �� 	�
��

if

�G � ��� �� 	� 
� ������ �� 
��

then

P �B� 	 �G

P �A� ��G � ��� �� 	� 
� �� ������ 
�	 PF � ��� �� �� �� 
� �� ������ 	� 
�

Therefore this is a feasible decomposition with bondset B � fX�� X�g and free set A � fX�g� The
number of output signal from G is �log� �� � ��

The questions are�

�� How to �nd bondset B�C"

�� How to �nd �G"

De�nition �
�� Let B be a subset of the set of inputs X� an input partition generated by set B is
denoted as


P �B� �
Y

x�B

P �x�

where
Q

denotes the product of partitions� P �x� is a partition for variable x�

De�nition �
�� Let B be a subset of outputs set Y � the output�consistency relation associated with
B � i�e� PF �B�� is called a rough
 partition �r�partition��

Maximal Compatible Classes

To �nd the corresponding set of inputs for component G� we have to �nd P �B �C�� such that there
exists �G � P �B � C� that satis�es theorem �� To solve this problem� consider a subset of primary
inputs� B �C� and the q�block partition P �B �C� � �B�� B�� � � � � Bq� generated by this subset� Then
we use a relation of compatibility of partition blocks to verify whether P �B � C� is suitable for the
decomposition or not�
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 � � � � � �

Table ��

De�nition �
�� Compatibility relation
 Two blocks Bi and Bj 
 P �B �C� are compatible i� partition
Pij�B �C� obtained from partition P �B �C� by merging blocks Bi and Bj into a single block satis�es
P �A� � Pij�B �C� � PF �

For example� in Table ����� we have�

P �B� � ��� 	� 
� �� 	�
� �� �� ��
� ���� �� 
� � �B�� B�� B�� B���

if we merge B� and B� together� we get�

P���B� � ��� �� 	� 
� �� ����
� �� �� ��
��

P �A� �P���B� � ��� �� 	� 
� �� �� ��
� ���� �� 
�	 PF

therefore B� and B� are compatible� denoted as B� � B��

The same way we can check the compatibility relation of other blocks in P �B�� the result is� B� � B��
B� � B��

A compatible class is called Maximal Compatible Class �MCC� if and only if it can not be properly
covered by any other compatible class�

Thus we have MCC� � fB�� B�g� MCC��fB�� B�g� From this we can �nd the minimal cover�
i�e�ffB�� B�g� fB�� B�gg� and �G � ��� �� 	� 
� ������ �� 
�� We can easily see that �G corresponds to a
��output function G� Therefore we have F � �X�� G�X�� X����

Encoding of Compatible Classes

As the truth table of H is partially constructed of G block outputs and the G blocks output are
nothing but the codes allotted during the encoding process� it is very important to �nd right code to
reduce the number of logic blocks needed to implement a truth table�
It is easy to �nd function G and H from Table ����� g � X�� Y� � X�X�� Y� � X��The circuit of this

function is shown in Fig �����
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�
 Decomposition of Decision Tables�

The proposed functional decomposition procedure can also be e�ectively used for reduction of space
requirements in many problems related to data representation in machine learning ���� �����
Let F be a mapping function

F � c� 	 � � �	 cn 
� D ����

representing functional dependency D � F �C�� where C is the set of condition attributes and D is
the set of decision attributes�
Let A�B be the subsets of C such that C � A�B and A�B � �� We say that there is a functional

decomposition of F i� the original mapping F can be replaced with two mapping functions G and H
such that

� G� b� 	 � � �	 bt 
� L

� H� a� 	 � � �	 at 	 L 
� D

� i�e� F �C� � H�A�G�B�� � H�A� g�� where G and H denote functional dependencies�

� G�B� � g and H�A� g� � D�

The �nal decision D is achieved trough a two�step process whereby an instance is mapped to an
intermediate label using one subset of attributes� and then mapped to the �nal label using a disjoint
subset of attributes�
The problem is� therefore� quite similar to that of decomposition of multiple�valued functions� The

only di�erence lies in fact that the set of binary outputs is now replaced by a multiple valued decision
attribute� Thus a simple counterpart of Theorem � for a case of decision tables can be stated as follows�

Theorem ���� Functions G and H represent a functional decomposition of function F i�e� F �
H�A�G�B�� i� there exists a partition �G � P �B� such that

P �A� ��G � P �D� ����

where all the partitions are over the set of objects and the number of values of component G is equal
to the number of blocks �i�e� equivalence classes� of partition �G�

The structure of the decomposed function is shown in the Fig� ����� The procedure of making a
�nal decision is as follows� an intermediate decision is made on the basis of the attributes
 subset B
and then taking into consideration both the intermediate decision and the attributes subset A� the goal
decision is made� which is equal to the corresponding value of the function F �
In the theorem the partition �G represents mapping function G� and the product of partitions P �A�

and �G corresponds to H� The component decision tables of the resulting mappings can be obtained
from these partitions�
The decomposition gain comes from the fact that in some cases the table representation size of the

function generated using decomposition will be much smaller than the representation of a single uni�ed
function�
The same example can be used to explain how two�step decomposition process may be a better way

to capture structure in the data represented by decision tables� The function F given previously in the
form of a truth table now is rewritten in the form of a decision table �Table �������

Example ���� Let us decompose the function F of Table � taking into consideration the following
sets of attributes� A � fa�� a�� a�g� B � fa�� a�� a�g� Representing them in the form of partitions

���
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P �A� � f�� �� �� �� ��
� 	� ����� �g

P �B� � f�� �� �� ��	� 
� �� ���� ��g

and assuming the following partition to be the partition �G � f�� �� �� ��	� 
� �� ������g� it can be
easily veri�ed that P �A� ��G � PD� where PD � ��� �� 
� �� ��	� �� �� ������
Thus the original function F can be replaced with two mapping functions G and H such that

F � H�a�� a�� a�� G�a�� a�� a���

The decision tables corresponding to the G and H can be obtained from partitions P �A�� �G� and
PD� Encoding the blocks of �G respectively as � and �� we immediately obtain the table of function G�
it is presented in Table ������ The table of function H can be derived by reencoding input vectors of F
using an intermediate variable g� The table obtained in this way is shown in Table �����

Further processing of such tables is presented in ��	���
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�� Approaches to Column Compatibility Problem�

It should be one of the goals of this research to develop an understanding how di�erent decomposi�
tions� search strategies and constraints a�ect the �nal value of the DFC� the generalization abilities of
the algorithm� and its learning time�
The quality of the attained column minimization seems to be of crucial importance here�
The column minimization problem has been reduced in the past to one of these�

� incompatibility graph coloring�

� incompatibility graph maximum independent set partitioning�

� compatibility graph maximum clique partitioning�

� compatibility graph maximum clique covering�

All these problems are mathematically equivalent� but can be solved with heuristic approaches that
will perform better or worse on particular categories of graphs�
The Compatibility Graph is a graph which illustrates the compatibility relationship among columns

of the decomposition chart� Because two columns can be either compatible or not compatible� the
compatibility graph and the incompatibility graph are mutual complements� It means� the sets of edges
of these graphs are disjoint and the union of the sets of edges creates a full graph�
In Figure �� � the number in each node �denoted by a circle� is the column number� The letter beside

the circle is the color assigned to the node �column� after graph coloring� The Set Covering Problem
will be discussed in section ��� The Graph Coloring Problem will be discussed in section ���
The problem to minimize the number of columns has been discussed by all authors of decomposition

programs� Some of them discuss it as the set covering of a compatibility graph with nodes corresponding
to subfunctions of cofactors� some other authors represent it as a graph coloring of an incompatibility
graph that is a complement of the above compatibility graph� These formulations are mathematically�
but not neccessarily heuristically� equivalent�
It seems� however� that there is something wrong with both above formulations� At least� the columns

of don
t cares should be separated from coloring and covering and next encoded as don
t cares� See
Fig� �
���

�	�� Troubles with the Column Compatiblity Problem�

This problem is not known from the literature and was observed in WL� Let us assume that we
have ��� input variables and ����������� don
t cares� This means� most columns are columns of
don
t cares� The problem was observed for the parity function with about ��� variables� For parity
there is obviously no variable partitioning problem and all the experienced troubles to �nd the obvious
decomposable minimum solution of a negated EXOR are because of the bad column grouping method�
The question is � �how to group columns to avoid these troubles"�
The following ideas should be considered�

�� Do not combine columns of only don
t cares with other columns� See Fig� �
���

�� Solve column minimization together with the column assignment� For instance� in essence we do
not need to minimize absolutely the column multiplicity� only to get it below k � �r� so if r ���
� is as good as ��

�� Another approach � weighted covering� combine only columns that have �
s corresponding to �
s
and �
s corresponding to �
s� and not �
s corresponding to �
s and �
s corresponding to �
s�

�� Use greedy algorithm that selects the largest clique� remove it� and iterate� Similarly to the
�disjoint star� covering algorithm of Michalski�

�����



�� Combine step�by�step the most similar columns� Take into account the number of agreements ��
and �� and � and � are not treated as agreements��
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�� The Set Covering Approach to the Column Compatibility Problem�

�
�� The compatibility relation�

As it is seen from Theorem ���� �former ��� the main task of decomposition is to verify if a subset of
input variables for function G which� when applied as a subfunction to function H will generate �nal
function F � i�e� to �nd P �B�� such that there exists �G � P �B� that satis�es condition �""""�� in
Theorem ���� �former ��� To solve this problem� consider a subset of input variables� B� and an m�block
partition P �B� � �B��B�� ����Bm� generated by this subset�
A relation of compatibility of partition blocks will be used to verify whether or not partition P �B�

is suitable for serial decomposition�

De�nition ���� Two blocks Bi� Bj 
 P �B� are compatible if and only if partition obtained from par�
tition P �B� by merging blocks Bi and Bj into a single block Bj satis�es condition ����� in Theorem ���
i�e�� if and only if


P �A� � �G� � PD ����

De�nition ���� A subset of n partition blocks� B � fBi� � Bi� � ���� Bing� where Bij 
 P �B�� is a class
of compatible blocks for partition P �B� if and only if all blocks in B are pairwise compatible�

De�nition ���� A compatible class is called a Maximal Compatible Class �MCC� if and only if it
cannot be properly covered by any other compatible class�

The set M � fMCC�� ����MCCrg of all Maximal Compatible Classes can be thus formed from the
set of all compatible pairs �Bi� Bj�� which in this case can be interpreted as arcs of a graph G �
�B�COM �� where elements of B represent its vertices� COM represents the compatibility relation and
where two vertices are connected by an arc i� Bi and Bj are compatible i�e� �Bi� Bj� 
 COM � In such
a formulation the procedure for computing the MCCs can be summarized as follows�
Procedure COM to �nd the Compatibility Relation�
Let Sj be the set containing all the blocks Bi for which Bj and Bi are compatible and i 	 j�

�� A compatible list �CC�list� is initiated with one set containing the �rst block as its only element�

�� If Sj is an empty set� a new class consisting of one block Bj is added to the CC�list before moving
to the next S� Since block Bj is in con�ict with blocks B� to Bj��� it is placed in a one element
set�

�� If Sj is not empty� its intersection with every member CC of the current CC�list� Sj � CC is
calculated� If the intersection is empty� the sets are not changed otherwise a new class is created
by adding to the intersection an one element set Bj �

Example ���� For the function of Example �""""� and the same sets A�B as in Example �""""� let
us denote the blocks of P �B� as B������B� respectively� i�e� P �B� � fB�� ���� B�g� where B� � f�g� B�

� f���g� B� � f�g� B� � f�g� B� � f�g� B� � f	���g� B	 � f
g� B� � f�g�
Let us check if B� � f���g and B� � f�g are compatible� We have�

P���B� � f�� �� �� �� �� �� 	���� 
� �g�

As

P �A� � P���B� � f�� �� �� �� 
� ���� �� 	� ��g

does not satisfy
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P �A� � P���B� � PF �for PF � see Example ������

B� and B� are not compatible�
For B� � f���g and B� � f�g� we obtain

P���B� � f�� �� �� �� �� �� 	� ��� 
� �g

and

P �A� � P���B� � f�� �� �� �� 
� �� �� �� 	� ��g � PF

Thus� B� and B� are compatible� In a similar way we check the compatibility of each pair of blocks
in P �B� �nding the following relation�

COM � f�B�� B��� �B�� B��� �B�� B��� �B�� B��� �B�� B��� �B�� B	�� �B�� B��� �B�� B��� �B�� B���
�B�� B	�� �B�� B��� �B�� B��� �B�� B��� �B�� B��� �B�� B��� �B�� B	�� �B�� B��� �B�� B��� �B�� B	��
�B�� B��� �B�� B	�� �B�� B��� �B	� B��g�

The Compatibility Graph drawn from this relation is shown in Figure ����� There is an edge in the
graph for each element of relation COM�
Hence� assuming that the blocks of PG are denoted by their indexes we obtain the Sj sets and

corresponding MCCs �for the sake of simplicity we write Sj sets and CC�lists by indexes of Bj��

S� � � CC� � f�g
S� � f�g CC� � f�� �g
S� � f�� �g CC� � f�� �� �g
S� � f�� �g CC� � f�� �� �g� f�� �� �g
S� � f�� �� �g CC� � f�� �� �� �g� f�� ���g
S� � f�� �� �� �� �g CC� � f�� �� �� ��	g�f������	g
S	 � f�� �� �� �� 	g CC	 � f�� �� �� 	�
g�f����	�
g�f���� �� �� 	g� f�� ����	g
S� � f�� �� �� 	� 
g CC� � f�� 	� 
� �g� f�� 	�
��g�f����	� �g�f���� 	� �g� f�� ����	�
g�f���� 	� 
g� f�� �� ����	g�f������ 	g

As the last C�list represents Maximal Compatible Classes we conclude�

MCC� � fB�� B�� B	� B�g�

MCC� � fB�� B�� B	� B�g�

MCC� � fB�� B�� B�� B�g�

MCC� � fB�� B�� B�� B�g�

MCC� � fB�� B�� B�� B�� B	g�

MCC� � fB�� B�� B�� B	g�

MCC	 � fB�� B�� B�� B�� B�g�

MCC� � fB�� B�� B�� B�g�
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The next step of calculating the �G is a process of selecting a subset of MCCs that cover the set of
all blocks of PG i�e� B � fB�� ���� Bmg� This procedure is based on the following observation� As for
each MCCi 
 M � where MCCi � fBi� � Bi� � ���� Bikg� a partition�

� � ffBi� � Bi� � ���� Bikg� fBik��g� ���� fBimgg

satis�es the inequality P �A� � � � PD� then the partition �G satisfying the same inequality i�e�
P �A� ��G � PD and having the minimumnumber of blocks can be found by solving the following cover
problem�

�
MCCj � B and k � min�

The minimal k ensures the minimum number of blocks of partition �G� In other words we try to
�nd a subset of MMCs such that their union results in the set B�
The Clique Partitioning of the Compatibility Graph is shown in Figure �����

We will describe a selection MIN�M� � fMCCi��MCCi�� ����MCCirg of all MCCs in the form of
the binary matrix M for which an element mij �i � �� ���� r � CARD�B�� j � �� ���� t � CARD�M �� is
de�ned as follows�

�� if xj 
 Ci

mij �

�� otherwise

Thus� the M matrix is a ��� matrix determined by the MMCs and the problem transforms to the
classical Boolean matrix covering problem� often called the Unate Covering problem ��� ��� where the
goal is to select an optimal set L of MCCs corresponding to columns of M � Here a �column covering�
L means that every row of M contains a ��� in some column which appears in L� More precisely� a
column cover of binary matrix is de�ned as a set L of columns such that for every i�

X

j�L

mij � ��

Cover L ofM is in one�to�one correspondence with the selected subset of MCCs such that their union
forms the set B�
The MIN�M � represents partition �G � f�� ���� kg in the following way�

� � fBi� � Bi� � ���� Biqg

is a block of �G if and only if � � MCC and there is no �
 such that � � �
 �� �� Thus blocks of �G
can be created from MCC by eliminating the repeated elements of B in the minimal cover MIN�M ��
The �nal �G is a result of the union of objects forming a set of blocks included in any single block of
�G�

Example ���� For the MCCs from Example ����� �former��� one of the minimal disjoint covers �clique
partitions� isMCC	� MCC� � fB�g � ffB�� B�� B�� B�� B�g� fB�� B	� B�gg� and the corresponding �G
is �G � f��������	����� � ��
��g� as it was assumed in Example �"""""�

�����



�� Graph Coloring Approach to the Column Compatibility Problem�

The graph coloring approach was implemented in Trade program� The problem of �nding the smallest
column multiplicity was reduced to the one of performing graph coloring with the minimum number
of colors� Graph coloring� ��� �� �� �� is one in which every two nodes linked by an edge are assigned
di�erent colors� Minimum graph coloring is one with the minimum number of colors� The number of
colors in the minimum coloring is called the chromatic number of the graph�
Graph coloring is an NP�hard problem� There has been a substantial research on it in order to �nd

the algorithms for a quasi�optimum solution with the fastest possible speed� The method presents here
is a fast graph coloring method� This method has been programmed and tested on many examples� it
resulted in excellent colorings� The method found exact colorings for graphs in ��� and even found bet�
ter coloring than one claimed to be the minimal in the book� The method is called the Color In�uence
Method�

The main idea of this method is to evaluate the in�uence of the color assignment to a node over
the entire graph� and chose the color which results in a minimum in�uence� The minimum in�uence
means that the color assignment to a node will produce a minimum increase of color�in�bar
s� The
color�in�bar�s �restrictions� are the colors that the node cannot be assigned with� which are denoted
by A� B���� A B� A C� ��� as in Figure ��� After each color assignment to a node� the complexity of
the graph is decreased� This is a greedy method with global evaluation� The next example is used to
illustrate this method�
Figure ��a shows a graph that needs to be colored� Start from the node with the most number of

edges� that is node �� assign color A to it� This color assignment results in that nodes �� �� � and 	
cannot be assigned with color A� denote this restriction on those nodes by color�in�bar A
s� and remove
all corresponding edges as shown in Figure ��b� Then� color the node with the most number of color�
in�bar
s� If there are more than one node with the same number of color�in�bar
s� chose the node with
the most number of edges� If there are still more than one node� evaluate the in�uence of each color
assignment� and assign the node with a color which results in a minimum in�uence� If a node can
be assigned with more than one color� the evaluation of the in�uence of each color assignment is also
required� According to the rules stated above� nodes � and 	 are selected because they have the same
number of color�in�bar
s and the same number of edges� Assigning color B to node 	 will result in a
restriction A B on node � and a restriction A B on node �� While assigning color B to node � will
result in a restriction A B on node 	 and a restriction B on node �� Because one A B restriction and
one B restriction result in less in�uence than two A B restrictions� assigning a color to node � produces
less in�uence than assigning a color to node 	� Node � is selected� color B is assigned to it� as shown
in Figure ���c�� The same way� color C is assigned to node 	� as shown in Figure ���d�� and color B to
node �� as shown in Figure ��e� Nodes � and � are in the same condition� and have the same in�uence
on the graph� If color B were assigned to node �� color A or color C must be assigned to node �� The
�nal color assignment is shown in Figure ��f�
The above algorithm was incorporated into a program� named COLOR� and was run on a networked

SUN ��	
�MP Workstation� The program was tested on graphs with di�erent number of nodes �N �
��� � ����� and di�erent edge percentages �P � �� � �� �� The maximum number of edges in a
graph is

N �N 
 ��
�

N is the number of nodes in the graph� The edge percentage �P� is simply the percentage of this
maximum number of edges� Edges in the graph are randomly generated�
By statistic analysis� it is found that the time �T� is proportional to the number of nodes �N� in a

polynomial form T N����
The graph coloring problem is then solved �approximately� in a polynomial time� and not in an

����	



exponential time� For small graphs� we are able to verify that the algorithm gives the minimum
solutions� It is then hoped that it gives reasonably good results for larger graphs as well� but this
claim cannot be veri�ed� since the exact minimal optimizer is not available� The pseudo�code for graph
coloring is shown in Figure ���
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�� AND
OR
EXOR Decompositions�

In this section we will present our implementation of the �gate�type� decomposition approach of
Steinbach� Bochmann� Postho� and Dressing� This is a �gate�type� decomposition � two�input gates�
AND� OR� and EXOR are assumed� The decompositions for these gates can be either disjoint or non�
disjoint� Although this is not a Functional Decomposition and the concept of multiplicity index is not
used� this decomposition is more similar to AC than any other �gate type� decomposition from the
literature� This approach allows to decompose large functions relatively quickly� and the method can
handle e�ciently don
t cares�
Boolean operators are de�ned that are powerful and universal� do not depend on the actually used

representation of Boolean functions� and� being purely Boolean concepts� can be implemented in con�
junction with any other representations of binary functions� This can be taken advantage of by re�
formulating these operators for other types of decompositions� multiple�valued� fuzzy� and other logic�
The general decomposition method expressed by operators should remain the same�
The symbolic operators are� complementation� cofactor� AND� OR� MIN� MAX� and EXOR� In

contrast to XBOOLE� which uses Ternary Vector List �TVL� data structure� and Luba who uses lists
of minterm numbers� we use here a new kind of data structure that we call a function bundle�
Function bundle is a structure of�

� a cube list of input variables� denoted cli�

� a cube list of output variables� denoted clo�

� a list of ordered partitions for input variables� denoted BI�

� a list of ordered partitions for output variables� denoted BO� If BO has just one element� it is
denoted F � �M�� M���

For a multiple�valued variable X with p values� the ordered partition is a list of pointers to BDDs�
starting from pointer to BDDvalue� � ����BDDvaluep�� �

���� Boolean Operations

The following Boolean operations are necessary� derivative� minimum and maximum� They are
de�ned as follows�

�� Derivative�
�f�a� b� c�

�a
� f�a � �� b� c�� f�a � �� b� c� ����

�� Minimum
min
a
f�a� b� c� � f�a � �� b� c� � f�a � �� b� c� ����

�� Maximum
max
a
f�a� b� c� � f�a � �� b� c� � f�a � �� b� c� ��	�

For the Boolean operations de�ned above� we can see that all operations use cofactors of the given
function� The derivative operation is the EXOR of positive and negative cofactors of the given function
with respect to certain variable� The minimum operation is the AND of positive and negative cofactors
of the given function with respect to certain variable� and the maximum operation is the OR of the
positive and negative cofactors of the given function with respect to certain variable� If we want to
�nd operations of derivative� minimum or maximum for more than one variable� the above operation
de�nition should be applied iteratively�

�����



Example ���� For a given function�

f�a� b� c� d� � ab � ab � acd ��
�

Derivative�

��f�a� b� c� d�

�a�b
� f�a � �� b � �� c� d�� f�a � �� b � �� c� d��

f�a � �� b � �� c� d� � cd� �� �� � � cd ����

Minimum�

min�
ab�f�a� b� c� d� � f�a � �� b � �� c� d� � f�a � �� b � �� c� d� � f�a � �� b � �� c� d� �

f�a � �� b � �� c� d� � cd � � � � � � � � ����

min�
cd�f�a� b� c� d� � f�a� b� c � �� d � �� � f�a� b� c � �� d � �� � f�a� b� c � �� d � �� �

f�a� b� c � �� d � �� � �ab� ab� � �ab� ab� � �ab� ab� �

�ab� ab� a� � ab� ab ����

Maximum�

max�
ab�f�a� b� c� d� � f�a � �� b � �� c� d� � f�a � �� b � �� c� d� �

f�a � �� b � �� c� d� � f�a � �� b � �� c� d� � cd � � � � � � � � ����

Graphical illustration of operations derivative� minimum and maximum for minterms are shown in
Fig� ���
Graphical illustration of operations derivative� minimum and maximum for ON and OFF cubes are

shown in Fig� �� The �gure illustrates these operations with both Karnaugh maps and partitions�

Let us observe that the concepts of these three operators are absent from decompositions introduced
by Luba et al� and are used in a di�erent way in Ternary Vector List representation of XBOOLE�

���� Grouping�

By a grouping� ���� we understand the dismantling of a binary function f�A�B�C� into two functions
g�A�C� and h�B�C� with non�empty� disjoint sets of variables A and B�
Depending upon the used operation o� which uses a disjunctive� conjunctive or linear grouping� the

decomposition uses gates OR� AND or EXOR� respectively� The best decomposition occurs� if all vari�
ables can be divided into disjoint sets A and B� If possible� these sets should also have equal numbers
of elements� If g�X� is equal to xi and for h�X� � h�X n xi�� the grouping degenerates into a simple
splitting o� of a variable� The weakest form of the grouping �the splitting o� discussed earlier� exists
if A and B contain only one variable each� A prerequisite for a grouping is that the function possesses
the characteristic of groupability in at least """�a type and after at least one variable partitioning�"""�
If this characteristic is present� we can usually form several di�erent groupings�

For each binary function and each possible partitioning of set of variables X to three disjoint variable
sets A� B� and C� X � �A�B�C�� the de�nitions of disjunctive� conjunctive or linear groupabilities are
formulated�
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De�nition ���� A Boolean function f�A�B�C� is said to be �disjunctively� conjunctively of linearly�
groupable with the operation � 
 f AND� OR� EXOR g and variable sets A� B if

f�A�B�C� � g�A�C� � h�B�C� ����

Although not all Boolean functions are groupable� it has been proven in ��� that all Boolean functions�
which are not groupable by the EXOR gate decomposition� are always disjunctively or conjunctively
weakly groupable�

De�nition ���� A Boolean function f�A�B� is said to be �disjunctively� conjunctively� or linearly�
weakly groupable with operation � 
 f OR� AND� EXOR g and the variables set A if

f�A�B� � h�A�B� � g�A� ����

The algorithm is based on the idea that the more symmetrical and the larger the vectors A and B
are� the better is the design� The demand for symmetry is based on the fact that Boolean functions
with equal number of variables in sets A and B produce better balanced circuits�
A maximum size of A and B results in a smaller vector C� to make functions g�A�C� and h�B�C�

being dependent on less variables�
As a criterion for the best grouping the smaller one of A and B should be as large as possible� If

more than one grouping has the same number of variables in the smaller vector� the grouping with the
largest vector is the best� In contrast to the area�optimizing algorithm where one vector is �lled �rst�
now the number of variables in vectors A and B is increased alternately�

Example ���� Let us look at the following example in Fig� �	� where f�a� b� c� d� stands for the original
Boolean function� f�a� b� c� d�ON stands for the ON 
 set function with don
t care in f�a� b� c� d� set
to zero� and f�a� b� c� d�OFF stands for OFF 
 set function with �s in f�a� b� c� d� set to �� and �s and
don
t cares set to ��
Graphical ilustration of min� max and derivative operations for this function is shown in Fig� �
b� c�

d�

For two disjoint partitions of the set X � � A�B�C � and X � � A�� B�� C� � we de�ne the half�order
relation � as in ����

�A�B�C� � �A�� B�� C���� �fAg � fA�g� � �fBg � fB�g� ����

From all the compact groupings that exist for a binary function f�X� we select the grouping that is
the largest with respect to the half�order relation �����
A weakly groupable function can be implemented by several weak groupings� For a disjunctively or

conjunctively weakly groupable function f�A�B� the function g�A� can always be selected in such a
way that h�A�B� can be implemented more easily than f�A�B�� although the number of variables is
not altered�
The question �is an incompletely speci�ed function with the functions f�X�ON and f�X�OFF for A

and B groupable"�� can be answered using the following existence theorems�

Theorem ���� An incompletely speci�ed function with functions f�X�
ON

and f�X�
OFF

for A and B
is disjunctively groupable� if and only if

f�X�ON � max
A

kf�X�OFF � max
B

kf�X�OFF � � ����
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The above equation implies that no pattern from the ON�set may be in the projection of the OFF�set
in the A direction and in the B direction�
Dual situations exist in conjunctively groupable functions�

Theorem ���� An incompletely speci�ed function with functions f�X�ON and f�X�OFF for A and B
is conjunctively groupable� if and only if

f�X�OFF � max
A

kf�X�ON � max
B

kf�X�ON � � ��	�

The function find A B determines strong nonlinear �disjunctive or conjunctive� groupability� if such
a groupability exists� The conditions for the groupability can be described using care functions f�X�ON
� M� and f�X�OFF � M�� from bundle FB�X� f��

Subroutine find�A�B

GIVEN�

Bundle of function �f� FB�x� f��

Type� 	 d 	 for disjunctive

	 c 	 for conjunctive grouping�

Function find�A�B�FB� type� A� B�� returns the

value 
true
� if FB is groupable according to the

required strong 
type
 of grouping � 	d	 or 	c	��

In this case the grouping sets A and B are returned�
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Conceptural Diagram of Decompositions

f f

f

A

C

B

A

C

B

A

C

B

g(A,C)

h(B,C)

Conjunctive Decomposition

f(A,B,C) = g(A,C) {OP} h(B,C)

OP:    Stands for +,  and 

g(A,C)

h(B,C)

Exclusive-Or Decomposition

g(A,C)

h(B,C)

+

Disjunctive Decomposition

o o

Figure ��� Strong Disjunctive� Conjunctive and Linear Decompositions�

function find�A�B�FB�bundle�type�char�

var A�B�cube�list��boolean�

var u�v��v
�v�n�v
n�h��h�M��M� � bdd�

var a�b�pa�CLI � cube�list�

var gef � boolean�

begin

M� �� get�M��FB��

M� �� get�M��FB��

CLI �� get�CLI�FB��

BI �� get�BI�FB��

if type � 	d	 then begin u �� M�� v� �� M�� v
 �� M� end�

else begin u �� M�� v� �� M�� v
 �� M� end�

gef �� false�

a �� sv�first�u�� �� loop through variable a ��

while �SV�SIZE�a� � �� and not gef do

begin �� Initial solution a � variable� B � set ��

v�n �� MAXK�v��a�CLI�BI��

h� �� ISC�u�v�n��

b �� SV�NEXT�CLI�a��

while �SV�SIZE�b� � �� do �� loop through variable b ��

begin

v
n �� MAXK�v
�b�CLI�BI��

h �� ISC�h��v
n��

if TE�h� then begin gef �� true� v
 �� v
n end�
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b �� SV�NEXT�CLI�b��

end�

if gef then B �� SV�DIF�CLI�v
� else a �� SV�NEXT�CLI�a��

�� set B created here ��

end�

if gef then

begin �� strong solution A�set�B� set ��

v� �� v�n�

pa �� SV�DIF�v��B��

h� �� ISC�u�v
��

a �� SV�NEXT�pa�a��

while �SV�SIZE�a� � �� do

begin

v�n �� MAXK�v��a�CLI�BI��

h �� ISC�h��v�n��

if TE�h� then v� �� v�n�

a �� SV�NEXT�pa�a��

end�

A �� SV�DIF�u�v��� �� set A created here ��

end�

end�

If groupability was determined� then the bundles of functions g�A�C� and h�B�C� are calculated�
Di�erent possibilities exist for grouping� For each of the three types of grouping we would like to �nd
large functions�
The grouping bundles FB�A�C� fgg� with g�A�C�ON � M�g and g�A�C�OFF � M�g as well as

FB�B�C� fhg� with h�B�C�ON � M�h and h�B�C�OFF � M�h can be calculated for the disjunctive
grouping with the formulas ��
� to ����� if FB�x� ffg� is disjunctively groupable with respect to �A�
B� C��

g�A�C�ON � max
B

kf�X�ON � max
B

kf�X�OFF ��
�

g�A�C�OFF � max
B

kf�X�OFF ����

h�B�C�ON � max
A

k� f�X�ON � g�A�C�ON � ����

h�B�C�OFF � max
A

kf�X�OFF ����

For the conjunctive grouping we obtain the decomposed functions g� h using formulas ���� to �����

g�A�C�ON � max
B

kf�X�ON ����

g�A�C�OFF � max
B

kf�X�OFF � max
B

kf�X�ON ����

h�B�C�ON � max
A

kf�X�ON ����

h�B�C�OFF � max
A

k� f�X�OFF � g�A�C�OFF � ����

����	



The subroutine nonlinear decomposition analyzes a given function bundle� �rst for disjunctive de�
composition� next for conjunctive decomposition� It looks for compact groupability� and if the answer
is �yes�� it forms grouping bundles using ��
� to ���� or ���� to �����

Subroutine nonlinear�decomposition

FB�x� f�� bundle of the function f�

Function nonlinear�decomposition�FB� M�g� M�g� M�h� M�h� type��

returns value 
true
� in case a

nonlinear grouping of the bundle with bdds M� and

M� is possible� In this case the grouping bundles for

g�A� C� and h�B� C�

for the selected strong groupability are calculated and

returned together with their type 	 d 	 or 	 c 	�

Function g is specified by M�g and M�g�

Function h is specified by M�h and M�h�

function nonlinear�decomposition

�FB�bundle�var M�g�M�g�M�h�M�h�bdd�

var type�char��boolean�

var u�v�ug�vg�uh�vh � bdd�

var A�B � cube�list�

var gef � boolean�

begin

M� �� get�M��FB��

M� �� get�M��FB��

CLI �� get�CLI�FB��

BI �� get�BI�FB��

type �� 	d	�

gef �� find�A�B�FB�type�A�B��

�� strong AND� strong OR ��

if not gef then

begin

type �� 	c	�

gef �� find�A�B�FB�type�A�B��

�� calculates functions g and h

for 	d	 or 	c	 grouping ��

end�

if gef then

begin

if type � 	d	 then begin u �� M�� v �� M� end�

else begin u �� M�� v �� M� end�

ug �� DIF�MAXK�u�B�CLI�BI��MAXK�v�B�CLI�BI��CLI�BI��

vg �� MAXK�v�xb�CLI�BI�� �� uses A and B to find g and h ��

uh �� MAXK�DIF�u�ug��A�CLI�BI��

vh �� MAXK�v�A�CLI�BI��

����




if type � 	d	 then begin M�g �� ug� M�g �� vg�

M�h �� uh� M�h �� vh end

else begin M�g �� vg� M�g �� ug�

M�h �� vh� M�h �� uh end�

end�

nonlinear�decomposition �� gef�

�� informs by returning a flag ��

end�
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���� Linear Groupability�

The linear groupability for sets A and B is determined step by step� First� the derivative of the
incompletely specifed function for a single variable xa is calculated using Lemma �����

Lemma ���� The derivative of an incompletely speci�ed function f�X� with respect to variable xa is
an incompletely speci�ed function speci�ed as follows


fxa �X n xa�ON �� maxxa
f�X�ON �maxxa

f�X�OFF ����

fxa �X n xa�OFF �� minxa
f�X�ON �minxa

f�X�OFF ��	�

Example ���� Figure �� illustrates calculation of the above formulas using Kmaps�
Figure ��f shows fa�X�ON � maxa f�X�ON �maxa f�X�OFF � and Fig� ��i illustrates fa�X�OFF �

mina f�X�ON �mina f�X�OFF � Finally� Fig� ��j shows the composite incompletely speci�ed derivative
which can be obtained by folding the K�map with respect to variable a and calculating new values
symetrically to a as follows� �� � � �� � � �� �� � � �� � � �� ��
 � ��
 � 
�
The ON�set of the derivative with respect to variable xa ���� assumes for all argument change

combinations relative to variable xa the value one� Values zero are created in the derivative with respect
to variable xa ��	�� if relative xa either two � minterms or two � minterms face each other� With the
subroutine derivative the care functions f�X�ON � M� and f�X�OFF � M� of the derivative are
found� This is described in the subroutine derivative presented below�

Subroutine derivative

GIVEN�

M�� bdd of the ON�set of bundle FB�x� f��

�����



M�� bdd of the complement of the OFF�set of bundle FB�x� f��

A� � xa �� A is a set containing xa�

a single variable for which the derivation is executed�

Procedure derivative�M�� M�� xa� M�a� M�a��

which calculates the bdds of the derivative bundle FB�X � xa� fa��

procedure derivative�M��M��bdd�A�cube�list�var M�a�M�a�bdd��

begin

M�a �� ISC�MAXK�M��xa��MAXK�M��xa���

M�a �� UNI�MINK�M��xa��MINK�M��xa���

end�

Function f�X� is linearly groupable with respect to variable xa and set of variables B if�

��f�X�

�xa�xj
� � ��
�

for all variables xj in set B�

Function f�X� is linearly groupable with respect to variable sets A and B if�

��f�X�

�xi�xj
� � ����

for all variables xj in set B� and for all variables xi in set A�
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Example ���	

��f�X�

�a�c
�

��f�X�

�a�d
� �

��f�X�

�b�c
�

��f�X�

�b�d
� �

Function f�X� is linearly goupable with respect to variable a and set of variables fc� dg � B� There�
fore f�X� is linearly groupable with respect to sets A � fa� bg and B � fc� dg�
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When such sets A and B are found� the linear groupability is calculated from the formulas�

g�A�C� � f�A�B � c�� C� ����

h�B�C� � max
A

k � f�X� � g�A�C� � ����

Example ���� Given is function from Fig� ��� B � �� was selected �Fig� ��a� and respective g�A� �
f�a � �� b � �� c� d� � c � d is found� Fig� ��b� Next h�B� c� is found �Fig� ��e� by EXOR�ing f�X�
�Fig� ��c� and g�A� �Fig� ��d�� Finally max with respect to set A is applied to remove vacuous variables
�Fig� ��f��

However� below more e�cient methods to test linear groupability and to �nd functions g and h will
be given�

Theorem ���� �Dresig 	����� An incompletely speci�ed function with functions f�X�ON and f�X�OFF
is linearly groupable for variable xa and set of variables B� if and only if


max
B

kfa�X�ON � max
B

kfa�X�OFF � � ����

The above test for �xa� � B� and �xa� � B� only con�rms the exclusive�or groupability for ��xa� � xa��� B��
if there is at least one speci�ed function within the incompletely speci�ed function which meets the
requirements for xa� as well as for xa� �

Example ���� Figure �� illustrates calculation of linear groupability according to Theorem �����
Fig� �� shows that f�X� is groupable with respect to a and fc� dg and with respect to b and fc� dg�

In this case� function is also groupable with respect to fa� bg and fc� dg�
The likelihood of �nding such functions is increased by using Theorem �����

Theorem ���	 The reduced incompletely speci�ed function with the care functions


f�X�ON �� f�X�ON � f�X n xa� xa�OFF � max
B

kfa�X�ON �f�X n xa� xa�ON � max
B

kfa�X�OFF ����

f�X�OFF �� f�X�OFF � f�X n xa� xa�ON � max
B

kfa�X�ON � f�X n xa� xa�OFF � max
B

kfa�X�OFF

����
contains all Boolean functions of the incompletely speci�ed function that are linearly groupable for

�xa� B��

Example ���
 Figure �� illustrates the usage of Theorem �����

The question� whether a binary function is linearly groupable with respect to variable sets A and
B� cannot be simply answered by using a single equation� It becomes especially complex for strongly
unspeci�ed functions and weak decompositions� An iterative method described below must be used in
such cases�
One can observe� that if set A is �rst limited to single variable xa� then the linear groupability

f�A�B�C� as in Figure ���� is obtained when the derivative of f�X� with respect to variable xa is
constant for each cofactor of set B� We �rst analyze if such linearly groupable with respect to variable
xa functions are contained in an incompletely speci�ed function f � These functions may be again
incompletely speci�ed� and our idea is to keep as many of their don
t cares as possible�

������



00

01

11

10

0100 11 10ab

cd

a)

1 0 1 0

0 1 0 1

1 0 1 0

1 10 0

1 1

00 01 11 10

00

01

11

10

ab

cd

1 1

0 0 0 0

0 0 0 0

0000

e)
h(B, c)

ab

B = 00 = const

B = 01

B = 11

B = 10

g = f(A, B = 00) = f(c, d, a = 0, b = 0)

A = ab

B = cd

max A
1 1

00 01 11 10

00

01

11

10

cd

1 1

0 0 0 0

0 0 0 0

0000

f)

00

01

11

10

0100 11 10ab

cd

1 0 1 0

0 1 0 1

1 0 1 0

1 10 0

1

1

1

1

1 1

1

1

00 01 11 10

00

01

11

10

ab

cd

d)
f(X) g(A, c)

1

1

1

1

1 1

1

1

b)

00 01 11 10

00

01

11

10

ab

cd

00

01

11

10

0

1

0

0

ab

c)

Figure ���

������



f  (X)a OFF

f  (X)a OFF

1

1

1

1

f  (X)

--

-

-

-

-

1

1

11

1 1

b
j)

00

01

11

10

0100 11 10ab

cd

- - 0

1 1

-

f(X)
a)

1

- 0

- 0 1 0

1 0 1

{c, d}
f  (X)a ON

1

1

1

11

1 1

1

0 0 0 0

0

0

00

0

00

0

00

{c, d}

0

0

1

1

f  (X)a

1

1

ON

1

1

f  (X)a
b) c) d)

e) f)

(e) . (f) = 0

0

0

1

1

1

1

1

1

-

-

-

-

-

-

1

1

1

1

max max

Figure ���

������



{c, d}
f  (X)a ON

1

1

1

11

1 1

1

max f  (X)a OFFf(X\a, a) OFF

f  (X)a OFF

00

01

11

10

0100 11 10ab

cd

- - 0

1 1

-

f(X)

1

- 0

- 0 1 0

1 0 1

1

1

1

f(X\a, a) ON

1

1

1

1

1

1 1

1

1

0 0 0 0

0

0

00

0

00

0

00

0

0

0 0 0 0

0

0

00

0

00

0

00

min
{c, d}

0

0

.

.

Figure ���

If in the derivative with respect to variable xa there exists a constant function in every cofactor of
set B� then after derivative for B operation applied to this function we obtain�

f�X�ON �C� � �

Formula ���� is used as a condition for the linear groupability �xa� B�C��
While ���� helps only to �nd a reduced groupability� we will use it now to create the solution method

for the linear groupability for arbitrary variable sets A and B� Using ���� the linear groupability of any
variable xi 
 A can be checked with respect to set B� Unfortunately� executing this test successively for
di�erent xi 
 A� will not provide linear groupability for sets B and A� That is because the individual
linear groupabilities with respect to xi 
 A and B �x the values for certain originally freely available
don
t cares which can next lead to conditions mutually contradicting themselves�
If we limit the function groupable according to ���� to additionally satisfy formulas ���� and ���� in

cofactors� then linearly groupable functions are preserved relative to these A and B� This will be for
most� but not for all such functions� so some linearly groupable functions with respect to A and B may
be not found�
The subroutine check EXOR variable set shown below reduces a function relative to xi 
 A and B

after linear groupable ���� and ���� to a cofactor function� In this cofactor� if the groupability exists
for xj 
 A and B� then the probability is substantially higher than for the original function that at
least one linearly groupable function with respect to �xi� xj 
 A� and B�

Subroutine check�EXOR�variable�set�

GIVEN�

M�� bdd of the ON�set of bundle FB�x� f��
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M�� bdd of the complement of the OFF�set of bundle FB�x�f�

M�a� bdd of the ON�set of bundle FB�x� fa��

M�a� bdd of the complement of the OFF�set of bundle FB�x� fa��

A� � xa � a set containing a single variable xa�

B� a set of variables�

Procedure check�EXOR�variable�set�M�� M�� M�a� M�a� A� B��

limits bundle FB�x� f� to a cofactor�

for which variable xa is linearly grouped to set B�

procedure check�EXOR�variable�set

�var M��M��bdd�M�a�M�a� bdd�A�B�cube�list��

var h��h��h
�h� � bdd�

begin

h� �� CEL�M��A�	���	��

�� calculate the mirror function with respect to variable xa� ��

�� it means� in every minterm of M�� literal xa is changed ��

�� to �xa and literal �xa is changed to xa ��

h� �� CEL�M��A�	���	�� �� do the same transformation for set M� ��

h
 �� MAXK�M�a�B��

h� �� MAXK�M�a�B��

M� �� UNI�M��UNI�ISC�h��h���ISC�h��h
����

�� use equation ������ ��

M� �� UNI�M��UNI�ISC�h��h���ISC�h��h
����

�� use equation ����
� ��

end�

In the above procedure� M� was calculated according to equation ���� and M� according to equation
�����
In analogy to the analysis of the nonlinear groupability with the subroutine linear grouping a strong

linear decomposition is found� if function f is linearly groupable� This subroutine relies on the formulas
����� ����� ��	�� ����� ����� and ���� and uses the subroutines derivative and check EXOR variable set�
The function is constructed to �nd strong linear groupability as e�ciently as possible�

Subroutine linear�grouping

GIVEN�

M�� bdd of the ON�set of bundle FB�x� f��

M�� bdd of the complement of the OFF�set of bundle FB�x� f��

Function linear�grouping�M�� M�� A� B��

returns value 
true
� if there is an

������



linearly groupable function in the bundle with M� and M��

In this case� sets A and B for strong

grouping are determined�

function linear�grouping�var M��M��bdd�A�B�cube�list��boolean�

var u�v�un�vn�M�a�M�a�h � bdd�

var a�b�pa � cube�list�

var gef � boolean�

begin

gef �� false�

a �� sv�first�M���

while �SV�SIZE�a� � �� and not gef do

begin �� Initial solution for sets A� B� ��

derivative�M��M��a�M�a�M�a��

u �� M�a�

v �� M�a�

b �� SV�NEXT�M��a��

while �SV�SIZE�b� � �� do

begin

un �� MAXK�u�b��

vn �� MAXK�v�b��

h �� ISC�un�vn��

if TE�h� then

begin

gef �� true�

u �� un�

v �� vn

end�

b �� SV�NEXT�u�b��

end�

if gef then

begin

A �� a�

B �� SV�DIF�M�a�u��

end

else SV�NEXT�M��a��

end�

if gef then

begin �� compact solution for A and B ��

pa �� SV�DIF�M�a�B��

check�EXOR�variable�set�M��M��M�a�M�a�A�B��

�� ��

a �� sv�first�pa��

while �SV�SIZE�a� � �� do

begin

derivative�M��M��a�M�a�M�a��

h �� ISC�MAXK�M�a�B��MAXK�M�a�B���

if TE�h� then

begin
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check�EXOR�variable�set�M��M��M�a�M�a�a�B��

�� ��

xa �� SV�UNI�A�a��

end�

a �� SV�NEXT�pa�a��

end�

end�

linear�grouping �� gef�

end�

For linear groupability there are very many di�erent grouping functions h and g� Finding good
functions h and g is di�cult� since EXOR operation is involved here� During the analysis of the linear
groupability we limited already the function� in order to obtain linear groupability for the individual
A�i� in connection with B�
However� the reduced function can be� with a very low probability� not linearly groupable�
The iterative construction of function g�A�C� is done as follows� First� using equation ����� the

initial value of function u�A�C� is calculated�

u�A�C� �� max
B

k�f�X�ON � f�X�OFF � ����

Next functions g�A�C�ON and g�A�C�OFF are initialized�

g�A�C�ON � �� g�A�C�OFF � �

Next� equations ���� and ��	� are applied�

g�A�C�ON �� g�A�C�ON � u�A�C� � f�B � xb��ON ����

g�A�C�OFF �� g�A�C�OFF � u�A�C� � f�B � xb��OFF ��	�

Now� in order to exclude contradictions� the function u�A�C� is shrinked by sharping the above
selected cofactor care functions�

u�A�C� �� u�A�C� � g�B � xb��
ON

� g�B � xb��
OFF

��
�

This whole process of using equations ���� to ��
� is iterated� and in each step ��
� function u�A�C�
is reduced to less ON terms�
For all don
t cares of u�A�C�� which are not completely covered� we must select a care value for

function g�A�C�� Finally� u�A�C� becomes �� which is detected by the program�
Thus� function g�A�C� has been calculated�

f�X�ON �� g�A�C�ON � f�X�OFF � g�A�C�OFF � f�X�ON ����

f�X�OFF �� g�A�C�ON � f�X�ON � g�A�C�OFF � f�X�OFF ����

The grouping function g�A�C� is �nally found� when in ��
� u�A�C� � � results� Otherwise the
iterative process is continued again with xb� selected according to ���� and ��	��
The EXOR operation of function g�A�C� and f�X� creates incompletely speci�ed function h�B�C��

This is done in formulas ���� and ����� Now� we calculate the �more speci�ed� function h�B�C� on the
basis of the incompletely speci�ed function obtained in ���� and �����
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The same iterative method is used to create h�B�C� as was used to �nd function g�A�C�� With the
starting functions h�B�C�ON � � and h�B�C�OFF � �� after unique calculation of ���� the functions
h�B�C�ON � h�B�C�OFF and u�B�C� are iteratively calculated� and di�erent values xa� are tried� until
u�B�C�� calculated in step ������ results in ��

u�B�C� �� max
A

k�f�X�ON � f�X�OFF � ����

h�B�C�ON �� h�B�C�ON � u�B�C� � f�A � xa��ON ����

h�B�C�
OFF

�� h�B�C�
OFF

� u�B�C� � f�A � xa��
OFF

����

u�B�C� �� u�B�C� � h�A � xa��ON � h�A � xa��OFF ����

The subroutine strong linear analyzes a given function f�X� with respect to linear strong groupa�
bility� It forms a pair of grouping functions �g� h� using ���� to ����� if f�X� is a linearly groupable
function� The two functions g�A�C� and h�B�C� are generated with the identical lower procedure
selection� A veri�cation is recommended of functions g and h calculated by strong linear� since it is
possible that two groupings �xi� B� and �xj � B� are not compatible with one another� This can only
happen with an extraordinarily small probability� but cannot be excluded�

subroutine strong�linear

M�� bdd of the ON�set of of bundle FB�x� f��

M�� bdd of the complement of the OFF�set of bundle FB�x� f��

Function EXOR�compact�M�� M�� M�g� M�g� M�h� M�h� returns value 
true
�

if a linear grouping of the bundle with M� and M� is

possible� In this case the grouping functions for g�A� C� and h�B� C�

of a strong linear grouping are returned�

function strong�linear�M��M��bdd�

var M�g�M�g�M�h�M�h�bdd��boolean�

var M�n�M�n � bdd�

var A�B � cube�list�

procedure iteration

�M�w�M�w�grv�bdd�var M�r�M�r�bdd��

�� the comments inside this procedure are for function g�

Analogically� procedure interation is next used

for function h ��

var grv��u�u��h��h� � bdd�

begin

u� �� UNI�M�w�M�w�� �� Use ������ to calculate ��

u �� MAXK�u��grv�� �� the value of u�A�C� ��

M�r �� EMPTY�u�� �� Initialize g�ON to zero� ��

M�r �� EMPTY�u�� �� Intitalize g�OFF to zero� ��

while not TE�u� do �� until u�A�C� becomes zero�����

begin
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grv� �� MAXK�CEL�STV�u�����grv�	���	��u��

h� �� MAXK�ISC�M�w�grv���grv�� �� calculate h� in ����
� ��

h� �� MAXK�ISC�M�w�grv���grv�� �� calculate h� in ������ ��

M�r �� UNI�M�r�ISC�u�h����

�� use equ� ����
� to calculate new value of g�A�C��ON ��

M�r �� UNI�M�r�ISC�u�h����

�� use equ� ������ to calculate new value of g�A�C��OFF ��

u �� DIF�DIF�u�h���h��� �� New value of u�A�C� is calculated ��

u� �� ISC�u�u��� �� from equation ������ ��

end�

end�

begin

if linear�grouping�M��M��A�B�

then

begin

iteration�M��M��B�M�g�M�g��

�� iteration uses rules ���
 to ���� to calculate function g

for set B ��

M�n �� UNI�ISC�M�g�M���ISC�M�g�M����

�� equation ������ ��

M�n �� UNI�ISC�M�g�M���ISC�M�g�M����

�� equation ������ ��

�� these were EXORing of f�X� with the function h found ��

iteration�M�n�M�n�A�M�h�M�h��

�� iteration uses rules ���� to ���� to calculate function h

for set A ��

strong�linear �� true�

�� informs that strong linear decomposition was found ��

end

else

strong�linear �� false�

end�
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�� Weak Decompositions�

A strongly groupable function is decomposed to two simpler subfunctions� Otherwise �e�g� with
symmetrical functions� we must reiterate to other synthesis procedures� One of such procedures� called
weak decomposition� is based on weak grouping� and is presented in Fig����
Figure ��a presents the Conjunctive Weak Decomposition� and Figure ��b presents the Disjunctive
Weak Decomposition�

h(A, B)

Weakly Conjunctive

    Decomposition

g(A)

O

B

A f
h(A, B)

f(A, B) = h(A, B) {OP} g(A)

OP  = O or +

g(A)

B

A f

    Decomposition

Weakly Disjunctive

+

Figure ��� Conjunctive and Disjunctive Weak Decompositions�

The weak grouping can be made disjunctively� conjunctively or linearly� with OR� AND or EXOR
gates� respectively� A binary function is nonlinearly weakly groupable� if the respective criteria have
been satis�ed�
Every function has linear groupability� and can be decomposed respectively� Using the linear weak

grouping we transform function f�A�B� to an EXOR of function g�A�� selected by us� and function
h�A�B�� found by EXORing f�A�B� and g�A��
Although every function is linearly weakly decomposable� this should be our last resort in decompo�

sition strategies� The nonlinear disjunctive or conjunctive weak grouping always simpli�es the function�
Compared with f�A�B�� function g�A� has fewer variables� Function h�A�B� has more don
t cares�
so it is easier to realize than f�A�B� and it can become perhaps strongly decomposable� If not� weak
decomposability is repeated�
In a function bundle FB�X� ffg� with the above care functions� at least one weak grouping relative

to set B exists� disjunctive or conjunctive� if the following Theorem �	�� or Theorem �	�� are satis�ed�
respectively�

Theorem ���� An incompletely speci�ed function with care functions f�X�ON and f�X�OFF is dis�
junctively weakly groupable with set B if and only if


f�X�ON � max
B

k f�X�OFF �� � ����

Example ���� A completely speci�ed function f�A�B� is presented in Fig� �	a� Let us assume that
set A corresponds to rows and set B to columns� It is easy to �nd function g�A� for disjunctive
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decomposition from the patterns of rows� If there are rows that have no �
s� and only �
s and �
s� then
such rows can be used to determine function g�A�� see Fig� �	b� Condition in Theorem ���� means
that there are rows of only �
s and �
s� Let us observe� that by replacing true minterms from function
g�A� in function f�A�B� with �don
t care� minterms� one obtains function h�A�B�� Fig� �	c� that is�
in general� a function of at least variables from B and at most variables from A �B� If it is a function
of only variables from B the disjunctive decomposition is strong� otherwise it is weak�
The �nal disjunctive decomposition of function from Fig� �	a is shown in Fig� �	d�
Concluding� �nding disjunctive decompositions in Karnaugh maps is completely algorithmic and easy

to �nd by hand� and patterns of only �
s and �
s in rows are used�

Example ���� The enumeration of minterms for partitions is shown in Fig� �
�
Using partitions� the above presented steps from Example ���� are executed as follows�

Pif � ��� �� �� �� �������� ������ 	� 
�������������

Pi�A� � ��� �� �� �� ����	�
� �� �������� ��������� ���

Pi�A� �Pif � ���� �� ������ ������ �� 	� 
�� ��� �� ��� ������� ������������� ����

g�A� � a b� a b

h�A�B� � ��� �� �� �� �� ��� ��� ������� 	� 
���� ��� ��� ���
��� ��	� 
�
���� ��� ��� ���� � ��� �� �� �� �������� ��

Conjunctive weak decomposition is dual to disjunctive weak decomposition�

Theorem ���� An incompletely speci�ed function with functions f�X�
ON

and f�X�
OFF

is conjunc�
tively weakly groupable with set B� if and only if


f�X�OFF � max
B

k f�X�ON �� � ����

Example ���� Let us assume that set A corresponds to rows and set B to columns� It is easy to �nd
function g�A� for conjunctive decomposition from the patterns of rows� If there are rows that have no
�
s� and only �
s and �
s� then such rows can be used to determine function g�A�� see Fig� ��� Condition
in Theorem �	�� means that there are rows of only �
s and �
s� Let us observe� that by replacing false
minterms �zeros� of function g�A� in function f�A�B� by �don
t cares�� one obtains function h�A�B�
that is a function of at least variables from B and at most variables from A � B� Fig� ��� If it is a
function of only variables from B the conjunctive decomposition is strong� otherwise it is weak�
The �nal disjunctive decomposition of function from Fig� ��a is shown in Fig� ��d�
Concluding� �nding conjunctive decompositions in Karnaugh maps is completely algorithmic and

easy to �nd by hand� and is based on patterns of �
s and �
s in rows�

Example ���	 Using partitions� the above decomposition can be found as follows�

Fig� �	���

If only those properties of incompletely speci�ed functions are used which have been mentioned
above� a convergent decomposition method can be developed� This is due to the following theorem�

Theorem ���� Every Boolean function that is not disjunctively weakly groupable and not conjunctively
weakly groupable has the property of exclusive�or groupability�
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If the variable set B cannot be further increased in ����
� or ����
�� without these inequalities
changing to equalities� then weak groupability exists� For each weak groupability there are several weak
groupings� In the formulas ��	� to �	�� the indicated weak groupings were selected in such a way that
as simple as possible function h�A�B� is created�
Under the prerequisite that ����
� is satis�ed� the Disjunctive Weak Decomposition� see Fig� ��b� can

be made into bundles BF �A� fgg� with g�A�ON � M�g and g�A�OFF � M�g as well as BF �A�B� fhg�
with h�A�B�ON � M�h and h�A�B�OFF � M�h after the formulas ��	� to �����

g�A�ON � max
B

k f�A�B�ON � max
B

k f�A�B�OFF ��	�

g�A�OFF � max
B

k f�A�B�OFF ��
�

h�A�B�ON � f�A�B�ON � g�A�ON ����

h�A�B�OFF � f�A�B�OFF ����

If the inequality ����
� is satis�ed� then a Conjunctive Weak Decomposition� Fig� ��b� is obtained
from formulas �	�� to �	���

g�A�
ON

� max
B

k f�A�B�
ON

�	��

g�A�OFF � max
B

k f�A�B�OFF � max
B

k f�A�B�ON �	��

h�A�B�ON � f�A�B�ON �	��

h�A�B�OFF � f�A�B�OFF � g�A�OFF �	��

The subroutine nonlinear weak analyzes bdd
s of a bundle for disjunctive and conjunctive weak
groupability� and forms �if possible� the weak grouping bundles using ��	� to ����� or �	�� to �	���
respectively�
Application of these formulas to calculate disjunctive and conjunctive decompositions is shown in

the next example�

������



00

01

11

10

0100 11 10ab

cd

a) b)
f(A, B)

A = ab

B = cd

g(A)

g(A)

h(A, B)

f(A, B)

c

b

a

d)

A{

d

1 1 0 1

0 0 - 0

1 1 1-

0 0 0-

0

1

000

1 1

1 111

0 0 0 0

-

- - - -

- - - -

h(A, B)
c)

1 1 0 1

1 - 1 1

Figure ���

������



max
B

f(A, B)ON

1

1

11

1

11

1 1 1

11

-

-

#

1 1 1

1 11 -

111

1 1 1 1

0 0 0 0

0000

00

01

11

10

0100 11 10ab

cd

0

0

0

0 -

-

0

0

1

-

h(A, B)

00

01

11

10

0100 11 10ab

cd

0

1 1

0

1

f(A, B)

0

0

1

-

-

1

0

1

0

1

-

max
B

f(A, B)OFF g(A)

- - -

---

Figure ���

Example ���� Figure �� illustrates graphically using of the above formulas in weak disjunctive de�
compositions�

Example ���� Figure 	� illustrates graphically using of the above formulas in weak conjunctive de�
compositions�

Example ���
 Figure 	� illustrates graphically the weak linear decomposition� Formulas and are not
satis�ed� Let us observe that any row or set of rows of the Kmap can be selected as function g�A�� It
is good to select indentical rows� Row a b has been selected in Fig� 	�a� and EXOR�ed from F �A�B�
as g�A� � a b� thus creating h�A�B� from Fig� 	�b� The �nal circuit is shown in Fig� 	�c�
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M�� bdd of the ON�set of function f from bundle BF�x� f��

M�� bdd of the complement of the OFF�set of function f from bundle BF�x� f��

Function nonlinear�weak�M�� M�� M�g� M�g� M�h� M�h� type�

returns value 
true
� if a nonlinear

weak grouping of the bundle with M� and M�

is possible� In this case the weak grouping

bundles for g�A� and h�A� B� are calculated

for the selected compact

groupability and returned together with their

types� 	 d 	 or 	 c 	� respectively�

One decomposition of type 	 d 	 or 	 c 	 is returned�

or type 	 n 	 is returned�

function nonlinear�weak

�M��M��bdd�var M�g�M�g�M�h�M�h�bdd�

var type�char��boolean�

var u�v�ug�vg�uh�vh�wt�wtn�b�B � bdd�

b�B � cube�list�

gef � boolean�

begin

gef �� false�

type �� 	d	�

B �� SV�DIF�M��M���

repeat �� repeat until 	c	 or 	d	 decomposition found�

or no more sets B exist ��

if type � 	d	 then begin u �� M�� v �� M� end

else begin u �� M�� v �� M� end�

wt �� v�

b �� sv�first�u��

while SV�SIZE�b� � � do

begin

wtn �� MAXK�wt�b��

if not TE�DIF�u�wtn�� then begin

wt �� wtn�

B �� SV�UNI�B�b��

end�

b �� SV�NEXT�u�b��

end� �� end of creating set B ��

if SV�SIZE�B� � � then

begin

ug �� DIF�MAXK�u�B��MAXK�v�B��� �� use eq� ��� ��

vg �� MAXK�v�B�� �� use eq� ��� ��

uh �� DIF�u�ug�� �� use eq� ��� ��

vh �� v� �� use eq� ��� ��

gef �� true�

if type � 	d	 then begin
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M�g �� ug� M�g �� vg�

M�h �� uh� M�h �� vh

end

else begin

M�g �� vg� M�g �� ug�

M�h �� vh� M�h �� uh

end�

end

else if type � 	d	 then type �� 	c	 else type �� 	n	�

until gef or �type � 	n	��

nonlinear�weak �� gef�

end�

The algorithm of the decomposition is the following�

FUNCTIONS�

grp�test� tests the groupability�

calc�g�ON� calc�g�OFF� calculate care functions of function g�

calc�h�ON� calc�h�OFF� calculate care functions of function h�

calc�f� calculate function f from function g�A�C� and h�B�C��

end�test� test the possibility of using a function that depends on

only one variable�

choice�fct� select a single function from an incompletely

specified function�

write�gate� write the designed gate into the netlist�

decompose�ON�OFF�

�

� grp�op� A�B � � grp�test�ON�OFF��

�� grouping operator and sets A� B are returned

as the result of the test for groupability� ��

g�ON � calc�g�ON�f�ON�f�OFF�A�B�grp�op��

g�OFF � calc�g�OFF�f�ON�f�OFF�A�B�grp�op��

�� respective incomplete function g�A�B� is

calculated for A� B� and operator� ��

if � end�test�g�ON�g�OFF� �

fct�g � choice�fct�g�ON�g�OFF��

�� if this is a one�variable function� realize it� ��
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else

fct�g � decompose�g�ON�g�OFF��

�� else keep recursicely decomposing� ��

h�ON � calc�h�ON�f�ON�f�OFF�A�B�grp�op�fct�g��

h�OFF � calc�h�OFF�f�ON�f�OFF�A�B�grp�op�fct�g��

�� respective incomplete function h�A�B� is

calculated for A� B� operator and function g�

By� now� recursion to create g is completed� and

g is completely specified� ��

if � end�test�h�ON�h�OFF� �

fct�h � choice�fct�h�ON�h�OFF��

else

fct�h � decompose�h�ON�h�OFF��

�� now the same method was used to create

a completely specified function h ��

fct � calc�f�fct�g�grp�op�fct�h��

�� calculate completely specified function f

from completely specified functions g and h� ��

write�gate�grp�op��

�� print operator of this level�

This is done recursively� ��

return�fct��

�

Interesting method is also used in XBOOLE to

find sets A and B�

It is based on the following Monotony Theorem�

�begin�theorem�

���em Monotony Theorem��

If an incompletely specified function includes no disjunctively

groupable function with respect to sets A and B then

there is no disjunctively groupable function for �A�xi� and B�

there is no disjunctively groupable function for A and �B�xi��

�end�theorem�

This is used in the above algorithm�

�begin�verbatim�

Calculate initial groupability A � �xi�� B � �xj��

For all variables xi in X � �xi�xj� do

begin

if

������



card�A� � card�B�

then

if GR��A�xi��B� then A �� A � xi�

else

if GR�A��B�xi�� then B �� B � xi�

else

if GR�A��B�xi�� then B �� B � xi�

else

if GR�A�xi��B� then A �� A � xi�

end�
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�� Towards a Uni�ed Approach to Decomposition�

For the purposes of this research� we have created the following hierarchical classi�cation of decom�
positions�

�� Decompositions that assume special types of blocks�

�a� Dietmeyer
s decomposition�

�b� Wojcik
s decomposition�

�c� Davidson decomposition�

�� Decompositions that do not assume special types of blocks�

�a� serial decompositions�

�b� parallel decomposition�

�c� generalized decomposition of Jozwiak�

Serial Decompositions are the following�

�� Non�Encoded Decompositions�

�� Encoded Decompositions � Curtis� �Until now only one type of encoded decompositions is known
� Curtis��

Non�Encoded Decompositions are�

�� Ashenhurst Decompositions�

�� PUB Decompositions�

�� Weak Decompositions�

�� Column�Multiplicity�Based Decompositions�

The Ashenhurst Decompositions are the following�

�� Disjoint Ashenhurst Decompositions�

�� Non�Disjoint Ashenhurst Decompositions�

The Disjoint Ashenhurst Decompositions are the following�

�� Strong Disjoint Decompositions �decompositions in which both column and row multiplicity in�
dices are ���

�� General Disjoint Ashenhurst Decompositions�

Strong Disjoint Ashenhurst Decompositions are the following�

�� Strong AND Disjoint�

�� Strong OR Disjoint�

�� Strong EXOR Disjoint�

Non�Disjoint Ashenhurst Decompositions are the following�
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�� Strong Non�Disjoint Ashenhurst Decompositions�

�� General Non�Disjoint Ashenhurst Decompositions�

Strong Non�Disjoint Ashenhurst Decompositions are the following�

�� Strong AND Non�Disjoint Ashenhurst�

�� Strong OR Non�Disjoint Ashenhurst�

�� Strong EXOR Non�Disjoint Ashenhurst�

PUB Decompositions are the following�

�� Disjoint PUB Decomposition�

�� Non�Disjoint PUB Decomposition�

Weak Decompositions are the following�

�� Weak AND Decomposition�

�� Weak OR Decomposition�

�� Weak EXOR Decomposition�

Column�Multiplicity�Based Decompositions are the following�

�� Column�Multiplicity�Based AND Decomposition�

�� Column�Multiplicity�Based OR Decomposition�

�� Column�Multiplicity�Based EXOR Decomposition�

Encoded Decompositions are the following�

�� Disjoint Curtis Decompositions�

�� Non�disjoint Curtis Decompositions�

Fig� 	� presents the above decompositions� Fig� 	� presents Curtis Decompositions� and Fig� 	�
presents the Column�Multiplicity�Based Decompositions�
Three approaches will be discussed in more detail�

� The graphical approach using Karnaugh maps is very easy to understand and can be successfully
used for maps of up to six variables� It relates to the most familiar concepts of elementary logic
design�

� The analytical approach uses the well�known calculus of arrays of cubes �such calculus is pre�
sented for instance in �	�� �� �	��� Learning of this material will be useful for people who want
to understand the uses of Cube Calculus in CAD algorithms� The use of Cube Calculus here
illustrates also the indendence of the decomposition concepts from the representation of the data�

� The partition method will provide an approach to large functions� especially strongly unspeci�ed
functions� and respective e�cient computer algorithms� ��	��� The blocks of partitions in this
paper are encoded as BDDs for additional improvement of e�ciency�
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Based on the analysis of the literature� the following observations were crucial to the development of
the theory presented below�

Representation�

�� The most important aspect of a successful Functional Decomposer is the representation of data�
From all representations in the literature� the most successful programs use Binary Decision Di�
agrams and Edge�Valued Decision Diagrams ������ lists of disjoint ON and OFF cubes ���� and
variable�partitions on ON and OFF minterms or cubes ������ The last representation has very
interesting properties� It allows to de�ne� on incompletely speci�ed functions� several opera�
tors� that have not been de�ned before� This leads to e�cient variable partitioning and column
compaction algorithms� as well as to formulating new kinds of decompositions� including a new
method of �variable re�using�� Additional advantage of this representation is that it can be easily
generalized to multiple�valued logic� On the other hand� the disadvantage of this approach is the
use of long lists� that are necessary to represent sets of minterms� For large examples� like an
EXOR of ��� variables or very large sets of samples from machine learning applications� there is
not enough space in computer memory to create such lists�

Here comes our idea of encoding these large data �originally represented as netlists� sets of samples�
sets of cubes� or BDDs� as sets of BDDs for input and output variables� Each variable �input
or output� creates a partition of elementary subfunctions �these subfunctions are for instance
minterms or cubes� on the set of variable
s values� For instance� for binary variable there are
two values� and therefore two BDDs� the ON BDD� and the OFF BDD� Similarly� for a ternary
variable there will be three BDDs� one for each value�

All such sets� for all input and output variables� can be represented together as a �Shared� BDD�
Such DDPC representation is totally new in the literature� and has all advantages of the previous
ones used in decomposition� and none of their respective disadvantages�

A ready public domain software package can be used to represent �reduced� ordered� shared
BDDs �possibly� with negated edges��� since the only operations that we use are the standard
ones� intersection� union and complement� Similarly� any other decision diagrams such as FDDs�
KFDDs� ADD� EVDDs or other can be used� whichever will be found to represent and manipulate
the sets of minterms most e�ciently�

�� The DDPC representation allows to treat all subfunctions� newly created in the decomposition
process� as the additional inputs variables� Partitions done by these functions on the function
s
cares can be calculated and used in the decomposition� Therefore� all new subfunctions �depen�
dent variables� can be treated in the same way as the original initial input variables �independent
variables� � the analysis of vacuous variables and variable partitioning procedures can be stan�
dardly applied to these new variables� This allows for powerful function sharing and investigating
a wider space of decompositions�

�� Another advantages of some successful modern decomposers that are missing in most other
are� multi�output functions� and multiple�valued functions� A careful analysis of all opera�
tions used in the respective systems� suggests that the proposed above representation will al�
low easy generalization to multi�output and multiple�valued functions� In essence� it is based on
approaches that have been already created or generalized for these cases� Moreover� our represen�
tation is well suited not only for AC decomposition� but for many other decomposition variants
��� ���� ���� �� ��� �� �� �� �� ��� ��� ��� Especially� it allows to take into account the partial
symmetry of a function� as a most natural design bias� Moreover� this realization allows easily to
represent and utilize the �generalized don
t cares� for multiple�valued logic� that we invented and
found useful in the decompositional approach to machine learning�
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�� One more advantage of the representation is that it has been created to solve e�ciently two of
the most important problems in decomposition� selecting the best bond sets� and mimimizing the
number of columns�encoding problem� The sets of minterms are kept separated in the decom�
position� for each input variable� output variable� and sub�function� This representation allows
for easy formulating of many partial problems associated with decomposition� Many heuristic or
methodical criteria to select variables in order to achieve some minterm separation and variable
correlation goals can be easily de�ned� All information� that is lost and repeatedly found in classic
decomposition algorithms� is retained e�ciently here for subsequent use�

Search for Good Bond and Free Sets�
Several search strategies have been used in the literature to �nd the best partitions for both the

disjoint and non�disjoint cases� A parameterized program can be created that would allow to easily
create and compare several of them� depth��rst search� depth��rst�search�with�one�successor� breadth�
�rst search �a variant in Flash by Mark Axtell�� best�bound �Haomin Wu�Perkowski ����� limited best�
bound search �Haomin Wu� Craig Files ������� A� algorithm of Arti�cial Intelligence �Haomin Wu�
Perkowski�� searching subsets of a subset of variables �Shen�Kellar ���� �	� ���� Varma�Trachtenberg
����� using predetermined order based on a heuristic of evaluating pairs of variables �cube based approach
is presented by Wei Wan and Perkowski ����� search by �add and subtract� variables from and to bond
and free sets � Steinbach ��� ��� search by selecting a single variable based on complex block separation
criteria of partition calculus heuristics �Luba ���� 	
� ���� ������ other BDD variable selection and
ordering methods ��� �� ��� and other decision tree like variable selection methods �such as in the C���
program by Quinlan�� The search methods based on correlations of input and output variables should
be investigated� since their results can be used for AC decomposition� Such ideas appeared in papers
of Oliviera and Zaki ���� Mike Noviskey ���� and Grygiel and Perkowski ����
Column Multiplicity Minimization�
In the past� the Column Multiplicity Minimization Problem was reduced either to the set covering

with maximum cliques problem� �	
� �	��� or to the graph coloring problem� The advantage of the
�rst approach is that very e�cient algorithms for maximum clique and unate covering exist that can
be adapted� The disadvantages are� the number of cliques can be prohibitely large� the size of the
covering table or other data can be prohibitely large� the cliques in the solution are overlapping � so
that an additional algorithm is required to remove their overlapping parts� The advantage of the graph
coloring approach is that very fast approximate algorithms have been created for it� that require little
memory� The disadvantage of both approaches is that they combine in a standard way columns of don
t
cares with other columns� which introduces too many cares in the process� This is especially bad from
the machine learning point of view� Another disadvantage from the machine learning point of view
is that the columns� although compatible with respect to don
t cares� would not be compatible in a
completely speci�ed function �a complete set of cares for the problem� if such are available� from which
an incompletely speci�ed function was selected�
To solve the above issues� we created four algorithms�

� graph coloring of care columns�

� clique partitioning of care columns�

� graph coloring of care columns with similarity constraints �weighted graph coloring��

� clique partitioning of care columns with similarity constraints �weighted clique partitioning��

Excellent algorithms exist for the �rst two problems �
�� ���� �� and many publications are devoted
entirely to them� We have some initial algorithms and results for the other two problems that will be
included in a separate paper�
We will investigate also new decomposition structures� For instance� a class of iterative circuits uses

decompositions in which the number of outputs from a block is often the same or larger than the number
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of inputs� but the circuit has high regularity� Although technically this is not an AC decomposition�
we believe it is worth investigations� Other interesting circuits are tree� cascades and tandem networks�
The circuits that include blocks that have more outputs than inputs are quite common in practical
design� so the respective new kinds of non�Curtis decompositions should also be studied�

Currently� a symbol in mv decomposition is encoded in binary� It would be advantageous to be able to
use the variables used to encode the symbol all together as a group� while performing a decomposition�
The property of grouping variables to bond sets would also be useful for decomposition of fuzzy functions�
where variables x and x should always come together�
DD�based methods may provide better ways of sharing sub�functions during decomposition� It seems

that the problem of variable sharing is important� and although discussed in the literature on design
with multiplexers� it was not investigated in the decomposition literature�
The following types of decompositions will be presented in sections�

� Ashenhurst disjoint decomposition for completely speci�ed functions�

� Ashenhurst disjoint decomposition for incompletely speci�ed functions�

� Ashenhurst non�disjoint decomposition for completely speci�ed functions�

� Ashenhurst non�disjoint decomposition for incompletely speci�ed functions�

� PUB disjoint decomposition for incompletely speci�ed functions�

� PUB non�disjoint decomposition for incompletely speci�ed functions�

� Curtis disjoint decomposition for incompletely speci�ed functions�

� Curtis non�disjoint decomposition for incompletely speci�ed functions�

� XBOOLE disjoint and non�disjoint decompositions for incompletely speci�ed functions�

� Fuzzy decompositions for completely speci�ed functions�

Figure 	� presents a layered construction of GUD system� The lowest layer is created by a standard
BDD� zero�supressed BDD� KFDD or any other DD package which e�ciently executes set�theoretical
operations� The next level from the bottom are all partition�calculus operations such as�

� creation of a partition from the �explicit or implicit� �input table��

� sum of partitions �r�partitions� covers��

� intersection of partitions �r�partitions� covers��

� inclusion tes of partition in partition �r�partitions� covers��

� test if partition is a zero�partition �empty partition��

� test if partition is a one�partition �full partition��

� calculation of volumes �minterm sizes� of partitions� r�partitions and their blocks�

� printout of partitions� r�partitions and their blocks in various formats�

The next layer are all application algorithms� They are of several types�

� decompositions �such as Curtis� PUB� strong OR� EXOR� weak AND� etc��
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� realizations of combinatorial algorithms in Curtis decomposition �such as graph�coloring and set�
covering��

� bond set encoding algorithms�

� variable partitioning algorithms �r�admissability� entropy� search�etc��

In the new version of this document it will be shown that all these decomposition can be uniformly
derived from a single model�
Marcel� this is our role� I have some ideas� but you can help me to formalize them�
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�� Decomposition Strategy�

The comprehensive Decomposition strategy� Algorithm �� includes all above partial decomposition
schemes among its special cases� It is based on the following principles�

�� Several di�erent fast and greedy synthesis methods are better for a very strongly unspeci�ed
function than a single method of high complexity� Try simple cases �rst� If several various
previous attempts fail then try more complex circuit structures� This is a general ML philosophy�

�� Use DFC to measure the costs of partial solutions and be thus able to compare them�

�� The user can control the algorithm using several parameters�

Algorithm � uses three stacks�

�� The OPEN stack� which stores the sub�functions to be realized� from which the one evaluated as
the easiest to realize is selected for the realization �rst�

�� The EVAL stack� which stores the decomposition attempts� in order to compare them one with
other and select the best decomposition� The executed part of the decomposition is put to DONE
stack� and new created by it subfunctions to be further decomposed are put to OPEN stack�

�� The DONE stack� which stores the completely realized subfunctions� These functions can be
re�used during reduction decompositons� Finally� DONE is used to reconstruct the entire circuit
when the OPEN stack becomes empty�

In making decisions� the following parameters of Fi are taken into account�

�� number of true minterms�

�� number of false minterms�

�� number of true cubes�

�� number of false cubes�

�� sets A� B� C together with best patterns for them�

	� number of input variables�


�  of ON Pattern columns�

��  of OFF Pattern columns�

��  of DC Pattern columns�

���  of F�F Pattern columns�

���  of Approximate ON Pattern columns�

���  of Approximate OFF Pattern columns�

���  of Approximate DC Pattern columns�

���  of Approximate F�F Pattern columns�

��� cost parameters�

�	� distance parameters�
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�
� number of bond sets parameters�

��� and other�

Algorithm 
�

�� Put F to OPEN�

�� Take the easiest to realize function from OPEN� Call it FT �

�� Using PAR� number of di�erent sets A� B� C try Immediate Decompositions to FT in this order�

OR� AND� EXOR� Complex Gates� Ashenhurst�

a� If the decomposition exists� execute it for FT � using stacks OPEN and DONE�

b� If there exist some close function FG �of distance smaller than DIST�� to FT in DONE�

then call Reduction�FT � FG� Reduction Type Operator��

to reduce function FT to FG�

c� If there exist a decomposition of function FG� of distance DIS� from FT

then call Reduction�FT � FG� Reduction Type Operator�

to reduce function FT to FG� and execute decomposition of FG�

�� Using PAR� number of di�erent sets A� B� C� try Basic Decompositions in this order�

Curtis �� � PAR��� PUB �� � PAR���

�� If none of the above worked� and good weak patterns have been found in the previous stages�

execute respective Weak Decompositions�

	� If none of the above worked� try ESOP � SOP � POS and EXOR� SOP �

Execute one that produces a SOLUTION with cost below LAST COST �


� Execute Shannon Decomposition of FT �

�� If OPEN � � then return the SOLUTION else go to � �

�� Other Applications of CDBs�

Obviously� since CDB is a general�purpose representation of Boolean and multiple�valued functions�
all logic synthesis and state machine algorithms can be programmed in them� Below we will list only
those problems that in our opinion will especially bene�t from this new representation�

���� General Decompositions of Multiple�Valued�Output Functions with Stan�
dard Don�t Cares�

The method for Multiple�Valued�Output functions with standard don
t cares ���	� is very similar to
the one presented in previous sections�
A �rst variant is for the general�purpose mv logic� realized using multiple�valued Lookup Tables�

This variant uses only mv counterparts of Ashenhurst� and Curtis decompositions from Algorithm ��
Finding patterns is done analogously� the only di�erence is that patterns are multi�valued and higher
values of multiplicity indices are used� The standard procedure is followed� with the exception that the
encoding algorithms are not used and a standard k�ary encoding of internal signals is used for k�valued
logic�
A second variant assumes mv logic realized with multiple�valued Lookup Tables� MINIMUM� and

MAXIMUM gates� This variant uses mv counterparts of AND� OR decompositions� OR�AND� AND�OR�
OR�EXOR� other complex gate decompositions� Ashenhurst and Curtis Decompositions�
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���� Curtis�like Decomposition of Multiple�Valued�Output Functions with Gen�
eralized Don�t Cares�

Curtis Decomposition has been also generalized to Multiple�Valued�Output functions with Gener�
alized Don
t Cares ���	�� When two columns �cofactors�� f and g� are compared for compatibility in
binary logic� the condition is� �for every two corresponding cells of these columns �in the same row of
RVM�� the cells must be the same� or one cell is a don
t care�� In case of generalized don
t cares� this
condition is generalized to� �for every row i of the RVM the set�intersection of values of the cells
Ci�f� and Ci�g� of columns f and g of RVM must be non�empty� i�e�� � i� Ci�f� � Ci�g� �� ��� In such
case� columns f and g are combined� and every combined cell Ci�fg� �� Ci�f� � Ci�g�� Next� the Com�
patibility Graph is created with nodes for columns� and edges for pairs of compatible nodes� However�
standard maximum cliques cannot be used� since� contrary to a standard column compatibility� it can
happen that column C� is compatible with column C�� column C� is compatible with column C�� and
column C� is compatible with column C�� but columns C�� C�� and C� are not compatible all together
as a set� Therefore� the cliques must be additionally checked for group compatibility ��
��� Next� the
standard procedure is followed� with the exception that the encoding algorithms are not used and an
arbitrary k�ary encoding is used for k�valued logic�

Example �� Given is a function with � binary variables and a ��valued output variable from the map
in Fig� ref�g��g�ma �illustrated earlier in Table ��� Bond set is fc�dg� A don
t care symbol� ���� stands
for set of values f���������g� Every cell that includes a set of values is a generalized don
t care� The
Column Compatibility Graph is presented in Fig� ��b� The nodes represent columns from the map� A
column near the edge between nodes Ci and Cj represents the combined column Cij� As we see� nodes
C� � �� and C� � �� are not compatible� since for instance f���g � f���g � �� Although nodes C��
C� and C� are pairwise compatible� the maximum clique from nodes C�� C� and C� cannot be used�
since C�� � C�� � C�� � �� The solution includes then the cliques fC��C�g and fC�� C�g� The maps of
functions G and H are shown in Figs� �c�d� respectively� and the decomposed circuit in Fig� ��e� See
��� for applications to Attributes Reduction problem�
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�� Applications to Machine Learning�

Recently� there has been an increasing interest in applying methods developed in design automation
to other �elds �see DAC
�� and Euro�DAC
�� panel discussions�� Amazingly� the techniques developed
in the last �� years by the design automation community have been so universal and powerful� that
they are also increasingly used in areas outside circuit design� For instance� they are now used in
automatic theorem proving� robotics� industrial operations scheduling� stock market prediction� genetics
research� and many others� It is then quite probable� that the design automation methods will lead to
breakthroughs in these other �elds�
One of the sub�areas of design automation that can �nd numerous external applications is logic

synthesis� Unfortunately� the potential of logic synthesis for external applications is still less appreciated
�by both the CAD and Machine Learning communities� and the general research and industrial circles�
than the potentials of placement� routing� scheduling� placement� simulation� and database techniques
of design automation�
Until very recently� the logic synthesis discipline formulated e�cient methods and algorithms to

minimize and optimize only the hardware of digital computers and other digital circuits� This goal
was achieved very successfully� and the logic synthesis techniques developed in universities and industry
in the last �� years became one of the sources of the success of Design Automation in creation of
such products as Intel
s Pentium microprocessor� In the last few years� however� one can observe
some increased trend to apply these methods also in image processing� machine learning� knowledge
discovery� knowledge acquisition� data�base optimization� AI� image coding� automatic theorem proving
and veri�cation of software and hardware�
For instance� the ideas from logic synthesis and machine learning �ML� are starting to converge ����� ������

The goals are similar� In Knowledge Discovery and Databases �KDD� and ML� at the core of every
problem is how to e�ectively generalize concepts from data ������ In the circuit design community� the
end product is the realization of a minimum complexity circuit with respect to the number of gates�
depth� inputs� literals� or product terms� The problems are analogous� In KDD� we have a database
with �elds and records� A set of records de�nes the concept� In logic synthesis� the �elds of the records
are the binary variables �inputs� of the circuit and each record is a speci�cation of a minterm �true or
false�� The entire set of these records de�nes the circuit�
This part of the report is related to the use of the decomposer in ML and KDD applications� We

will examine the performance of the decomposer on typical machine learning problems and compare the
results with a standard decision tree learner� C���� with a multi�variant functional decomposer AFD�
with Espresso� and with Exorcism� We will look at their performance on several small� noise free�
binary functions without any �missing values� �i�e� completely speci�ed functions� using circuit design
terminology�� We will also explore their performance on the heart disease database from the University
of California�Irvine� �UCI�� The comparison will serve to highlight the strengths and the shortcomings
of all approaches� on a well�known and realistic problem� In this part� we will not present algorithms�
but rather to demonstrate the applicability of logic synthesis� and speci�cally EXOR�based synthesis� to
KDD and ML� All four algorithms share the common goal of a consistent� minimal complexity solution�
All four di�er in their method to �nd it�

�
 The Basic Research Ideas of the PTG�

The Pattern Theory Group �PTG� in the Avionics Directorate at Wright Laboratory develops new
system�level concepts for military applications� mostly based on image processing and machine learning
technologies� Since ����� the PTG developed a radically new approach to machine learning� where
by #machine learning� we understand any method of teaching a computer to recognize any kind of
patterns� Speci�cally� we are examining Supervised Classi�cation Learning paradigms� The machine

�At present� the point of contact for this database is David W� Aha �aha�ics�uci�edu� and it is important to the
authors that he is recognized here for his e�orts to maintain it�
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learning technologies most in�uential in military applications until now have been the neural nets and
the bayesian methods� If successfully completed� the new approach of PTG will allow both automatic
learning of any kind of images� and automatic creation of algorithms� Interestingly� in contrast to
most of the well�known approaches� the approach of the PTG is based on logic synthesis methods�
the so�called Curtis Decomposition of Boolean functions is applied here as the main component������
Many decomposition ideas have been implemented in the programming system FLASH �the Function
Learning and Acquition Synthesis Hotbed� developed by this group������ This system is a Testbed for
machine learning based on the logic synthesis approach� The group also compares FLASH to other logic
optimizers and machine learning programs� �such as Espresso and C���� respectively� from the point of
view of the robustness of learning����� ���� ���� �����
Simplifying� the main di�erence of the logic approach and the previous approaches to machine learn�

ing is that in these previous methods� the recognizing network had some assumed structure which was
next only #tuned� by the learning process �for instance� by decreasing and increasing the numerical
values of some coe�cients�� Thus� creating a new structure is acomplished by setting some coe�cients
to zero� All #new� structures are in a sense #hidden� in the assumed mother�structure� Also the type of
an element� such as a formal neuron in Neural Nets� or a polynomial in Abductory Inference Mechanism
�AIM��� ����� is decided before the learning takes place�
In contrast� in the Curtis Decomposition approach� there is no apriori assumption of structure of

the learning network� nor on the type of the elements� The elements are arbitrary discrete mappings
�functions�� Both the structure and the elements are calculated in the learning process� and this
process is entirely based on �nding patterns in data�
The central concept of Pattern Theory is a #pattern�� In Pattern Recognition and Knowledge Dis�

covery the problems with nice representations based on #features� belong to a more general class of
problems with strong #patterns�� Pattern �nding is� therefore� a generalization and formalization of
feature extraction� The goal of the Pattern Theory is to support #automating� the pattern �nding
process� and to construct a representation of a function based on examples� therefore� this is a method
for constructive induction� Furthermore� it constructs this representation by minimizing complexity
as in Occam�based learning� The Ashenhurst Function Decomposition �AFD� method based on Cur�
tis Decomposition implemented in FLASH is unusual in that it learns both the architecture of the
combinational representation and the component functions from the examples�
Induction is often modeled as the process of extrapolating samples of a function� This extrapolation

requires both the samples and the #inductive bias�� The bias towards low complexity� as in Occam
s
Razor� is particularly important� There is a strong theoretical basis for Occam�based learning� see for
example ��
�� �
��� Kolmogorov complexity was developed speci�cally for induction �reference �������
however� it has been proven that its exact computation is not tractable� There have been some tractable
measures of complexity used in actual implementations of Occam�based learning� such as the Abductory
Inference Mechanism ����� which uses polynomial networks and C��� ����� which uses decision trees�
However� the measures of complexity used in these applications are relatively narrow� which implies
some compromise in the robustness of the learning� for example� neither of these methods would �nd the
parity function to have low complexity even though it is highly patterned and can be easily computed�
The challenge is to develop robust and tractable measures of complexity�
Pattern Theory ����� treats robust complexity determination as the problem of �nding a pattern�

Pattern theory uses Decomposed Function Cardinality �DFC�� proposed by Y� S� Abu�Mostafa as a
general measure of complexity ��

� p������ DFC is based on the cardinality of a function� After all� a
function is a set of ordered pairs and� as with any set� has a de�nite property in its number of elements
or cardinality� DFC is de�ned as the sum of the cardinalities of the components of a combinational
representation of a function� when that sum has been minimized� DFC is especially robust in the sense
that it re�ects patterns of many di�erent kinds� Its robustness is supported by its relationship to more
conventional measures of complexity� including circuit size complexity� time complexity� decision tree

�Trademark of AbTech Corp�
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or diagram size and Kolmogorov complexity� If a problem has low complexity by any of these measures
then it will also have a low DFC ����� Chapter ��� The PTG work has concentrated on functions with
binary inputs� but the concept is easily extended to continuous and multiple�valued functions ������
The decompositions are evaluated based on the sum of the function cardinality of the decomposed

partial blocks� Of course� the real DFC of f is less than or equal to this sum in any particular �usually
approximate� realization� The objective of the decomposition is to search through partitions of input
variables to �nd one that produces the smallest total DFC� In other words� the #cost� of the feature is
measured in terms of DFC and that cost is minimized� Therefore� features are constructed to minimize
their computational complexity� The use of DFC as the measure of complexity allows for robustness in
the type of feature that can be generated�
Let us observe that all presented in previous sections methods� and in particular� the Curtis decom�

position� look for certain patterns in data� in Curtis decomposition these patterns are in columns of
the map corresponding to the cofactors of the bond set of variables ����� Let us also observe that in all
cases we minimize a certain cost of the circuit� Traditionally in circuit minimization one calculates the
number of terms and the number of literals� In our case� we calculated additionally the total DFC as
a sum of function cardinality of all non�decomposable blocks �this is an upper bound approximation of
the minimum DFC�� For an arbitrary non�decomposable block in Curtis Decomposition� the DFC of
the block is calculated as �k where k is the number of inputs to the block� In #gate�based� minimizers
such as Espresso and EXORCISM it is then fair to assume that a DFC of a decomposable gate �such as
AND� OR or EXOR� is equal to the total DFC of a circuit equivalent to this gate� that is constructed
from two�input gates� The DFC of a four input AND gate� OR gate� or EXOR gate is then �� � �� �
�� � ��� since such gates can be decomposed to balanced trees of three two�input gates�
The AFD algorithms that we discuss all have the above in common� They di�er in the number

of partitions explored� The simplest method chooses one partition at random� It then tries to merge
columns� encode new states� and then pick another partition at random from this new state until the
one it picks does not decompose to a smaller number of unique columns� We will call this version of
AFD #lotto�� The reader will note this is not even a hill�climbing algorithm because only one partition
at a given level is explored�
A more complex algorithm looks at all partitions at a given level and �� random partitions one level

deeper� Essentially� this is a ��ply look ahead search where we only explore �� grand children� It chooses
a particular partition over another based on the function
s DFC�

�� Summary of DFC Measurements and Applications

A number of experiments have been conducted to assess the generality of DFC across di�erent
problem domains �see ����� ���� ����� The DFC of over ��� non�randomly generated functions was
measured� including many classes of functions �numeric� symbolic� chaotic� string�based� graph�based�
images and �les�� Roughly �� percent of the non�randomly generated functions had low DFC �versus
less than � percent for random functions�� The � percent that did not decompose were the more complex
of the non�randomly generated functions rather than some class of low complexity that AFD could not
deal with� It is important to note that when AFD says the DFC is low� which it did some ��� times� it
also provides an algorithm �or a description of the pattern or features found�� AFD found the classical
algorithms for a number of functions� Each of these algorithms are represented in a combinational form
that includes intermediate states� These intermediate states are features in the sense of concentrating
information�
There is also high correlation between DFC and a person
s judgment of the strength of a pattern

in an image� the degree of compression by a data compression program� and the Lyapunov exponents
of logistic functions� This shows DFC
s ability to re�ect patterns within each domain� despite their
di�erent nature�
In learning experiments� AFD has been compared to back�propagation trained Neural Networks

�NN�� AIM� C���� and standard logic minimization tools� These comparisons used a broad range of
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function types �from the ��� mentioned above�� For each of the test functions� AFD performed near
the best of any method� while the other methods generalized well on some functions but not on others�
In the context of ML� when one talks about �noise�� it is assumed that he is refering to the situation

where you have some training data classi�ed correctly as a ��� or a ��� but then �noise� �ips that bit
to the incorrect entry� Another situation is that the value of some minterm is or becomes unknown � a
�don
t care�� This would be refered to as �unknown� in the ML community� �Noise� and �unknowns�
are related � ML techniques can be used to restore noisy images ������ Of course� we do not know which
pixels �or feature values� are �noisy� � so we treat those that are most suspicious as don
t cares�
The more robust generalization performance of AFD� including dealing with noise and unknown

data� is a re�ection of its robust measure of complexity� DFC� It is also an indication that the useful
inductive bias of these various standard methods results from their parsimonious tendencies rather than
their particular representation schemes �be they thresholded weighted sums� polynomials� decision trees
or Boolean operators��

�� Towards Improved Approaches to Logic Minimizers for Machine Learn	
ing

Although the AFD approach of FLASH gives very robust results� it is slow� which essentially restricts
its practicality to �� or even less� variables� It is� therefore� important� to be able to compare the FLASH
decompositional logic approach to other logic approaches that use the same DFCmeasure� but introduce
some restricted bias resulting from the assumed network
s structure� Such approaches are then faster
and can be used for larger variable functions�
In this respect� the well�known circuit minimizer Espresso� the standard machine�learning program

C���� and ESOP minimizer EXORCISM will tested together with our decomposer� These programs have
the following structure�gate�type biases� Espresso assumes a two�level AND�OR network� EXORCISM
assumes a two�level AND�EXOR network� C��� assumes an ordered tree� �The input variables can be
multiple�valued��
The questions arise�

� How much of the network
s simplicity is lost by assuming these structures"

� How much is gained in the speed of the program with respect to a bias�free decomposer" Is this
speedup worth an increased DFC and thus a more limited extrapolation capability"

� Is the method with a biased structure still robust enough for practical applications"

Other important question that must be faced with while developing improved minimizers for machine
learning applications is the following�

� What are the reasons that machine learning using logic synthesis is not exactly the same as circuit
design using logic synthesis"

This question is very important practically� Improving the performance of the FLASH system orders
of magnitude without sacri�cing much of its robustness �DFC� is required for making it useful for such
important military applications as High Resolution Radar� for example�
The data �switching functions� used in learning and algorithm design applications by the PT group

are arbitrary switching functions� Thus� the standard and generally applicable minimization procedures
of #logic synthesis� can be applied� An extremely important observation is that these functions have
quite di�erent properties than the data taken from industrial companies on which the programs are
tested in the #logic synthesis� community �MCNC benchmarks��
In theory� the algorithm should work well on any type of data� However� since all practical network

minimization problems are NP�hard� all practical algorithms� by neccessity� are heuristic in nature�
Thus� they are very dependent on the type of data� Taking into account the data characteristics �such
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as closeness to unate Boolean functions� was� in principle� the main reason of the commercial success
of two�level logic minimizers in circuit�design applications�
What is it that distinguishes the machine learning data from the circuit design data" Our preliminary

answer is the following�

�� ML problems have an extremely high percent of don
t cares �Don
t cares are combination of
argument value for which the function value is not speci�ed�� The missing data can be represented
as don
t cares�

�� Arguments �variables� in ML problems are naturally multiple�valued� which means that they take
any discrete number of values and not only true ��� or false ���� For instance� the size can be
large ���� medium ��� or small ����

�� The ML problems have some kind of #counting properties� �one counts the numbers of repetitions
of some patterns� like the well�known problem of learning even�odd properties in perceptrons��

�� ML problems have various kinds of symmetries and generalized symmetries�

Decomposer is able to �nd a pattern of EXOR �parity� or similar functions� even when it is corrupted
by �unknowns�� This is a di�cult problem in machine learning� To explain this case on an example�
let us assume that we recognize the even�odd parity function� For a completely speci�ed function and
a relatively small �less than �	� number of variables� the AFD minimizer �nds the exact minimal result
�EXOR of input variables� quite fast� When we add some #unknowingness� to this function by replacing
some ones and zeros with #don
t cares�� we should still be able to �nd the EXOR of inputs solution�
since the underlying principle function did not change� only its pattern has been corrupted� #hidden�
by the unknown values� This seemed to work� but when the percentage of don
t cares increases and the
number of variables inverases� the method yields poor results� First it ceases to recognize the #EXOR
of variables� pattern� and second� on �	�variable functions� it �nds no EXOR
s at all and looses track
of any patterns �so does a human on this case��
Another positive property of the decomposer is simultaneous classi�cation of patterns to more than

two categories �you want not only to distinguish a #friend from foe� airplane� but you want to learn its
orientation� speed� etc��� In terms of logic synthesis� this property corresponds to concurrent minimiza�
tion of switching functions with many outputs� Currently FLASH operates on single�output functions�
but Decomposer works with multi�output functions� There are many decomposers that decompose
multi�output functions� but all of them have been designed for circuit design� One needs a minimizer
for strongly unspeci�ed
 multi�valued input
 multi�output functions�
What is also missing in both #industrial circuit� and #machine learning� decomposing systems� is

the decomposition of multiple�valued input
 multiple�valued�output functions�
Why is this important" In theory� which is also the approach of the PT group� any multiple�valued

variable can be encoded by a vector of binary variables� What happens� however� in learning situations
is� that the learning system inferences rules that depend on the encoding of multiple�valued variables
with binary variables� To give an example� if the system would infer from a large set of data that
people who live close to power lines develop cancer� we would perhaps treat such #invention� with due
care� If the system would� however� infer that people whose third bit of encoded distance from the line
is � develop cancer� we would treat such inference as a #coding�related� artifact� Therefore� the best
approach to the learning system would be not to use coding at all� but perform the inference on the
variables that are natural for any given feature� e�g� either binary �man� woman�� or multiple�valued
�distance in yards��
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Table 	� DFC and $ of Samples Needed to Learn

�� Small Problems

���� Overview

This section describes the �rst set of test functions� Each of these functions consist of � binary
variables with a single binary output� All of the functions are void of noise and missing values� Each
function was chosen as to in some way represent a #database�like� concept� It is noted to the reader
that the logic synthesis approaches generalize to discrete and continuous data �elds ����� as well as
multi�valued outputs�

���� Experimental Design

Here� we show an abridged version of our test results with brute�force decomposition �AFD�� Espresso�
C���� and EXORCISM� We used the well�known KDD functions� kdd��efr � kdd���efr� The comparison
of results of Decomposer� Espresso and EXORCISM on these functions is in Table 	� part �� The
functions are explained in section ���

�C��� with pruning learned this function with �� samples�
�The average with the better score for F� is 	
����

�����




The tests on the individual functions were as follows� First� each method was given a random set
of data to train on ranging from �� to ��� out of a total of ��	 possible cases� Once the method was
trained� the entire ��	 cases were tested and the number of di�erences were recorded as errors� This
procedure was repeated �� times for a given sample training size in intervals of ��� Thus� the total
number of runs for each function was ��� of varying sample size� None of the learning was incremental�
All of the runs were independent�
For brevity� the comparison graphs were omitted in lieu of a condensed summary of each of the

learning curves� For each function� the average number of errors for the entire run was recorded in
Table �� It was then possible to compare brute�force decomposition� Espresso� C���� and EXORCISM
with these averages for a given function� Table � shows the number of samples necessary before the
learning method obtains a concept such that in all ten separate runs� the number of errors was �� The
value at the bottom of each table is the average over all of the functions� The smaller the number here�
the better the performance�
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�� Characterization of Benchmark Functions

We thought it may be interesting to describe some examples of benchmarks that we used in ad�
dition to MCNC benchmarks� More #machine learning benchmarks� are available from U�C� Irvine�
�http���www�ics�uci�edu�AI�ML�MLDBRepository�html� The WL benchmarks are available from Pat�
tern Theory Program� Tim Ross� ross%speedy�aar�wpafb�af�mil� Some of the benchmark names from
the tables are separated into several groups listed and brie�y explained below�
LEARNING� SET� This set of functions is intended to be representative of a wide variety of

functions for testing machine learning systems�
RANDOM� There are � randomly generated functions� generated with FLASH with seeds ���� and

�� rnd	� rnd�� and rnd
�
RANDOM MINORITY ELEMENTS� There are � functions generated with a �xed number

of minority elements placed at random� The seed for all was �� rnd m	� rnd m�� rnd m	�� rnd m���
rnd m���
RANDOM WITH VACUOUS VARIABLES� rndvv
�� copied from Taylor set� was randomly

generated except for x� and x	 being vacuous�
BOOLEAN EXPRESSIONS� These are functions intended to represent database concepts for

knowledge discovery������ kdd	� �x� x�� � x�
� kdd�� �x� x�
 x���x� � x	
�� kdd
� NOT �x� OR x�� �
�x�
 x� x	�� kdd�� x�
� kdd�� �x� x� x�
���x� x�
 x
 x����x� x� x� x	 x����x�
 x�
�� kdd�� x� � x� �
x	 � x�� kdd�� �x� x�� � �x� x�� � �x� x	� � �x
 x��� kdd�b� ��x� x�� �XOR� �x� x��� �NAND� ��x�
x	� � �x
 x���� kdd�� �x� x�
� XOR �x� x��� kdd�� �x� XOR x���x�
 XOR �x� x
 x���� kdd	�� �x� �
x�� XOR � NOT �x
 x�� ��x� � x���
Note� kdd� and kdd�b di�er in only � places and have the same decomposition architecture �and

DFC�� multiplexer� mux�� used in ������ this is a ��address bit� ��data bit multiplexer with two vacuous
variables �x� and x�� to make � inputs�
DEEP FUNCTIONS�
and or chain� � AND�OR�AND�OR�AND�OR�AND�x��x���x���x���x���x	��x
��x��� or and chain��
MONKISH PROBLEMS� These are � binary variable #approximations� to the Monk
s problems

of Thrun
�� et� al� ���
�� x�� head shape �rnd� octagonal�� x�� body shape �rnd� octagonal�� x�� smiling
�yes� no�� x��x�� holding �sword� balloon� �ag� whistle�� x	�x
� jacket color �red� yellow� green�blue��
x�� has tie �yes� no�� monkish	� head shape equals body shape or jacket is red� monkish�� exactly �
of 	 attributes have �st value� monkish
� �jacket green & has sword� or �jacket not blue and body not
oct��
STRING FUNCTIONS� Palindrome acceptor� pal� palindrome output� pal output� randomly gen�

erated ��� bits then mirror imaged them to create the outputs of an � variable function� Doubly
palindromed output� pal dbl output� as above but generated 	� bits and �ipped them twice� � interval
acceptors from FLASH� interval	 accepts strings with � or fewer intervals �i�e� substrings of all zeros
or all ones�� interval� accepts strings with � or fewer intervals � sub�string detectors� substr	 accepts
strings with the sub�string ������ substr� accepts strings with the sub�string �������
IMAGES� chXfY means character X from font Y of the Borland font set� All were generated with

the Pascal program charfn�exe� ch�f� � kind of a �at plus sign� ch	�f� � an Aztex looking design� ch��f� �
horizontal bar� ch
�f� � solid isosceles triangle� ch��f� � slash� ch	��f� � every other column of a checker
board� ch	��f� � checker board� ch��f	 � triplex J� ch�
f� � small S �thin strokes�� ch��f
 � sans serif F�
ch��f� � gothic ��
SYMMETRIC FUNCTIONS� parity� contains � ones� �f�x��� i� the str x has � ones�� major�

ity gate� f�x��� i� x has more �
s than �
s�
OTHER ACCEPTORS� primes�� output is � i� the input string� as a decimal number� is prime�

� and � are not considered prime�
NUMERICAL FUNCTIONS� addition� add�� add�� add� � outputs bits of a � bit adder� � is

the most signi�cant bit� greater than
 f�x��x���� i� x� 
 x�� subtraction
 subtraction	� subtraction

� output bits � and � of the absolute value of a ��bit di�erence� � is most signi�cant bit� modulus��

������



output bit � of ��bit modulus � is the most signi�cant bit� remainder�� output bit � of ��bit remainder
� is the most signi�cant bit�
GEOMETRIC FUNCTIONS� Generated using nearest neighbor �Hamming distance�� � note

that majority gate is e�ectively a nearest neighbor type function with samples�
�������� �
�������� �
nnr	� kind of a four corners partitioning of the space� based on samples�
�������� �
�������� �
�������� �
�������� �
nnr�
 has two randomly selected points as templates� based on samples�
�������� �
�������� �
nnr

 has eight randomly selected points as templates� based on samples�
�������� �
�������� �
�������� �
�������� �
�������� �
�������� �
�������� �
�������� �

�� Heart Disease Database

The Cleveland heart disease database� used in our experiments was the #processed� data where only
�� of the original 
	 attributes were used in classi�cation� For our purposes� we will further modify
the data �convert to binary� as shown in Table � for testing with all learning algorithms� The intervals
�for continuous type data� were basically chosen to be evenly distributed along the appropriate line
segment� There were no special rules to delineate the data in order to be advantageous to a particular
learning algorithm� Some of the variables were discrete and had a natural encoding� E�g�� variable �
for chest pain had � values� thus it was encoded with � binary variables�
One additional alteration was made to the database� Six of the ��� patient records contained some

missing values� They were all removed because at present� the logic synthesis tools have no reasonable
way of handling this data� It was decided rather than encoding the missing value as a separate value or
using some other method� we would simply omit those records� Also� because of the binary encoding�
it happened that � di�erent records in the original database were encoded to the same values including
their output� This duplicate entry was discarded� The end result is a transformation of the �� variable
discrete�continuous data to a �	 binary variable problem� There are a total of ��	 records�

�� Analysis of the Heart Disease Problem

This section will be added to the �nal version of the report�

�The authors wish to express their gratitude to Dr� Robert Detrano� M�D�� Ph�D� and the V�A� Medical Center� Long
Beach and Cleveland Clinic Foundation for the use of their database�

�T wave inversions and�or ST elevation or depression of � ���� mV
�by Estes
 criteria
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Heart Value Binary
Variable Encoding

x� variable � �� � ��
x� Age �	 �	���

	� �	���
	� ���

x� variable � Sex ��female
	�male

x� variable � typical angina �� �	
x� chest pain atypical angina �	 �


non�anginal pain 	� ��
asymptomatic 	� ��

x� variable 	� ��� � 	��
x� resting blood ��	 	�	�		�
x� pressure �	� 		��	��

�mm Hg� �		 	�	�	��
	�� 	���	��
	�	 	�	�	��
		� 	���	��
			 � 	��

x� variable 	
 ��� � 	��
x�	 serum ��	 	�	�
��
x�� cholesterol �	� 
�	�
��

�mg�dl� �		 
�	�
��
	�� 
�	��
�
	�	 �
	����
		� ��	����
			 � ���

x�� variable 	� �� � 	
�mg�dl
fasting 	 � 	
�mg�dl
blood
sugar

x�� variable 	� normal �� ��
x�� resting having ST�T

electro� wave abnormality� �	 �	
cardiographic showing probable

results or de�nite
left ventricular
hypertrophy� 	��


x�� variable �
 ��� � 	��
x�� Maximum ��	 	�	�		�
x�� Heart �	� 		��	��

Rate �		 	�	�	��
Achieved 	�� 	���	��

	�	 	�	�	��
		� 	���	��
			 � 	��

x�� variable �� ��no
exercise 	�yes
induced
angina

x�� variable �� �� � 	��
x�	 ST depression �	 � 	�� � ���

induced by 	� � ��� � ���
exercise relative 	� � ���

to rest
x�� variable �	 unsloping �� �	
x�� slope of the �at �	 �


peak exercise downsloping 	� ��
ST segment

x�� variable �� ��� �� ��
x�� number of major �	 �	

vessels colored by 	� �

�ourosopy 		 ��

x�� variable �	 normal �� ��
x�� Thal �xed defect �	 ��

reversible defect 	� ��
Output Healthy �

Disease�	��� 	

Table 
� Heart Disease Database Binary Conversion
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�� Conclusions and Future Research�

In this report we introduced a new representation and a new general decomposition�synthesis ap�
proach for strongly unspeci�ed multiple�valuedmulti�output functions� Our main immediate application
was Machine Learning� but we forsee also future applications in circuit design�
The approach presented here can be specialized and expanded to many future variants which are a

subject of many works of our gruop� It seem to open several new research areas� such as�

� combining multi�level decomposition with such few�level synthesis methods as ESOP minimiza�
tion�

� creating Curtis�like decomposers for strongly unspeci�ed functions of many variables�

� EXOR� SOPs circuits synthesis�

� input variable re�encoding problem to simplify DDs�

� using logic synthesis in machine learning�

� e�cient solving of combinatorial problems �such as graph coloring��

� and other�

We are currently in the process of implementing the decomposition algorithm from section �� and we
must be done with it before the end of September�
The new representation introduced by us allows also to utilize Sum�of�CDEC�TANT� ESOP�EXOR� SOP �

and other similar circuits for Machine Learning applications� The advantages and disadvantages of such
circuits� versus those of the better known SOPs� trees� and Curtis decompositions in the area of Machine
Learning should be further investigated �see ����� for the �rst results�� Since Fuzzy logic circuit decom�
position can be reduced to ��valued logic decomposition� the approach can be also used to decompose
Fuzzy Logic circuits ����
The goal of the research outlined here is to prove� step�by�step� the following�

� the new representation is superior to all previous representations for function decomposition�

� a decomposition program can be created that will be much superior to all the current systems as
a machine learning program on functions with a small and medium number of variables�

� a decomposition program can be created that will be superior to all the current systems as a
machine learning program on functions with more than �� variables�

� a system for functions with a very high percentage of don
t cares� superior to previous ones can
be created�

Soon more testing results will be available� as well as comparison with other machine learning pro�
grams on the Heart Disease Problem Database� Our ultimate goal is the creation of a practical
#machine learning� algorithm that will give useful results on military data� Which means� at the min�
imum� �� binary input variables but more likely� about ��� multiple�valued variables� As presented
above� in machine learning� with the increase in the number of input variables there is only a small
increase in the number of both positive and negative samples� but a dramatic increase in the number
of don
t cares� For instance� it is reasonable to expect that for a function of ��� variables there will not
be more than ������ cares�
The programmust be robust across various classes of data from the learning benchmarks� Combining

SOP and ESOP minimizers� like Espresso and EXORCISM� into a single program with a functional
decomposer will create a program that would be superior to any of them� We have to �nd the best way
to do this�

������



We believe that the analyses of various approaches to machine learning� including SOP� ESOP�
trees� decision diagrams� and functional decomposers performed at Wight Labs and in our previous
papers pinpointed strengths and weaknesses of all analyzed approaches� AFD is clearly superior on
small functions but it is not yet tractable on larger ones� Espresso has trouble with #counting� type of
dependencies such as parity and arithmetic circuits but handles don
t cares relatively well� EXORCISM
is superior to Espresso and C��� on many larger functions� but has trouble with very strongly unspeci�ed
functions� and C��� � the defacto standard machine learning tool� can handle more special cases of data
and user requirements� but its quality is often worse than other approaches� We believe� all these
comparisons will be helpful to create a superior program�
The observation that functions in Machine Learning are very strongly unspeci�ed and thus none

of the known approaches work well� makes the requirements on the minimization programs in circuit
design and machine learning very di�erent� a point that has not yet been su�ciently observed and
appreciated� This fact calls for the development of totally new approaches to synthesis

and is a very positive opportunity for people working in the area of development of new algorithms for
logic synthesis� Instead of adapting the algorithms created for circuit design� new algorithms should be
created from scratch� and from the very beginning they should take into account the problem speci�cs�
Moreover� since these algorithms run only in software� and only DFC minimization is important� EXOR
gates or any other gates or universal modules are as good as any other commonly used gates and cells�
and there is no problem of its realization or speed� The space of investigations is then here much wider
than in classical logic synthesis for circuit design applications�
Missing values� and especially noise� are still not adequately part of the circuit design world but are

a reality in KDD and ML� It will be necessary to �nd solutions to these issues if we are to use logic
synthesis tools in these �elds�
We believe that machine learning will become a new and fruitful area for logic synthesis research�

and an application territory for logic minimizers� There exist big challenges� but also great wins for
successful programs� The �rst research results that appreciate this synergy and try to link the two
worlds of the #machine learning community� and the #design automation community� already start
to appear� new decision�diagram approaches were presented in ���� by Ron Kohavi ���
� ����� and
Arlindo Oliveira ������
It is quite possible� that problems with an unusually high percent of don
t cares� �rst observed in

ML� will be also better identi�ed in the area of circuit design� for instance� when more sophisticated
compilers of VHDL and other high�level languages will become to proliferate�
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Personal Computers�� Proc� ��th ACM�IEEE Design Automation Conf�� ���
� pp� 	���	���

�����	



���� LogicBenchmarks� �Logic Benchmarks of International Workshop on Logic Synthesis�� MCNC�
North Carolina� May ���
�

�	�� T� Luba� B� Zbierzchowski� �Topological Models of Boolean Functions and Their Application in
the Synthesis of Complex Combinational Circuits�� Rozprawy Elektrotechniczne� No��� ���
�

�	�� M� Perkowski� H� Uong� �Generalized Decomposition of Incompletely Speci�ed Multioutput�
Multi�Valued Boolean Functions��Unpublished manuscript� Department of Electrical Engineering�
PSU ���
�

�	�� T�D� Ross and A�V� Lair� �De�nition and Realization in Pattern Recognition System Design�� In
Proc� of 	��� IEEE Int� Conf� on Systems� Man and Cybernetics� pp� 
���
��� ���
�

�	�� �

�	�� T�Sasao� �Functional Decomposition of PLAs�� Proc� of the Intern� Workshop on Logic Synthesis�
Research Triangle Park� North Carolina� May ������ ���
�

�	�� S� Devadas� A�R� Wang� A�R� Newton� A� Sangiovanni�Vincentelli� �Boolean Decomposition in
Multi�Level Logic Optimization�� Proc� IEEE International Conf� on Computer�Aided Design�
pp� �������� �����

�		� F� Dresig� �Synthese Kombinatorischer Schaltnetzwerke mit Arbeitsplatzcomputern�� Disserta�
tion� T�U� Karl�Marx�Stadt �Chemnitz�� ����� �in German��

�	
� T� Luba� �Synthesis of Multi�Level Logic Circuits�� Prace Naukowe Politechniki Warszawskiej�
Elektronika� Vol� 
�� ����� Publishers of Warsaw Technical University� ���		�� Warszawa�
Nowowiejska ��� Poland� �in Polish��

�	�� M� Perkowski� J� Brown� �A Uni�ed Approach to Designs with Multiplexers and to the Decom�
position of Boolean Functions�� Proc�ASEE Annual Conference� pp��	����	��� �����

�	�� J� Poswig� �Disjoint decomposition��Proc� of 
rd� International Workshop on Spectral Techniques�
Dept� Comp� Science� University of Dortmund� Dortmund �����

�
�� T�D� Ross and A�V� Lair� �On the Role of Patterns in Recognizer Design�� In Josef Kittler� ed�
Pattern Recognition� pp� �������� Springer�Verlag� New York� �����

�
�� T�D� Ross� �Pattern Representation and Recognition�� Research Prospectus� Air Force Institute
of Technology� �����

�
�� T�D� Ross� �Elementary Theorems in Pattern Theory�� Ph�D� Thesis� Air Force Institute of Tech�
nology� �����

�
�� S� Devadas� A� Wang� A�R� Newton� and A� Sangiovanni�Vincentelli� �Boolean Decomposition in
Multilevel Logic Optimization�� IEEE Journal of Solid�State Circuits� Vol� ��� pp� �������� April
�����

�
�� M�A� Perkowski� J� Liu� J�E� Brown� �Rapid Software Prototyping� CAD Design of Digital CAD
Algorithms�� In G�W� Zobrist �ed�� Progress in Computer�Aided VLSI Design� Vol� �� pp� ��������
�����

�
�� T�Sasao� �Aplication of Multiple�Valued Logic to a Serial Decomposition of PLAs�� Proc� of the
Intern� Symp� on Multiple�Valued Logic� Zangzou� China� pp� �	���
�� May �����

�
	� S� Yang� M� Ciesielski� �A Generalized PLA Decomposition With Programmable Encoders�� In
the Proc� of the Intern� Workshop on Logic Synthesis� May ����� pp� �����

�����




�

� S� Yang� M� Ciesielski� �PLA Decomposition with Generalized Decoders�� Proc� of the ICCAD�
pp� �������� �����

�
�� F�M� Brown� �Boolean Reasoning� The Logic of Boolean Equations��Kluwer Academic Publishers�
�����

�
��

���� G� Saucier� P� Sicard� L� Bouchet� �Multi�Level Synthesis on PALs�� Proc� European Design
Automation Conf�� pp� ������	� �����

���� R� J� Francis� J� Rose� K� Chung� �Chortle� A Technology Mapping Program for Lookup Table�
Based Field Programmable Gate Array�� Proc� ��th ACM�IEEE Design Automation Conf�� �����
pp� 	���	���

����

���� J�W� Grzymala�Busse� �On the Reduction of Instance Space in Learning from Examples�� In
�Methodologies for Intelligent Systems�� eds� Z�W� Ras� M� Zemankova� M�L� Emrich� Elsevier
Sci� Publ�� pp� �������� �����

���� D� Bochmann� B� Steinbach� �Logikentwurf mit XBOOLE�� Verlag Technik� Berlin� �����

���� D� Filo� J�C� Yang� F� Mailhot� G�D� Micheli� �Technology Mapping for a Two�Output RAM�
based Field�Programmable Gate Array�� Proc� European Conference on Design Automation� pp�
�������� �����

��	� T� Luba� J� Kalinowski� K� Jasinski� �PLATO� A Cad Tool for Logic Synthesis Based on Decom�
position�� Proc� of European Conference on Design Automation� pp� 	��	�� �����

��
� B�G� Kim� D�L� Dietmeyer� �Multilevel Logic Synthesis of Symmetric Switching Functions�� IEEE
Trans� on CAD� Vol� ��� No��� April �����

����

���� R� Murgai� N� Shenoy� R�K� Brayton� A� Sangiovanni�Vincentelli� �Improved Logic Synthesis Al�
gorithm for Table Look Up Architectures�� Proc� IEEE Intern� Conf� on Computer Aided Design�
pp� �	���	
� �����

��� R� Murgai� N� Shenoy� R�K� Brayton� A� Shangiovanni�Vincentelli� �Performance Directed
Synthesis for Table Look Up Programmable Gate Arrays�� Proc� ICCAD 	��	� Santa Clara� CA�
Nov� ����� pp� �
���
��

����

���� Z� Pawlak� �Rough Sets�� Theoretical Aspects of Reasoning about Data� Kluwer Academic Pub�
lishers� Dordrecht� �����

���� J� Poswig� �Disjoint Decomposition of Boolean Functions�� IEE Proceedings� Vol� ���� No� �� pp�
����	� January �����

���� T� D� Ross� M�J� Noviskey� T�N� Taylor� D�A� Gadd� �Pattern Theory� An Engineering Paradigm
for Algorithm Design�� Final Technical Report WL�TR��	�	���� Wright Laboratories� USAF�
WL�AART�WPAFB� OH ������	���� August �����

���� P� Sicard� M� Crastes� K� Sakouti� G� Saucier� �Automatic Synthesis of Boolean Functions on
Xilinx and Actel Programmable Devices�� Proc� Euro ASIC ��	� pp� �������� �����

������



���� A� Skowron� C� Rauszer� �The Discernibility Matrices and Functions in Information Systems��
Res� Rep� 	��	� Inst� Comp� Sci�� Warsaw� �����

��	� M� Ciesielski� S� Yang� �PLADE� A Two Stage PLA Decomposition�� IEEE Trans� on CAD� Vol�
��� pp� �������� �����

��
�

���� J�W� Grzymala�Busse� �LERS � A System to Learning from Examples Based on Rough Sets�� In
�Intelligent Decision Support� Handbook of Application and Advances of the Rough Sets Theory��
ed� R� Slowinski� Kluwer Academic Publishers� Dordrecht �����

���� L� Jozwiak� F� Volf� �An E�cient Method for Decomposition of Multiple�Output Boolean Func�
tions and Assigned Sequential Machines�� Proc� European Conference on Design Automation� pp�
�������� �����

����� A� Skowron� C� Rauszer� �The Discernibility Matrices and Functions in Information Systems�� In
Intelligent Decision Support � Handbook of Application and Advances of the Rough Sets Theory�
R�Slowinski �ed�� Kluwer Academic Publisher� �����

����� Y�T� Lai� M� Pedram� S� Vrudhula� �BDD�based Logic Decomposition� Theory��Technical Report�
Dept� of EE� Systems� University of Southern California� �����

�����

����� T� Luba� J� Rybnik� �Rough Sets and Some Aspects in Logic Synthesis�� In Intelligent Decision
Support � Handbook of Application and Advances of the Rough Sets Theory� R�Slowinski �ed��� pp�
�������� Kluwer Academic Publishers �����

�����

����� T� Luba� J� Rybnik� �Algorithm for Elimination of Attributes and Arguments Based on Unate
Complement Concept�� Bull� Pol� Ac� � Tech�� Vol� ��� No��� pp� �������� �����

���	� T� Luba� M�A� Markowski� B� Zbierzchowski� �Logic Decomposition for Programmable Gate Ar�
rays�� Proc� of Euro�ASIC���� Paris� �����

���
� T� Luba� J� Rybnik� �Algorithmic Approach to Discernibility Function with Respect to Attributes
and Object Reduction�� Int� Workshop on Rough Sets
 State of the Art and Perspectives� Poznan
�����

����� T� Luba� K� Gorski� L�B� Wronski� �ROM�Based Finite State Machines with PLA Address Mod�
i�ers�� Proc� European Design Automation Conf�� pp� �
���

� �����

����� M�J� Noviskey� �Correlation Partition Selection Algorithm�� Technical Report� WL�AART���
W�P AFB� OH ������
���� August �����

����� T�D� Ross� M�L� Axtell� M�J� Noviskey� M� Breen� �A Demonstration of a Robust Occam�Based
Learner�� In Proc� IEEE Int� Symp� on Information Theory� �����

����� T�D� Ross� �Function Decomposition Strategy for the Function Learning and Synthesis Hotbed��
Technical Memorandum WL�TM����		�� Wright Laboratory� USAF� WL�AART� WPAFB� OH
������	���� August �����

����� W� Wan� M�A� Perkowski� �A New Approach to the Decomposition of Incompletely Speci�ed
Multi�Output Function Based on Graph Coloring and Local Transformations and Its Application
to FPGA Mapping�� Proc� European Design Automation Conf�� pp��������� �����

������



����� M�L� Axtell� �Partition Selection Algorithms� Row�ColumnRatio Experiment��Technical Report�
Veda Inc�� c�o WL�AART��� W�P AFB� OH ������
���� April �����

����� T� Luba� H� Selvaraj� A� Krasniewski� �A New Approach to FPGA�based Logic Synthesis��Work�
shop on Design Methodologies for Microelectronics and Signal Processing� Gliwice � Cracow� �����

����� M�L� Axtell� T�D� Ross� M�J� Noviskey� �Performance Comparison Between Occam�Based� Back�
Propagation� and Abduction Learning Networks�� In IEEE Int� Conf� on Neural Network Appli�
cations in Signal Processing� �����

���	� M�A� Breen� T�D� Ross� M�J� Noviskey� M�L� Axtell� �Pattern Theoretic Image Restoration��
Proc� SPIE ��
 Nonlinear Image Processing IV ��������

���
� J�F� Frenzel� �Application of Genetic Algorithms to Pattern Theory�� Final Report� Summer
Faculty Research Program� July �����

����� Shusheng He and M� Torkelson� �Disjoint Decomposition With Partial Vertex Chart�� In Proc�
of the Intern� Workshop on Logic Synthesis� Lake Tahoe� CA� pp� P�a���P�a��� May �����

����� Y�T� Lai� M� Pedram� S� Sastry� �BDD�based Decomposition of Logic Functions With Application
to FPGA Synthesis�� Proc� of 
�th DAC� pp� 	���	�
� �����

����� Y�T� Lai� K�R� Pan� M� Pedram� S� Vrudhula� �FGMap� A Technology Mapping Algorithm for
Look�up Table Type FPGA Synthesis�� Proc� of 
��th DAC� pp� 	���	�
� �����

����� T� Luba� H� Selvaraj� A� Krasniewski� �A New Approach to FPGA�based Logic Synthesis��Work�
shop on Design Methodologies for Microelectronics and Signal Processing� pp� �������� Gliwice�
Cracow �����

����� T� Luba� R� Lasocki� J� Rybnik� �An Implementation of Decomposition Algorithm and its Appli�
cation in Information Systems Analysis and Logic Synthesis�� International Workshop on Rough
Sets and Knowledge Discovery� pp� ��
����� Ban� �����

����� T� Luba� J� Rybnik� �Algorithmic Approach to Discernibility Function with Respect to Attributes
and Objects Reduction�� Foundation of Computing and Decision Sciences� Vol� ��� No� ���� pp�
�������� �����

����� T� Luba� H� Selvaraj� A� Krasniewski� �A New Approach to FPGA�based Logic Synthesis��Work�
shop on Design Methodologies for Microelectronics and Signal Processing� Gliwice�Cracow� �����

����� T� Luba� M� Mochocki� J� Rybnik� �Decomposition of Information Systems Using Decision Ta�
bles�� Bulletin of the Polish Academy of Sciences� Technical Sciences� Vol� ��� No��� �����

���	� M�J� Noviskey� �Row Identi�cation for Function Decommposition in Pattern Theory�� Technical
Report� WL�AART��� W�P AFB� OH ������
���� May �����

���
� D� Patel� T� Luba� �Dependence Sets and Functional Decomposition of Boolean Functions�� In�
tern� J� of Electr�� Vol� 
�� No� �� pp� �

����� August �����

����� T�D� Ross� M�L� Axtell� M�J� Noviskey� �Logic Minimization as a Robust Pattern Finder�� Intern�
Workshop on Logic Synthesis� Lake Tahoe� CA� May ����	� �����

����� T�D� Ross� M�J� Noviskey� M�L� Axtell� D�A� Gadd� �Flash user
s guide�� Technical report� Wright
Laboratory� USAF� WL�AART� WPAFB� OH ������	���� December �����

����� T�D� Ross� M�L� Axtell� M�J� Noviskey� D�A� Gadd� �Pattern Theory Paradigm for System De�
sign�� In Proc� 
�th Midwest Symposium on Circuits and Systems�� �����

������



����� T�D� Ross� M�J� Noviskey� M�L� Axtell� D�A� Gadd� �Flash Software Description�� Technical
report� Wright Laboratory� USAF� WL�AART� WPAFB� OH ������	���� December �����

�����

����� T� Sasao �ed��� �Logic Synthesis and Optimization�� Kluwer Academic Publishers� �����

����� T� Sasao� � FPGA Design by Generalized Functional Decomposition�� in �Logic Synthesis and
Optimization� � T� Sasao� � Ed�� Kluwer Academic Publishers� pp� �������� �����

����� T� Sasao �ed��� #An Exact Minimization of AND�EXOR Expressions Using BDDs�� in Proc� of
IFIP Work� on Appl� of RM Exp� in Circ� Des�� Hamburg� pp� ������ �����

���	� H� Selvaraj� A� Czerczak� A� Krasniewski� T� Luba� �A Generalized Decomposition of Boolean
Functions and its Application in FPGA�Based Synthesis�� IFIP Workshop on Logic and Archi�
tecture Synthesis� pp� ��
��		� Grenoble �����

���
� H� Wu� and M� A� Perkowski� �Synthesis for Reed�Muller Directed�Acyclic�Graph networks with
applications to Binary Decision Diagrams and Fine Grain FPGA Mapping�� Proc� of IWLS ��
�
Tahoe City� CA� May �����

����� H� Wu� N� Zhuang� and M� A� Perkowski� �Synthesis for Reed�Muller Directed�Acyclic�Graph
network�� accepted to IEE Proceedings� Pt� E�� in June �����

����� M� Breen� T�D� Ross� M�L� Axtell� �Computing ColumnMultiplicity in Function Decomposition��
report� WPAFB� �����

����� C� Files� �Using a Search Heuristic in an NP�Complete Problem in Ashebhurst�Curtis Decom�
position�� Final Report for Graduate Summer Research Program� Wright Laboratory� Sponsored
by Air Force O�ce of Scienti�c Research� Bolling Air Force Base� DC and Wright Laboratory�
August �����

����� L� Jozwiak� �General Decomposition and Its Use in Digital Circuit Synthesis��Manuscript� Eind�
hoven University of Technology� Faculty of Electrical Engineering� P�O� Box ���� �	�� MB Eind�
hoven� The Netherlands� �����

����� R� Kohavi� �A Third Dimension to Rough Sets�� Proc� of The Third International Workshop on
Rough Sets and Soft Computing� pp� �������� San Jose� �����

����� T� Luba� R� Lasocki� �Decomposition of Multiple�valued Boolean Functions�� Applied Mathemat�
ics and Computer Science� Vol��� No��� pp� �������� �����

����� T� Luba� R� Lasocki� �On Unknown Attribute Values in Functional Dependencies�� Proc� of The
Third International Workshop on Rough Sets and Soft Computing� pp�������
� San Jose� �����

����� M� Marek�Sadowska� �Detecting Symmetric Variables in Boolean Functions using Generalized
Reed�Muller Forms�� Proc� ISCAS���� pp� ��
����� �����

���	� M� J� Noviskey� T�D� Ross� D�A� Gadd� M� Axtell� �Application of Genetic Algorithms to Function
Decomposition in Pattern Theory�� report WL�TR����	�	�� �����

���
� M� Perkowski� H� Uong� #Generalized Decomposition of Incompletely Speci�ed Multioutput�
Multi�Valued Boolean Functions�� Unpublished manuscript� Dept� Electr� Eng�� PSU ���
�

����� M� Perkowski� J� Brown� #A Uni�ed Approach to Designs with Multiplexers and to the Decom�
position of Boolean Functions�� Proc� ASEE Ann� Conf�� pp��	����	��� �����

������



����� M� A� Perkowski� M� Chrzanowska�Jeske� T� Shah� #Minimization of Multioutput TANTNetworks
for Unlimited Fan�In Network Model�� Proc� of ICCD���� pp� �	� � �	�� Boston� MA� September
�����

����� M� A� Perkowski� M� Chrzanowska�Jeske� #An Exact Algorithm to Minimize Mixed�Radix Exclu�
sive Sums of Products for Incompletely Speci�ed Boolean Functions�� Proc� ISCAS���� pp� �	��
� �	��� New Orleans� ��� May �����

����� M� A� Perkowski� and J� Liu� #A Program for Exact Synthesis of Three�Level NAND Networks��
Proc� ISCAS���� pp� ���� � ����� New Orleans� ��� May �����

����� M� A� Perkowski� and A� Coppola� #A State Machine PLD and Associated Minimization Algo�
rithms�� Proc� FPGA����� pp� ��� � ���� Berkeley� February �	���� �����

����� M� A� Perkowski� W� Zhao� and D� Hall� #Concurrent Two�Dimensional State Minimization and
State Assignment of Finite State Machines�� Proc� VLSI Design ���� pp� �� � ��� Bangalore� India�
January ��
� �����

����� M� A� Perkowski� M� Chrzanowska�Jeske� #Multiple�Valued�Input TANT Networks�� Proc� IS�
MVL���� pp� �������� Boston� MA� May ����
� �����

����� M� A� Perkowski� T� Ross� D� Gadd� J� A� Goldman� and N� Song� #Application of ESOP Min�
imization in Machine Learning and Knowledge Discovery�� submitted to this Workshop� April
�����

���	� M� A� Perkowski� T� Luba� S� Grygiel� R� Lisanke� N� Iliev� P� Burkey� M� Burns� R� Malvi� C�
Stanley� Z� Wang� H� Wu� F� Yang� S� Zhou� and J� S� Zhang� #Uni�ed Approach to Functional
Decompositions of Switching Functions�� PSU Report� March �����

���
� E� Pierzchala� M�A� Perkowski� S� Grygiel� �A Field Programmable Analog Array for Continuous�
Fuzzy� and Multi�Valued Logic Applications�� Proc� ISMVL ���� pp� ��� � ����

����� T�D� Ross� J�A� Goldman� M�J� Noviskey� M�L� Axtell� D�A� Gadd� �Graph Coloring for Column
Multiplicity� A Survey�� WL WPAFB report� April ��� �����

����� T�D� Ross� M�J� Noviskey� M�L� Axtell� D�A� Gadd� J�A� Goldmann� �Pattern Theoretic Feature
Extraction and Constructive Induction��Technical report�Wright Laboratory� USAF� WL�AART�
WPAFB� OH ������	���� April ��� �����

��	�� T�D� Ross� J�A� Goldmann� D�A� Gadd� �On the Decomposition of Continuous Functions�� In
Third Intern� Workshop on Post�Binary VLSI Systems� �����

��	�� I� Schaefer� and M� A� Perkowski� #Synthesis of Multi�Level Multiplexer Circuits for Incom�
pletely Speci�ed Multi�Output Boolean Functions with Mapping Multiplexer Based FPGAs��
IEEE Trans� on CAD� Vol� ��� No� ��� pp� �	�� � �		�� Nov� �����

��	�� Selvaraj Ph�D�

��	�� R� Kohavi� ����� Several recent papers�

��	�� Z� Kohavi� �Switching Circuits and Finite Automata Theory��

��	�� A� Oliveira� �����

��		� Voigt

��	
� Murgai� Brayton�

������



��	�� D�F� Barnard� D�F� Holman� �The use of Roth
s Decomposition Algorithm in Multi�Level Design
of Circuits

��	�� Luba� ISMVL Invited Paper� �����

��
�� L� B� Nguyen� M�A� Perkowski� N�B� Goldstein� #PALMINI � Fast Boolean Minimizer for Personal
Computers�� Proc� ��th DAC� ���
� pp� 	���	���

��
�� Ch� Meinel� J� Bern� A� Slobodova� #E�cient OBDD�Based Boolean Manipulation in CAD Beyond
Current Limits�� Proc� 
�nd DAC� San Francisco �����

��
�� R� Brayton and F� Somenzi� #An Exact minimizer for Boolean Relations�� Proc� of ICCAD� pp�
��	����� �����

��
�� M� J� Ciesielski� S� Yang� and M� A� Perkowski� #Multiple�Valued Minimization Based on Graph
Coloring�� Proc� ICCD���� pp� �	� � �	�� October �����

��
�� M� Fujita� Y� Kukimoto� R� Brayton� #BDD Minimization by Truth Table Permutations�� IWLS
����

��
�� E� B� Lee� M� Perkowski� #Concurrent Minimization and State Assignment of Finite State Ma�
chines�� Proc� Int� Conf� on Syst� Man� and Cyb�� pp� ��� � �	�� Halifax� Nova Scotia� Canada�
October � � ��� �����

��
	� Perkowski� cdb applications

��

� Y�S� Abu�Mostafa� �Complexity in Information Theory�� Springer�Verlag� New York� ���pp� ISBN
����
��		����� �����

��
�� A�R� Barron� and R�L� Barron� �Statistical Learning Networks� A Unifying View�� Symposium
on the Interface
 Statistics and Computing Science� �����

��
�� A� Blumer� A� Ehrenfeucht� D� Haussler� and M�K� Warmuth� �Occam
s Razor�� Information
Processing Letters� Oct� ���
� pp� �

�����

����� M�A� Breen� T�D� Ross� M�J� Noviskey� and M�L� Axtell� �Pattern Theoretic Image Restoration��
Proc� SPIE��
 Nonlinear Image Processing� Intern� Soc� for Optical Engineering� January �����

����� B� Falkowski� I� Schaefer� and Ch�H� Chang� �An E�ective Computer Algorithm for the Calcula�
tion of Disjoint Cube Representation of Boolean Functions�� Proc� of the 
��th Midwest Sympo�
sium on Circuits and Systems� pp� ���������� �����

����� J�A� Goldman� �Pattern Theoretic Knowledge Discovery�� Proc� �th IEEE International Confer�
ence on Tools with Arti�cial Intelligence� IEEE� November �����

����� J� A� Goldman� �Machine Learning� A Comparative Study of Pattern Theory and C����� Wright
Laboratory� USAF� Technical Report� WL�TR��������� WL�AART� WPAFB� OH ������	����
August �����

����� J� A� Goldman� M� L� Axtell� �On Using Logic Synthesis for Knowledge Discovery�� submitted�

����� J�A� Goldman� T�D� Ross� and D�A� Gadd� �Pattern Theoretic Learning�� AAAI Spring Sympo�
sium Series on Systematic Methods of Scienti�c Discovery� AAAI� March �����

���	� G�H� John� R� Kohavi� and K� P�eger� �Irrelevant Features and the Subset Selection Problem��
In Machine Learning
 Proceedings of Eleventh International Conference� ����� July �����

������



���
� R� Kohavi� and B� Frasca� �Useful Feature Subsets and Rough Set Reducts�� Third International
Workshop on Rough Sets and Soft Computing� �����

����� R� Kohavi� �Bottom�up Induction of Oblivious Read�Once Decision Diagrams�� In European Con�
ference on Machine Learning� �����

����� J� Koza� �Genetic Programming�� MIT Press� �����

����� G�J� Montgomery� and K�C� Drake� �Abductive Networks�� SPIE Applications of Neural Networks
Conference� April �����

����� Ming Li and Paul M� B� Vit'anyi� �Inductive Reasoning and Kolmogorov Complexity�� Journal of
Computer and System Sciences� Vol� ��� pp� �������� �����

����� R� Michalski� J� Carbonell� and T�M� Mitchell� �Machine Learning
 An Arti�cial Intelligence
Approach�� Morgan Kaufmann� vol� �� ����� vol� �� ���	�

����� A�L� Oliveira� and A� Sangiovanni�Vincentelli� �Constructive Induction Using a Non�Greedy Strat�
egy for Feature Selection�� Proceedings on the Ninth International Conference on Machine Learn�
ing� pp� �����	�� �����

����� A�L� Oliveira� and A� Sangiovanni�Vincentelli� �Learning Complex Boolean Functions� Algorithms
and Applications�� Implementation and Simulation � VLSI� preliminary copy 	�������

����� A�L� de Oliveira� �Inductive Learning by Selection of Minimal Complexity Representations�� Ph�D�
Thesis� University of California at Berkeley� Dec� �����

���	� G� Pagallo� and D� Hausler� �Boolean Feature Discovery in Empirical Learning�� Machine Learn�
ing� Vol� �� pp� 
����� �����

���
� M�A� Perkowski� P� Dysko� and B�J� Falkowski� �Two Learning Methods for a Tree�Search Combi�
natorial Optimizer�� Proc� of IEEE Int� Conf� on Comput� and Comm�� pp� 	�	�	��� Scottsdale�
Arizona� �����
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