
Free Kronecker Decision Diagrams and their Application to Atmel
6000 FPGA Mapping.

Philip Ho, and Marek A. Perkowski
Department of Electrical Engineering, Portland State University

P.O. Box. 751, Portland, OR, 97207 U.S.A.

Abstract

This paper introduces the concepts of Pseudo-
Kronecker Decision Diagrams (PKDDs) with Negated
Edges, as well as F+ee Kronecker Decision Diagrams
(FKDDs), that generalize both the well-known Bi-
nary Decision Diagmms and Functional Decision Di-
agmms, as well as Ihe recently introduced Ordered
Kronecker Decision Diagrams (OKDDs . We give
efficient algorithm for Ihe generation / o FKDDs for
multi-output functions and show their application 20
FPGA mapping. On MCNC benchmarks we demon-
&ale Ihe advantage of FKDDs in terms of reduced
number.9 of nodes (cells) and levels in Ihe circuit over
Ihe OKDDs and Permuted RM ties. The mapping
algorithm can be easily adopied lo other cellular FP-
GAS, especially those from Motorola.

1 Introduction.

Bina:ry Decision Diagrams (BDDs) proved to be a
very efficient representation of Boolean functions and
have been used with success in logic synthesis., verifica-
tion, simulation, test generation, and machine learn-
ing. Th.ere is recently a quickly increasing interest in
various kin.ds of decision diagrams that generalize the
BDDs. While the BDDs are based on Shannon Expan-
sion, the Functional Decision Diagrams (FDDs) [9] use
the pos:itive Davio expansion [5]. The ideas of BDDs
and FDDs have been combined in [13,7,16 to create
the Ord.ered Kronecker Decision Diagrams t OKDDs),
where three types of expansions are used in nodes:
Shannon, positive Davio, and negative Davio. Such
KDDs have been shown to be a more efficient canoni-
cal representation of Boolean functions than the BDDs
[7] and are also useful in multilevel circuit synthesis
and ma.pping, especially for new “cellular” or “fine-
grain” FPGAs from Atmel and Motorola.

Similarly to BDDs, the levels of canonical OKDDs
correspond to input variables. Moreover, at every
level alI nodes are expanded with respect to the same
type of expansion: Shannon, positive Davio or neg-
ative Davio. It was observed in [16 that essential
improvements in both the number o tl levels and the
number of nodes (cells) are obtained when the nodes
--

o tThc: work presented in this psper wea partially supported
by NSF grant MIP-9110772.

0 1994 ACM O-89791-685-9/94/0011 $1.50

in a level of a diagram (corresponding to the same v,ari-
able), have various expansions. We call such diagram
a Pseudo-Kronecker Decision Diagram (PKDD), per
analogy to the Pseudo-Kronecker Reed-MulIer canon-
ical forms that are obtained by flattening this diagram
[14]. In this paper we further improve the results by
introducin ,
Diagrams P

the concept of Free Kronecker Decision
,FKDDs), in which there can be arbitrary

orders of variables along various branches of the dia-
gram. This has direct application in mapping to FP-
GAS, and can also lead to the development of canon-
ical FKDDs to be used as a general-purpose Boolean
function representation.

Most of logic synthesis methods developed for IFP-
GAS have been based on algebraic factorization meth-
ods [3]. However, it is known that logic synthesis
methods based on Boolean decomposition methods
can produce better results [3]. Moreover, those core
CAD tools have been based on the “unate paradiglm”.
The “unate paradigm” is the assumption that most of
the logic functions ocuring in logic design are unate
or nearly unate. The meaning of “unate” or “nearly
unate” for logic minimization purposes is, that the cir-
cuit realization of a nearly unate function with AND
and OR gates is smaller in terms of the numbers of
gates than that of a circuit using the AND and EXOR
gates. On the other hand, the meaning of “linear”’ or
“nearly linear” for logic minimization purposes is that
the circuit realization of a nearly linear function with
AND and EXOR gates is smaller in terms of the num-
bers of gates than that of a circuit using the AND and
OR gates. Arithmetic function like counters, adders,
multipliers, signal processing functions and error cor-
recting logic belong to the class of nearly linear func-
tions. Thus those functions will have a smaller circuit
realization if the EXOR gate is incorporated into the
design.

The synthesis incorporating the EXOR gate has
been neglected because the EXOR gate was perceived
to be slower and having a larger circuit area. However,
those upcoming FPGAs from Xilinx, Actel, and Atmel
alIow the i:mplementation of the EXOR gate without
any speed or circuit size penalty in comparison to the
AND and OR gates. Since the Atmel cells directly re-
alize the set of functions used in KDDs, these expan-
sions can be easily applied to this type of FPGAs. The
basic cell of the AT 6000 series can be programmed to
one-bit multiplexer and the three-input AND/EXOR
cell. Use of EXOR-based diagrams has also particular
advantages for machine learning [lo].

8

Permkion tu copy without fee all or pan of thir mntcrial is granted.
prwidcd that the copies are nor made or distributed for dirccr commercial
advantage. the ACM copyright notice and the title of the publication and its
due appear. and notice is given that copying h by permission of the
Awciation for Computing Mshincry. To copy otherwire, or to republish.
requires 9 fee and/or specific permksion.

The initial phase of many logic synthesis systems,
such as MIS11 and BOLD, restructures the original
network to reduce a cost function that is calculated
directly from the network itself. The intention is to
improve the final circuit by reducing the complexity
of the network. In this phase, the method does not
consider the type of element that will be used for the
final circuit. After the initial phase which produces
the optimized network, the technology mapping stage
transforms this network into the final circuit. This is
done by selecting pieces of the network that can be
implemented by one of the available circuit elements
and specifying how these elements are to be intercon-
nected. The circuit is optimized to reduce a cost func-
tion that typically incorporates measures of both the
area and delay. Although very general, this approach
seems to be not well suited to fine-grain FPGAs, that
have special gates and connection structures.

Another approach to FPGA synthesis is based on
general-purpose Boolean Decomposition [181. It does
not assume anything about the gate realization and in
general gives better results, but tends to be slow for
large functions. The approach proposed here is just a
very special case of the Boolean Decomposition, but
it is very fast and it uses extensively EXOR gates. It
can have thus two main applications: it can be used di-
rectly for mapping to FPGAs that have EXOR gates,
or it can be used! similarly to BDDs, as only the first
stage of logic desrgn in which creation of a decision di-
agram is followed by its mapping to a particular tech-
nology, not necessariiy one including EXOR gates.

The plan of this paper is as follows. The recent
research in applications of DDs to FPGA mapping is
reviewed in section 2. The families of decision dia-
grams are introduced in section 3. In section 4 the
description of our FKDD synthesis program and map-
per, RESPER, is given. Section 5 compares the results
with OKDDs and Permuted RM Trees [16,19].

2 Recent Research Versus Our Ap-
proach

ASYL program [2] applies Shannon Expansion to
build the BDD of each function. It also uses the Re-
duced Order Binary Decision Diagrams (ROBDDS)
approach to minimize the area. Its target is on Actel’s
multiplexer-based FPGAs. Its heuristics to select the
variable are the following: (1) Select a variable that
appears in all product terms under the same polarity.
(2) If a product term is restricted to a simple literal
then select this literal. (3) If all the variables appear
only once in a function then select the smallest prod-
uct term. (4) Select the set of variables of maximum
occurrence.

Few programs have been recently written that use
Davio expansions. The REMIT program [19] starts
from a completely specified Boolean function in the
form of an array of ON disjoint cubes, and generates
a free (permuted) tree using positive Davio Expan-
sion. In such tree various orders of variables exist
in various branches. The variable selection rules se-
lect the variable that occurrs most often in disjoint

cubes, one at a time. RMS program [9] uses Positive
Davio Expansion to create a new representation called
Functional Decision Diagrams (FDDs). It starts with
a two level SOP to calculate an order of variables in
the FDD according to the most often used variables.
The isomorphic subtrees are next reduced. Paper [7]
introduces an efficient package to generate OKDDs
for multi-output functions. The approach is, however,
limited to completely specified functions. TECHMAP
program [16] generalizes the concepts of BDDs and
FDDs applied to Actel and Atmel FPGAs by generat-
ing the Shared Reduced Ordered Kronecker Decision
Diagrams SROKDDs).

\
It adopted a breadth-first

top-down a gorithm for the SROKDD generation for
incompletely specified multi-output functions. During
the decomposition, it combines all those isomorphic
trees in order to generate a SROKDD. Its heuristics
to select the variable are based on the following three
conditions. All these conditions can determine that
the next level node is redundant.

Condition 1: fi = 0, fi = l, fi = “j,

fi = q. It states that the data input function fi is
either a constant value, a single variable, or a negation
of a variable.

Condition 2: fi = fj. It states that data input
function fi is identical to mput function fj in the same
level of the tree.

Condition 3: fi = z. It states that data input
function fi is the complement of data input function
fj in the same level of the tree.

TECHMAP’s heuristics to select the expansion are
divided into three following modes.

Cl. The exuansion of a node is selected based on
the two functions out of fii, z, and fii $ fzi having
the highest fan-out. In case of a tie. the heuristic C3
is appxed.

C2. If the variable occurrs mostly in a positive
form in the output function, Davio expansion 2 is se-
lected. If the variable occurrs mostly in a negative
form, Davio expansion 3 is selected. If there is a tie,
the Shannon expansion is chosen.

C3. The expansion of a node is selected based on
the two functions out of fii, x, and fzi $ fii having
the least number of product terms.

The main objective of the above FPGA technology
mapping approaches was to minimize the area (num-
ber of nodes).

We developed the concept of the Free Kronecker
Decision Diagram (FKDD), and we applied most of
the heuristics from the above papers. Our FPGA map-
ping techniques try to construct the network in such
a way that:

l the decomposed network is technology-feasible for
the Atmel devices.

l the number of nodes in the network is as small as
possible.

l the path from the input to output is as short as
possible.

l the selected variable and expansion can vary in
every level of the tree.

The presented method has the following assets:
l The decomposition methods are specifically

adapted to the FPGAs whose general architectures

are based on logic cells which can take up to three
input variables.

l It applies a set of rules to select a good variable
and an. appropriate expansion for each node.

l It uses the shared reduced order approach.

3 Families of Decision Trees, Decision
Diagrams and Flat Forms

The literal of a variable xi can be in either positive (
zi

)
“1’

or negative (Zi) form. The polarity of a variable is
for a positive literal and “0” for a negative literal.

Let fi3; be a cofactor [3] of function f with respect to
xi: fTi = f n ai I zi=l = f Izi=l.

It 1s known [5] that there can be only three expan-
sions over Galois Field of 2:

(1) f -1 Xi fzi @ %ifZi (Shannon expansion).

(3) f L fii @ % [fci kmf& I= .fzi @ % $3

(Negative Davio Expansion)
One important property of the three expansions is

that tlhe functions fzi and fzi obtained by applying
any of the three expansions for ai being an input vari-
able of the function f, are independent from the vari-
able a,:. The circuit realization of Equation (1) is iven
by a multiplexer gate while Equations (2) and (3 de- 1
scribe an AND-EXOR gate of Atmel 6000.

The application of the Shannon expansion, Equa-
tion (I), for all variables of a function leads to the
construction of a Binary Decision Diagram. The ap-
plication of the two Davio expansions for each variable
generates an adaptive logic tree [Q].. The FDD is ob-
tained b applying the reduction procedures used for
BDDs [4 Y , to the adaptive logic tree created using only
expansion (2). If all three expansions are applied to
all variables, the Kronecker Reed-Muller tree [5,11,12]
is obtained.

A terminal vertez has an attribute a value
v&e(v) E 0, 1. A non-terminal vertez has an at-
tribute an argument index indez(v) E 1, n and
two children low(v), high(v) E V. An ordered func-
tion graph is a function raph such that for any non
terminal vertex v, if low

//
i”

v) is also non terminal, then
indea(v) < indez(low v .
terminal, then indez v

Similarly, if high(v) is non-
< indez(high(v)).

A 1?eed-Muller l+ee is a function graph:
l having root vertex v denoting a function fV de-

fined recursively as:
1. IIf v is a terminal vertex:

,a. If value v = 1, then fV = 1.
11 ‘b. If value v = O! then fV = 0.

2. If v is a non-termmal vertex with index(v) = i,
the fV is the function: f,,(zl, x, =

flow(v)(%...r%) @ z - [Ligh(v)(Z1,***,%)

@ flou~(u)hr --,%&)I.
l any path from the root to the terminal vertices

will traverse the same order of variables.
A Permuted Reed-Muller lbee is a function graph:
l having root vertex v denoting a function f,, de-

fined recursively as:
1. If v is a terminal vertex (as in Reed-Muller Tree).

2. If v :is a non-terminal vertex with index(v) = i,
the fy is the function: f,,(xi, 2,

= fiow(v)(m,...r%J a x * t fhigh(o)blr...r%)

@ flow(v)(~~lr --,%)I.
l any path from the root to the terminal vertices

can traverse a different order of variables.
A Fized-Polarity Reed-Muller Bee is a frmction

graph:
l having root vertex v denoting a function fV de-

noted recursively as:
1. If v is a terminal vertex (as in Reed-Muller Tree).
2. If v is a non-terminal vertex with index(v) = i,

the fv is a one and only of the functions:
a. fv(zb xn) = fh(w)(% . ..I xn)
@ X ’ [fhigh(u)(xl, -*,%) @ fh(v)(~lr --~,%)I.

b. fv(% .**, xn) = fhigh(v)(xlr .*a, %)
@ J * [fhigh(r)(% -7%) cl3 fh(o)(% -~,Gz)l.
l any path from the root to the terminal vertices

will traverse the same order of variables.
l for every variable, just one type of expansion is

selected.
A Krostecker Reed-Muller l%ee is a function graph:
l having root vertex v denoting a function f,, de-

fined recursively as:
1. If v is a terminal vertex (as in Reed-Muller Tree).
2. If v is a non-terminal vertex with index(v) = i,

the fv is a one and only of the functions:
a. fv(a:l, En) = fh(v)(% -,%)

@ X ’ [fhigh(v)(zlr --*I Xn) @ fiow(v)(Xlr *-*j G)]*
b. fw(a:lr ..-, %I) = fhigh(v) (, ---I 2,)

@ z ’ [fhigh(v)(alr . ..I 2,) @ flmu(v)(~lr *a*, %J.
c. fu(x1,..., xn) = g * [fh(v)(% ..A)

CBX * fhigh(u)(xlr%a)].
l any path from the root to the terminal vertices

will traverse the same order of variables.
l for every variable, just one type of expansion is

selected.
A Pseudo-Kronecker Reed-Muller l’kee is a :func-

tion graph:
l having root vertex v denoting a function fi, de-

noted recursively as:
1. If v :is a terminal vertex (as in Reed-Muller Tree).
2. As in Kronecker Reed-Muller Tree.
l any path from the root to the terminal vertices

will traverse the same order of variables.
l for every variable, any expansions: Shannon, Pos-

itive Davi.0, and Negative Davio can be applied in. var-
ious subtrees.

A Permuted-Kronecker Reed-Muller l%ee is a func-
tion graph having root vertex v denoting a function fv
defined recursively as in the Pseudo-Kronecker Reed-
Muller Tree, but any path from the root to the tcrmi-
nal vertices can traverse a different order of variables.
In this tree there is then no any of the previous con-
straints on variables or expansions. The only limita-
tion that remains is that along a branch, every variable
is met only once.

By applying the well-known decision diagrams re-
duction procedures, the above families of trees are
transformed to Directed Acyclic Graphs (DAGs’l and
form the decision diagram families correspond&g to

10

them. One has then the following ordered dia-
grams: Functional Decision Diagrams correspond-
ing to Reed-Muller l+ees, Fized-Polarity Functional
Decision Diagrams corresponding to Fixed-Polarity
Reed-Muller ‘Ibees, Ordered Kronecker Decision Dia-
grams corresponding to Kronecker Reed-Muller Ibees,
Next, one has the following pseudo- type of diagrams:
Pseudo Reed-Muller Decision Diagrams corresponding
to Pseudo Reed-Muller Bees, Pseudo Kronecker De-
cision Diagrams corresponding to Pseudo Kronecker
Reed-Muller Trees, Pseudo Reed-Muller Trees are
trees created as Fixed-Polarity Reed-Muller Trees but
for every variable both Davio Expansions are allowed.
Finally, one has the following free diagrams: Free
Functional Decision Diagrams corresponding to Per-
muted Reed-Muller Ibees, Free Fized-Polarity Func-
tional Decision Diagrams corresponding to Permuted
Fized-Polarity Reed-Muller Trees, and Free Kronecker
Decision Diagrams corresponding to Permuted Kro-
necker Reed-Muller ties, respectively. Free Fixed-
Polarity Functional Decision Diagrams are similar to
Fixed-Polarity Functional Decision Diagrams but the
order of variables is not fixed in branches.

The obtained trees and diagrams can be flattened
to a two level form which can be realized by an
AND-EXOR circuit. Flattening is an inverse oper-
ation of “substitution”. If G is a fan-in function of
F, flattening G into F re-expresses F without G.
By flattening above forms we obtain both canoni-
cal and non-canonical AND/EXOR circuits. For in-
stance, by flattening Functional Decision Diagrams
we get canonical Reed-Muller Forms. By flatten-
ing Fixed-Polarity Functional Decision Diagrams we
get canonical Fized-Polarity Reed-Muller Forms. By
flattening Ordered Kronecker Decision Diagrams we
get canonical Kronecker Reed-Muller Forms, and so
on. Flattening of the minimal forms of the most
general diagrams! FKDDs, leads to highly mini-
mized, non-canomcal, most general AND/EXOR ex-
pressions, called Exclusive-Or Sum-of-Product Ex-
pressions (ESOPs) [17].

4 Description of RESPER

RESPER is a synthesis algorithm for the calcula-
tion of FKDDs. It consists of three parts: realization
of a trivial function, ezpansion aelection and decom-
position. The trivial function is used for the realiza-
tion of Boolean functions as a cascade circuit, where
only one next level module is allowed or no module at
all. Expansion selection option determines an appro-
priate expansion to be chosen for that module in that
level. Finally, the RESPER is a mapper especially
suited for the AT 6000 series of Atmel.

4.1. Trivial Function Realization.
The basic principle of the level by level minimiza-

tion algorithm from [l5] is to find the minimal number
of next level modules for a given level. This approach
has been adopted here. A similar principle is used
for the realization of Boolean functions as cascade cir-
cuits where only one next level module is allowed or
no module at all.

There exist six basic conditions for which a next
module is redundant.

Condition 1: fZi = 0. If this condition is applied
to equation 3, one gets f = % - fz. We can use an
AND gate with one negated input to implement this
function, instead of using AND/EXOR gate which has
the longest delay in the AT 6000 series. The AT 6000
series does not provide “0” as one of its inputs.

Condition 2: f= = 0. If this condition is applied
to equation 2, one gets f = Xi * fzi. We can use an
AND gate with one negated in ut to implement this
function, instead of using AND EXOR gate which has P
the longest delay in AT 6000 series. And the AT 6000
series does not provide “0” as one of its inputs.

Condition 3: fii = 1. If this condition is applied

to equation 1, one gets f = Xi * 1 @ Z& * z.
We are able to use one wire less for the inputs to the
multiplexer, since the AT 6000 series allows us to select
“1” for one of the inputs.

Condition 4: f= = 1. If this condition is applied
to equation 1, one gets f = ai - fzi $ T& - 1. We are
able to use one wire less for the inputs to multiplexer,
since the AT 6000 series allows us to select “1” for one
of the input.

Condition 5: a data-input function is identical
to another data-input function to a multiplexer in the
same level of the tree circuit fii = fq. If this con-
dition is applied to the equation 2, one gives f= and
fFi. If this condition is applied to the equation 3, one
grves f= and fzi.

Condition 6: a data-input function is the comple-
ment of another data-input function to a multiplexer
in the same level of the tree circuit fzi = &. If this
condition is applied to equation 2, the resultant func-
tion will be f = f= $ xi. If this condition is applied
to equation 3, the result will be f = fti $ E. As we
see, it will give less wire connections and less modules
for the next level.

In most algorithms only the first five conditions are
taken into consideration to decrease the number of
next level modules. The case of a data input function
being the complement of another data input function
has not been taken into consideration in any synthesis
algorithm. The advantage of the presented method
is, that it also verifies Condition 6. The complement
function can be easily realized by an inverter logic cell.

4.2. Variable and Expansion Selection.
The size of the BDD of a function is sensitive to

the ordering of the input variables. There has been
a tremendous effort for determining a good variable
ordering [8]. Some heuristics are based either on the
analysis of an exist multilevel netlists [2] or the number
of occurrences of the variables [lQ]. RESPER adopted
the synthesis algorithm from [l]. To reduce the solu-
tion space for a large function to a space that is com-
putationally feasible, the heuristic searching algorithm
allows all three decomposition choices. The heuristic
for the variable selection is to select the variable that
will obtain less modules in the next level. In order to
obtain the result which is as close as possible to the
exact solution, the program starts to check all possi-
ble variables at each node in each level. Selecting the
variable is determined by the set of conditions defined
in the previous section.

11

The expansion selection is limited by the modules
availabiity and their delay times. In AT 6000 series
two modukes are provided which fit two of the Davio
Expansions. One of the modules is a two input mul-
tiplexer which is good for equation 1 and the other
is the AND/XOR which is good for equation 2. If
equation 3 is used we need to add an inverter to the
AND/XOR. The time delay is also an important fac-
tor for the choice. If there is a tie for the Equation 2
and Equation 3, we need to choose equation 2 since
an inverter needs to be added. An added inverter will
increase the number of levels of the tree.

The selection of an appropriate variable also cre-
ates the backbone for selecting an appropriate expan-
sion. The expansion selections use the same set of
conditions as the variable selections. If condition 3 or
condition 4 is met, then expansion 1 will be selected.
If condi.tion 2 or condition 6 is met, then expansion 2
will be chosen. If condition 1 is met, then equation 3
is chosen. If condition 5 is met, either equation 2 or 3
will create the same result. For condition 6, the pro-
gram will select either equation 2 or equation 3. Since
the objective for this program is to minimize the delay
and area, equation 2 will be chosen if condition 6 is
met. If condition 5 is met during the expansion and
variable selection, the program will stop searching and
will select equation 2 for that module. The reason is
that this function is independent of the chosen vari-
able, and it does not need a module to represent this
function at this level. However, if none of those condi-
tions had been detected, the cost of each expression for
each selected variable is calculated. Whichever com-
bination of expansion type and variables provides the
least number of minterms will be chosen. This evalu-
ation is performed for each input variable for every of
the output functions.

4.3. Shared Functional Decision Diagram.
FKDD is a canonical representation of the func-

tional Idomain. Each node of the FKDD decides
whether the product term belongs to the function or
not. Crea6ing an FKDD the following operations are
used.

1. Deleting a node whose two edges direct to the
same node.

2. Sharing isomorphic sub-graphs.
Muhiple FKDDs can be joined into a single SFKDD

which consists of the FKDDs sharing their subgraphs.
In other words, two isomorphic subgraphs do not coex-
ist in the SFDD. In SFKDD, there is an input inverter
added. Its purpose is to swap a positive edge and
negative edge at the next node. By using this input
inverter, SFKDD will not only reduce the isomorphic
subgraphs but also those subgraphs which are inverses
of the others. This constraint brings about the follow-
ing advantages to manipulate a completely specified
Boolean functions.

1. The equivalence between two functions can be
checked by F,, @ F,,, = 0 n#m

2. The inversion between two functions can be
checked. by F,, @ F,,, = 1 n#m

3. By sharing sub-graphs we can compactly repre-
sent many functions.

4.4. Implementation of RESPER.
The algorithms described above form the core of the

decomposition. The task of these subroutines is to as-

I.3 ;I
d-T
b12 ; 15
cc 21
con1 7
cu 14
inc 7
squar5 5
f51m ’ 8
xor5 5
5xpl
rd53 I
bw 5
misex 1 8
misex2 25
TuTKG--

3
9

20
2

11
9
8
8
1

10
3

28
7

18 -

la2
3

50
42

4;
61
18
35

3
55
12

100
32

l-!&--t

-!k
8
6
4
9
6
4
7
3

t
4
5

11

130
117

if
81
29
52

3
51
13

102
60

I

4
147
117

24
73
89
35
53

3
54
14

104
39

cm
%
125
117

::
76
29
45

3
44
12

102
56 I_ 282 271 275
In- -

Table 1: RESPER versus TECHMAP

sist the whole program to choose an optimal variable
order combined with a suitable expansion. The pro-
gram reads in the disjoint ON cubes written in F’LA
format. If the input has n output functions, the pro-
gram divides n output functions into n single output
functions. Each output function is stored in n dZer-
ent modules. Starting from module[O], the program
computes all input literals and searches for the best
selected variable based on those six conditions. After
the selected variable is chosen, it generates a mod-
ule[n+l and checks for an isomorphic module. If the
module n+,l is isomorphic with other modules, the i 1 module nS.1 will be eliminated. The program will go
on to module[l], module[2] until there is no module
left.

5 Evaluation of Results

RESPE:R is run on a networked SUN 4/670MP
workstation. The results are listed in Table I. All re-
sults were verified by the “verify” command of the
MIS-II system. The results listed under TECHMAP
are from [18]. They were also run on a networked
SUN 4/67OMP workstation. The corn arison of
TECHMAYP with ASYL and RMS is in [16 . In Table P
I, E is the name of the example. I is the number
of input variables. 0 is the number of output func-
tions. m is the number of modules (cells) in the final
mapped circuit. 1 is the longest path that a signal
must go from the primary input to the primary out-
put in the circuit. C1, C2 and C3 in Table I are the
heuristics used by TECHMAP to select the expansion,
mentioned in section 2. Based on Table I, the heuristic
used should be the best heuristic among those three
in TECHMAP. We observe that RESPER generates
better results for multi-output functions. Not only is
the number of modules smaller, but also the number
of levels. For instance, for function cc the number of
modules is reduced from 117 to 42, and the number
of levels from 15 to 6. This improves not only size

LP-

f
12
15
5

10

t
7
3

id
4
7

23 -
-

12

but also speed and routability, which is of extreme
importance in cellular FPGAs. In a separate study,
we compared RESPER with REMIT, which also gen-
erates free diagrams, but the diagrams are trees for
which and only positive Davio expansion is used. On
27 functions, the total number of modules was 257 for
RESPER and 827 for REMIT. Interestingly, for all
tested functions, the numbers of levels for RESPER
and REMIT were the same.

6 Conclusions and Current Research

The obtained results are very promising and moti-
vate to further investigate the FKDDs and also other
free diagrams. Necessary research on FKDDs is to
find better heuristics for the expansion type and vari-
able order selection. Similarly to TECHMAP, the
RESPER program is now being generalized to incom-
pletely specified functions. Other possible extensions
to RESPER include mapping to other new cellular
FPGAs, especially those from Motorola. Variants of
the method can be also created that will include geo-
metrical information in the FKDD growing process, in
order to improve the operation of the interlinked place-
ment/routing programs. Our current research com-
bines logic synthesis for cellular FPGAs with place-
ment/routing into a single comprehensive process that
we call “geometrical logic synthesis”. We work also
on using FKDDs as canonical general-purpose repre-
sentations of Boolean functions. Assuming a given
FKDD as a pattern of variable orders and expansion
types, such FKDD becomes canonical, since FKDDs
for other functions are created to follow this pattern.
Then, fast comparison of two FKDDs is possible, as
well as execution of Boolean and other operations on
them that are implemented in DD packages [7].

References.
[l] A.E.A. Almaini, and M.E. Woodward, “An Ap-

proach to the Control Variable Selection Problem for
Universal Logic Modules,” Digital Processes, vol. 3,
pp. 189-206, 1977.

G [ya~ie~es~on~ H. Bousouzou, M. Crates, and
Synthesis on Multiplexer-based Pro-

grammable’Devices Using (Ordered) Binary Decision
Diagrams,” Proc. EURO-ASIC, pp. 8-13, June 1992,
Paris, France.

[3] R. K. Brayton, G. D. Hachtel, and A. L.
Sangiovanni-Vincentelli, “Multilevel Logic Synthesis,”
Proc of the IEEE, Vol. 78, No.2, pp. 264-300, Febru-
ary 1990.

[4] R. E. Bryant, “Graph-Based Algorithms for
Boolean Function Manipulation,” IEEE l+ans. on
Comput., Vol. 35, No. 8, pp. 667-691, August 1986.

[5] M. Davio, J. P. Deschamps, and A. Thayse,
“Discrete and Switching Functions,” McGraw-Hill,
1978.

[6] D. H. Green, “Families of Reed-Muller Canoni-
cal Forms,” Int. J. of Electronica, Vol. 63, No. 2, pp.
259-280, January 1991.

[7] R. Drechsler , A. Sarabi , M. Theobald, B.
Becker , and M. Perkowski, “Efficient Representation
and Manipulation of Switching Functions Based on

Ordered Kronecker Functional Decision Diagrams,”
Proc. of DAC’94, San Diego, CA, June 1994.

[8] S.-W. Jeong, B. Plessier, G. D. Hachtel, and F.
Somenzi, “Variable Ordering for Binary Decision Di-
agrams,” Proc. IEEE Euro-DAC pp. 447-451, March
1992, Brussels, Belgium.

[9
1

U. Kebschull, E. Schubert, and W. Rosenstiel,
“Mu tilevel Logic Synthesis Based on Functional De-
cision Diagrams,” Proc. IEEE Euro-DAC, pp. 43-47,
1992.

[lo] Kohavi, R., “Bottom-Up Induction of Oblivi-
ous Read-Once Decision Graphs: Strengths and Lim-
itations,” AAAI-94.

[ll] Perkowski, M. A. and P. D. Johnson, “Canon-
ical Multi-Valued Input Reed-Muller Trees and
Forms,” Proc. 3rd NASA Symp. VLSI Des. Moscow,
ID, Oct. 1991, pp.11.3.1-11.3.13.

[12] M. A. Perkowski, “The Generalized Orthonor-
ma1 Expansions of Functions with Multiple-Valued In-
puts and Some of its Applications,” Proc. 22nd IS-
MVL, pp. 442-450, May, 1992, Japan.

[13] A. Sarabi, P.F. Ho, K. Iravani, W.R. Daasch,
and M. Perkowski, “Minimal Multi-level Realization
of Switching Functions based on Kronecker Functional
Decision Diagrams”, IWLS ‘93

[14] T. Sasao, “Logic Synthesis and Optimization,”
Kluwer Academic Publishers, 1993

[15] I. Schaefer, and M.A. Perkowski, “Synthesis
of Multi-Level Multiplexer Circuits for Incompletely
Specified Multioutput Boolean Functions with Map-
ping to Multiplexer Based FPGAs,” IEEE Trans. on
CAD, Nov. 1992, pp. 1655-1664.

[16] I. Schaefer, M.A. Perkowski, and H.M. Wu,
“Orthogonal Expansions for Multilevel Logic Synthe-
sis and the Technology Mapping to FPGAs,” Proc.
Int. Workshop on Application of Reed-Muller Ex-
pansion to Circuit Design, Hamburg, Germany, Sept,
1993, pp. 42-51.

[17] N. Song, and M.A. Perkowski, “EXORCISM-
MV-2: Minimization of Exclusive Sum Of Products
Expressions for Multiple-Valued Input Incompletely
Specified Functions,” Proc. 23rd ISMVL’93, May
1993, p. 132-137.

[18jpWan, W., and Perkowski, M. A. “A New Ap-
proach to the Decomposition of Incompletely Specified
Multi-Output Functions Based on Graph-Coloring
and Local Transformations and its Application to
FPGA mapping,” Proc. IEEE Euro-DAC, Hamburg,
Germany, 1992.

[19] L.-F. Wu, and M. A. Perkowski “Minimization
of Permuted Reed-Muller Trees for Cellular Logic Pro-
grammable Gate Arrays,” 2nd Int. Workshop on FP-
GAs, September 1992, Vienna, Austria.

13

