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Abstract 
A new cube operation, exorlink, is presented, as well 

as its application to the minimization of multiple-valued 
input, multi-output Exclusive Sums Of Products 
(ESOPs) for  incompletely specified Boolean functions. 
Exorlink generalizes all cube operations such as 
crosslink. unlink or X-merge introduced by Helliwell, 
Perkowski, Sasao and other authors. Our program, 
EXORCISM-MV-2, gives efficient results for  functions 
that are incompletely specified and have an arbitrary 
number of values for  each of the input variables. This 
allows to realize a wider class of circuits which imple- 
ment the multiple-valued input ESOP expressions. 
Evaluation on benchmark functions is also given and 
proves the superioriiy of the program to those known 
from the literature. 

1. Introduction 
There is recently an increased interest in the design 

of logic circuits which use EXOR gates[l , 2 ,  3 , 4  , 5 , 
6 , 7  , 81. Functions realized by such circuits can have 
fewer gates, fewer connections, and take up less area in 
VLSI and especially, FPGA realizations. They are also 
easily testable[9]. Circuits of this type find applications 
in self-testing schemes, linear machines, arithmetic and 
communication circuits, encrypting schemes, coding 
schemes for error control and synchronization, sequence 
generation for process identification, system testing, etc. 

Why are then ESOPs not as popular as their Sum of 
Products (SOP) counterparts? One of the main reasons 
it that the problem of the minimization of ESOP circuits 
is difficult. Papakonstantinou [lo] gave exact algorithm 
for 4 input functions. The algorithm from [6] has 
theoretically no limits on the number of variables but 4 
is its practical limit. Since exact solutions can be practi- 
cally found only for functions with not more than 5 
variables the interest is in approximate solutions. The 
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heuristic computer programs have been presented in[l , 
4 , 5 , 7 , 81. Efficient programs for sub-families of 
ESOPs were given in [3]. The paper [4] presented an 
algorithm based on crosslink operations. The algorithm 
from [4] was next improved in [5], and also extended 
for the case of the logic with multiple-valued inputs. 
Unlink operation has been also added. Unlink operation 
was efficiently implemented in [8]. Few more opera- 
tions were also included in an independent realization 
by Sasao [7], which is the only other author that pub- 
lished on the most general ESOP minimization algo- 
rithms for the multiple-valued input logic. 

Here, we present a solution to a problem that has not 
yet been practically solved in the literature: efficient 
minimization of arbitrary ESOP expressions for 
multiple-output multiple-valued input incompletely 
specified functions. This paper describes an approxi- 
mate method that yields especially good results for the 
minimization of strongly unspecified multi-output logic 
functions with multiple-valued inputs and binary-valued 
outputs. We are the first authors who provide docu- 
mented results of ESOP minimization for r-bit decoders 
with r > 2. Experimental results for binary, 4-valued 
inputs, and 8-valued inputs will be shown. For conveni- 
ence, examples with 4-valued inputs will be presented 
in most of the cases. Our approach is a generalization 
and a continuation of the line of research from [4 , 5  ,7] 
and [81. 

In Section 2, definitions and terminologies are given. 
Our new cube operation -- multiple-valued exorlink 
operation is introduced in Section 3. In Section 4, our 
algorithm for ESOP minimization using exorlink is dis- 
cussed. The experimental results are evaluated in Sec- 
tion 5.  The conclusion is given in Section 6. 

2. Definitions and Basic Properties 
A multiple-valued input, two-valued output, incom- 

pletely specified switching function f ( multiple-valued 
function, for short) is a mapping f(XI,Xz, . . . ,X,): 
P x P Z  x . . . x P, + B, where Xi is a multiple-valued 
variable, Pi = (0, 1, ... ,p i  - 11 is a set of truth values 
that this variable may assume, and B = (0, 1, -) ( - 
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denotes a don't care value). This is a generalization of 
an ordinary n-input switching function f: B" + B. 
Definition I .  For any subset Si c Pi,  Xis .  is a literal of 
X i  representing the function such that 

1 ifXi E Si 
xis* = {() ifXi P S i .  

A product of literals, X l S 1  X2s2  ... X,,'", is referred to 
as a product term (also called term or product for short). 
In a product term, all the operations are AND opera- 
tions. A product term that includes literals for all vari- 
ables X 1, X 2 ,  ..., x,, is called a full term. A sum of pro- 
ducts is denoted as a sum-ofproducts (SOP) expression 
while a product of sums is called a product-of-sums 
(POS) expression. An EXOR of products will be called 
a Multiple- Valued Input Exclusive Sum of Products 
Form ( MIESOP for short ). 

An r-bit decoder has r inputs and 2' outputs. Each 
output represents one value of 2'-valued logic. For 
instance, for r=3 each output bit represents one of 8 
values of 8-valued logic. 

Switching functions with multiple-valued inputs and 
two-valued outputs, find several applications in logic 
design, pattern recognition, and other areas. In logic 
design, they are primarily used for the minimization of 
PLAs that have 2-bit decoders or function generators on 
the inputs. A Programmable Logic Array @LA) with 
r-bit decoders directly realizes a SOP of a 2'-valued 
input two-valued output function [ 111. An EXOR-based 
PLA is a PLA in which EXOR gates replace OR gates in 
the OR plane. An EXOR-based Programmable Logic 
Array (EXPLA) with r-bit decoders directly realizes a 
MIESOP of a 2' -valued input two-valued output func- 
tion [ 1 I ] .  

Now let us consider a Boolean function F with multi- 
ple ourpur, that is, F ( X I ,  ... , X,,-l) = WO, ... , f m - l > ,  we 
define a single-output switching function F on n vari- 
ables where variables X I ,  ... , x,,-~ are multiple-valued 
and the variable X ,  takes the values IO, ... , m-11. 
F (X 1 .  ... , Xn-1, X,=i ) = Fi (X  I ,  ... , X,-J where Fi ( X  1, 
... , X, , - l )  denotes the i -th projection of F(X1, ... , Xn-lr 

X, ,) ,  that is, f i . Therefore, only single-output switching 
functions will be considered and n will denote the 
number of input variables. 

When our method is used for a completely specified 
function it uses an array ON of arbitrary disjoint cubes 
(product ferms, ON-cubes, cubes of minterms). These. 
can be minterms, full terms, or any disjoint producl. 
implicants. In the case of an incompletely specified 
function the function is represented as the array ON of 
disjoint ON-cubes and the array DC of disjoint DC- 
cubes (DC-cubes are cubes of don't cares). 

Our primary goal of MlESOP synthesis is to minim- 
ize the nurnber of terms. For the circuit with the 

minimum number of terms our secondary goal is to 
minimize the total number of inputs to AND and EXOR 
gates. Therefore the costfunction C to be minimized 
by our algorithm is as follows: 

C = N T + -  
Nli, 
NI 

where: 
- 
- 

NT is the total number of terms in the solution, 
NI is the total number of input wires to AND and 
EXOR gates in the solution, 

- NIln is the total number of input wires to AND 
and EXOR gates in the initial function. 

For instance, literal X0l2 as an input to an AND gate 
requires a single wire for the 2-by4 decoder realization 
of logic with 4-valued inputs. X o l  is realized as 
Xo12X013. It, therefore, requires two wires. Similarly 
XO = XO12XO13XO23 requires three wires. XO Y l  
requires six wires. X o  Y 1  @ X 1  Yz have two terms and 
requires fourteen wires (twelve to the AND gates and 
two to the EXOR gate). 

According to the cost function, if two solutions have 
different number of terms, the better solution is the one 
which has less number of terms, because its NT is 
smaller. If two solutions have the same number of 
terms, the better solution is the one which has less 
number of inputs, because its - is smaller. 

A switching function with multiple-valued inputs is 
uniquely determined by its truth table, or by an expres- 
sion given in SOP or POS. A multiple-valued input, 
two-valued output function will be simply called afunc- 
tion from now on. Any literal of the form X i  '' is identi- 
cally equal 1. Hence, we often write X i 9  Xis! as Xis!. 

Let A, B, C denote any values of multiple-valued 
input literals, or any functions on them. The following 
operations hold for multiple-valued input algebra: 
1. Associative laws: A @ ( B @ C ) = ( A @ B ) @ C. 
2. Commutative laws: A @ B = B @ A. 
3. Identities: 

NI 
Nlin 

3A. A @ A = 0 ;  
3B. xi S ' @ l=xjp'-s,; 

3 c .  x is '  @xip.-s. =xip. = 1; 

3 0 .  Xrs.  ex,'! = X,(sc-s,)u(s,-s,); 

3E. Xisc X j  G3 XiRf XiR, 

-xi - (S, - 4 1  U (4 -SJx;S, @ XiR' xi's, -q U ( R f  -S,) 

Definition 2 .  The distance of two cubes is the number 
of variables for which the corresponding literals have 
disjoint sets of truth values (in other words - the number 
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of variables for which the sets Si and Ri are disjoint ). 

For instance, the distance of cubes Xo1Y02Z123 and 
X12Y1Z13 in the four-valued algebra is 1, since sets {O,  
11 and { 1, 2) of variable X are non-disjoint, so as the 
sets (1, 2, 3 )  and { 1, 3) of variable Z. The sets (0,2} 
and ( 1) of variable Y are disjoint. 
Definition 3. The difference of two cubes is the number 
of variables for which the corresponding literals have 
different sets of truth values (in other words - the 
number of variables for which the sets Si and R; are dij- 
ferent ). 

For instance, the difference of cubes Xo1Y02Z123 and 
X12Y1Z13 in the four-valued algebra is 3,  since for all 
three variables, their corresponding literals have dif- 
ferent sets of truth values. 

3. The Multiple-valued Exorlink Operation 

3.1. The formula. 
Basic operation of our system is the operation of 

exorlink. This operation generalizes the xlinking[4] and 
unlinking[5] operations introduced by us, as well as the 
operations introduced by T. Sasao in [7]. 

Definition 4 .  Let Cs = X l s l  ... Xns* and CR = XIR'  ... 
XnR* f CS be two cubes. Let X,, i = 1, ..., r be the vari- 
ables for which S;, f R;.. Let X I & ,  k = 1, ..., n - r be a 
variable for which SI, =RI, . 

The exorlink of cubes CS and CR is defined by the 
following formula: 

x;,,,R" . . ' x j , R q x I , s ~ *  ) ] 

To find the exorlink of a pair of two full terms, for 
example Aol BO2 C012D2E13 and A12B12 C 2 D 2 E 1 3 ,  
in a 4-valued function, we write them vertically like 
this: 
A01 Bo2 CO12 0 2  E13 
A12B 12 C2 D2Ei3 

T T T  
Each time when the literals have different set of values 
from full term to full term in the pair it is denoted by an 
arrow. Let us now consider each arrow separately. The 
above initial pair of full terms can then be expanded to 
three resultant terms, for variables A ,  B , and C respec- 
tively, as shown below. 
For variable A ,  the term Ao2 B l 2  C 2  D 2  E l 3  is created 
as follows: 

Ao2 B l 2  C 2  D 2  E l 3  

For variable B ,  the term Aol BO1 C2 D 2  El3 is created 
as follows: 

t the first resultant term 

A01 Bo2 C012D2E13 
A12 B12 C2DZE13 

Aol  Bo' C 2 D 2 E 1 3  tthesecondresultantterm 

For variable C, the term A o l  B E  CO' D2E13  is 
created as follows: 
A01B02 CO12 ~ 2 ~ 1 3  

A12B12 C2 ~ 2 ~ 1 3  

Aol  BO2 Col D2E13  t the thirdresultant term 

Under each pair of literals of different sets of truth 
values under consideration (A in the first pair, B in the 
second, C in the third pair), we write the multiple- 
valued literal, with the set of truth values being the 
exclusive-sum of the respective sets from the literals of 
the cubes. To create the result of exorlink for a resul- 
tant term, we copy the part of the term to the left of the 
arrow from the top full term. The part to the right of the 
arrow is copied from the bottom full term as shown. 
The exorlink of the initial pair of full terms is an EXOR 
of resultant terms. Therefore 
AOlB02C012D2E13 @ A12B12C2D2E13 = 
A 02B 12C 2 0  2E 13 @ A OlB 01 C2D 2E 13 @ A OlB 02C 0 1D 2E 13 

This procedure can easily be further extended for any 
two terms in which for every two correspondingly dif- 
ferent literals for the same variable: Xis! and XiRl the 
sets Sj and R; are different. 
Definition 5 .  Given cubes CS and CR , if the difference 
of the two cubes is r ,  we call CS 8 CR dzference r 
exorlink. If the distance of the two cubes is d ,  we call 
CS 8 CR distance d exorlink. 
Our approach uses specific exorlink variant rules for 

difference value from 0 to 3 and distance value from 0 
to 3. Since the difference value cannot be smaller than 
the distance value, there are 10 variant exorlink opera- 
tions, part of which are described by formulas from sec- 
tion 2. For instance, 3A corresponds to difference 0, dis- 
tance 0 exorlink; 3B corresponds to difference 1, dis- 
tance 0 exorlink; 3C corresponds to difference 1, dis- 
tance 1 exorlink; 3D corresponds to difference 1 exor- 
link; 3E corresponds to difference 2 exorlink. 

Next, the difference 1, difference 2, and difference 3 
exorlink are discussed. 
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3.2. Difference 1 exorlink 
Difference 1 exorlink generates one resultant cube. 

Let us look at the following examples which assume 4- 
valued input logic: 

x 0 1 3  y 2 3  ~ 1 2 3  y 2 3  x 0 1  y 2 3  

x 2 3  y 2 3  x 2 3  y 2 3  x 2 3  y 2 3  

~ 0 1 2  y 2 3  x' Y23 ~ 0 1 2 3  y 2 3  = y 2 3  

------------ _ _ _ _ _ - _ _ _ _ _ _  ------------ 

This operation is equivalent to X-MERGE [7]. 

3.3. Difference 2 exorlink. 
Difference 2 exorlink generates two resultant cubes: 

x 0 1 3  y13 and x 0 1 3  y 1 3  
x 2 3  yo1 x 2 3  yo1 
-----------_-- ___---___---- 
x 0 1 2  yo1 ~ 0 1 3  y o 3  

So, XoL3 Y 1 3 @  X23 YO1 = X0l2 YO1 @ X013 YO3. It can be 
observed that difference 2 exorlink of cubes CS and CR 
is different from the difference 2 exorlink of cubes CR 
and Cs. 

If Si n Ri = @ and S, n R, = @, the operation is 
equivalent to distance 2 primary xlink of [51 and 

If Si 3 Ri and Sj  n R, = $, the operation is 
equivalent to distance 1 secondary xlink of [ 5 ]  
and X-EXPAND-2 of 171. 

If Si c Ri and Si n Rj = $, the operation is 
equivalent to RESHAPE of [7]. 

If Si 3 R, and Sj c R, , the operation is equivalent 

If Si c Ri and S; 3 R, , the operation is equivalent 
to primary unlink of [5 ]  and X-REDUCE-1 of 171. 

If Si 3 Ri and S, 3 Rj , the operation is equivalent 
to secondary unlink of [5 ]  and X-REDUCE-2 of 
WI. 
If Si n Ri f @ and S j  n R; f +, no compatible 
operation can be found in the previous literature. 

X-EXPAND-1 Of [7].  

to DUAL-COMPLEMENT of [7]. 

3.4. Difference 3 exorlink 
The example given in Section 3.1 is an example of 

difference 3 exorlink operation. Difference 3 exorlink 
generates three resultant cubes. So, one more term will 
be generated each time when this operation is per- 
formed. This seems contradictory to our primary goal: 
minimizing the number of terms. However, it is proved 
in [2], that increasing the number of terms may help to 
reduce the number of terms at the later stage and get 
better results. Our experimental results show that it is 

beneficial to include this operation in the algorithm. If 

is equivalent to distance 2 secondary xlink of [5 ] .  
Si 2 R i ,  Sj n Rj = @ and S k  n & = Q, this operation 

4. Algorithm of EXORCISM-MV-2 program 
Our program, EXORCISM-MV-2 is a new version 

of EXORCISM-MV presented in [ 5 ] .  The algorithm 
currently used in EXORCISM-MV-2 was created after 
much experimentation with previous variants. Because 
our main goal is to minimize the number of cubes, all 
possible difference 1 exorlinks are executed. The pairs 
of equal cubes are removed and difference 1 exorlink 
operations are performed iteratively. Then difference 2 
exorlink operations are executed which may provide 
opportunities for difference 1 exorlink. If no more 
difference 1 exorlink is possible, difference 3 exorlink 
operations are performed, which may provide opportun- 
ities for difference 1 exorlink. 

If no further difference 1 exorlink operation are pos- 
sible, difference 2 exorlink operations are performed to 
minimize the connections. For incompletely specified 
functions, the ON set is minimized first. Then sharp 
operation [12] is executed between each cube i in the 
ON set and the cubes in the don't care set. If cube i is 
empty, it will be removed from the ON set. If no more 
cubes in the ON set can be sharped out, difference 2 
exorlink operations are performed in order to provide 
further opportunities. Next, each variable of cube i in F 
is masked, and sharp is performed between cube i and 
the cubes in the don't care set. Let us denote the resul- 
tant cube by j . If the complement of cube j is the same 
as cube i except the masked variable, difference 1 exor- 
link operations between cubes j and i are performed. 
Successful application of these operations decreases the 
numbers of connections. 
Input: Arrays ON and DC of disjoint cubes for a 
multi-valued input function. 
1. 

2. 

3. 

4. 
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F := ON; D := DC. SOLUTION := F, 
MIN-COST := COST(F). (MIN-COST will be 
updated in below steps to reflect always the 
lowest cost of solutions obtained until now. This 
solution is also stored). 
Sorting the F array in ascendent order according 
to the number of literals in each cube. The cube 
with smallest number of literals is in the top of the 
array after sorting. 
From the top to the bottom of the array, check the 
difference of each pair of cubes. Remove a pair 
of cubes if they are identical. Perform difference 
1 exorlink if possible. 
If operations in 3 were successful, go to 3. 



5. 
6. 
7. 

8. 
9. 

10. 

11. 
12. 

13. 

14. 
15. 
16 

17. 

18. 
19. 

20. 

ADR4 

Perform difference 2 exorlink 
Compute the cost function C . 
Repeat steps 2 to 6 as long as the reduction of NT 
of the cost function C is possible. 
Perform difference 3 exorlink operations. 
Repeat steps 2 to 6 as long as the reduction of NT 
of the cost function C is possible. 
Repeat steps 7 to 8 as long as the reduction of NT 
of the cost function C is possible. 
Perform difference 2 exorlink operations. 
If the option "don't care" is not selected, print the 
output and stop the program, else go to 13. 
Perform sharp operation between each cube i in F 
and all cubes in D. 
Perform difference 2 exorlink operations on F. 
Compute the cost function C.  
Repeat steps 13 to 15 as long as the reduction of 
cost function C is possible. 
Mask each variable for each cube i in F and per- 
form sharp operation between it and D (this 
corresponds to various expansions of this cube). 
Name the resultant cube j .  If the cube i and the 
complement of cube j are identical, except the 
masked variable, perform difference 1 exorlink 
between them. 
Compute the cost function C.  
Repeat steps 3-18 as long as the reduction of cost 
function C is possible. 
Print the output and stop the program. 

cube AND EXOR I Time 
31 114 40 I 9.3 

5. Evaluation of Results of EXORCISM-MV-2 
Exorcism-mv-2 was tested on several benchmarks, as 

illustrated in Tables 1, 2, 3 and 4. All the benchmarks 
are run on Sparc Station I. Table 1 presents, for each 
function, the total number of resultant cubes (i.e. pro- 
duct terms in the solution), the number of inputs to 
AND gates in the solution, the number of inputs to 
EXOR gates in  the solution, and the user time. Table 2 
and Table 3 does the same for 2-bit and 3-bit decoders 
respectively. Table 4 shows the results for MCNC 
benchmarks. Table 5 compares our results with those of 
Exmin [7]. 

SQR8 93 
WGT8 22 

6. Conclusion 
An improved cube operation and algorithm for 

MIESOP minimization along with the efficient program 
to minimize such forms have been introduced. No algo- 
rithms have been published until now for MIESOP solu- 
tions to multi-output and incompletely specified func- 

646 154 822.8 
120 29 83.6 

SQR8 66 
WGT8 10 

474 267 910.9 
78 17 85.2 

Table 2 

Table 3 
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Table 4 

ex5 
f51m 
frg 1 

References 

78 456 404 134.5 
31 113 42 10.8 
115 1300 116 272.9 

table3 
table5 
t481 

166 1848 658 362.6 
156 1860 604 476.9 
23 174 23 416.6 

5xpl 117 10.0 
9sym 51 374 51 140.3 

Table 5 

11 Exmin 11 Exorcism-mv-2 11 
1 bit I 2 bit 1 bit I 2 bit 

I ~ m u  ‘ 32 i 12 31 I 11 
LOG8 
MLP4 
NRM4 

I 

105 105 95 85 
66 56 62 51 
76 62 67 53 

RDM8 
ROT8 
SQR8 

II I 

WGT8 I] 66 I 26 11 58 I 22 

I 

31 28 31 26 
37 32 37 26 
121 121 113 93 
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