
Multiple-Valued-Input TANT Networks

Marek A. Perkowski Malgorzata Chrzanowska- Jeske

Department of Electrical Engineering
Portland State University

Portland, OR 97207

Abstract

Abstract

The paper proposes mvTANTs , three-level networks
with multiple-valued inputs and binary outputs. These
networks are a generalization of binary T A N T s (Three
level And Not networks with True Inputs). One of pos-
sible interpretations of m v T A N T is a four-level binary
network with input decoders which realize multiple-
valued literals. Similarly to mvPLAs, mvTANTs have
regular structures with predictable timing. Compar-
ing to mvPLAs, however, they have at least 25 % less
input wares to the third-level (NAND) plane and not
more outputs from the second-level (AND) plane than
the mvPLA. Thus, in many cases they have less gates
and connections, and are useful to minimize Boolean
funclions in cellular FPGAs and other regular struc-
tures.

1 Introduction

Some Electronically Programmable Logic Devices
[27] and Cellular Field Programmable Gate Arrays,
especially those from Motorola, Plessey, or Pilking-
ton, require new kinds of logic synthesis tools, since
the classical approaches, as well as the FPGA-specific
methods developed recently [11,21] are not very suit-
able for them.

In cellular FPGA architectures such as Motorola
[l o , the ”design for speed”, “design for regularity”

ments are becoming more and more important, while
the minimization based on the number of gates as the
sole criterium is becoming of less practical value. It is
then interesting to investigate various logic structures
with a limited number of levels that would display high
degree of the connection regularity and small fan-in to
the gates. High connection regularity can make the
timing more predictable and allow to better optimize
the circuit to improve the speed. The requirement
that the design method would reduce the fan-in of
gates is the result of the main technology constraint
in these new FPGAs - all gates in the circuit have two

an d the ”design for minimizing connections” require-

OtThe work presented in this paper was partially supported
by NSF grant MIP-9110772.

Department of Electrical Engineering
Portland State University

Portland, OR 97207

inputs. Such regular array structures would be easy to
map to ”cellular” FPGAs, and particularly Motorola’s
MPAlOXX series.

One possible approach is to generalize the concept
of a PLA to a regular structure with planes having
other gates than only ANDs in the input plane, and
other than only ORs in the output plane [17,16,15].
Additionally, a limited factoring and folding of rows
and columns in the planes of this new structure de-
creases the area [22]. Furthermore, instead of having
variables and their negations at the input to the AND

ane, one can use two-input, four-output decoders p‘ 24,25,26]. This leads to the usage of multiple-valued
input algebra as a convenient tool in the synthesis pro-
cess.

Most of previous applications of mv logic to binary
circuit design have been for circuits with two levels
(not counting the level of decoders that realize the lit-
erals). In the multi-valued literature, there are just a
few papers on applying multiple-valued-input algebra
to circuits with more than two levels. Works describ-
ing PLA decomposition methods [2,26] and multi-level
circuits with literal generators realized with Sasao’s
MACDAS [23] belong to this category.

In this paper we will investigate a new structure,
called mvTANT, which generalizes the structure of
TANT networks [6] and uses the multiple-valued logic
as a mathematical technique to realize binary multi-
level logic. The paper is organized as follows. Sec-
tion 2 presents the structure of binary TANTs and
gives the rationale for mvTANTs. Section 3 intro-
duces the literal constraints that lead to the concept
of the Multiple-Valued-Input TANT Networks (mv-
TANT). Basic notions and definitions are given in
Section 4. Section 5 gives theorems used to gener-
ate implicants for mvTANTs. In Section 6 a method
to minimize mvTANT networks using mvTANT im-
plicants is described. Section 7 presents conclusions
and future work.

2 Binary TANT Networks

The ”Three level AND NOT networks with
True inputs” (so-called T A N T networks) were in-
troduced by McCluskey and Gimpel. They have the
meaningful advantage over the PLA representation.
TANT design for function f can never be worse in

334
0195-623XI94 $3.00 Q 1994 IEEE

terms of the number of gates than the correspond-
ing PLA [SI. The structure of a binary TANT net-
work is shown in Fig. 2.1. For presentation purposes,
we assume that the network is composed of NAND
gates. TANT has only affirmative variables as its in-
puts, while the PLA has both affirmative variables
and their negations as its inputs. Thus, assuming
rectangular layout realization, PLA has one dimen-
sion of the input plane two times larger. The number
of the TANT implicants is also smaller than that of
the prime implicants in PLA. Therefore, TANT is usu-
ally better. It allows also for better incorporation of
the fan-in constraints than the "standard cell" real-
ization of the PLA-type two-level logic. Several algo-
rithms to minimize TANT networks have been pub-
lished, and some of them were realized as computer
programs [6,5,9,7,8,12,3,4,29,30,13].

Another argument for three level logic is given in
251. I t was proven by Sasao that for "nearly all" B oolean functions three levels is enough in the sense,

that while increasing the number of levels from two
to three the number of gates is substantially reduced.
By increasing the number of levels from three to more
than three, the reduction in the number of gates is
minimal [25]. However, the analysis of solutions ob-
tained with the Sasao's method leads to the observa-
tion, that the number of inputs to a gate in a three-
level network is usually large. There is also a trade-off
of the number of levels and the total number of inputs
to gates. From construction, the four-level binary net-
works are not worse than the networks with a smaller
number of levels, and additionally they have usually
a much decreased number of gate inputs. There-
fore, we increase here the number of levels to four,
hoping that the the decreased fan-in and number of
gates will outweight the difficulty of the synthesis al-
gorithm. Another rationale for the four-level binary-
realized mvTANTs is the following. Since it was ex-
perimentally proven that both the mvPLA and the bi-
nary TANT networks improve on the binary PLA, the
multiple-valued TANT should improve on both the bi-
nary TANT and the multiple-valued PLA. In the worst
case, the binary TANT reduces to a binary PLA. The
same property holds for mv logic: in the worst case,
the mvTANT network reduces to the mvPLA. There
is then no risk involed in using mvTANTs. By pay-
ing a price of more complex synthesis, one gets always
a solution that is not worse than the popularly used
mvPLA with input decoders.

In addition, the mv TANT concept can be applied
to minimize four-level networks with pvalued inputs
and binary outputs for any value of p.

3 The Basics of the mvTANT

We will denote binary variables by small letters and
multiple-valued (mv) variables by capital letters. The
multiple-valued input literal (mv literal, for short) is
defined in a standard way [MI.

Let us observe, that in the case of the binary TANT
network, the main design constraint is, that out of two
polarities, 0 and 1, of a 2-valued variable, the circuit
accesses only one polarity. Below we will generalize

this constraint to a pvalued logic.
Definition 3.1. The allowed set of literals for

variable X is a set of literals such that every single-
value literal X i of this variable can be expressed in
a unique way as a product of some of these literals
and their negations.

The set of all values of variable X is denoted by P.
A single value is denoted by i, i = 0, ..., p - 1. There
exist p literals such that each of these literals has a set
of values P - {i}, i = 0 ,..., p - 1. Let us denote by
P P the set of these p literals.

Theorem 3.1. Any set PS of p- 1 literals selected
out of set P P creates for variable X an allowed set of
literals.

Ezample 9.1. Let P = {0,1,2,3,4}. p = 5.
pp = {x{O,1,2,3), x{O,1,2,4) x{O,1,3,4) x{OJA4)

xt1,2,3,41}. p s = {xtOV1,2,3i, xtOJ,2,41: ~ { 0 , 1 , 3 , 4 1 :

X{0*2*394)}. Let the literal from P P not selected to
PS be X{1*213*4). Value 0 = (0,1,2,3) n (0,1,2,4) n - .
{0,1,3,4} n {0,2,3,4}. For values 1, 2, 3, 4, X{') =F,
where Xi is in PS. For instance X{') = X{03213*4)

= X{O~l~~,3~4)-{0~2~3~4}. From now, we will denote sets
in a simplified way: set {0,1,2,3} will be denoted as
0123.

For any multi-valued variable, there are several pos-
sible sets that are allowed for it. One of them is se-
lected by the designer, and we are not interested here
how this set is selected. After the selection, each of the
elements of this set is called the selected literal. The
set of the selected literals is realized as the output
functions of a "unique decoder". The name "unique
decoder'' comes from the property that a decoder with
a larger number of outputs either would not create the
allowed sets of literals (the single-values could be cre-
ated in a not unique way), or would have more than
the minimumnumber of outputs. Also, a decoder with
a smaller number of outputs than the unique decoder
cannot be used, since it would not be able to allow
realization of an arbitrary Boolean function.

Below, we will use 2-valued, 3-valued and 4-valued
logics as illustrations of our general approach to p-
valued-input TANT. For 2-valued variable there are
two allowed sets of literals {Xo} and {X'}, and one is
selected as the selected literal. For 3-valued variable
there are three possible literals Xol, Xo2 and X12,
and any two of them are selected as the selected liter-
als. For every 4-valued variable X ; the allowed set of
literals is: $XiJ, X i K , X;"), where J , K, L are various
subsets o f t e set { 012, 013, 023, 123 }.

The set of values of the selected literal is called
the set of selected values. Every given set of selected
values for a variable will be called a polarity of this
variable. I t results from the above definitions and The-
orem 2.1 that for every variable and associated polar-
ity there exists a set of selected literals and a unique
decoder of this variable.

From the point of view of using the mvTANT con-
cept to design binary circuits, the 2k-valued input logic
must be used. In the case of Sk-valued logic, the mv-
TANT network has k-input, 2k - 1-output decoders in
the fourth level (the input level). (It has NAND gates
in the remaining three levels, see Fig. 3.1.) From the

335

practical point of view, k = 2,3, since larger values of
k would lead to too many outputs from the k-to-ak - 1
decoders.

Since in a binary TANT only signals correspond-
in6 to affirmative variables are on the inputs to the
third level plane, in comparison with a PLA which has
both affirmative and negated variables, one dimension
of this plane is reduced in binary TANT by 50 %.
In case of mvPLAs k=2 leads to 2-input, 4-output
decoders, but for mvTANT only 3-output unique de-
coders are used. This makes a gain of 25 % in the third
level plane, when compared to an mvPLA, or a stan-
dard PLA which uses 4 outputs for two variables (two
variables, plus their two negations). The decrease of
the total area of mvTANT with respect to mvPLA is,
however, even more substantially caused by the large
decrease in the number of gates of the second level
mvTANT plane. In case when variables are grouped
to triplets and an 8-valued logic is used to describe the
outputs of the 3-input 8-output decoders, the number
of decoder outputs which has to be used on the input
to the third level plane of the mvTANT is seven. This
is one wire more than in the case of three variables
with their negations in a binary PLA, but the reduc-
tion in the number of gates on the second level usually
much outweights this increase.

We distinguish three types of binary variables: sin-
gle variables, paired variables, and tripled variables.
The paired variables are binary variables allocated to
groups of two variables. The tripled variables are vari-
ables allocated to groups of three variables. In the
first synthesis stage, not presented here, an allocation
program analyzes the partial symmetries of all pairs
of binary variables, and on this base allocates every
binary variable to only one group: with one, two or
three variables. This algorithm selects also the polar-
ity of each multiple-valued variable that corresponds
to this group of binary variables.

The problem of pairing binary variables to 2k - 1-
valued variables, as well as the related problem of se-
lecting the polarities of 2k - 1-valued variables, are
quite difficult. Even more challenging is the prob-
lem of grouping binary variables to any number of
groups of 1 ,2 ,3 ,4 , ..., k (k 5 n) variables. This can
be still generalized to the case that the same variable is
used as an input to several neighboring decoders. This
means, allocating the same variable to more than one
group. The Binary Decision Diagrams BDDs) and
Orthogonal Decision Diagrams (ODDS) 151, as well

in them, are crucial to finding those variables’ group-
ings and polarities.

A general structure of mvTANT with single, paired,
and tripled variables in the decoder level is shown in
Fig. 3.1. The unique decoder for a single binary vari-
able corresponds to using this variable on the input
in a positive polarity (as a wire), or in a negative po-
larity (with an inverter). Other unique decoders were
explained above. Our approach (both the binary and
the multi-valued variant) allow also for direct connec-
tions between any two levels of a mvTANT, while the
approaches from 25 and 6 restrict the connectivity

floorplans for FPGA/PGA/VLSI realization of binary

as total and partial symmetries of variab \ es observed

only to the neigh L 1 oring leve I 1 s. One of possible layout

circuit corresponding to a mvTANT is shown in Fig.
3.2. The functions realized in this network are:

y1 = (a e b) (c + Z) e f + (a+6) c d f,

y3 = (a e b)(c + 2) e (a + 6) c d f 6 e 7 (a+b) +
(a e b) (c + a) e f + @ + 6) c d f (c + a) ,
y4 = (a+6) c d f + B e 3;.
The outputs of the third level are: =

(a e> b) (c + z) e , fi = (a + 6) c d f, E =
% e f . The outDuts of the second level are: Z i =

yz = (a+5) c d f (c+;i) + E,

- ,
(a e b) (c + ; i) e 3 ; , ~ = (~ + 6) c d f (.+a),,=
rl r2 r3 (a + b) . If necesary, the outputs of all 4 levels
can be-used & primary outputs.

presents a layout of a mvTANT
with truly multiple-valued inputs, in this case, 3-
valued. The function realized in this layout is F =

+ CO1 CO2 BO2 DO1 DO2 BO1 and its optimization

Figure 3.3.

A01 DO1 DO2 Bo1

will be discussed in more detail in Example 4.1.

4 Fundamental Definitions

Example 4 .1 . The 3-valued-input function pre-
sented in the Marquand map from Fig. 4.1 can be
minimized as the following mvTANT expression:

F = A01 C12 + CO Bo2 DO BO1
- - A01 DO1 DO2 BO1
+ CO1 CO2 Bo2 DO1 DO2 BO1

It is assumed that the selected literals are:
Aol, Ao2, BO1, BO2, CO1, CO2, DO1, and Doz.
The mvTANT-implicants from above expressions are
shown in Fig. 4.2. The corresponding network is
shown in Fig. 4.3. I t has 6 gates and 17 connections
decoders not counted). We will say that the cost is I 6, 17). The gate cost is 6 and the connection cost

is 17. We can minimize the total cost that can be
any weighted sum of these two costs, but some mini-
mization properties hold only for some weight combi-
nations.

By applying the de Morgan’s theorem to the first
and second levels in Fig. 4.3, one can observe that
the first level plane of NANDs in the mvTANT re-
alizes a logical sum (the OR plane), the second level
of NANDs realizes a product (the AND plane), and
the third level of NANDs realizes the negation of the
product of selected literals (the NAND plane). The
expressions written in Fig. 4.3 near the second level
NANDs correspond then to the output of the AND
plane (negations of NAND gates).

TANT network minimization problem consists in
finding the Boolean expression that minimizes the to-
tal cost. It means that the synthesis method should
minimize simultaneously the second and the third lev-
els. (It is assumed that the decoders have been already
selected earlier, and are not included to the total net-
work cost..)

Definition 4.1. The available literal AVL(X),
for variable X, is a selected literal of this variable, or
a product of any number of selected literals of this
variable.

336

Definition 4.2. The available product
AVP(PL), of a product P L of literals, is a prod-
uct of available literals for the variables from product
PL, such that A V P (P L) includes P L .

Example 4.2. Assuming that the selected
polarities of 4-valued variables X and Y are
{012,013,123}, and the selected polarity of vari-
able 2 is {023,013,123}, the selected literals are:

The ka i l ib le litirals for viriable X are: AGL(X)

available literals for variable Y are: AVL(Y)

able literals for variable 2 are: AVL(Z) =
{Z023 1 , Z o l 3 Z123) > > , Z23 Z13 Zo3 Z 3 } . The available
products of product P L = X o Y' Z 1 are those el-
ements of the Cartesian Product: AVL(X) x AVL(Y)
x AVL(Z) that cover the product P L . For instance,
X 0 l 2 Yol3 Z013 is one of the available products of PL:

X o Y' 2' = P L . Available products are mv cubes
[18,28], and the cube inclusion operation is defined in
a standard way.

Let us observe, that the set of these available prod-
ucts is very large, when compared to a number of prod-
ucts of affirmative variables in a binary TANT, or to
a number of literals in mvPLA. The solution space
searched here includes the previous spaces and is sig-
nificantly larger, which is the reason why an mvTANT
gives usually much better solutions than both a binary
TANT and a standard mvPLA with the same literals
selected.

Definition 4.3. A permissible expression is a
Boolean expression of the form P = H TI TZ ... T,
where both H and are products of selected literals.
H is called the head of permissible expression and
each is called a tail
factor. A permissible implicant of a function
f (plvTANT-implicant) is a permissible expression
which implies function f .

Example 4.3. The Boolean expression Aol C' D12
is a prime implicant of the function from Ex-
ample 4.1, and A'' - - -,
CO BO2 DO, CO BO2 are some of the
mvTANT-implicants of this function.

Definition 4.4. The heads of mvTANT-implicants
of function f are called the second level groups.
The set of all second level groups is denoted by Hf.
The tail products of mvTANT-implicants are called
the third level groups. The set of all third level
groups is denoted by Tf .

For the mvTANT network of the
function from Example 4.1, realized in Fig. 4.3, the
products (cubes) A'' and CO' CO2 BO2 are the second
level groups. The products, CO2 DO2 and Do' DO2 Bo'
(= Do BO'), are the third level groups.

Similar to two-level minimization, in which a solu-
tion is a covering with prime implicants, the solution
of mvTANT is a covering with mvTANT-implicants.
In mvTANT case, however, the situation is more com-
plicated, since several mvTANT-implicants cover the

xOl2 x013 x123 y o 1 2 y o 1 3 y 1 2 3 2 0 2 3 2013 2 1 2 3 . , ,
- { Xo12 X013 X123 Xo1 ~ 1 3 X12 X I } . The , , , , , , -

- { y o 1 2 yo13 y 1 2 3 yo1 y13 y l 2 y'} . The avail- 9 > > 1 9
-

AVP(PL) = A V P (X O Y I 21) = x012 y o 1 3 2 0 1 3 3 -

-- -

is called a tail product while

,401 m, ,401 m,

Example 4.4.

same set of minterms, but have different tail factors.
The selection of mvTANT-implicants must be then
done in such a way that the third level groups are max-
imally shared among the mvTANT-implicants, and
are also of the smallest cost.

Let us observe in Example 4.4. that there are two
representations for the last group that we will use
interchangeably. The rule AS . A' = AS ' is
used to change from one form to the other. In gen-
eral, the process called normalization is used to cre-
ate a standard form of implicants, called the principal
mvTA NT-impli cants.

Property 4.1. The following rules of Boolean
transformatjons are true:

(4.1) A' B' Ak =

where V A L is the set of all values of variables A,
B . SUBSET(S) is any subset of set S, and r , k, 1 are
non-empty subsets of V A L .

A' Bl A{rnk} U S U E S E T t V A L - (r - l) }

(4.2) A' B' A'
(4.3) A' B' A' + A' B'
Definition 4.5. Normalization of an

mvTANT-implicant is the process of applying rules
(4.2) and (4.3 to this implicant until all literals will

Example 4.5. For the 4-valued-input func-
tion from Fig. 4.4 assume the following se-
lected literals: X o Z 3 , X o l 3 , X l Z 3 , YOz3, Yol3 ,
YlZ3. Then some of the available products are:
y 2 3 = y o 2 3 . y 1 2 3 y13 = y o 1 3 . y 1 2 3

y o 3 = y o 1 3 . y o 2 3 y3 = y o 2 3 . y o 1 3 . y 1 2 3

a + A' B' As ,when r # s

become the se 1 ected literals.

7 1

X 3 = XoZ3 X o l 3 . X l Z 3 . Applying rule
(4.1) we get: Y Z 3 X 3 Yol3 = Y Z 3 X 3 YO3 =
y 2 3 , - - y 2 3

Applying normalization to any of the above, we get:

Definition 4.6. The permissible realization
for the function f is a logic sum of the set of mvTANT-
implicants which cover all minterms of the function.
The optimal permissible realization for function
f, denoted by O P R (f) , is such a permissible real-
ization that its corresponding TANT network has the
minimum total cost.

Definition 4.7. The prime permissible impli-
cant, ppf-implicant for short, is such a permissible
implicant that it is not properly included by prime im-
plicants and if any tail factor is removed from it, the
resulting expression will not be an mvTANT-implicant
any more. The set of all ppj-implicants is denoted by
P P .

hxample 4.6. For function f from Example 4.1
some of the ppf-implicants are:

y o 2 3 y 1 2 3 X023 X013 X123 y 0 1 3 .

A01 C12

A01 C12 C2 A01 DO2 DO BO1 Cl2.
m, CO Bo2 Do,

For instance, by removing Do Bo' from
CO BO2 Do BO1 one creates CO BO2 which is not an
mvTANT-implicant .

Definition 4.8. The principal mvTANT-
implicant, pcf-implicant for short, is such a normal-

331

ized ppj-implicant that its tail products don't contain
the literals from its head. The set of all pcj-implicants
is denoted by PC, .

Ezample 4.7. Assuming selected literals: Aol, A o 2 ,
Bo' 9 , BO2 CO1, CO2, DO1, and DO2, the mvTANT-
imdicant: Aol C12 C2 A01 DO2 DO BO1 Cl2

is transformed to:

next to: Aol Cla CO2 DO2 Dol DO2 BO1
and next to: Ao' DO1 DO2 BO1
which is the normalized form of the pct-implicant

A01 C'2 Cl2 CO2 A01 DO2 Do1 DO2 BO1 Cl2

- I -
for these selected literals.

Assuming now another selected literals: Aol, A12,
Bo' 1 1 1 1 B12 Col CO2 Dol, and DO2, the mvTANT-
implicant: A'' C12 C2 Aol DO2 DO BO1 Cl2

- -

which is the normalized form of t h e pcj-implicant

Example 4.8. Another normalization, assuming se-
for these selected literals.

lected literals Bo'. BO2. CO1. and CO2. is:

All mvTANT-implicants, that produce the same
principal mvTANT-implicant after normalization,
have the same "shape" on the Marquand chart - they
cover exactly the same true minterms and don't care
minterms.

5 Generating Necessary mvTANT Im-
plicants

In this section we will give definitions and theorems
which are next used to generate efficiently only those
mvTANT implicants, called the necessary mvTANT-
implicants, that can be included in a minimal solution.

Definition 5.1. The maximal pcj-implicant,
mpj-implicant for short, is such an pcj-implicant
which is not included in other pc -implicants. The
set of all mpj-implicants is denoted by Mj .

Every tail product of an m p j -
implicant is included (cube inclusion) in some tail
product of all pcj-implicants which are covered by this

Theorem 5.1.

mp -implicant (set inclusion for minterms).
hzample 5.1. For function from Example 4.1:

is the maximal imdicant. but CO' CO2 BO2 go1
A01 C12 DO1 DO2 BO1

is not, since it is incfuded in the principal implicant
Col CO2 BO2 Dol DO2 BO1. The tail products of
the mpj-implicant Aol C12 CO2 DO2 DO1 DO2 BO1
are CO2 DO2 and Do' DO2 Bo'. They are included
in the tail products of all pcj-implicants created from
Ao' C12 CO2 DO2 DO1 DO2 Bo' by removing any com-
binations of literals from the tail factors.

In two-level minimization, one does not use in the
covering stage those products implicants that are in-
cluded in prime implicants. Similarly, the analysis of
various kinds of mvTANT-implicants allow's to detect
those mvTANT-implicants that will not occur in at

least one exact minimum solution, and can be, there-
fore, excluded from further considerations.

Some other category of useful mvTANT-implicants
are called mazimal. They cover locally the maximum
number of minterms and are thus useful in greedy
heuristic algorithms. They are also used to create p p j -
implicants included in them. This is done by removing
any literals from tail factors.

Definition 5.2. The augmen ted ppj-implicant,
ap j for short, is such a pp implicant that it is not a
pcj-implicant. The set of ah-apj -implicants is denoted
by A Pj .

Example 5.2. For function from Example 4.1
Aol C12 C2 A01 Do2 Do Bo1 C12 is an example of
an augmented ppj-implicant.

Definition 5.3. The necessary apj-implicant ,
nul-implicant for short, is such an ap implicant that
all of its tail factors can be sharedby other p p j -
implicants of a different head. The set of all naj-
implicants is denoted by N A . The unnecessary
apt-implicant is the up impicant which is not an
naf-implicant and is calieh an unaj-implicant.

Example 5.3. For a binary case, f = a T + b E.
TANT-implicant a 3 is necessary since its tail factor
a b can be used in another TANT-implicant, bii, cre-
ating a TANT-implicant b 3 and thus leading to the
minimal TANT solution f = a a + 6 2. sowever,
in f 2 = a& + b? the TANT-implicant a ab is no t
necessary since its tail factor ;Ei; is useless in all other
TANT-implicants of f2 (in this case, in b Z).

T h e o r e m 5.2. If an unaj-implicant is excluded
from being selected to OPR sets, then at least one
exact optimum solution is retained as an OPR.

This can be compared to dominated primes in
Quine table for PLA minimization. If one removes
all primes dominated by other primes, some exact so-
lutions may be not generated, but at least one exact
solution will be retained.

Definition 5.4. The necessary ppj-implicant,
npj-implicant for short, is such a ppj-implicant that is
not an una,-implicant. The set of all npj-implicants
is denoted by N j .

From Definitions 4.6,4.7,4.8, 5.2,5.3, and 5.4. one
can conclude that N j = PCj U N A j

The next theorem results directly from these prop-
erties and the definitions of pcj-implicants and naj-
implicants.

Theorem 5.3. Every apj-implicant can be gener-
ated by addition of any number of literals included in
its head to any subset of its tail products.

Theorem 5.4. The available products of all the
prime implicants of function f (array ON) are suffi-
cient as the heads of ppj-implicants.

Example 5.4. The prime implicants for the func-
tion from Example 4.5 are: X o l Y 2 3 , X o 2 Y23,
X12 Y23, Y 2 . The available products of these impli-
cants are Xol3 Y 2 3 , X023 Y23 , X123 Y 2 3 , Y 2 3 , which
are the heads of ppj-implicants X0I3 Y23 X3 YO13,
~ 0 2 3 y 2 3 n x123 ~ 2 3 x 3 , y 2 3 x3 y 0 1 3 ,

respectively.
Theorem 5.5. The available products of all prime

implicants of the function f' (complement of f) are

-

338

sufficient as the tail products of mpj-implicants of f.
Ezample 5.5. The prime implicants for the

negation of the function in Example 4.5 are YO1,
X3 Y013. The available product of implicant X3 Y013
is X3 Yol3 which is the tail product of the mpj-
implicant YZ3 X 3 Yol3 from Example 5.4.

6 Algorithm to minimize mvTANTs

Similar to PLA and TANT minimization, the al-
gorithm to minimize mvTANTs has two stages. In
the first stage all the principal mvTANT-implicants
are generated from the set M S I of the mini-
mally split implicants (MSI-tmplicants) [l]. Next,
the tail factors that are useful to create necessary
mvTANT-implicants are generated, as well as neces-
sary mvTANT-implicants. This determines the search
space for the m v T A N T covering problem.” The
mvTANT covering problem is in essence a cover-
ing/closure or binate covering problem, which is solved
in the second stage using a decision function D F , sim-
ilar to the Petrick 01 Helliwell [14] decision functions.

The first stage is executed in the following way.
Given is a Boolean function as sets O N and D C .
1) enerated is set M S I of minimally split impli-

cants !I].
2) set of prime implicants of function f‘, a comple-

ment to f, is found. This set is denoted by P F N O T .
3) set M j of mpf-implicants is generated using sets

MSI and P F N O T (Theorem 5.5 is used). The heads
of mpj-implicants are available products of implicants
from MSI. For each maximal implicant, it is noted,
what MSI-implicant it was generated from. Each tail
product of this mpj-implicant obtains a unique name.

4) set PCj of pcj-implicants is created from set Mj
by removing all possible subsets of literals. Every gen-
erated tail factor obtains a unique name. It is noted,
in which pcj-implicants it can be used, and which tail
factor from an mpj-implicant would be created from
it by normalization.

5) set Nj of naj-implicants is generated. All new
tail factors generated obtain unique names. It is
noted, in which pcj-implicants they can be used, and
to which tail factors from pcj-implicants they corre-
spond.

In the second stage for every minimally split
implicant MSIi an elementary decision function
DF(MS1j)is created. This function describes all p o s
sible conditions of covering this MSIi with principal
and necessary mvTANT-implicants. The global exact
minimization problem is stated as a problem of find-
ing the minimum satisfying set of literals to a Boolean
product D F , the product of all the decision functions
for all the minimally split implicants:

for all MSIj from MSI. DF = (JDF(MSIi),
This pro em is NP-hard.
The same sub-functions that exist in various deci-

sion functions DF(MSIi) are encoded with the same
Boolean variables in function D F .

The D F (M S I ;) function for a M S I j implicant is
created as follows:

(U pcj) fl (pcj * ntjr> . n (tj, * tjr,)

where: * is an implication relation.
pcj are the decision variables for all pcj-implicants

that cover MSIi. Below, we will refer to an mvTANT-
implicant pc. and not to a variable pc. corresponding
to an mvTAkT-implicant, for short. de will keep this
notation for all decision variables below.

t j , are the decision variables for all tail factors tir
from pcj .

t j , , are the decision variables for all tail factors of
naj-implicants created for tail factor tir from pcj.

Example of such a decision function: DF(MSIi) =
PCl + pcz + PC3)
PCl* (t 1 , .t 1 ,)) (PC2 * (t z , 4,)) (PC3 *t3,)

(t a l * ta l ,)) (t 2 , * (ta , , + t a , ,)) .

.
. I ~ l l * (~ 1 l l + ~ h , 1) (tl,*(t2l1 +t21,+t213 1) *

* (t311 + t312 1)
The first component is a sum of variables for three

pcj-implicants: pc1, pcz, and pc3, created from MSIj .
The second component is a product of three implica-
tion equations for tail factors from the three principal
mvTANT-implicants. The implication (pc la (t1 , . t l a))
means: if you select pcj-implicant pcl then you have
to select tail factor til, or tail factor .t1,. The third
component is an implication equation for the tail fac-
tors from the first pcj-implicant pcl. For t l it in-
cludes variables tl and tl,,, which correspond to all

l? tail factors in naj-implicants generated from tail fac-
tor t ~ , of pcj-implicant pcl. The implication means:
if you selected (in pcl), the tail factor t l , , then you
have to select one of tail factors: tl, , or tl12, in naj-
implicants created from p c l . The fourth component is
an implication equation for the tail factors from the
second pcj-implicant. The fifth component is an im-
plication equation for the tail factors from the third
pcj-implicant .

The decision function DF is created as a Boolean
product of all such elementary decision functions. It
is next normalized to a standard form of a product of
sums of products of literals, by using the implication
removal transformation: a + b is reduced to E+ b.
There are several methods in the literature (both exact
and approximate) to minimize such decision functions
D F ; binate covering, Boolean Equations, Binary De-
cision Diagrams, integer programming, data flow, cube
calculus, AND-OR tree search, tree search, and many
other [29,30,14,12,8,7,6].

7 Conclusions and future work

We presented a new kind of circuit: Multiple-
Valued-Input TANT Network, mvTANT for short.
Similarly to Multiple-valued Input SOPs (mv-
SOPS) and Multiple-Valued-Input Exclusive Sums-of-
Products (mvESOPs), such circuits may find appli-
cations to the minimization of binary regular arrays,
cellular FPGAs, and gate arrays. We presented also
the fundamentals of the minimization of such circuits.

In a forthcoming paper, this approach will be ex-
tended to exact and approximate minimization of
multiple-output incompletely specified functions. It
has been also generalized for the case of circuits with

339

full decoders and function generators: in full decoders
we use 2k decoder outputs for k decoder input vari-
ables; in function generators there are more than 2k
decoder output functions used. Such decoder func-
tions are used to create literals for some, or all, mv
variables. The problems of finding variables’ group-
ings and polarities will be also a subject of the forth-
coming paper.

Since the solution space of the mvTANT minimiza-
tion problem is very large, larger than the space of the
classical mvSOP minimization problem [18,20] only
an approximate variant is reasonable from the prac-
tical point of view. But, similarly to Espresso-Exact
[18,19,20] and the approach from [14], the creation of
exact algorithms may be of some use to understand
better the problem, and can also help in the creation of
an efficient approximate algorithm for the same prob-
lem.

8 References

[l] Ciesielski, M. J., Yang, S., and M. A. Perkowski,
” Multiple-Valued Minimization Based on Graph Col-
oring,” Proc. ICCD ’89, Oct. 1989. [2] Ciesielski, M.
J., and S. Yang, ”PLADE: A Two-Stage PLA Decom-
position,” IEEE Trans. on C A D , Vol. 11, No. 8., pp.
943-954, Aug. 1992. [3] Chakrabarti, K.K., Choud-
hury, A.K., and M.S. Basu, ”Complementary Func-
tion Approach to the Synthesis of Three-Level NAND
Network”, IEEE Trans. Comput., Vol. C-19, pp. 509-
514, June 1970. [4] Choudhury, A.K., Chakrabarti,
K.K., and D. Sharma, ”Some Studies on the Prob-
lem of Three-level NAND Network Synthesis”, Znt.
Journal of Control, Vol. 6., No. 6., pp. 547-572,
1967. [5] Frackowiak, J., ”The Minimization of Haz-
ardless TANT Networks”, IEEE Trans. Comp., Vol.
C-21., No. 10, pp. 1099-1108, Oct. 1972. [6] Gim-
pel, J.F., ”The Minimization of TANT Networks”,
IEEE TEC, Vol. EC-16, pp. 18-38, Febr. 1967.
[7] Koh, K.S., ”A Minimization Technique for TANT
Networks”, IEEE Trans. Comp., January 1971, pp.
105-107. [8] Kulpa, Z., ”Synthesis of Quasi-Minimal
Logic Circuits of Many Variables with use of NAND
and NOR gates”, M.Sc. Thesis, Institute of Auto-
matic Control, Warsaw Technical University, 1970. [9]
Lee, H-P.S., ”An Algorithm for Minimal TANT Net-
work Generation”, IEEE Trans. Com . Vol. C-27,
No. 12, Dec. 1978, pp. 1202-1206. G O] Motorola,
”MPAlOXX Field Pro rammable Gate Array”, Prod-
uct Brief, 9/27/93. 7111 Murgai, R., Shenoy, N.,
Brayton, R. K., and A. L. Sangiovanni-Vincentelli,
”Improved Logic Synthesis Algorithms for Table Look
Up Architectures,” Proc. ICCAD-91, pp. 564 - 567,
Nov. 1991. [12] Perkowski, M.A., ”Synthesis of Mul-
tioutput Three Level NAND Networks”, Proc. of the
Seminar on Computer Aided Design, Budapest, 3-5
Nov. 1976, pp. 238-265. [13] Perkowski, M. A.,
Chrzanowska-Jeske, M., and T . Shah, ”Minimization
of Multioutput TANT Networks for Unlimited Fan-
In Network Model,” Proc. ICCD’90, pp. 360 - 363,
Boston, MA, September 1990. [14] Perkowski, M.A.,
and M. ChrzanowskaJeske, ”An Exact Algorithm to
Minimize Mixed-Radix Exclusive Sums of Products

for Incompletely Specifed Boolean Functions,” Proc.
ISCAS’SO, pp. 1652 - 1655, New Orleans, May 1-
3, 1990. [15] Perkowski, M. A., ”The Generalized
Orthonormal Expansion of Functions with Multiple-
Valued Inputs and Some of its Applications,” Proc.
ISMVL’92, pp. 442 - 450, Sendai, Japan, May 27-29,
1992. [16] Perkowski, M. A., ”A Fundamental The-
orem for EXOR Circuits,” Proc. of IFIP W . G . 10.5
Workshop on Applications of the Reed-Muller Expan-
sion in Circuit Design, ” Hamburg, Germany, Sept.
16-17, pp. 52 - 60, 1993. [17] Perkowski, M. A.,
Sarabi, A., and F. R. Beyl, ”Universal XOR Canon-
ical Forms of Switching Functions,” ibid, pp. 27 -
32, 1993. [18] Rudell, R. L., ”Multiple-Valued Logic
Minimization for PLA Synthesis”, M.S. Report, June
5, 1986. University of California, Berkeley, Califor-
nia 94720. [19] Rudell, R. L., and A.L. Sangiovanni-
Vincentelli, ”Exact Minimization of Multiple-valued
Functions for PLA Optimization”, Proc. ICCA D ’86,
Nov. 1986. [20] Rudell, R. L., and A.L. Sangiovanni-
Vincentelli, ” Multiple-valued Minimization for PLA
Optimization,” Proc. ISMVL ’87, pp. 198-208, May
26-28, Boston, MA, 1987. 211 Schaefer, I., Perkowski,

Cellular FPGAs Based on Ortho onal Expansions,”
as [IS], pp. 42 - 51, 1993. [22fSarabi, A., Song,
N., Chrzanowska-Jeske, M., and M. A. Perkowski,
”Comprehensive Logic and Layout Synthesis for Cel-
lular FPGAs,” Proc D A C ’94. [23] T. Sasao, ”MAC-
DAS: Multi-Level AND-OR Circuit Synthesis Using
Two-Variable Function Generators”, Proc. D A C ’86,
Las Vegas, pp: 86-93, June 1986. [24] Sasao, T.,
and M. Higashida, ”A Design Method for Three-Level
Logic Circuits”, (in Japanese). The Technical Papers
of IEICE Japan, VLD88-84, Dec. 1988. [25] Sasao,
T., ”On the Complexity of Three-Level Logic Cir-
cuits”, Proc. Intern. Workshop on Logic Synthesis,
MCNC, ACM SIGDA, May 23-26 1989, paper 10.2.
[26] Sasao, T., ”Application of Multiple-valued Logic
to a Serial Decomposition of PLAs,” Proc. ISMVL
’89, 1989. [27] Signetics, P L D Data Manual, Signet-
ics’ Approach to Logic Flexibility for the ’ ~ O ’ S ” , 1986.
[28] Song,. N., and M. A. Perkowski, ”EXORCISM-
MV-2: Minimization of Exclusive Sum of Products
Expressions for Multiple-valued Input Incompletely
Specified Functions,” Proc. ISMVL ’93, pp. 132 - 137,
Sacramento, CA, May 24-27, 1993. [29] Vink, H.A.,
Van Dolder B., and J . Al, ”Reduction of CC-tables Us-
ing Multiple Implication”, IEEE Trans. Comp., Vol.
C-27, No. 10, Oct. 1978. [30] Vink, H.A., ”Minimal
TANT Networks of Functions with Don’t Care’s and
Some Complemented Input Variables”, IEEE Trans.
Comp., Vol. C-27, No. l l . , Nov. 1978.

M. A., and H. Wu, ”Mu I tilevel Logic Synthesis for

340

I .
I .

I r

IVth IlIrd IInd
level level level

Figure 3.1

CO-

D-

1st
level

b

n
a
r
Y

1

I
n
P

t
a

U

Y l yz y3y,
Figure 3.2

Figure 3.3

341

3 2 1
Figure 2.1

Figure 3.4

A

Figure 4.1

y 00 01 02 10 11 12 20 21 22

Figure 4.2

A

0

C

D

Figure 4.3

