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Abstract 

This paper introduces the concepts of Pseudo- 
Kronecker Decision Diagrams (PKDDs) with Negated 
Edges, as well as F+ee Kronecker Decision Diagrams 
(FKDDs), that generalize both the well-known Bi- 
nary Decision Diagmms and Functional Decision Di- 
agmms, as well as Ihe recently introduced Ordered 
Kronecker Decision Diagrams (OKDDs . We give 
efficient algorithm for Ihe generation / o FKDDs for 
multi-output functions and show their application 20 
FPGA mapping. On MCNC benchmarks we demon- 
&ale Ihe advantage of FKDDs in terms of reduced 
number.9 of nodes (cells) and levels in Ihe circuit over 
Ihe OKDDs and Permuted RM ties. The mapping 
algorithm can be easily adopied lo other cellular FP- 
GAS, especially those from Motorola. 

1 Introduction. 

Bina:ry Decision Diagrams (BDDs) proved to be a 
very efficient representation of Boolean functions and 
have been used with success in logic synthesis., verifica- 
tion, simulation, test generation, and machine learn- 
ing. Th.ere is recently a quickly increasing interest in 
various kin.ds of decision diagrams that generalize the 
BDDs. While the BDDs are based on Shannon Expan- 
sion, the Functional Decision Diagrams (FDDs) [9] use 
the pos:itive Davio expansion [5]. The ideas of BDDs 
and FDDs have been combined in [13,7,16 to create 
the Ord.ered Kronecker Decision Diagrams t OKDDs), 
where three types of expansions are used in nodes: 
Shannon, positive Davio, and negative Davio. Such 
KDDs have been shown to be a more efficient canoni- 
cal representation of Boolean functions than the BDDs 
[7] and are also useful in multilevel circuit synthesis 
and ma.pping, especially for new “cellular” or “fine- 
grain” FPGAs from Atmel and Motorola. 

Similarly to BDDs, the levels of canonical OKDDs 
correspond to input variables. Moreover, at every 
level alI nodes are expanded with respect to the same 
type of expansion: Shannon, positive Davio or neg- 
ative Davio. It was observed in [16 that essential 
improvements in both the number o tl levels and the 
number of nodes (cells) are obtained when the nodes 
-- 

o tThc: work presented in this psper wea partially supported 
by NSF grant MIP-9110772. 

0 1994 ACM O-89791-685-9/94/0011 $1.50 

in a level of a diagram (corresponding to the same v,ari- 
able), have various expansions. We call such diagram 
a Pseudo-Kronecker Decision Diagram (PKDD), per 
analogy to the Pseudo-Kronecker Reed-MulIer canon- 
ical forms that are obtained by flattening this diagram 
[14]. In this paper we further improve the results by 
introducin , 
Diagrams P 

the concept of Free Kronecker Decision 
,FKDDs), in which there can be arbitrary 

orders of variables along various branches of the dia- 
gram. This has direct application in mapping to FP- 
GAS, and can also lead to the development of canon- 
ical FKDDs to be used as a general-purpose Boolean 
function representation. 

Most of logic synthesis methods developed for IFP- 
GAS have been based on algebraic factorization meth- 
ods [3]. However, it is known that logic synthesis 
methods based on Boolean decomposition methods 
can produce better results [3]. Moreover, those core 
CAD tools have been based on the “unate paradiglm”. 
The “unate paradigm” is the assumption that most of 
the logic functions ocuring in logic design are unate 
or nearly unate. The meaning of “unate” or “nearly 
unate” for logic minimization purposes is, that the cir- 
cuit realization of a nearly unate function with AND 
and OR gates is smaller in terms of the numbers of 
gates than that of a circuit using the AND and EXOR 
gates. On the other hand, the meaning of “linear”’ or 
“nearly linear” for logic minimization purposes is that 
the circuit realization of a nearly linear function with 
AND and EXOR gates is smaller in terms of the num- 
bers of gates than that of a circuit using the AND and 
OR gates. Arithmetic function like counters, adders, 
multipliers, signal processing functions and error cor- 
recting logic belong to the class of nearly linear func- 
tions. Thus those functions will have a smaller circuit 
realization if the EXOR gate is incorporated into the 
design. 

The synthesis incorporating the EXOR gate has 
been neglected because the EXOR gate was perceived 
to be slower and having a larger circuit area. However, 
those upcoming FPGAs from Xilinx, Actel, and Atmel 
alIow the i:mplementation of the EXOR gate without 
any speed or circuit size penalty in comparison to the 
AND and OR gates. Since the Atmel cells directly re- 
alize the set of functions used in KDDs, these expan- 
sions can be easily applied to this type of FPGAs. The 
basic cell of the AT 6000 series can be programmed to 
one-bit multiplexer and the three-input AND/EXOR 
cell. Use of EXOR-based diagrams has also particular 
advantages for machine learning [lo]. 

8 

Permkion tu copy without fee all or pan of thir mntcrial is granted. 
prwidcd that the copies are nor made or distributed for dirccr commercial 
advantage. the ACM copyright notice and the title of the publication and its 
due appear. and notice is given that copying h by permission of the 
Awciation for Computing Mshincry. To copy otherwire, or to republish. 
requires 9 fee and/or specific permksion. 



The initial phase of many logic synthesis systems, 
such as MIS11 and BOLD, restructures the original 
network to reduce a cost function that is calculated 
directly from the network itself. The intention is to 
improve the final circuit by reducing the complexity 
of the network. In this phase, the method does not 
consider the type of element that will be used for the 
final circuit. After the initial phase which produces 
the optimized network, the technology mapping stage 
transforms this network into the final circuit. This is 
done by selecting pieces of the network that can be 
implemented by one of the available circuit elements 
and specifying how these elements are to be intercon- 
nected. The circuit is optimized to reduce a cost func- 
tion that typically incorporates measures of both the 
area and delay. Although very general, this approach 
seems to be not well suited to fine-grain FPGAs, that 
have special gates and connection structures. 

Another approach to FPGA synthesis is based on 
general-purpose Boolean Decomposition [ 181. It does 
not assume anything about the gate realization and in 
general gives better results, but tends to be slow for 
large functions. The approach proposed here is just a 
very special case of the Boolean Decomposition, but 
it is very fast and it uses extensively EXOR gates. It 
can have thus two main applications: it can be used di- 
rectly for mapping to FPGAs that have EXOR gates, 
or it can be used! similarly to BDDs, as only the first 
stage of logic desrgn in which creation of a decision di- 
agram is followed by its mapping to a particular tech- 
nology, not necessariiy one including EXOR gates. 

The plan of this paper is as follows. The recent 
research in applications of DDs to FPGA mapping is 
reviewed in section 2. The families of decision dia- 
grams are introduced in section 3. In section 4 the 
description of our FKDD synthesis program and map- 
per, RESPER, is given. Section 5 compares the results 
with OKDDs and Permuted RM Trees [16,19]. 

2 Recent Research Versus Our Ap- 
proach 

ASYL program [2] applies Shannon Expansion to 
build the BDD of each function. It also uses the Re- 
duced Order Binary Decision Diagrams (ROBDDS) 
approach to minimize the area. Its target is on Actel’s 
multiplexer-based FPGAs. Its heuristics to select the 
variable are the following: (1) Select a variable that 
appears in all product terms under the same polarity. 
(2) If a product term is restricted to a simple literal 
then select this literal. (3) If all the variables appear 
only once in a function then select the smallest prod- 
uct term. (4) Select the set of variables of maximum 
occurrence. 

Few programs have been recently written that use 
Davio expansions. The REMIT program [19] starts 
from a completely specified Boolean function in the 
form of an array of ON disjoint cubes, and generates 
a free (permuted) tree using positive Davio Expan- 
sion. In such tree various orders of variables exist 
in various branches. The variable selection rules se- 
lect the variable that occurrs most often in disjoint 

cubes, one at a time. RMS program [9] uses Positive 
Davio Expansion to create a new representation called 
Functional Decision Diagrams (FDDs). It starts with 
a two level SOP to calculate an order of variables in 
the FDD according to the most often used variables. 
The isomorphic subtrees are next reduced. Paper [7] 
introduces an efficient package to generate OKDDs 
for multi-output functions. The approach is, however, 
limited to completely specified functions. TECHMAP 
program [16] generalizes the concepts of BDDs and 
FDDs applied to Actel and Atmel FPGAs by generat- 
ing the Shared Reduced Ordered Kronecker Decision 
Diagrams SROKDDs). 

\ 
It adopted a breadth-first 

top-down a gorithm for the SROKDD generation for 
incompletely specified multi-output functions. During 
the decomposition, it combines all those isomorphic 
trees in order to generate a SROKDD. Its heuristics 
to select the variable are based on the following three 
conditions. All these conditions can determine that 
the next level node is redundant. 

Condition 1: fi = 0, fi = l, fi = “j, 

fi = q. It states that the data input function fi is 
either a constant value, a single variable, or a negation 
of a variable. 

Condition 2: fi = fj. It states that data input 
function fi is identical to mput function fj in the same 
level of the tree. 

Condition 3: fi = z. It states that data input 
function fi is the complement of data input function 
fj in the same level of the tree. 

TECHMAP’s heuristics to select the expansion are 
divided into three following modes. 

Cl. The exuansion of a node is selected based on 
the two functions out of fii, z, and fii $ fzi having 
the highest fan-out. In case of a tie. the heuristic C3 
is appxed. 

C2. If the variable occurrs mostly in a positive 
form in the output function, Davio expansion 2 is se- 
lected. If the variable occurrs mostly in a negative 
form, Davio expansion 3 is selected. If there is a tie, 
the Shannon expansion is chosen. 

C3. The expansion of a node is selected based on 
the two functions out of fii, x, and fzi $ fii having 
the least number of product terms. 

The main objective of the above FPGA technology 
mapping approaches was to minimize the area (num- 
ber of nodes). 

We developed the concept of the Free Kronecker 
Decision Diagram (FKDD), and we applied most of 
the heuristics from the above papers. Our FPGA map- 
ping techniques try to construct the network in such 
a way that: 

l the decomposed network is technology-feasible for 
the Atmel devices. 

l the number of nodes in the network is as small as 
possible. 

l the path from the input to output is as short as 
possible. 

l the selected variable and expansion can vary in 
every level of the tree. 

The presented method has the following assets: 
l The decomposition methods are specifically 

adapted to the FPGAs whose general architectures 



are based on logic cells which can take up to three 
input variables. 

l It applies a set of rules to select a good variable 
and an. appropriate expansion for each node. 

l It uses the shared reduced order approach. 

3 Families of Decision Trees, Decision 
Diagrams and Flat Forms 

The literal of a variable xi can be in either positive ( 
zi 

) 
“1’ 

or negative ( Zi ) form. The polarity of a variable is 
for a positive literal and “0” for a negative literal. 

Let fi3; be a cofactor [3] of function f with respect to 
xi: fTi = f n ai I zi=l = f Izi=l. 

It 1s known [5] that there can be only three expan- 
sions over Galois Field of 2: 

(1) f -1 Xi fzi @ %ifZi (Shannon expansion). 

(3) f L fii @ % [ fci kmf& I= .fzi @ % $3 

(Negative Davio Expansion) 
One important property of the three expansions is 

that tlhe functions fzi and fzi obtained by applying 
any of the three expansions for ai being an input vari- 
able of the function f, are independent from the vari- 
able a,:. The circuit realization of Equation (1) is iven 
by a multiplexer gate while Equations (2) and (3 de- 1 
scribe an AND-EXOR gate of Atmel 6000. 

The application of the Shannon expansion, Equa- 
tion (I), for all variables of a function leads to the 
construction of a Binary Decision Diagram. The ap- 
plication of the two Davio expansions for each variable 
generates an adaptive logic tree [Q].. The FDD is ob- 
tained b applying the reduction procedures used for 
BDDs [4 Y , to the adaptive logic tree created using only 
expansion (2). If all three expansions are applied to 
all variables, the Kronecker Reed-Muller tree [5,11,12] 
is obtained. 

A terminal vertez has an attribute a value 
v&e(v) E 0, 1. A non-terminal vertez has an at- 
tribute an argument index indez(v) E 1, . . . . n and 
two children low(v), high(v) E V. An ordered func- 
tion graph is a function raph such that for any non 
terminal vertex v, if low 

// 
i” 

v) is also non terminal, then 
indea(v) < indez(low v . 
terminal, then indez v 

Similarly, if high(v) is non- 
< indez(high(v)). 

A 1?eed-Muller l+ee is a function graph: 
l having root vertex v denoting a function fV de- 

fined recursively as: 
1. IIf v is a terminal vertex: 

,a. If value v = 1, then fV = 1. 
11 ‘b. If value v = O! then fV = 0. 

2. If v is a non-termmal vertex with index(v) = i, 
the fV is the function: f,,(zl, . . . . x, = 

flow(v)(%...r%) @ z - [Ligh(v)(Z1,***,%) 

@ flou~(u)hr --,%&)I. 
l any path from the root to the terminal vertices 

will traverse the same order of variables. 
A Permuted Reed-Muller lbee is a function graph: 
l having root vertex v denoting a function f,, de- 

fined recursively as: 
1. If v is a terminal vertex (as in Reed-Muller Tree). 

2. If v :is a non-terminal vertex with index(v) = i, 
the fy is the function: f,,(xi, . . . . 2, 

= fiow(v)(m,...r%J a x * t fhigh(o)blr...r%) 

@ flow(v)(~~lr --,%)I. 
l any path from the root to the terminal vertices 

can traverse a different order of variables. 
A Fized-Polarity Reed-Muller Bee is a frmction 

graph: 
l having root vertex v denoting a function fV de- 

noted recursively as: 
1. If v is a terminal vertex (as in Reed-Muller Tree). 
2. If v is a non-terminal vertex with index(v) = i, 

the fv is a one and only of the functions: 
a. fv(zb . . . . xn) = fh(w)(% . ..I xn) 
@ X ’ [fhigh(u)(xl, -*,%) @ fh(v)(~lr --~,%)I. 

b. fv(% .**, xn) = fhigh(v)(xlr .*a, %) 
@ J * [fhigh(r)(% -7%) cl3 fh(o)(% -~,Gz)l. 
l any path from the root to the terminal vertices 

will traverse the same order of variables. 
l for every variable, just one type of expansion is 

selected. 
A Krostecker Reed-Muller l%ee is a function graph: 
l having root vertex v denoting a function f,, de- 

fined recursively as: 
1. If v is a terminal vertex (as in Reed-Muller Tree). 
2. If v is a non-terminal vertex with index(v) = i, 

the fv is a one and only of the functions: 
a. fv(a:l, . . . . En) = fh(v)(% -,%) 

@ X ’ [fhigh(v)(zlr --*I Xn) @ fiow(v)(Xlr *-*j G)]* 
b. fw(a:lr ..-, %I) = fhigh(v) (, ---I 2,) 

@ z ’ [fhigh(v)(alr . ..I 2,) @ flmu(v)(~lr *a*, %J. 
c. fu(x1,..., xn) = g * [fh(v)(% ..A) 

CBX * fhigh(u)(xlr . . ..%a)]. 
l any path from the root to the terminal vertices 

will traverse the same order of variables. 
l for every variable, just one type of expansion is 

selected. 
A Pseudo-Kronecker Reed-Muller l’kee is a :func- 

tion graph: 
l having root vertex v denoting a function fi, de- 

noted recursively as: 
1. If v :is a terminal vertex (as in Reed-Muller Tree). 
2. As in Kronecker Reed-Muller Tree. 
l any path from the root to the terminal vertices 

will traverse the same order of variables. 
l for every variable, any expansions: Shannon, Pos- 

itive Davi.0, and Negative Davio can be applied in. var- 
ious subtrees. 

A Permuted-Kronecker Reed-Muller l%ee is a func- 
tion graph having root vertex v denoting a function fv 
defined recursively as in the Pseudo-Kronecker Reed- 
Muller Tree, but any path from the root to the tcrmi- 
nal vertices can traverse a different order of variables. 
In this tree there is then no any of the previous con- 
straints on variables or expansions. The only limita- 
tion that remains is that along a branch, every variable 
is met only once. 

By applying the well-known decision diagrams re- 
duction procedures, the above families of trees are 
transformed to Directed Acyclic Graphs (DAGs’l and 
form the decision diagram families correspond&g to 
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them. One has then the following ordered dia- 
grams: Functional Decision Diagrams correspond- 
ing to Reed-Muller l+ees, Fized-Polarity Functional 
Decision Diagrams corresponding to Fixed-Polarity 
Reed-Muller ‘Ibees, Ordered Kronecker Decision Dia- 
grams corresponding to Kronecker Reed-Muller Ibees, 
Next, one has the following pseudo- type of diagrams: 
Pseudo Reed-Muller Decision Diagrams corresponding 
to Pseudo Reed-Muller Bees, Pseudo Kronecker De- 
cision Diagrams corresponding to Pseudo Kronecker 
Reed-Muller Trees, Pseudo Reed-Muller Trees are 
trees created as Fixed-Polarity Reed-Muller Trees but 
for every variable both Davio Expansions are allowed. 
Finally, one has the following free diagrams: Free 
Functional Decision Diagrams corresponding to Per- 
muted Reed-Muller Ibees, Free Fized-Polarity Func- 
tional Decision Diagrams corresponding to Permuted 
Fized-Polarity Reed-Muller Trees, and Free Kronecker 
Decision Diagrams corresponding to Permuted Kro- 
necker Reed-Muller ties, respectively. Free Fixed- 
Polarity Functional Decision Diagrams are similar to 
Fixed-Polarity Functional Decision Diagrams but the 
order of variables is not fixed in branches. 

The obtained trees and diagrams can be flattened 
to a two level form which can be realized by an 
AND-EXOR circuit. Flattening is an inverse oper- 
ation of “substitution”. If G is a fan-in function of 
F, flattening G into F re-expresses F without G. 
By flattening above forms we obtain both canoni- 
cal and non-canonical AND/EXOR circuits. For in- 
stance, by flattening Functional Decision Diagrams 
we get canonical Reed-Muller Forms. By flatten- 
ing Fixed-Polarity Functional Decision Diagrams we 
get canonical Fized-Polarity Reed-Muller Forms. By 
flattening Ordered Kronecker Decision Diagrams we 
get canonical Kronecker Reed-Muller Forms, and so 
on. Flattening of the minimal forms of the most 
general diagrams! FKDDs, leads to highly mini- 
mized, non-canomcal, most general AND/EXOR ex- 
pressions, called Exclusive-Or Sum-of-Product Ex- 
pressions (ESOPs) [17]. 

4 Description of RESPER 

RESPER is a synthesis algorithm for the calcula- 
tion of FKDDs. It consists of three parts: realization 
of a trivial function, ezpansion aelection and decom- 
position. The trivial function is used for the realiza- 
tion of Boolean functions as a cascade circuit, where 
only one next level module is allowed or no module at 
all. Expansion selection option determines an appro- 
priate expansion to be chosen for that module in that 
level. Finally, the RESPER is a mapper especially 
suited for the AT 6000 series of Atmel. 

4.1. Trivial Function Realization. 
The basic principle of the level by level minimiza- 

tion algorithm from [l5] is to find the minimal number 
of next level modules for a given level. This approach 
has been adopted here. A similar principle is used 
for the realization of Boolean functions as cascade cir- 
cuits where only one next level module is allowed or 
no module at all. 

There exist six basic conditions for which a next 
module is redundant. 

Condition 1: fZi = 0. If this condition is applied 
to equation 3, one gets f = % - fz. We can use an 
AND gate with one negated input to implement this 
function, instead of using AND/EXOR gate which has 
the longest delay in the AT 6000 series. The AT 6000 
series does not provide “0” as one of its inputs. 

Condition 2: f= = 0. If this condition is applied 
to equation 2, one gets f = Xi * fzi. We can use an 
AND gate with one negated in ut to implement this 
function, instead of using AND EXOR gate which has P 
the longest delay in AT 6000 series. And the AT 6000 
series does not provide “0” as one of its inputs. 

Condition 3: fii = 1. If this condition is applied 

to equation 1, one gets f = Xi * 1 @ Z& * z. 
We are able to use one wire less for the inputs to the 
multiplexer, since the AT 6000 series allows us to select 
“1” for one of the inputs. 

Condition 4: f= = 1. If this condition is applied 
to equation 1, one gets f = ai - fzi $ T& - 1. We are 
able to use one wire less for the inputs to multiplexer, 
since the AT 6000 series allows us to select “1” for one 
of the input. 

Condition 5: a data-input function is identical 
to another data-input function to a multiplexer in the 
same level of the tree circuit fii = fq. If this con- 
dition is applied to the equation 2, one gives f= and 
fFi. If this condition is applied to the equation 3, one 
grves f= and fzi. 

Condition 6: a data-input function is the comple- 
ment of another data-input function to a multiplexer 
in the same level of the tree circuit fzi = &. If this 
condition is applied to equation 2, the resultant func- 
tion will be f = f= $ xi. If this condition is applied 
to equation 3, the result will be f = fti $ E. As we 
see, it will give less wire connections and less modules 
for the next level. 

In most algorithms only the first five conditions are 
taken into consideration to decrease the number of 
next level modules. The case of a data input function 
being the complement of another data input function 
has not been taken into consideration in any synthesis 
algorithm. The advantage of the presented method 
is, that it also verifies Condition 6. The complement 
function can be easily realized by an inverter logic cell. 

4.2. Variable and Expansion Selection. 
The size of the BDD of a function is sensitive to 

the ordering of the input variables. There has been 
a tremendous effort for determining a good variable 
ordering [8]. Some heuristics are based either on the 
analysis of an exist multilevel netlists [2] or the number 
of occurrences of the variables [lQ]. RESPER adopted 
the synthesis algorithm from [l]. To reduce the solu- 
tion space for a large function to a space that is com- 
putationally feasible, the heuristic searching algorithm 
allows all three decomposition choices. The heuristic 
for the variable selection is to select the variable that 
will obtain less modules in the next level. In order to 
obtain the result which is as close as possible to the 
exact solution, the program starts to check all possi- 
ble variables at each node in each level. Selecting the 
variable is determined by the set of conditions defined 
in the previous section. 

11 



The expansion selection is limited by the modules 
availabiity and their delay times. In AT 6000 series 
two modukes are provided which fit two of the Davio 
Expansions. One of the modules is a two input mul- 
tiplexer which is good for equation 1 and the other 
is the AND/XOR which is good for equation 2. If 
equation 3 is used we need to add an inverter to the 
AND/XOR. The time delay is also an important fac- 
tor for the choice. If there is a tie for the Equation 2 
and Equation 3, we need to choose equation 2 since 
an inverter needs to be added. An added inverter will 
increase the number of levels of the tree. 

The selection of an appropriate variable also cre- 
ates the backbone for selecting an appropriate expan- 
sion. The expansion selections use the same set of 
conditions as the variable selections. If condition 3 or 
condition 4 is met, then expansion 1 will be selected. 
If condi.tion 2 or condition 6 is met, then expansion 2 
will be chosen. If condition 1 is met, then equation 3 
is chosen. If condition 5 is met, either equation 2 or 3 
will create the same result. For condition 6, the pro- 
gram will select either equation 2 or equation 3. Since 
the objective for this program is to minimize the delay 
and area, equation 2 will be chosen if condition 6 is 
met. If condition 5 is met during the expansion and 
variable selection, the program will stop searching and 
will select equation 2 for that module. The reason is 
that this function is independent of the chosen vari- 
able, and it does not need a module to represent this 
function at this level. However, if none of those condi- 
tions had been detected, the cost of each expression for 
each selected variable is calculated. Whichever com- 
bination of expansion type and variables provides the 
least number of minterms will be chosen. This evalu- 
ation is performed for each input variable for every of 
the output functions. 

4.3. Shared Functional Decision Diagram. 
FKDD is a canonical representation of the func- 

tional Idomain. Each node of the FKDD decides 
whether the product term belongs to the function or 
not. Crea6ing an FKDD the following operations are 
used. 

1. Deleting a node whose two edges direct to the 
same node. 

2. Sharing isomorphic sub-graphs. 
Muhiple FKDDs can be joined into a single SFKDD 

which consists of the FKDDs sharing their subgraphs. 
In other words, two isomorphic subgraphs do not coex- 
ist in the SFDD. In SFKDD, there is an input inverter 
added. Its purpose is to swap a positive edge and 
negative edge at the next node. By using this input 
inverter, SFKDD will not only reduce the isomorphic 
subgraphs but also those subgraphs which are inverses 
of the others. This constraint brings about the follow- 
ing advantages to manipulate a completely specified 
Boolean functions. 

1. The equivalence between two functions can be 
checked by F,, @ F,,, = 0 n#m 

2. The inversion between two functions can be 
checked. by F,, @ F,,, = 1 n#m 

3. By sharing sub-graphs we can compactly repre- 
sent many functions. 

4.4. Implementation of RESPER. 
The algorithms described above form the core of the 

decomposition. The task of these subroutines is to as- 
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Table 1: RESPER versus TECHMAP 

sist the whole program to choose an optimal variable 
order combined with a suitable expansion. The pro- 
gram reads in the disjoint ON cubes written in F’LA 
format. If the input has n output functions, the pro- 
gram divides n output functions into n single output 
functions. Each output function is stored in n dZer- 
ent modules. Starting from module[O], the program 
computes all input literals and searches for the best 
selected variable based on those six conditions. After 
the selected variable is chosen, it generates a mod- 
ule[n+l and checks for an isomorphic module. If the 
module n+,l is isomorphic with other modules, the i 1 module nS.1 will be eliminated. The program will go 
on to module[l], module[2] until there is no module 
left. 

5 Evaluation of Results 

RESPE:R is run on a networked SUN 4/670MP 
workstation. The results are listed in Table I. All re- 
sults were verified by the “verify” command of the 
MIS-II system. The results listed under TECHMAP 
are from [18]. They were also run on a networked 
SUN 4/67OMP workstation. The corn arison of 
TECHMAYP with ASYL and RMS is in [16 . In Table P 
I, E is the name of the example. I is the number 
of input variables. 0 is the number of output func- 
tions. m is the number of modules (cells) in the final 
mapped circuit. 1 is the longest path that a signal 
must go from the primary input to the primary out- 
put in the circuit. C1, C2 and C3 in Table I are the 
heuristics used by TECHMAP to select the expansion, 
mentioned in section 2. Based on Table I, the heuristic 
used should be the best heuristic among those three 
in TECHMAP. We observe that RESPER generates 
better results for multi-output functions. Not only is 
the number of modules smaller, but also the number 
of levels. For instance, for function cc the number of 
modules is reduced from 117 to 42, and the number 
of levels from 15 to 6. This improves not only size 
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but also speed and routability, which is of extreme 
importance in cellular FPGAs. In a separate study, 
we compared RESPER with REMIT, which also gen- 
erates free diagrams, but the diagrams are trees for 
which and only positive Davio expansion is used. On 
27 functions, the total number of modules was 257 for 
RESPER and 827 for REMIT. Interestingly, for all 
tested functions, the numbers of levels for RESPER 
and REMIT were the same. 

6 Conclusions and Current Research 

The obtained results are very promising and moti- 
vate to further investigate the FKDDs and also other 
free diagrams. Necessary research on FKDDs is to 
find better heuristics for the expansion type and vari- 
able order selection. Similarly to TECHMAP, the 
RESPER program is now being generalized to incom- 
pletely specified functions. Other possible extensions 
to RESPER include mapping to other new cellular 
FPGAs, especially those from Motorola. Variants of 
the method can be also created that will include geo- 
metrical information in the FKDD growing process, in 
order to improve the operation of the interlinked place- 
ment/routing programs. Our current research com- 
bines logic synthesis for cellular FPGAs with place- 
ment/routing into a single comprehensive process that 
we call “geometrical logic synthesis”. We work also 
on using FKDDs as canonical general-purpose repre- 
sentations of Boolean functions. Assuming a given 
FKDD as a pattern of variable orders and expansion 
types, such FKDD becomes canonical, since FKDDs 
for other functions are created to follow this pattern. 
Then, fast comparison of two FKDDs is possible, as 
well as execution of Boolean and other operations on 
them that are implemented in DD packages [7]. 
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