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Abstract

The paper presents a theorem that forms a foun-
dation to all well-known and all possible new canon-
ical circuits with EXOR output gates. Let M be a
2" x 2™ binary matriz with columns corresponding
to minterms and rows corresponding to a family of
Boolean functions of n variables. M[i,j] = 1 means
that the Boolean function of row ”1” includes the
minterm corresponding to column ”35”. If the rows are
linearly independent with respect to bit-by-bit EXOR
operation, then the family is called "orthogonal family
of Boolean functions”. The functions from the fam-
ily are called "orthogonal” functions. The theorem
states that for any orthogonal family of 2™ Boolean
functions f; of n variables represented as a 2™ x 2"
matric M, there exists a canonical three-level real-
ization F = fo So® ... ® fan_1 Son_1, where
functions f; are the given orthogonal functions, and
coefficients S; are determined by multiplying matriz
M~ by the vector of minterms FV of function F.
Each such canonical expansion creates also an univer-
sal cell that can be used in multi-level trees, Directed
Acyclic Graphs (DAGs), and generalized functional
decision diagrams. Generalizations to multi-output
incompletely specified functions F, and the concept
of partitioned AND/OR/EXOR PLAs are also pre-
sented. Finally we illustrate practicality of these con-
cepts in application to Fine Grain Field Programmable
Gate Arrays (FPGAs) and to cellular logic in general.

1 Introduction.

While I compared matrices of all well-known canon-
ical AND/EXOR forms, the striking observation was
that we always deal with a binary matrix of rows that
are linearly independent with respect to bit-by-bit EX-
ORing of them. Therefore, I tried to see, what would

happen if I take any orthogonal matrix t instead
of particular orthogonal matrices of the well-known
forms. It resulted, that for each such matriz there
exist always one assoctated canonical form, and the
circuit realizations of these forms are EXORs of all
kinds of gates, not only EXORs of AND gates. Quite
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Ot In the above abstract, I defined the concept of an ”or-
thogonal family of Boolean functions” and its associated binary
matrix.

amazingly, there seem to be no papers in the litera-
ture that would make this observation and find some
practical uses of it. This simple invention generalizes
the whole concept of ”Reed-Muller logic” to a much
broader family of canonical functions. Moreover, it
helps to find new families of AND/EXOR canonical
forms as well.

The paper has two parts. The first part is a self-
sufficient theoretical contribution introducing the the-
orem, which we will call the Orthogonal Expansion
Theorem. Section 2 presents the orthogonal matrices
for some well-known and new forms, and presents the
Theorem. The generalization for incompletely speci-
fied functions is done in section 3.

The second part of the paper presents circuit ap-
plications. Section 4 discusses the multi-level circuits
based on the Theorem. Section 5 introduces the new
FPGA technologies in which the discovered by us fam-
ilies of forms can find immediate practical applica-

tions. Open research problems are listed in section
6.

2 The Orthogonal Expansion Theo-
rem.

Let us first introduce and illustrate the concept of
an orthogonal family of Boolean functions. We create
a 2" x 2™ matrix M with columns corresponding to
minterms (for a function with n variables we have 27
columns). The rows correspond then to some Boolean
functions of n variables. A 1 in the intersection of a
row ”i” and column ”j” means that minterm ”j” is in
function ”i”. The set of rows can be linearly inde-
pendent with respect to EXOR operation (i.e. rows
are bit-by-bit exored). If a set of 2" rows is linearly
independent then there is one and only one matrix
M1, inverse to M with respect to exoring operation.
In such case, the family of Boolean functions corre-
sponding to rows will be called the ”orthogonal fam-
ily of Boolean functions” (or set of orthogonal Boolean
functions), and the matrix will be called an ”orthogo-
nal matrix”.

Ezample 2.1. Let us observe that the set of
minterms of two-variable functions is the orthogonal
family, with M being a unitary 4 x 4 matrix 1 (with
ones on a diagonal and zeros otherwise).

Ezample 2.2. For the standard Reed-Muller form
of two variables, A and B, the set of orthogonal func-
tions is 1, A, B, AB. This is expressed as the following
matrix M:
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The first row corresponds to function 1, the sec-
ond row corresponds to function A (since it covers

minterms A - B and A - B), the third row corresponds
to function B, the fourth row corresponds to function
A - B. The circuit corresponding to this form has an
EXOR gate in the first (output) level and AND gates
in the second level.

Ezample 2.3. For the Fixed-Polarity Reed-Muller
form of polarity A=0, B=1, the set of orthogonal func-

tions is 1, A, B, AB .

11 1 1
1100
M=1¢101
01 0 0

The second row corresponds to function A and the
fourth row corresponds to function A - B. The circuit
corresponding to this form has an EXOR gate in the
first level, AND gates in the second level, and NOT
gates in the third level.

Ezample 2.4. Let us now take some set of
orthogonal functions that will not correspond to
AND/EXOR/(NOT) realization. For instance, set of
functions 1, A, AB, A+B is orthogonal. It is described
by the following matrix M.

11 1 1
00 1 1
M= 19901
01 1 1

The third row corresponds to function A - B and
the fourth row corresponds to function A + B. The
circuit corresponding to this form has an EXOR gate
in the first level, AND gates in the second level, and
arbitrary functions (AND and OR in this case) in the
third level - Fig. 2.1.

In each of the above examples one can check that
all Boolean functions of 2 variables can be obtained
by EXOR-ing the rows. It can be also easily checked
that all above matrices M are linearly independent,
and each M has EXACTLY ONE inverse matrix M 1.
It can be then concluded that arbitrary linearly inde-
pendent (invertible) matrix M over {0,1} defines an
orthogonal family of functions. So, for any orthogo-
nal matrix there exists exactly one ”orthogonal ex-
pansion” and one canonical form. This creates an
extremely large family of canonical expansions that
generalize the well-known canonical AND/EXOR ex-
pansions.

Let us denote the vector of minterms by FV. CV
denotes the vector of coefficients for some given or-
thogonal form represented by M. Given is an arbi-
trary orthogonal set of 2™ Boolean functions f; of n
variables. This set can be represented as a 2 - 27
orthogonal matrix M with functions f; as rows,1 =0,
oy 27— 1.

Theorem 1. Given is function F( @1, ..., z,) repre-
sented as a vector FV with 2" coordinates correspond-
ing to its minterms in natural binary ordering. There
exists a canonical three-level realization

F(z1,..zn)=fo - So®...® fan_1 -

where functions f; are the given orthogonal func-
tions, and coefficients S; are determined by the coef-
ficient vector CV = M~! x FV.

Theorem 1A. Given is a function F(zq, ..., &) such
that the set of input variables z1, ..., z,, includes prop-
erly the set z1,...,z,. There exists an unique expan-
sion

F(z1,...,Zm) = folz1, .oy p)
D...D fzn_l(l‘.l, ceey :lln) . San_1($n+1, ceey :L‘.m),

where functions f; are the given orthogonal func-
tions of n variables, and the coefficient functions
(called also the "data input functions”) SF; of the
remaining input variables are determined from the co-
efficient vector CV = M~! x FV.

Ezample 2.5. Let us compare expansion of a two-
variable function in two bases; the standard minterm
basis, and the basis of orthogonal functions: f; = 1,
fap = AB, fp = B, and fa1p = (A+ B):

moAB D mlAB D mzAB D m3AB
= 51-(1)

By substituting A = 0, B = 0, we get mo = S;. By
substituting A = 0, B = 1, we get m; = 51 & Sg &
Sat+p. By substituting A = 1, B = 0, we get my =
S1 @ Sa+p. By substituting A = 1, B = 1, we get
mg = S1® Sap ©Sp © Sa+p. Hence we obtain the
following equation for minterms: FV = M x CV =

S2"—1a

0 0 0 1 SAB mo
o111 Sg | m
=100 1 1|*| Sarm |~ | m
1 1 1 1 51 ms
Therefore CV = M~ ! x FV =
[ 01 0 1 1 [ mo SAB
01 1 0 mi | | Sz
1 01 0/|%| mg |~ | Says
1 0 0 0 ms 51

Ezample 2.6. Let the function F be represented by

avector FVT =[0110]. CV =

[0 1 0 17 [0 SanB 1
0110 1| | s | _|o
10 1 0[%]1 SirB 1
1 0 0 0 0 51 0

Then F = fap® fat+p = (AB)®(A+B), illustrated
in Figure 2.2.

Let us also observe the following: (1) Theorem 1 is
a special case of Theorem 1A, when n = m. (2) The
canonicity of the forms based on these expansions re-
sults directly from the Theorem. (3) The uniqueness
of functions SF'; for multi-level synthesis with univer-
sal cells results also from the Theorem. (4) it can be
shown that for every ESOP circuit for function F there
exists at least one set of orthogonal functions in which
this ESOP realization is the canonical solution to F.
(5) see [11, 13] for formulas and examples of how to
find functions SF;.

It is important to note that the above examples
do not imply the computer realization of the algo-
rithms. For any kind of expansion, the matrices M
and M~! can be calculated just once and next stored
in disk storage. The rows of these matrices repre-
sent Boolean functions, so storing them as minterms
is not efficient. Although we use minterms and binary



matrices in above explanation, our computer imple-
mentation is based on representing all these functions
as BDDs [23, 1]. For instance, while calculating a co-
ordinate ”j” of vector CV (the coefficient C'V}), one
finds an intersection of a BDD corresponding to row
?i" of matrix M~ with the BDD corresponding to
function F. If the number of true minterms in this
intersection BDD is odd, the value of the coefficient
CV;” is 1, otherwise it is 0. To help counting the
number of minterms we modified the concept of the
BDD by adding to each node a pointer to the number
of minterms covered by it. Since the BDDs represent
basically sets of disjoint cubes, for several orthogonal
sets it is possible to find rules to generate relatively
quickly the BDDs corresponding to rows of M and
M~! by generalizing the ”disjoint cube” based meth-
ods from [6, 15, 21, 22].

In case of multi-output functions, the expansion is
applied concurrently to the vector of functions, by ap-
plying the above expansion to each output function of
the vector separately.

3 Generalization to
Specified Functions.

Incompletely

Let us observe that the outlined method can be
easily generalized to incompletely specified functions
F. To do this, every "don’t care” minterm of function
F is represented in the Function Vector FV of func-
tion F with a different symbol d;. By multiplying the
transform matrix M ! by such a vector one obtains
a Coeflicient Vector CV with symbolic coordinates.
Each coordinate of this vector is an EXOR of symbols
d;, and sometimes a 1. Symbol manipulation based on
basic laws of Boolean algebra is used to simplify this
vector (A @ A = 0, etc). Next, the solution with the
smallest number of non-zero coefficients of the Coeffi-
cient Vector is found by finding the best assignment of
values 0 and 1 to all d;’s from the coordinates. This is
done by a heuristic tree searching algorithm that sub-
sequently selects variables d; and assigns them values
(similarly to the satisfiability algorithms).

Ezample 3.1. Assuming a set of orthogonal func-
tions: fl =1, fa = a, fb = ba fa-l—b =a+ ba and
function F from the Karnaugh map in Figure 3.1, the
symbolical Coeflicient Vector is calculated as follows:
CV=M"1xFV=

1 000 0 0
0 1 0 1 1| | 1e4d
001 1 |X*|1|~T|10d
11 11 d d

By substituting d = 0 the Coefficient Vector be-
comes: CV = [0110]7, with two non-zero coordinates.
By substituting d = 1 it becomes: CV = [0001]7,
with one non-zero coordinate. The canonical solution
to function F based on matrix M 1! is thus

F=251185,-a®5,-b®Ss1p-(a+b) = 0-100-aPH0-b
®1l-(a+b) = (a+b).

In this particular case the output is an EXOR of 0
and a single orthogonal function, (a+b).

Similarly to the algorithms mentioned in section

2, the heuristic algorithm to solve this problem rep-
resents Boolean functions as the BDDs, and not the
binary vectors. Its strength comes from the efficiency
of manipulating the BDDs of many variables [23, 1].

4 Universal Cells and Their Use in
Multi-Level Circuits.

The techniques based on Theorem 1 allow to realize
functions of n variables. When the Boolean function
F has m > n variables, the 2" - 2™ orthogonal matri-
ces are used to realize function F in multi-level real-
ization by using Theorem 1A. Each such matrix M,
specifies an "universal cell” to be used in an orthogo-
nal expansion e,. Fig. 4.1 illustrates an universal cell
with four inputs and three outputs. One can treat it
as the generalization of multiplexers and AND/EXOR
cells. Such cells are used to realize Davio expansions,
while realizing the circuit as a multi-level DAG cre-
ated from Kronecker Functional Decision Diagrams
(KFDDs) [16, 22, 23]. Input variables are given to
the ”address inputs” and functions SF; to the "data
inputs” (notice a different use of vertical buses than
in Fig. 5.1).

Fig. 4.2 illustrates a DAG with three levels of
single-output universal cells. The boxes represent uni-
versal cells, labels ”e,” inside the boxes denote types
of expansions used in them.

Let us observe that the DAG from Figure 4.2
is a generalization of the well-known DAG circuits
created with multiplexers [22, 30]. While the mul-
tiplexer gate is used in (tree and DAG) realiza-
tions based on Shannon expansion, the multiplex-
ers and AND/EXOR gates are used in Reed-Muller
Trees, Reed-Muller DAGs, Kronecker-Reed-Muller
Trees, Kronecker Reed-Muller DAGs, and other multi-
level circuits based on Shannon and two Davio (ring)
expansions [10, 11, 13]. Other more powerful univer-
sal functions and multilevel structures that use them
have been created based on general ”orthogonal” and
”orthonormal” expansions [11, 13].

Let us observe that a gate based on a set of or-
thogonal functions F = fo - So & ... & fan_1 - San_1
can be easily generalized to a multi-output gate,
called "EXOR PLA of orthogonal functions” - see
Fig. 4.1. In particular, it can be realized as regu-
lar "EXOR of AND/OR/wire gates” shown in Fig.
4.3. Such multi-output gates can be used to de-
velop new FPGAs, that would combine advantages
of standard partitioned PLAs, fine-grain FPGAs, and
EXOR-based universal gates. We call them the ”parti-
tioned AND/OR/EXOR PLAs”, and hope that they
will become commercially available. Among synthe-
sis methods that one can create for such new ”Uni-
versal Gates” the most natural seem the generaliza-
tions of the tree and DAG methods from the litera-
ture. One will be thus able to distinguish the ”Lev-
elized” Trees and DAGs (generalizations of the Reed-
Muller Trees, Kronecker-Reed-Muller Trees, etc), and
the ”Permuted” Trees and DAGs (generalizations of
structures introduced in [29]). Levelized Trees and
DAGs are those in which variables are partitioned to



groups, and only one group of variables will be avail-
able at any level of the structure (see Fig. 4.2). Per-
muted Trees and DAGs are those in which various sets
of variables can be at any level.

In ”Disjoint Permuted Trees and DAGs” (see Fig.
4.4), the variables are still partitioned to disjoint sets
(a,b, c,d, e,f, and g,h), but various sets can appear at
the same level of the expansion (like sets c,d and e,f).

In ”Overlapped Permuted Trees and DAGs” (see
Fig. 4.5), the variables are partitioned to non-disjoint
sets (a,b, b,c,d, a,e, and e,g), and several variables can
appear at the same level of the expansion.

The Levelized Trees and DAGs are the base to cre-
ate the new concept of Orthogonal Decision Diagrams
(ODDs) introduced here for the first time. ODDs are
the generalizations of the KFDD decision diagrams in-
troduced in [11, 13, 23, 16, 22]. While in every node of
KFDD one of three possible orthogonal expansions for
a single variable is applied, in node of ODD applied is
one of all possible orthogonal expansions for some se-
lected number of variables. The size of such diagrams
is always not worse than that of the KFDDs, but their
applicability is limited by the lack of fast heuristic al-
gorithms to select the best orthogonal expansion for
the given function.

5 Fine Grain FPGAs and Sea-of-Gates
Logic.

In our former papers [10, 11, 13] we introduced
several families of canonical and multi-level circuits,
also for the multiple-valued logic. We formulated the
generalized ”Orthogonal” and ”Orthonormal” expan-
sions, that include an extremely wide category of new
canonical circuits and multi-level circuits. It was, how-
ever, not until we became familiar with new Fine-
Grain (Cellular) Field Programmable Gate Array ar-
chitectures, that we realized the big practical impor-
tance of some of those new expansions, as well as the
expansions introduced above.

New FPGAs, called "Fine Grain”, ”Cellular”, or
"sea of gates” FPGAs, have been recently available
or announced by Concurrent Logic (CLI, now part of
ATMEL), Plessey, Toshiba, Algotronix and Motorola,
but very few logic synthesis methods for these devices
have been published. The methods include: adap-
tation of general mapping methods to cell libraries
[26, 27], creation of Reed-Muller trees [29, 30], Kro-
necker Reed-Muller trees and KFDDs [11, 13, 16, 22],
which are next regularly mapped to the ATMEL ar-
chitecture.

In this paper we use the ATMEL 6000 series FPGAs
as an illustration, but the methods are general and
can be used in any of those architectures and also in
sea-of-gates Gate Array design. (It was observed by
Motorola that one of the important design issues is
the development of such FPGAs and associated design
tools that the migration from FPGA to ASIC sea-of-
gates gate arrays would be easy and would preserve
the timing [28]).

It can be observed that regular arrays of cells avail-
able in ATMEL allow to emulate PLA-like structures

(Fig. 5.1), with all the input variables in the local
buses of the AND-plane and all the output variables in
the OR-plane. In general, the AND plane of the classi-
cal AND/OR PLA will be called the “input plane” and
the OR. plane will be called the ”output plane”. The
outputs of the input plane will be called ”internal vari-
ables”. Although this approach allows to realize effi-
ciently some (multi-output) Boolean functions, it does
not use fully the resources of the ATMEL chip. It can
be then observed that since the two-input EXOR gates
are available as personalizations of the CLBs (”Con-
figurable Logic Blocks”) of the ATMEL 6000, also the
EXOR PLA can be easily realized (Fig. 5.2). The
EXOR PLA has thus AND gates in the input plane
and EXOR gates in the output plane. The EXOR
PLAs have been discussed in literature for years [17]
but with the exception of [7] they have been not real-
ized in ASIC hardware nor in PLD devices.

Now, one can appreciate that a regular two-
dimensional arrangement of two-input gates, AND,
OR and EXOR, is fundamental to both these designs.
It is then obvious that multi-level AND/OR/EXOR
designs not worse than OR-based and EXOR-based
PLAs can be easily realized in ATMEL 6000. In this
design, called by us a "generalized PLA”, two-input
AND-, EXOR-, and OR-gates exist in both the input
and output planes.

Unfortunately, until very recently the methods to
minimize Boolean functions to such structures have
been absent, and PSU’s team was the only group
that has developed several general methods to min-
imize this kind of logic. These methods can be di-
vided to three categories: exhaustive heuristic search
[3, 4,9, 12, 15, 22, 25, 30], rule-based methods [26, 27],
and spectral methods [6, 14, 19, 20, 21, 31].

In spectral methods we assume that some canon-
ical form of the Boolean function must be found,
which minimizes the ”envelope area” of the ”general-
ized PLA”. This paper additionally assumes that the
rows in the output plane correspond to EXOR gates.
Now, the columns in the input plane can be still com-
binations of AND, OR and EXOR gates. However,
because we do not want to waste area for the ”"con-
nection cells”, we assume that local buses are entirely
used for leading the input variables to gates in the
input plane, and for leading the internal variables to
the output plane. We assume also that one (horizon-
tal) bus is used for one input variable, and a single
vertical bus is used for an internal variable. In the in-
put plane, each column takes one input from the cell
located above it, and the another input from the hor-
izontal bus. A cell in row X can be also configured
to be a ”wire”, which means, the output of the cell
located directly above the cell in row X is AND-ed in
row X with constant 1 (see Fig. 5.1).

Most importantly, we assume that the selection of
gates in the columns of the input plane is done in
such way that all possible column functions create an
orthogonal set of functions - see Fig. 5.3. In such
special case the PLA-like structure from Fig. 5.3 will
be called the "orthogonal PLA”. The input plane will
be called the ”orthogonal plane”.

The requirement of the orthogonality of the col-
umn functions means that (assuming certain order of
input variables) every Boolean function is realized in



one and not more than one way. It is then a canonical
representation of this function. There is an astronom-
ical number of orthogonal sets of functions that can be
realized in this way in cellular architectures [14].

6 Open Research Questions.

The fundamental question is the following. Given
an orthogonal function base, how to find the values of
the binary spectral coeflicients S; for each function f,
i=0,..,2" — 1. There are two main applications of
these coeflicients. (1) In the case of "orthogonal PLA”
synthesis, they are used to select orthogonal functions
to be programmed in the orthogonal plane. (2) In the
case of multilevel circuits from ”universal gates”, cre-
ated based on generalized orthogonal expansions [13],
the matrix M ~! determined to find the coefficients is
also useful to find the ”data inputs” to the universal
cells at every level of the circuit. Efficient solutions
to those problems must be found. Next, similarly as
in Fixed-Polarity Reed-Muller algorithms one would
go through all possible forms of certain type to find
the best one. Since the number of all canonical ex-
pansions found by us is astronomical and only some
of them have practical importance, we analyse those
families of orthogonal functions that have easy circuit
realizations [14]. It is important to find, among all
families of orthogonal functions such sets of families
which have circuit realizations giving certain advan-
tages, such as speed, area or testability.

The Theorem can be useful to solve the following
problems: (1) given is a set of K < 2™ functions of
n variables how to add the minimum number of addi-
tional functions to be able to realize given function F
as an EXOR of all those primary and additional func-
tions. (2) How to find efficiently the realization of the
given function in particular canonical expansions. (3)
find find such sets of families which have circuit re-
alizations that have the above-mentioned advantages;
for instance in which the orthogonal functions have
regular layouts, like those presented in sections 4 and

Since AND/EXOR canonical forms have universal
tests and very good testability properties, it would
be interesting to investigate whether these properties
hold for the new forms. Since the cellular realizations
of the new forms are never larger than such realiza-
tions of AND/EXOR forms, and the number of tests
is definitely larger than for the Reed-Muller forms, in-
vestigating the size/testability trade-offs will be use-
ful.

The presented approach opens several important
problems; some of the most fundamental questions
are:

1. How to create efficiently the matrix M? Can one
use concepts similar to Kronecker Product of Matrices
in order to quickly generate the matrix M? Are there
fast recursive algorithms to create it?

2. How to create efficiently the matrix M~1? Can
one adopt the Kronecker-like methods of AND/EXOR
circuits? Are there any special fast methods of finding
the M—1?

3. Can problems 1 and 2 be solved for some partic-
ular new families of orthogonal functions (other than

the known AND/EXOR ones)? t

4. What are the new practically interesting families
of orthogonal functions?

5. How to create efficient methods for circuits that
have arbitrary combinations of AND, OR and wires in
”orthogonal plane” and individually negated inputs to
gates in the plane.

6. Can the structure of orthogonal matrices be used
to divide the space of all ESOPs to families of canon-
ical expansions?

7. Development of efficient ODD algorithms: to
create ODDs from netlists, and to execute all Boolean
operations on them. Finding good variable-ordering
and expansion-selection heuristics. Investigation of
ODD diagrams based on levelized and non-levelized
orthogonal expansions.

8. Development of BDD- or ODD-based algorithms
to represent efficiently operations on Boolean func-
tions while finding M ~!, instead of representing these
functions and operations by using minterms and ma-
trices.

9. Development of more efficient methods to handle
don’t cares, that would be based on the principles from
section 3.

10. Development of practical logic syn-
thesis/physical design algorithms for partitioned
AND/OR/EXOR PLAs.

At present we work on some of those problems [14],
and we found some efficient partial solutions to them.

7 Conclusions.

The main contribution of this paper was to present
a broad new family of canonical forms and correspond-
ing universal gates. Since the previously found canon-
ical forms of Boolean functions proved to be useful
both in theory and in practice, I hope that these newly
discovered forms will find applications as well.

Since people usually associate
canonical forms (other than trivial sum-of-minterms)
with AND/EXOR logic, it must be emphasized here
that the new forms are AND/OR/EXOR and not only
AND/EXOR [14].

There is also a chance that the Orthogonal Ex-
pansion Theorem will help to define a new sub-
ject area in logic synthesis research. Since the
name ” AND/EXOR circuits” is used equivalently with
”"Reed-Muller Logic”, and the new circuits have OR
gates as well, a new name must be found for them.
I would like to propose to call this new research area
the ”Orthogonal Logic”. Let us observe that all prob-
lems of Reed-Muller Logic have counterparts in this
new Orthogonal Logic: defining new canonical forms
in terms of matrices, factorization of matrices, fast
algorithms, use as general Boolean function represen-
tation, and more... The Orthogonal Logic is the ex-
tension and generalization of the Reed-Muller Logic.

9t The answer is positive!
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