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Abstract

The paper presents a theorem that forms a foun�
dation to all well�known and all possible new canon�
ical circuits with EXOR output gates� Let M be a
�n � �n binary matrix with columns corresponding
to minterms and rows corresponding to a family of
Boolean functions of n variables� M�i�j� � � means
that the Boolean function of row �i� includes the
minterm corresponding to column �j�� If the rows are
linearly independent with respect to bit�by�bit EXOR
operation� then the family is called �orthogonal family
of Boolean functions�� The functions from the fam�
ily are called �orthogonal� functions� The theorem
states that for any orthogonal family of �n Boolean
functions fi of n variables represented as a �n � �n

matrix M � there exists a canonical three�level real�
ization F � f� � S� � ��� � f�n�� � S�n��� where
functions fi are the given orthogonal functions� and
coe�cients Si are determined by multiplying matrix
M�� by the vector of minterms FV of function F�
Each such canonical expansion creates also an univer�
sal cell that can be used in multi�level trees� Directed
Acyclic Graphs 	DAGs
� and generalized functional
decision diagrams� Generalizations to multi�output
incompletely speci�ed functions F� and the concept
of partitioned AND�OR�EXOR PLAs are also pre�
sented� Finally we illustrate practicality of these con�
cepts in application to Fine Grain Field Programmable
Gate Arrays 	FPGAs
 and to cellular logic in general�

� Introduction�

While I compared matrices of all well�known canon�
ical AND�EXOR forms� the striking observation was
that we always deal with a binary matrix of rows that
are linearly independent with respect to bit�by�bit EX�
ORing of them� Therefore� I tried to see� what would

happen if I take any orthogonal matrix y instead
of particular orthogonal matrices of the well�known
forms� It resulted� that for each such matrix there
exist always one associated canonical form� and the
circuit realizations of these forms are EXORs of all
kinds of gates� not only EXORs of AND gates� Quite
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thogonal family of Boolean functions	 and its associated binary

matrix�

amazingly� there seem to be no papers in the litera�
ture that would make this observation and �nd some
practical uses of it� This simple invention generalizes
the whole concept of �Reed�Muller logic� to a much
broader family of canonical functions� Moreover� it
helps to �nd new families of AND�EXOR canonical
forms as well�

The paper has two parts� The �rst part is a self�
su�cient theoretical contribution introducing the the�
orem� which we will call the Orthogonal Expansion
Theorem� Section � presents the orthogonal matrices
for some well�known and new forms� and presents the
Theorem� The generalization for incompletely speci�
�ed functions is done in section ��

The second part of the paper presents circuit ap�
plications� Section 	 discusses the multi�level circuits
based on the Theorem� Section 
 introduces the new
FPGA technologies in which the discovered by us fam�
ilies of forms can �nd immediate practical applica�
tions� Open research problems are listed in section
��

� The Orthogonal Expansion Theo�

rem�

Let us �rst introduce and illustrate the concept of
an orthogonal family of Boolean functions� We create
a �n � �n matrix M with columns corresponding to
minterms �for a function with n variables we have �n

columns
� The rows correspond then to some Boolean
functions of n variables� A � in the intersection of a
row �i� and column �j� means that minterm �j� is in
function �i�� The set of rows can be linearly inde�
pendent with respect to EXOR operation �i�e� rows
are bit�by�bit exored
� If a set of �n rows is linearly
independent then there is one and only one matrix
M��� inverse to M with respect to exoring operation�
In such case� the family of Boolean functions corre�
sponding to rows will be called the �orthogonal fam�
ily of Boolean functions� �or set of orthogonal Boolean
functions
� and the matrix will be called an �orthogo�
nal matrix��

Example 
��� Let us observe that the set of
minterms of two�variable functions is the orthogonal
family� with M being a unitary 	 � 	 matrix � �with
ones on a diagonal and zeros otherwise
�

Example 
�
� For the standard Reed�Muller form
of two variables� A and B� the set of orthogonal func�
tions is �� A� B� AB� This is expressed as the following
matrix M�



M �

A �B A �B A �B AB�
��

� � � �
� � � �
� � � �
� � � �

�
�� �

The �rst row corresponds to function �� the sec�
ond row corresponds to function A �since it covers
minterms A �B and A �B
� the third row corresponds
to function B� the fourth row corresponds to function
A � B� The circuit corresponding to this form has an
EXOR gate in the �rst �output
 level and AND gates
in the second level�

Example 
��� For the Fixed�Polarity Reed�Muller
form of polarity A��� B��� the set of orthogonal func�
tions is �� A�B�AB �

M �

�
��

� � � �
� � � �
� � � �
� � � �

�
�� �

The second row corresponds to function A and the
fourth row corresponds to function A �B� The circuit
corresponding to this form has an EXOR gate in the
�rst level� AND gates in the second level� and NOT
gates in the third level�

Example 
��� Let us now take some set of
orthogonal functions that will not correspond to
AND�EXOR��NOT
 realization� For instance� set of
functions �� A� AB� A�B is orthogonal� It is described
by the following matrix M�

M �

�
��

� � � �
� � � �
� � � �
� � � �

�
�� �

The third row corresponds to function A � B and
the fourth row corresponds to function A � B� The
circuit corresponding to this form has an EXOR gate
in the �rst level� AND gates in the second level� and
arbitrary functions �AND and OR in this case
 in the
third level � Fig� ����

In each of the above examples one can check that
all Boolean functions of � variables can be obtained
by EXOR�ing the rows� It can be also easily checked
that all above matrices M are linearly independent�
and eachM has EXACTLYONE inverse matrixM���
It can be then concluded that arbitrary linearly inde�
pendent �invertible
 matrix M over f���g de�nes an
orthogonal family of functions� So� for any orthogo�
nal matrix there exists exactly one �orthogonal ex�
pansion� and one canonical form� This creates an
extremely large family of canonical expansions that
generalize the well�known canonical AND�EXOR ex�
pansions�

Let us denote the vector of minterms by FV� CV
denotes the vector of coe�cients for some given or�
thogonal form represented by M � Given is an arbi�
trary orthogonal set of �n Boolean functions fi of n
variables� This set can be represented as a �n � �n

orthogonal matrixM with functions fi as rows� i � ��
���� �n � ��

Theorem �� Given is function F� x�� ���� xn
 repre�
sented as a vector FV with �n coordinates correspond�
ing to its minterms in natural binary ordering� There
exists a canonical three�level realization

F �x�� ���� xn
 � f� � S� � ���� f�n�� � S�n���
where functions fi are the given orthogonal func�

tions� and coe�cients Si are determined by the coef�
�cient vector CV � M�� � FV�

Theorem �A� Given is a function F�x�� ���� xm
 such
that the set of input variables x�� ���� xm includes prop�
erly the set x�� ���� xn� There exists an unique expan�
sion

F �x�� ���� xm
 � f��x�� ���� xn

����� f�n���x�� ���� xn
 � SF �n���xn��� ���� xm
�

where functions fi are the given orthogonal func�
tions of n variables� and the coe�cient functions
�called also the �data input functions�
 SF i of the
remaining input variables are determined from the co�
e�cient vector CV � M�� � FV�

Example 
��� Let us compare expansion of a two�
variable function in two bases� the standard minterm
basis� and the basis of orthogonal functions� f� � ��
fAB � AB� fB � B� and fA�B � �A� B
�

m� A B � m� A B � m� A B � m� A B
� S� � ��


By substituting A � �� B � �� we get m� � S�� By
substituting A � �� B � �� we get m� � S� � SB �
SA�B � By substituting A � �� B � �� we get m� �
S� � SA�B � By substituting A � �� B � �� we get
m� � S� � SAB �SB � SA�B � Hence we obtain the
following equation for minterms� FV �M � CV �

�

�
��

� � � �
� � � �
� � � �
� � � �

�
���

�
��
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�
�� �

�
��
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�
��

Therefore CV � M�� � FV ��
��
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� � � �
� � � �
� � � �
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Example 
��� Let the function F be represented by
a vector FV T � �� � � ��� CV ��
��

� � � �
� � � �
� � � �
� � � �

�
���

�
��

�
�
�
�

�
�� �

�
��
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�
�� �

�
��

�
�
�
�

�
��

Then F � fAB�fA�B � �AB
��A�B
� illustrated
in Figure ����

Let us also observe the following� ��
 Theorem � is
a special case of Theorem �A� when n � m� ��
 The
canonicity of the forms based on these expansions re�
sults directly from the Theorem� ��
 The uniqueness
of functions SF i for multi�level synthesis with univer�
sal cells results also from the Theorem� �	
 it can be
shown that for every ESOP circuit for function F there
exists at least one set of orthogonal functions in which
this ESOP realization is the canonical solution to F�
�

 see ���� ��� for formulas and examples of how to
�nd functions SF i�

It is important to note that the above examples
do not imply the computer realization of the algo�
rithms� For any kind of expansion� the matrices M
and M�� can be calculated just once and next stored
in disk storage� The rows of these matrices repre�
sent Boolean functions� so storing them as minterms
is not e�cient� Although we use minterms and binary



matrices in above explanation� our computer imple�
mentation is based on representing all these functions
as BDDs ���� ��� For instance� while calculating a co�
ordinate �j� of vector CV �the coe�cient CVj
� one
�nds an intersection of a BDD corresponding to row
�j� of matrix M�� with the BDD corresponding to
function F� If the number of true minterms in this
intersection BDD is odd� the value of the coe�cient
CVj� is �� otherwise it is �� To help counting the
number of minterms we modi�ed the concept of the
BDD by adding to each node a pointer to the number
of minterms covered by it� Since the BDDs represent
basically sets of disjoint cubes� for several orthogonal
sets it is possible to �nd rules to generate relatively
quickly the BDDs corresponding to rows of M and
M�� by generalizing the �disjoint cube� based meth�
ods from ��� �
� ��� ����

In case of multi�output functions� the expansion is
applied concurrently to the vector of functions� by ap�
plying the above expansion to each output function of
the vector separately�

� Generalization to Incompletely
Speci�ed Functions�

Let us observe that the outlined method can be
easily generalized to incompletely speci�ed functions
F� To do this� every �don�t care� minterm of function
F is represented in the Function Vector FV of func�
tion F with a di�erent symbol di� By multiplying the
transform matrix M�� by such a vector one obtains
a Coe�cient Vector CV with symbolic coordinates�
Each coordinate of this vector is an EXOR of symbols
di� and sometimes a �� Symbol manipulation based on
basic laws of Boolean algebra is used to simplify this
vector �A � A � �� etc
� Next� the solution with the
smallest number of non�zero coe�cients of the Coe��
cient Vector is found by �nding the best assignment of
values � and � to all di�s from the coordinates� This is
done by a heuristic tree searching algorithm that sub�
sequently selects variables di and assigns them values
�similarly to the satis�ability algorithms
�

Example ���� Assuming a set of orthogonal func�
tions� f� � �� fa � a� fb � b� fa�b � a � b� and
function F from the Karnaugh map in Figure ���� the
symbolical Coe�cient Vector is calculated as follows�
CV �M�� � FV ��
��

� � � �
� � � �
� � � �
� � � �

�
���

�
��

�
�
�
d

�
�� �

�
��

�
�� d
�� d
d

�
��

By substituting d � � the Coe�cient Vector be�

comes� CV � ������T � with two non�zero coordinates�

By substituting d � � it becomes� CV � ������
T
�

with one non�zero coordinate� The canonical solution
to function F based on matrix M�� is thus

F � S� ���Sa�a�Sb�b�Sa�b��a�b
 � ������a���b
�� � �a� b
 � �a�b
�

In this particular case the output is an EXOR of �
and a single orthogonal function� �a�b
�

Similarly to the algorithms mentioned in section

�� the heuristic algorithm to solve this problem rep�
resents Boolean functions as the BDDs� and not the
binary vectors� Its strength comes from the e�ciency
of manipulating the BDDs of many variables ���� ���

� Universal Cells and Their Use in
Multi�Level Circuits�

The techniques based on Theorem � allow to realize
functions of n variables� When the Boolean function
F has m � n variables� the �n � �n orthogonal matri�
ces are used to realize function F in multi�level real�
ization by using Theorem �A� Each such matrix Mr

speci�es an �universal cell� to be used in an orthogo�
nal expansion er� Fig� 	�� illustrates an universal cell
with four inputs and three outputs� One can treat it
as the generalization of multiplexers and AND�EXOR
cells� Such cells are used to realize Davio expansions�
while realizing the circuit as a multi�level DAG cre�
ated from Kronecker Functional Decision Diagrams
�KFDDs
 ���� ��� ���� Input variables are given to
the �address inputs� and functions SF i to the �data
inputs� �notice a di�erent use of vertical buses than
in Fig� 
��
�

Fig� 	�� illustrates a DAG with three levels of
single�output universal cells� The boxes represent uni�
versal cells� labels �er� inside the boxes denote types
of expansions used in them�

Let us observe that the DAG from Figure 	��
is a generalization of the well�known DAG circuits
created with multiplexers ���� ���� While the mul�
tiplexer gate is used in �tree and DAG
 realiza�
tions based on Shannon expansion� the multiplex�
ers and AND�EXOR gates are used in Reed�Muller
Trees� Reed�Muller DAGs� Kronecker�Reed�Muller
Trees� Kronecker Reed�Muller DAGs� and other multi�
level circuits based on Shannon and two Davio �ring

expansions ���� ��� ���� Other more powerful univer�
sal functions and multilevel structures that use them
have been created based on general �orthogonal� and
�orthonormal� expansions ���� ����

Let us observe that a gate based on a set of or�
thogonal functions F � f� � S� � ��� � f�n�� � S�n��
can be easily generalized to a multi�output gate�
called �EXOR PLA of orthogonal functions� � see
Fig� 	��� In particular� it can be realized as regu�
lar �EXOR of AND�OR�wire gates� shown in Fig�
	��� Such multi�output gates can be used to de�
velop new FPGAs� that would combine advantages
of standard partitioned PLAs� �ne�grain FPGAs� and
EXOR�based universal gates� We call them the �parti�
tioned AND�OR�EXOR PLAs�� and hope that they
will become commercially available� Among synthe�
sis methods that one can create for such new �Uni�
versal Gates� the most natural seem the generaliza�
tions of the tree and DAG methods from the litera�
ture� One will be thus able to distinguish the �Lev�
elized� Trees and DAGs �generalizations of the Reed�
Muller Trees� Kronecker�Reed�Muller Trees� etc
� and
the �Permuted� Trees and DAGs �generalizations of
structures introduced in ����
� Levelized Trees and
DAGs are those in which variables are partitioned to



groups� and only one group of variables will be avail�
able at any level of the structure �see Fig� 	��
� Per�
muted Trees and DAGs are those in which various sets
of variables can be at any level�

In �Disjoint Permuted Trees and DAGs� �see Fig�
	�	
� the variables are still partitioned to disjoint sets
�a�b� c�d� e�f� and g�h
� but various sets can appear at
the same level of the expansion �like sets c�d and e�f
�

In �Overlapped Permuted Trees and DAGs� �see
Fig� 	�

� the variables are partitioned to non�disjoint
sets �a�b� b�c�d� a�e� and e�g
� and several variables can
appear at the same level of the expansion�

The Levelized Trees and DAGs are the base to cre�
ate the new concept of Orthogonal Decision Diagrams
	ODDs
 introduced here for the �rst time� ODDs are
the generalizations of the KFDD decision diagrams in�
troduced in ���� ��� ��� ��� ���� While in every node of
KFDD one of three possible orthogonal expansions for
a single variable is applied� in node of ODD applied is
one of all possible orthogonal expansions for some se�
lected number of variables� The size of such diagrams
is always not worse than that of the KFDDs� but their
applicability is limited by the lack of fast heuristic al�
gorithms to select the best orthogonal expansion for
the given function�

� Fine Grain FPGAs and Sea�of�Gates
Logic�

In our former papers ���� ��� ��� we introduced
several families of canonical and multi�level circuits�
also for the multiple�valued logic� We formulated the
generalized �Orthogonal� and �Orthonormal� expan�
sions� that include an extremely wide category of new
canonical circuits and multi�level circuits� It was� how�
ever� not until we became familiar with new Fine�
Grain �Cellular
 Field Programmable Gate Array ar�
chitectures� that we realized the big practical impor�
tance of some of those new expansions� as well as the
expansions introduced above�

New FPGAs� called �Fine Grain�� �Cellular�� or
�sea of gates� FPGAs� have been recently available
or announced by Concurrent Logic �CLI� now part of
ATMEL
� Plessey� Toshiba� Algotronix and Motorola�
but very few logic synthesis methods for these devices
have been published� The methods include� adap�
tation of general mapping methods to cell libraries
���� ���� creation of Reed�Muller trees ���� ���� Kro�
necker Reed�Muller trees and KFDDs ���� ��� ��� ����
which are next regularly mapped to the ATMEL ar�
chitecture�

In this paper we use the ATMEL ���� series FPGAs
as an illustration� but the methods are general and
can be used in any of those architectures and also in
sea�of�gates Gate Array design� �It was observed by
Motorola that one of the important design issues is
the development of such FPGAs and associated design
tools that the migration from FPGA to ASIC sea�of�
gates gate arrays would be easy and would preserve
the timing ����
�

It can be observed that regular arrays of cells avail�
able in ATMEL allow to emulate PLA�like structures

�Fig� 
��
� with all the input variables in the local
buses of the AND�plane and all the output variables in
the OR�plane� In general� the AND plane of the classi�
cal AND�OR PLA will be called the �input plane� and
the OR plane will be called the �output plane�� The
outputs of the input plane will be called �internal vari�
ables�� Although this approach allows to realize e��
ciently some �multi�output
 Boolean functions� it does
not use fully the resources of the ATMEL chip� It can
be then observed that since the two�input EXOR gates
are available as personalizations of the CLBs ��Con�
�gurable Logic Blocks�
 of the ATMEL ����� also the
EXOR PLA can be easily realized �Fig� 
��
� The
EXOR PLA has thus AND gates in the input plane
and EXOR gates in the output plane� The EXOR
PLAs have been discussed in literature for years ����
but with the exception of ��� they have been not real�
ized in ASIC hardware nor in PLD devices�

Now� one can appreciate that a regular two�
dimensional arrangement of two�input gates� AND�
OR and EXOR� is fundamental to both these designs�
It is then obvious that multi�level AND�OR�EXOR
designs not worse than OR�based and EXOR�based
PLAs can be easily realized in ATMEL ����� In this
design� called by us a �generalized PLA�� two�input
AND�� EXOR�� and OR�gates exist in both the input
and output planes�

Unfortunately� until very recently the methods to
minimize Boolean functions to such structures have
been absent� and PSU�s team was the only group
that has developed several general methods to min�
imize this kind of logic� These methods can be di�
vided to three categories� exhaustive heuristic search
��� 	� �� ��� �
� ��� �
� ���� rule�based methods ���� ����
and spectral methods ��� �	� ��� ��� ��� ����

In spectral methods we assume that some canon�
ical form of the Boolean function must be found�
which minimizes the �envelope area� of the �general�
ized PLA�� This paper additionally assumes that the
rows in the output plane correspond to EXOR gates�
Now� the columns in the input plane can be still com�
binations of AND� OR and EXOR gates� However�
because we do not want to waste area for the �con�
nection cells�� we assume that local buses are entirely
used for leading the input variables to gates in the
input plane� and for leading the internal variables to
the output plane� We assume also that one �horizon�
tal
 bus is used for one input variable� and a single
vertical bus is used for an internal variable� In the in�
put plane� each column takes one input from the cell
located above it� and the another input from the hor�
izontal bus� A cell in row X can be also con�gured
to be a �wire�� which means� the output of the cell
located directly above the cell in row X is AND�ed in
row X with constant � �see Fig� 
��
�

Most importantly� we assume that the selection of
gates in the columns of the input plane is done in
such way that all possible column functions create an
orthogonal set of functions � see Fig� 
��� In such
special case the PLA�like structure from Fig� 
�� will
be called the �orthogonal PLA�� The input plane will
be called the �orthogonal plane��

The requirement of the orthogonality of the col�
umn functions means that �assuming certain order of
input variables
 every Boolean function is realized in



one and not more than one way� It is then a canonical
representation of this function� There is an astronom�
ical number of orthogonal sets of functions that can be
realized in this way in cellular architectures ��	��

� Open Research Questions�

The fundamental question is the following� Given
an orthogonal function base� how to �nd the values of
the binary spectral coe�cients Si for each function fi�
i � �� ���� �n � �� There are two main applications of
these coe�cients� ��
 In the case of �orthogonal PLA�
synthesis� they are used to select orthogonal functions
to be programmed in the orthogonal plane� ��
 In the
case of multilevel circuits from �universal gates�� cre�
ated based on generalized orthogonal expansions �����
the matrix M�� determined to �nd the coe�cients is
also useful to �nd the �data inputs� to the universal
cells at every level of the circuit� E�cient solutions
to those problems must be found� Next� similarly as
in Fixed�Polarity Reed�Muller algorithms one would
go through all possible forms of certain type to �nd
the best one� Since the number of all canonical ex�
pansions found by us is astronomical and only some
of them have practical importance� we analyse those
families of orthogonal functions that have easy circuit
realizations ��	�� It is important to �nd� among all
families of orthogonal functions such sets of families
which have circuit realizations giving certain advan�
tages� such as speed� area or testability�

The Theorem can be useful to solve the following
problems� ��
 given is a set of K � �n functions of
n variables how to add the minimum number of addi�
tional functions to be able to realize given function F
as an EXOR of all those primary and additional func�
tions� ��
 How to �nd e�ciently the realization of the
given function in particular canonical expansions� ��

�nd �nd such sets of families which have circuit re�
alizations that have the above�mentioned advantages�
for instance in which the orthogonal functions have
regular layouts� like those presented in sections 	 and

�

Since AND�EXOR canonical forms have universal
tests and very good testability properties� it would
be interesting to investigate whether these properties
hold for the new forms� Since the cellular realizations
of the new forms are never larger than such realiza�
tions of AND�EXOR forms� and the number of tests
is de�nitely larger than for the Reed�Muller forms� in�
vestigating the size�testability trade�o�s will be use�
ful�

The presented approach opens several important
problems� some of the most fundamental questions
are�

�� How to create e�ciently the matrixM� Can one
use concepts similar to Kronecker Product of Matrices
in order to quickly generate the matrixM� Are there
fast recursive algorithms to create it�

�� How to create e�ciently the matrix M��� Can
one adopt the Kronecker�like methods of AND�EXOR
circuits� Are there any special fast methods of �nding
the M���

�� Can problems � and � be solved for some partic�
ular new families of orthogonal functions �other than

the known AND�EXOR ones
� y

	� What are the new practically interesting families
of orthogonal functions�


� How to create e�cient methods for circuits that
have arbitrary combinations of AND� OR and wires in
�orthogonal plane� and individually negated inputs to
gates in the plane�

�� Can the structure of orthogonal matrices be used
to divide the space of all ESOPs to families of canon�
ical expansions�

�� Development of e�cient ODD algorithms� to
create ODDs from netlists� and to execute all Boolean
operations on them� Finding good variable�ordering
and expansion�selection heuristics� Investigation of
ODD diagrams based on levelized and non�levelized
orthogonal expansions�

�� Development of BDD� or ODD�based algorithms
to represent e�ciently operations on Boolean func�
tions while �ndingM��� instead of representing these
functions and operations by using minterms and ma�
trices�

�� Development of more e�cient methods to handle
don�t cares� that would be based on the principles from
section ��

��� Development of practical logic syn�
thesis�physical design algorithms for partitioned
AND�OR�EXOR PLAs�

At present we work on some of those problems ��	��
and we found some e�cient partial solutions to them�

	 Conclusions�

The main contribution of this paper was to present
a broad new family of canonical forms and correspond�
ing universal gates� Since the previously found canon�
ical forms of Boolean functions proved to be useful
both in theory and in practice� I hope that these newly
discovered forms will �nd applications as well�

Since people usually associate
canonical forms �other than trivial sum�of�minterms

with AND�EXOR logic� it must be emphasized here
that the new forms are AND�OR�EXOR and not only
AND�EXOR ��	��

There is also a chance that the Orthogonal Ex�
pansion Theorem will help to de�ne a new sub�
ject area in logic synthesis research� Since the
name �AND�EXOR circuits� is used equivalently with
�Reed�Muller Logic�� and the new circuits have OR
gates as well� a new name must be found for them�
I would like to propose to call this new research area
the �Orthogonal Logic�� Let us observe that all prob�
lems of Reed�Muller Logic have counterparts in this
new Orthogonal Logic� de�ning new canonical forms
in terms of matrices� factorization of matrices� fast
algorithms� use as general Boolean function represen�
tation� and more��� The Orthogonal Logic is the ex�
tension and generalization of the Reed�Muller Logic�

�y The answer is positive
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