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Abstract

Generalized Partially�Mixed�Polarity Reed�Muller
�GPMPRM� expansions are a canonical sub�family
of Generalized Reed�Muller �GRM� expansions and
super�family of Fixed�Polarity Reed�Muller �FPRM�
expansions� The main motivation to study GPM�
PRM forms is their very high testability� similar to
FPRM forms and better than GRMs� which are also
highly testable� Since GPMPRM sub�family of ESOP
is much larger than FPRM expansions� the minimal
form of this expansion will be much closer to the min�
imal ESOP than the minimal form of FPRM expan�
sion� with the same order of testability� We give an
improved algorithm to �nd exact GPMPRM forms�
By comparing the ratio of the number of forms to the
number of operations of the algorithm used to compute
the minimal forms with that of the existing algorithms�
we conclude that the algorithm is highly e�cient� Sim�
ilar to the expansions based on Kronecker matrix prod�
ucts� this algorithm can be e�ciently implemented in
hardware using only EXOR operations�

� Introduction

The problems of �nding an exact or high�quality ap�
proximate ESOP expressions for Boolean functions are
central in this EXOR based synthesis ��� ��� �	� ��� ����
In an attempt to create better ESOP minimizers� var�
ious approaches are being researched� Recently� there
has been an interest in Generalized Reed�Muller forms
which produce results very close to exact minimum
ESOPs �	� �� ���� Moreover� they are highly testable
���� ��� �	�� Mathematically� the GRM forms do not
exhibit a general structure in the nested hierarchy of
families of canonical forms in ��� because in general
they are not constructed from Kronecker matrix prod�
ucts ���� Therefore� it is important to �nd their sub�
families that would have some structure� thus possibly
leading to e�cient exact algorithms� All sub�families
of GRM will inherit their excellent testability� which
makes one more argument for their study�

Another argument for investigating forms with
well�de�ned structure is this� When a data��ow struc�
ture similar to Fast Fourier Transforms is found� there

are many e�cient ways of implementing respective al�
gorithms� both in software and in hardware� Such
algorithms have been already created for sequential
and parallel processors� pipelined processors� Digi�
tal Signal Processors� vector processors� cellular au�
tomata� systolic arrays and FPGA custom proces�
sors� The Fixed Polarity Reed�Muller and Kronecker
Reed�Muller ��� expansions have this required struc�
ture ����� which makes them good candidates for par�
allelization and hardware realizations� Moreover� they
use only EXOR operations� in contrast to Fast Walsh
transform that uses adders and subtractors and Fast
Fourier transform that uses adders and multipliers�
Therefore� these two forms are good candidates to be
implemented in hardware� and especially in FPGA
custom engines� However� the quality of solutions
based on FPRMs and KRMs is worse than those from
GRM� Unfortunately mapping GRM synthesis algo�
rithms ��� ��� to hardware is di�cult� which is one of
the reasons why we are investigating sub�families of
GRM that have a regular structure�

Since the GPMPRM forms can o�er n�n����
n��

�

n � ���n forms including �n FPRM forms� the min�
imal GPMPRM form is much closer to the minimal
ESOP than all known forms that have a regular struc�
ture� Moreover� GPMPRM forms� being a subset of
highly testable GRM forms ���� ��� �	� are much bet�
ter testable than ESOPs and even the GRM them�
selves� Sasao ���� introduced a multiple�stack�at testa�
bility method for GRMs which requires one additional
EXOR gate for every mixed�polarity variable� plus
a total of four checking gates for the entire circuit�
Using this method for GPMPRMs� only one addi�
tional EXOR gate is needed to make the circuit easily
testable since only one variable is mixed�polarity in
GPMPRMs� This approach makes GPMPRMs prac�
tically as easily testable as FPRMs for single�stack�at
faults�

The structure of this paper is the following� Section
� de�nes GPMPRMs� Section 	 reviews a data��ow
algorithm for exact FPRM minimization� Section �
expands these ideas to exact GPMPRMminimization�
An improved algorithm from section � is presented
in section �� Section � evaluates numerical results�
section � generalizes GPMPRMs� and section 
 gives
the conclusions�



� GPMPRM expansions

The Generalized Reed�Muller 
GRM� forms are cre�
ated by selecting any combination of literals in the
positive polarity 
or zero polarity� RM expansion and
replacing these with their inverses� They can be ex�
pressed as follows�
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where �xi
� � �� �xi

� � �xi� 
i � �� �� ���� n��
bj � f�� �g� 
j � �� �� �� � � � � �n � ��� ei �
f�� �g�
j��� � 
e�e� � � �ei � � � en���
Moreover� for each �xi in di�erent terms� �xi � xi or
�xi � �xi�
By setting some constraints on the GRM de�nition�

the Generalized Partially�Mixed�Polarity Reed�Muller

GPMPRM� expansion has been de�ned in �����

De�nition � The Generalized Partially�Mixed�
Polarity Reed�Muller
GPMPRM� form is created by
selecting any combination of the �n�� literals of one
variable in the Fixed�Polarity RM expansion �FPRM�
and replacing them with their inverses but keeping all
the literals of the other variables under consistent �xed
polarities�

In ���� GPMPRM forms were introduced and an ex�
act algorithm to calculate them was provided� Below�
a more e�cient approach to the same problem will be
presented�

Obviously� from the de�nition� the GPMPRM
forms are included in the GRM forms but include the
FPRM forms� Let�s consider a 	�variable function� It
can be written as the following GRM expression�

f � b� � b�
x� � ��� � b�
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� b�
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x� � ���

� b�
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��

where�
�
 �x�� � 
��� ��� ��� ���� �
 �x�� � 
��� ��� ��� ���
and �
 �x�� � 
��� ��� ��� ��� are the polarity sets of
each variable� respectively�

Hence� there are �����
� � �	 � ��� GRM forms for

a 	�variable function� For the GPMPRM expansion�
the literals of one variable can take mixed�polarities�
and all the other variables should take �xed�polarities�
If x� is the mixed�polarity variable� then x�� x� must
take �xed polarities� Thus� we have ��� ��� ��� ��� �
f�� �g but �� � ��� �� � �� 
� �� � f�� �g� and
�� � �� � �� � �� 
 � �� � f�� �g� Since there
are �� mixed polarities for the � literals of the mixed�
polarity variable� �� �xed polarities for the remaining

two �xed polarity variables� and 	 choices of selecting
the mixed polarity variable� thus there are ��� 
i�e�
	 � �� � �� � � � ��� GPMPRM forms for a 	�variable
function� 
The 	 � �� � �� forms include 	 overlapping
�� �xed polarity forms� that is� all the three variables
take �xed polarities� so � � �� should be subtracted��

Lemma � For an n�variable function� there are

n�n����
n��

� 
n� ���n GPMPRM forms�

Proof� Each variable has �n�� literals in �n terms
of the positive RM canonical form for an n�variable
function� When the literals of one variable take the
mixed polarities� there are ��

n��

mixed polarities for
the variable� The other 
n � �� variables should take
the �xed polarities� and thus there are �n�� �xed po�
larities� For an n�variable function� we have n choices
of selecting the mixed polarity variable� and therefore�

we have n�n����
n��

alternative forms including the n�
times overlapping �n FPRM forms� Hence� the total

number of GPMPRM forms is n�n����
n��

� 
n����n�
The relations among the GPMPRM and the other

RM expansion families are shown in Fig� ��
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Figure �� The Relationship among the GRMPRM�
PPRM� FPRM and GRM

The GPMPRM class is much larger than the Kro�
necker Reed�Muller
KRM� expansion� thus generally
the minimal form of this expansion should be much
closer to the minimal ESOP than the minimal form of
the KRM expansion�

� FPRM Minimization

An algorithm for the minimizationof Fixed Polarity
Reed�Muller expression has been presented by Zhang
and Rayner in ����� According to this algorithm� only
�n � � EXOR operations are needed to calculate the
coe�cients of FPRM expansion from one of its adja�
cent polarity expansions�

For instance� two FPRM adjacent polarity expan�
sions of a 	�variable function are shown as the follow�
ing�

f
x�� x�� x�� � b� � b�x� � b�x� � b�x�x� � b�x�

�b�x�x� � b�x�x� � b�x�x�x� 
	�



f
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Figure 	� Calculation of FPRM expansions for a 	�
variable Function

Notice that between the FPRM expansions 
	� and

��� there is only one variable x� whose polarity is
inverted� To calculate the coe�cient of Eqn� 
�� from
Eqn� 
	�� we substitute �x� with � � x� in Eqn� 
	�
and obtain�
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� b���b
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�

��x��b
�

��x�x��b
�

�x��b
�

�x�x� �b
�

�x��x�
�b��x��x�x�

where�
b�� � b� � b�� b�� � b�
b�� � b� � b�� b�� � b�
b�� � b� � b�� b�� � b�
b�� � b� � b�� b

�

� � b�

This can be demonstrated by Fig� ��
For an n�variable function� if all the polarities of

the n variables are arranged according to the Gray
code� then each polarity is adjacent to the next one�
since the Gray code is a cyclic code� that is� in chang�
ing from one value to the next value only one bit is
changed� Therefore� all �n sets of the RM polynomial
coe�cients may be arranged as the adjacent polarity
coe�cients based on Gray code ordering� Then the
minimum coe�cient can be obtained by exhaustive
search through the adjacent polarity data �ow dia�
gram�

Fig� 	 is the �ow graph representing the algorithm
for the calculation of all FPRM expansions for a 	�
variable function� Let us observe that in Fig� 	 there
are 
 di�erent columns� Each represents one of the ��

�xed polarity expansions� Thus� searching through all
FPRM expansions leads to the exact minimumFPRM
solution�

� Computation of the GPMPRM Ex�

pansion

The main concepts necessary and the algorithm to
identify a minimal GPMRPM will be next presented�

De�nition � In GPMPRM forms� if a mixed polarity
of the �n�� literals of a variable has only one inverse
bit di�erence with the other mixed polarity of the �n��

literals of the variable� then these two mixed polarities
are de�ned as the Adjacent Polarities�

Theorem � When an n�variable GPMPRM form
shown in Eqn� ��� is transformed to its adjacent
polarity form� that is� a literal �xi in the term of
�xe�� �xe�� � � � �xi � � � �xenn is inverted� only the bj��n�i is
changed into bj��n�i � bj� and all other coe�cients
remain unchanged�

Proof� In the form of Eqn� 
��� when the literal �xi in
the term �xe�� �xe�� � � � �xeii � � � �xenn 
ei � �� is inverted� we
obtain its adjacent polarity form�
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From Eqn� 
��� we have�
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By comparing Eqn� 
�� to Eqn� 
�� we have

�
bj��n�i � b�

j��n�i � b�j
bj � b�j


��

Finally from Eqn� 
��� we obtain�

�
b�k � bk� 
k �� j � �n�i�
b�
j��n�i � bj��n�i � bj



�

Mixed Polarity in Gray Code Order

Figure �� Two�dimensional data �ow diagram

From Theorem �� if the mixed polarities of the �n��

literals of a variable are arranged in the Gray code or�
der� each GPMPRM form under the mixed polarities
can be computed by using only one EXOR operation�
The entry vectors are under the �xed polarities of the
other variables and the zero polarity of �n�� literals of
this variable� The entry vectors are also computed in
Gray code order of the �xed polarities ����� Actually�
this creates a two�dimensional data �ow as shown in
Fig� �� One dimension is in Gray code order of the
�xed polarities while the other dimension is in Gray
code order of the mixed polarities� Thus� according to
the De�nition �� all the GPMPRM forms are gener�
ated�
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Figure �� Flow Graph�Calculation of GPMPRM forms
when �x� is the mixed variable

In the following� our fast computation algorithm
will be explained by using a 	�variable function� In
Eqn� 
��� if the literals of variable x� take mixed
polarities and x�� x� take �xed polarities� one has
�� � �� � �� � �� 
� �� � f�� �g� �� � ��
��� � �� 
� �� � f�� �g� and ��� ��� ��� �� � f�� �g�
The expansions under mixed�polarities ��� ��� ��� ��

and �xed�polarities �� � is computed in the �ow graph
in Fig� �� where ��� ��� ��� �� are arranged in Gray
code order�
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Figure �� Two dimensional data �ow graph with �x�
being the mixed polarity variable

In Fig� � there are �� columns� each represent�
ing one of the �� GPMPRM expansions under the
mixed polarity of �x� and �xed polarity of �x� and �x��
Throughout the data �ow in Fig� � � and �� the �xed
polarities of �x� and �x�� remain unchanged� The entry
vector
�rst column� is under the zero 
positive� po�
larity of �x� 
�fe 
 �x�� � 
��������� � 
������ and
certain states of � and �� the polarities of �x� and �x��
Since �� � � f�� �g� there are �� � � entry vectors
with polarity set �fe 
 �x�� �x�� �x�� � 
����� Each

of these entry vectors ��b�� �b�� � � � � �b��
T

under �xed�
polarities �� � in Fig� �
a� is computed in the �ow
graph from Fig� �� where � and � are arranged in
Gray code order�

Combining Fig� � and Fig� � results in a two�
dimensional data �ow graph� as shown in Fig� ��

Similarly� if the literals of the variable x� take
mixed�polarities and x� and x� take �xed polarities�
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one has �� � �� � �� � �� 
� �� � f�� �g�
�� � �� � �� � �� � f�� �g� and ��� ���
��� �� 
� �� � f�� �g� The expansions under mixed�
polarities ��� ��� ��� �� and �xed�polarities � and �
are computed in the �ow graph in Fig� 

a�� where
��� ������ �� are arranged in Gray code order�

Each entry vector ��b�� �b�� � � � � �b��
T

under �xed�
polarities �� � in Fig� 

a� is computed in the �ow
graph in Fig� 

b�� where �� � are arranged in Gray
code order�

Example �
If the literals of variable x� take mixed�polarities and
x�� x� take �xed polarities� one has �� 	 �� 	 �� 	
�� 
� � � � f�� �g� �� 	 �� 	 �� 	 �� � f�� �g� and
��� ��� ��� �� 
� �� � f�� �g� The expansions under
mixed�polarities ��� ��� ��� �� 
� �� � f�� �g � and
�xed polarities �� � are computed in the 
ow graph
in Fig� ��a� where ��� ��� ��� �� 
� �� � f�� �g
are arranged in Gray coder order� Each entry vector

��b�� �b�� � � � � �b��
T

under �xed�polarities �� � in Fig�
��a� is computed in the 
ow graph in Fig� ��b�� where

0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000
b 0

b 1

b 2

b 3

b 4

b 5

b 6

b 7

000 011 010001
b 0

b 1

b 2

b 3

b 4

b 5

b 6

b 7

(b)

δ f e
(x
.
1) = (α1α2α3α4) in Gray-code Order

(a)

δ f e
(x
.
1,x

.
2,x

.
3) = ( 0 β γ ) in Gray-code Order

Figure �� Flow Graph 
a� 
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�� � are arranged in Gray code order�

As a result� the optimal polarity vector 
one with
the minimal number of nonzero elements� for the 	�
variable function is selected among all the vectors�

Since the encoding of Gray codes is a re�ective and
cyclic encoding� for any n�variable function this al�
gorithm is a recursive one� and thus it can be read�
ily programmed� Since the algorithm executes only
one EXOR operation for each mixed�polarity vector�
this algorithm is highly e�cient� The computation of
GPMPRM expansions for an n�variable function needs

a total of n
�n��� ���n�� � n�n��
��
n��

� �� EXOR
operations�

The algorithm is formulated as follows�
Algorithm � �Minimization of GPMPRM�

�� Start from PPRM� fe �� PPRM � fmin �� fe�
�� Let i �� �� Let mp be the polarity set of xi and
fp be the Fixed polarity vector of other variables�
	� mp �� mp � � in Gray code order� Let Tj be the
term in which the literal of xi changes polarity� Now
calculate the adjacent polarity GPMPRM expansion



f �e from fe by��
b�k �� bk� 
k �� j � �n�i�
b�
j��n�i �� bj��n�i � bj

�� If cost
f �e� � cost
fmin�� then fmin �� f �e
�� fe �� f �e� If mp � ��

n
��� goto step 	� ��search all

possible mixed polarity expansions of xi��
�� fp �� fp � � in Gray code order� Calculate the
adjacent polarity FPRM expansion under fp�
�� If fp � �n�� � �� go to step 	

�� search all �xed�polarity expansions ��

� If i � n� then i �� i � �� goto step ��
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Figure ��� Table of possible combinations of b�
j��n�i

In this algorithm one has to calculate all possible
GPMPRM expansions including those that overlap�
For functions with more than seven variables it is not
feasible because of the large number of forms� To
search all GPMPRM expansions n number of searches
from Fig� � is needed� Thus� the time complexity of
this algorithm is O
n ��n����

n
���� In the next section

we are going to give another algorithm which has the
same result as Algorithm � but with a time complexity
of O
n � �n��

� The Speedup Approach

Using Algorithm �� one has to calculate all the
GPMPRM forms in order to �nd the minimal one�
This would not be feasible for functions that have
many input variables� In this section� we introduce
an algorithm with which we can �nd the minimum
GPMPRM formwithout necessarily calculating all the
forms� Before we present the algorithm formally� let
us consider the following example �rst�

Given is a function in PPRM form�
f � fe � � � x� � x�x� � x�x� � x�x� � x�x�x�

� � � ��
x� � ��� � x� � x�
x� � ��� �
x�
x� � ��� � x�x�� x�x�
x� � ���

where �fe � 
��������� � 
������ By inverting all
the literals of x� in the above expansion� we obtain a
FPRM form as follows�

f � f �e � � � x��x� � x� � x��x� � x�x��x�
� � � �� 
x� � ��� � � x�
x� � ��� � � x� �
x�
 x� � ��� � � x�x�
x� � ����

where�
�f �

e
� 
������������� � 
������

Comparing fe and f �e we �nd that the inversion of
�� does not cause any change because the coe�cient
of term � � 
x� � ��� is �� thus �� can be arbitrary�
Inverting �� 
x� in term x�x�� in fe causes the term x�
to be reduced in f �e� Inverting �� 
x� in term x�x�x��
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......
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Figure ��� Calculation of the Minimal GPMPRM for
a 	�variable Function

causes term x�x� to be reduced in f �e� But inverting
�� 
x� in term x�x�� creates one more term x� in f �e�
Now if we only invert polarities �� and �� but leave the
polarities �� and �� unchanged� we have a GPMPRM
expansion as follows�

f � f ��e � � � x��x� � x�x� � x�x��x� � � � ��

x� � ��� � x�
x� � ����� x�
x� � ��� � x�x�
x� � ����
This is the minimum GPMPRM form with zero po�
larity of x�� x� and mixed polarity of x��

From Theorem � and Fig� �� �� we observe that
whenever a literal �xi in term Tj is inverted� only the
coe�cient bj��n�i is changed to bj��n�i � bj� This
coe�cient is only a�ected by the literal �xj in term
Tj � no matter how the literals of the same variable in
other terms are changed�

For b�
j��n�i � bj��n�i � bj � the following combi�

nations are possible if �xi in term Tj is inverted 
Note
this inversion can be from xi to �xi or from �xi to xi��

From table in Fig� �� we see that only when bj��n�i

and bj are both equal to �� the cost will be improved�
Owing to the above reasons� the minimum GPM�

PRM under the mixed�polarity of xi and certain �xed
polarities of other variables can be obtained by at�
tempting to invert any single literal from the �n � �
literals of xi� If the inversion of literal �xi in term
Tj causes bj��n�i to change from �� to �� � then
the inverted literal is the one that should stand in
the minimum GPMPRM� Otherwise the original lit�
eral should remain in the minimumGPMPRM� Again
we use a 	�variable function to explain our algorithm�
In Eqn� 
��� if the literals of variable x� take mixed
polarities and x�� x� take �xed polarities� we �rst in�
vert the polarities ��� ��� ��� and �� and keep ��� ���
��� �� and ��� ��� ��� �� unchanged� The resulting
adjacent polarity FPRM expansion has a coe�cient
vector f
b��� b��� b��� b��� b��� b

�

�� b��� b
�

�� and a polarity
set 
����

�

��
�

��
�

�� � 
������ as shown in Fig� ���
Let f
b��� � b

��

� � b
��

� � b
��

� � b
��

� � b
��

� � b
��

� � b
��

�� be the coe��
cient set of the minimumGPMPRM� and 
� ��

��
��

� �
��

� �
��

� �
be the corresponding polarity set� then

if bj � � and b�j � � then b��j� b�j � ���k� ���k

for others b��j � bj� ���k � �k

In Example ��
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Figure ��� Flow graph� �� �� � in Gray�code Order

f
b�� b�� b�� b�� b�� b�� b�� b�� � f
��������� and

�� ��� � �� � ��� � 
������
We have f
b��� b

�

�� b
�

�� b
�

�� b
�

�� b
�

�� b
�

�� b
�

�� � f
���������
with 
���� ��� ��

�

�� ���� � 
������
Thus the minimum GPMPRM will be

f
b��� � b
��

� � b
��

� � b
��

� � b
��

� � b
��

� � b
��

� � b
��

�� � f
��������� with
the polarity set of x� �
 �x�� � 
���� �

��

� �
��

� �
��

� � � 
������
Fig� �� is actually the calculation of Adjacent Po�

larity FPRM Expansion under which x� is the variable
that is inverted� From Fig� 
 we obtain the same re�
sult as in Fig� �� By combining Fig� �� and Fig� � we
obtain Fig� �� from which we can obtain the minimum
GPMPRM with x� being the mixed polarity variable�

In Fig� ��� � is arranged as the least signi�cant bit

�st bit�� � and � are arranged as the �nd and the 	rd
bits� respectively� During every increment in Gray�
code ordering� if the inverted bit is the �st bit� then
we can calculate the optimal GPMPRM expansion� as
stated in the above� If the inverted bit is the �nd or
the 	rd� then we can calculate the FPRM under �xed
polarities of � and �� the same result as from Fig� ��
In order to distinguish the mixed polarity variable and
the �xed polarity variables� in Fig� �� we leave a space
between the least signi�cant bit and the others�

Similarly� Fig� 
 and Fig� � can be transformed into
data �ow diagrams� as shown in Fig� �	 and Fig� ���
in which the polarity bit of the mixed polarity variable
is always arranged as the least signi�cant bit�

The algorithm is presented as the following�
Algorithm �
 �Fast minimization of GPMPRM�

�� Start from PPRM� let fmin �� PPRM �
costmin �� cost
PPRM ��
�� i �� �� Let xi be the mixed polarity variable�
fe �� PPRM � fp be the �xed polarity vector in
which the polarity of xi is arranged as the least sig�
ni�cant bit� Let � be the zero polarity of xi� �� be the
polarity set of xi in the minimal GPMPRM�
	� fp �� fp � � in Gray code order� Calculate the
Adjacent Polarity FPRM Expansion f �e from fe by�
for
j �� ��� �n � �� j � �� f

if 
Tj
�n�i contains literal xi�

12
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Figure �	� Flow graph� �� �� � in Gray�code Order

then b�j �� bj � bj
�n�i �
else

b�j �� bj�
g

�� If cost
f �e� � costmin� then fmin �� f �e�
�� If the bit changed is the least signi�cant bit� derive
the optimal GRMPRM f ��e from f �e and fe by�

if bj � � and b�j � � then b��j �� b�j � �
��

k �� ��k
for others b��j �� bj� �

��

k �� �k
�� If cost
f ��e � � costmin� then fmin �� f ��e �
�� fe �� f �e� If fp � �n then goto step ��

�� search all mixed polarity expansions of �xi ��

� If i � n� then i �� i � �� Goto step ��

�� go through all variables ��
To �nd the minimum FPRM expansion one has to

calculate �n FPRM forms� By calculating n�n FPRM
forms� we can obtain the minimumGPMPRM expan�
sion� which is much closer to the minimumESOP� than
is the minimum FPRM form� The time complexity of
Algorithm � is O
n � �n��

� Implementation and Evaluation of

exGPMPRM

Algorithm � presented in the previous section has
been implemented in a program called exGPMPRM�
It reads in an input �le and outputs the exact min�
imum GPMPRM� The cyclic code is used through
out the program for the polarity encoding� Over ���
single�output functions generated from MCNC bench�
mark have been tested and the results are very en�
couraging�

��� Pseudo�Code for Program exGPM�
PRM

In our program� counting is implemented in func�
tion k � count
� where k is the bit that changes from
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�� to �� in this increment�
Following is the pseudo code of exGPMPRM�

�� exact minimumGPMPRM ��
exGPMPRM
�
f

read in input �le fi in FPRM expression�
fmin �� fi�

for
i �� �� i � n� i��� f
�� go through all variables ��

fe � fi�
fp �� polarity of fe�
�� fp is a n�bit polarity vector of FPRM� ��
�� the polarity of xi is arranged at the ��
�� �st bit� the least signi�cant bit ��
do f

k �� count
��
inverse the kth�bit of fp�
for
j �� �� j � �n � �� j ��� f
��calculate the adjacent polarity ��
�� expansion� f �e from fe ��

if 
Tj 
 �n�i contains xi�
b�j �� bj � bj 
 �n�i �

else
b�j �� bj �

g
if
cost
f �e� � cost
fmin��

fmin �� f �e
if
k � �� f

for
j �� �� j � �n � �� j � �� f
��calculate the optimal GPMPRM ��
�� f ��e from f �e and fe��

if
bj � � and b�j � ��
b��j �� b�j�

else
b��j �� bj�

g
if
cost
f ��e � � cost
fmin��

fmin �� f ��e
g

Function Var GPMPRM ESPRE CGRMIN Time

5x3

5x5

5xp11

9sym
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f52

f53

misex47

misex54

misex58

misex62

misex63

misex64

rd532

rd732

rd842

sao22

sao23

xor5

z42

z4ml

Total terms 482 499 620
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19
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19
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0.22
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0.22
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72.22
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16.45

16.48
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0.03

0.22

0.83

16.58
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0.00

0.18

0.20

Figure ��� Table of benchmark results for GPMPRM�
SOP� and FPRM

fe �� f �e�
gwhile
k �� n� ���

g
output fmin�

g

��� Experimental Results

As most of the benchmarks are multi�output� the
BLIF format of the functions was used to generate sin�
gle output components of these functions for testing�
These functions were �rst run through the minimizer
CGRMIN ���� which gave the minimum solutions of
FPRM� Then the minimum FPRMs were used as the
input functions to exGPMPRM� The results of this
program are shown in the table from Fig� ��� The
column headed Function denotes the name of the func�
tion from the benchmark� Var stands for the number
of input variables� The columns headed GPMPRM�
ESPRE and CGRMIN are the number of terms in the
output �les of minimizers exGPMPRM� ESPRESSO
and CGRMIN ���� respectively� The results of exGPM�
PRM program are always equal or better than CGR�
MIN� and are on average ��! better� For instance�
function �sym has �	� terms in exact GPMPRM while
it has ��	 gates in exact FPRM solution from CGR�
MIN� Adding � gates for testability we get ��� gates
versus ��	� which is still better� with the same number
of tests for single stack�at faults�

� The k�Variable�Mixed GRMs

The ideas presented in this paper lead to de�ning
new highly testable canonical forms with mathemat�
ical structures that are supersets of GPMPRMs and



subsets of GRMs� Such form is de�ned by allowing a
subset of input variables in GRM to have mixed
polarities� This leads to a family of �n new families of
families of canonical forms� All these families can be
represented as a lattice of subsets� FPRM family will
be the minimum element� GRM family the maximum
element� and all GPMPRM families for every single
variable will be elements of the lattice one level higher
than the minimum FPRM family� We will call these
families the k�variable�mixed GRMs 
� � k � n�� or
k�VMGRM� for short� Thus ��VMGRM is a FPRM�
n�VMGRM is a GRM� and ��VMGRMs are the GPM�
PRM families of forms� which means that FPRM is a
special case of k�VMGRMs with no mixed variables�
GPMPRM families for each variable � a case with one
mixed variable� and GRM family a case with all vari�
ables mixed� Unfortunately� we did not �nd yet an
e�cient exact algorithm for k � �� and the straightfor�
ward generalization of the algorithm from this paper
to �ow�diagrams with four and more dimensions leads
to many repetitions of forms�

� Conclusions

A new e�cient and exact algorithm for highly
testable Generalized Partially Mixed Polarity Reed�
Muller Expansions 
GPMPRM�� which are a subclass
of the Generalized Reed�Muller expansions� has been
presented� We showed that the results are always bet�
ter than for FPRM and are of similar testability� which
does not leave FPRMs any advantages over GPM�
PRMs from now on�

Since the new class of GPMPRMs contains many
more forms than the KRM family� we expect its min�
imum form to be generally closer to the minimum
ESOP� than is the minimum KRM form� For several
examples that we have tested� the GPMPRMs were
both smaller and better testable than the KRMs� We
plan to perform a systematic comparizon but we have
no exact KRM minimizer yet� As another application
of GPMPRMs� the exact solution to the minimization
of this new form provides an upper�bound for the min�
imization of the GRM expansion of the same function�
�����

We proved also in this paper that to calculate a
GPMPRM expansion from one of its adjacent polarity
expansions� only one EXOR operation is needed� By
calculating the adjacent polarity expansions one�by�
one and searching all the GPMPRM forms� the min�
imum one can be found� A speedup approach allows
thus to �nd the exact minimum GPMPRM without
calculating all forms� Comparing to other exact algo�
rithms the e�ciency of exGPMPRM is high� Because
of its regularity� the proposed by us algorithm can be
also realized in hardware� as the only algorithm for
forms other than subsets of KRMs�

Future work includes development of GPMPRM
minimizers for multi�output functions and incom�
pletely speci�ed functions� We hope also to �nd better
algorithms for k�VMGRMs with k � �� k �� n� The
ideas outlined here can also serve to create e�cient al�
gorithms for the minimization of forms that are more

general than the AND�EXOR forms � namely the non�
singular canonical forms ��� �	� 
��
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