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Synthesis of Multilevel Multiplexer Circuits for 
Incompletely Specified Multioutput Boolean 

Functions with Mapping to Multiplexer 
Based FPGA's 

Ingo Schafer and Marek A. Perkowski 

Abstract-The introduction of the multiplexer-based Actel 
FPGA series ACT'" resulted in an increased interest in multi- 
plexer circuits. This paper introduces a level-by-level top-down 
minimization algorithm for them. The concept of a local trans- 
form is applied for the generalization of the ratio parameter 
method for M(1) multiplexer synthesis having one data select 
input and a spectral method for M ( 2 )  multiplexer synthesis to 
determine redundant multiplexer inputs for M ( k )  multiplexer 
circuits. The algorithm developed for multilevel synthesis of 
M ( k )  multiplexer circuits for incompletely specified multiout- 
put Boolean functions takes advantage of the combination of 
spectral and Boolean methods. The obtained multiplexer cir- 
cuit can be directly realized with FPGA's like the Actel ACT 
series or the CLi 6000 series from Concurrent Logic. A simple 
heuristic is applied to map an M(1) multiplexer circuit to the 
Actel ACTl family. 

I. INTRODUCTION 
EVERAL MULTILEVEL synthesis tools for the min- S imization of logic functions to obtain a low literal 

count Boolean network have been developed [1]-[6]. A 
drawback of these tools is that they do not take the effi- 
cient synthesis for nearly linear functions into considera- 
tion. To overcome this drawback, the Portland logic op- 
timizer (POLO) is currently under development. POLO is 
a system for efficient multilevel minimization, which takes 
into account near linearity of logic functions, especially 
for FPGA synthesis applications. For logic optimization 
purposes, a nearly linear function can be characterized by 
having a smaller number of product terms in its minimal 
exclusive sum of product (ESOP) form than it its minimal 
sum of product (SOP) form. 

One approach to the synthesis of logic functions is to 
take advantage of the powerful multiplexer gate. It has 
been shown [7]-[9] that multiplexers are universal logic 
modules, where a multiplexer of k data-select inputs can 
realize any function of k + 1 input variables under the 
assumption that the complements of the input variables 
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are also available. Thus, they can be used for the synthe- 
sis of multilevel logic networks. One can observe that an 
n-variable linear function (a linear function is an EXOR 
of literals) can be realized by a cascade multiplexer circuit 
of multiplexers with k data-select inputs, which are de- 
noted by M ( k ) ,  where (" i ') multiplexers are necessary. 

Many synthesis algorithms for different kinds of mul- 
tiplexer circuits have been developed [ 101-[22]. One syn- 
thesis method with multiplexers is to find a single multi- 
plexer, if possible of the minimum size, which realizes 
the given Boolean function [ 141-[ 161, [20]. Algorithms 
to find a cascade multiplexer circuit of a Boolean func- 
tion, if realizable, have been presented in [lo], [18], and 
[21]. The algorithms [15]-[18] are based on graphical 
methods that allow only the synthesis for functions with 
up to six variables. A third realization, which will be fur- 
ther developed in this paper, is known as multiplexer tree 
circuit [11]-[13], [16], [17], [22]-[25]. All the previous 
algorithms operate on minterms, whereas the method pre- 
sented here is based on disjoint cubes [26]. It was shown 
[26] that the disjoint cube representation of a Boolean 
function respective to the number of product terms is close 
to the minimal SOP form obtained by the logic optimizer 
Espresso [ 11. Thus, the disjoint cube representation of a 
Boolean function is much more memory efficient than its 
minterm representation. 

One of the motivations to investigate the synthesis for 
multiplexer tree circuits give new FPGA's like the ACT'" 
FPGA family from Actel [27], where the basic building 
block consists of multiplexers (see Fig. 1). 

Each basic building block of the ACT" family allows 
the implementation of an M(2) multiplexer (Fig. 2(a)) 
and, in the case of the ACTl family, implementation of 
three hierarchical M( 1) multiplexers (Fig. 2(b)), which is 
denoted by act0 [28]. The ACT2 family allows only a 
restricted realization of three hierarchical M( 1) multiplex- 
ers, as can be observed from Fig. l(b). 

Another motivation for the interest in multiplexer cir- 
cuits is that a function realized by multiplexer gates should 
have less gates than one constructed with conventional 
logic gates (NAND, NOR) [21]. We will compare the results 
obtained by technology mappers that support the explicit 
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(a) (b) 
Fig. 1 .  Basic building block of the ACT'" family: (a) ACT1 family; (b) 

ACT2 family. 

(a) (b) 
Fig. 2.  Realizable multiplexers with ACT" family: (a) M(2)  multiplexer; 

(b) three M(1) multiplexers, acto. 

library of realizable functions of the Actel FPGA's [29], 
[30] and the results of special mapping algorithms that 
take advantage of the structure of the Actel macrocells 
[29], [3 11,  [32] with the results of the mapped multiplexer 
circuit obtained by the synthesis algorithm presented. 

In this paper, we further develop the methods to find 
redundant multiplexer modules in a tree circuit [lo], [ 121, 
[20]-[24] for the level-by-level top-down (starting from 
the output) minimization of multiplexer tree circuits [ 121, 
[22], [23]. The two methods for single-output completely 
specified Boolean functions, where one is based on ratio 
parameters for M (  1)  multiplexer synthesis [lo], [20], [21] 
and the second is based on the Rademacher-Walsh spec- 
trum [23], [25] for M(2) multiplexer synthesis are here 
uniformly generalized to the M ( k )  multiplexers synthesis 
for two-level multioutput incompletely specified Boolean 
functions. Such functions occur, for example, in the syn- 
thesis of sequential circuits and from high-level language 
descriptions [ 11 or as internal nodes in multilevel network 
with satisfiability and observability don't cares [ 11.  

Because computing the complete Rademacher-Walsh 
spectrum [23] to determine the redundant next level M(2) 
multiplexer gates is complex, we introduce the concept of 
a local transform [25], [33] for M ( k )  multiplexers. This 
notion is similar to the ratio parameter developed for the 
M(l)  synthesis in [lo]. Therefore, contrary to existing 
technology mapping tools, the synthesis method devel- 
oped here is based on Boolean decomposition methods. 

11. GENERAL MULTIPLEXER SYNTHESIS 
First, we review the concept of polarity to be able to 

give the general formula of a multiplexer M ( k ) .  
Definition I: The polarity of a product term X l X 2  * 

Xi X,, where Xi E { xi,Xi} is defined by the binary 
string of values being 0 for Xi and 1 for xi, respectively. 

The general case of a multiplexer M ( k ) ,  where k is the 
number of data-select inputs, can be defined as follows. 

Definition 2: The output function f ( x o ,  xI ,  - * x, - 1) 

= f(X), where X is the vector of variables ( xo, xl, , 
x, - ), of a multiplexer M ( k )  with k data-select inputs 
d,(X) is given by 

2 -  I 

i = O  
f(x) = U (;t,(x) n - n ;tl(x) n 

- n hl(x) n f(x)) (1) 

where 4(X)  E {d,(X), dj (X)}, being any Boolean func- 
tion, with the polarity determined by the binary represen- 
tation of i .  

For multiplexer synthesis algorithms, the data-select 
functions dj (X) are commonly restricted to input vari- 
ables [12], [23]. Thus, the functionf(X) can be described 
by the sum of cofactors [ 11 with respect to the data-select 
variables. 

2 k -  1 

i = O  
f(x> = U (XI ' * Xk(f(X))ii. . . i k )  (2) 

where the polarity of the data-select variables XI  * xk 
is determined by the binary representation of i .  This is the 
well-known Shannon expansion. It follows that the data- 
input functioni is given by 

(3) 
Example I: An n variable Boolean function f(X) with 

i = (f(X))i, ' ' . i k *  

the data-select inputs x l ,  x2 is decomposed to 

f (X) = GGl + xIx2f i  + X l X 2 h  + X l X 2 . h  (4) 
which is illustrated in Fig. 3 .  

The functions fi are the data input functions, and the 
variables x l ,  x2 are the data select variables of the multi- 
plexer. Let us observe that the functions fi do not depend 
on xI and x2 .  

The general problem in multiplexer synthesis is to find 
a circuit realization with the minimum number of multi- 
plexers for a given multioutput incompletely specified 
Boolean function. According to ( l ) ,  such a circuit can 
have multiplexers with various numbers of data-select in- 
puts where each data-select input can be any function 
dj (X) [7], [24]. Because finding the optimal data-select 
functions that may be one of many possible Boolean func- 
tions is very complex, the multiplexer synthesis algo- 
rithms find (quasi)optimal realizations according to (2), 
where the data-select variables are input variables [ 1 11- 

Such a minimal multiplexer circuit can have different 
permutations of data-select variables in any branch of the 

~ 4 1 ,  [161-[211. 
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Fig. 3 .  Standard multiplexer M ( 2 )  according to (4). 
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Fig. 4 .  Restricted multiplexer tree circuit. 

circuit [ 131, [24]. To decrease the complexity of the min- 
imization problem further, most multiplexer synthesis al- 
gorithms assume the same data-select variables in any 
level of the tree circuit [11]-[13], [23], [24], as shown in 
Fig. 4.  This restriction is also advantageous for a possible 
mapping to the ACT2 family, see (Fig. l(b)), where the 
data-select input variables of MUXl and MUX2 are given 
by the AND of two variables. 

As was stated in [24], the minimal upper bound for the 
levels in such a restricted multiplexer tree circuit is given 
by 

n - 1  L = -  
k 

and the minimal upper bound for the number of multi- 
plexer modules M(k) by 

L -  1 

M = c 2ik. (6)  
i = O  

Still, an exhaustive search has to be performed to find 
the optimal permutation of the data-select variables [ 1 11, 
[ 171, [24]. Level-by-level minimization algorithms [ 121, 
[22], [23] decrease the necessary computation and storage 
requirements for the implicitly exhaustive algorithms that 

find the optimum tree circuit. It was conjectured [12] that 
level-by-level minimization is still optimum or near op- 
timum. It should be observed that the special case of M( 1) 
multiplexer synthesis is equivalent of finding the minimal 
shared ordered binary decision diagram (SOBDD) repre- 
sentation of the Boolean function with attributed edges 
[ 11,  [34], [35]. Thus, a multiplexer synthesis algorithm 
for M( 1) multiplexers can be applied to find a good vari- 
able ordering of a SOBDD. 

The next section investigates the conditions for which 
the next-level multiplexer modules are redundant. 

11. REDUNDANCY OF MULTIPLEXER MODULES 

Dejinition 4: A spectrum of an n-variable Boolean 
function is called local spectrum L if the value of any 
spectral coefficient li of the spectrum L does not depend 
on all 2" minterms, that is, the transform matrix describ- 
ing the transform has at least one entry that is 0. 

The Rademacher-Walsh spectrum is not a local trans- 
form because any entry of its transform matrix W [25] is 
either 1 or - 1 .  

Notation: The number of true minterms covered by the 
data-input functionJ; will be denoted by a; and the number 
of don't care minterms by ci. 

The values ai and ci of the function& can be easily cal- 
culated from its disjoint representation [26]. It should be 
noted that the values ai and ci are independent of the func- 
tion representation. 

Dejinition 5: A spectral coefficient li of the local spec- 
trum L for an incompletely specified Boolean function is 
given by the pair of values li E { (a ; ,  e ; ) } ,  whereas for a 
completely specified Boolean function li E { ( a i ) } .  The lo- 
cal spectrum L for a M(k) multiplexer consists of a spec- 
tral coefficient li for each of its data-input functions J;. 

Thus, analogously to the Lloyd method and the ratio 
parameter method, each coefficient of the local spectrum 
gives the number of true minterms covered by a data-input 
function &. For M(2) multiplexer synthesis [23] the 
Rademacher-Walsh spectrum was adopted to find the cor- 
relation of the Boolean function to the support functions 
p i .  A further summation [23], [25] of a subset of spectral 
coefficients of the Rademacher-Walsh spectrum is nec- 
essary to obtain the final spectrum describing the corre- 
lation to the support functions p i .  This summation is re- 
alized by a 4 x 4 Rademacher-Walsh transform on 
subsets of the initial Rademacher-Walsh spectrum. In the 
general case of an M(k) multiplexer, the summation can 
be realized by a 2k X 2k Rademacher-Walsh transform on 
the respective subset of the initial Rademacher-Walsh 
spectrum for each possible set of k data-select variables. 

A local transform for multiplexers can perform, in one 
step, both the initial calculation of the complete Rade- 
macher-Walsh spectrum of the function and the following 
summation of a subset of coefficients. Thus, one avoids 
the complexity of computing the whole Rademacher- 
Walsh spectrum for a given function. An M(k) multi- 
plexer for an n-variable Boolean function can have ($) dif- 
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variables 

n 

5 
10 
20 
30 

TABLE I 
COMPARISON OF THE NUMBER OF COEFFICIENTS 

Rademacher-Walsh spectral coefficients for c) 
coefficients pairs of data-select variables 

2n (;)x4 
32 10x4 

1024 45 x 4  
1048576 190x4 

109 435 x 4 

ferent possible combinations of k data select variables. 
Table I compares the number of coefficients that have to 
be calculated for an M(2) multiplexer synthesis by using 
the Rademacher-Walsh transform and the local trans- 
form. 

The first column of Table I gives the number of input 
variables of a Boolean function. The second column lists 
the number of spectral coefficients of the initial Rade- 
macher-Walsh spectrum. Finally, the last column gives 
the number of spectral coefficients for all possible pairs 
of data-select variables, where a spectrum for a data-se- 
lect pair consists of four coefficients. The formulas for the 
calculation of the number of coefficients are given in the 
second row. 

As one can observe from Table I, the computation of 
the Rademacher-Walsh spectrum for functions with more 
than 20 variables is not feasible with general fast trans- 
forms [36]. It can be calculated directly from a disjoint 
representation [26], [37], [38] that is faster and much more 
memory efficient, but still, the complexity of calculating 
all 2" coefficients can be prohibitive. However, for the 
decomposition to multiplexer modules given by (2), we 
are only interested in the correlation between the support 
functions pi  and the data-input functions A to the multi- 
plexer. Thus, the direct calculation of only the necessary 
spectral coefficients for the combinations of k data-select 
variables by a local transform is much more efficient. 

The basic principle of the level-by-level minimization 
algorithm from [12], [23] is to find the minimal number 
of next level modules for a given level. This approach 
will be also adopted here. A similar principle is used for 
the realization of Boolean functions as cascade multi- 
plexer circuits or single multiplexer circuits, where only 
one next-level module is allowed, or no module is al- 
lowed at all [lo], [14]-[16], [18], [20], [21]. 

There exist three basic conditions for which a next-level 
module is redundant. 

Condition 1: A data-input function is trivial: fi = 0, 

Condition 2: A data-input function is identical to an- 
other data-input function to a multiplexer in the same level 
of the tree circuit: J;  = f /  for i # j .  

Condition 3: A data-input function is the complement 
of another data-input function to a multiplexer in the same 
level of the tree circuit: 

Most multiplexer synthesis algorithms only take the first 
condition into consideration to decrease the number of 
next level modules [11]-[13], [16], [20], [24]. The ad- 

f = l f = x . f = Z .  1 7 1 J 7  1 J '  

= 5 for i # j .  

vantage of the presented method is that it verifies all three 
conditions. Thus, a linear component determined by an 
Exclusive OR gate can be detected. 

Example 2: An M(l)  multiplexerf(X) = xL + 3& (see 
Fig. 5(a)) realizes an Exclusive OR gate iffx = fr 

f ( X )  = xf, + = x tB f x .  

A linear component of a function can be detected by find- 
ing multiplexers having as data-input functions fx and its 
complement f,. Even if no inverters are available (like in 
the Actel FPGA's), only one multiplexer is necessary to 
realize the complemented function instead of a complete 
subtree. The complemented function can be realized by a 
control function circuit [24] as shown in Fig. 5(b). Then, 
the multiplexer circuit given in Fig. 5(c) is obtained for 

In the case that in a particular level of the multiplexer 
circuit different combinations of k data-select variables re- 
quire the same number of next level multiplexer modules, 
a selection should take into account the possible further 
minimization in the next lower levels of the multiplexer 
circuit. Spectral methods are ideally suited for this case 
because they give insights into the global structure of the 
underlying Boolean function [lo], [23] , [25]. 

DeJinition 3: The functions pi represented by the k data- 
select variables for an M ( k )  multiplexer 

f(X) = x &. 

pi = x, * x k  (7) 

are called support finctions, where i = (0 ,  - * , 2k - 
l} is the binary representation of the polarity of the k data- 
select variables. It follows from (3) 

J;  = (f(XN,.  (8) 

The number of all true and false minterms covered by a 
support function pi  is 

pt = 2"-k. (9) 
Thus, the multiplexer synthesis can be based on the in- 
formation obtained from the correlation between the 
Boolean function and the support functions pi. The con- 
cept of ratio parameters [lo], [20], [21] has been devel- 
oped to determine if data-input functions to an M (  1) mul- 
tiplexer are trivial. The ratio parameter method is 
essentially a spectral method like the method for M(2) 
multiplexer synthesis [23]-[25]. Both method are based 
on determining the number of true minterms covered by 
the data-input function J;. 

The spectral method by Lloyd and the ratio parameter 
method can be uniformly generalized for the synthesis 
with M ( k )  multiplexers by the introduction of a local 
transform [33] for multiplexer gates. 

A criterion for the selection of a particular combination 
of k data-select variables in the case that more than one 
combination leads to the same minimal number of next 
level modules has been introduced in [23]. The criterion 
is based on the values of the spectral coefficients si for the 
Rademacher-Walsh spectrum S,, . . . x k .  It was stated in [23] 
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0 lq 1: 

fcx, f (x)=*@1: 

Fig. 5 .  Linear function realization: (a) Complemented input; (b) inverter; 
(c) complete circuit. 

that a high value of the sum of absolute values of the spec- 
tral coefficients si 

2" - I 

sum = ,Z ( s i \  = Is,, . . . x k l  (10) 

gives a higher possibility for further minimization of the 
number of multiplexer gates in the following levels. This 
is based on the assumption that a higher density of false 
or true minterms in the data-input functions allows further 
minimization in the next levels. 

The following property gives the relation of the spectral 
coefficients Zi obtained by the local transform for com- 
pletely specified Boolean functions given by Definition 5 
to the spectral coefficients si of the Rademacher-Walsh 
spectrum used in [23]. 

Property: The spectral coefficients si of the spectrum 
S,, . . . for k data-select variables xI  . * xk are computed 
as follows: 

r = O  

s; = (pt  - 2 x l j )  x 4 = ( p t  - 2 x a ; )  x 4 (11) 

where pt is the number of all true and false minterms cov- 
ered by the support function p i .  

For incompletely specified Boolean functions, the value 
of Zi E (ai, ai + ci } is chosen whichever leads to the higher 
absolute value of si. 

Thus, we can formulate a fourth condition for multi- 
level realizations. 

Condition 4: For different combinations of k data-se- 
lect variables with the same minimal number of next-level 
multiplexer modules, one chooses the k data-select vari- 
ables with the highest value of sum calculated according 
to (10) and (11). If several combinations have the same 
highest value of sum, one of them is selected randomly. 

With the above Definitions and Properties, we are able 
to formulate the conditions for the redundancy of next- 
level modules by spectral and Boolean means. 

Verification of Condition 1: A trivial incompletely 
specified data-input function 5 has the following proper- 
ties in the spectral domain, f o r i  = 0: 

and f o r i  = 1: 
aj = 0 

a; + c; = pt 

In the Boolean domain for the computation with a cube 
representation, (12)  can be verified by 

f, = f pi = fdc (14) 

where f d c  consists only of not specified terms. Equation 
(13) can be similarly verified by 

J ;  =f+ 1 n p ,  = p i  (15) 

where the notation f --* 1 denotes the specification of the 
not-specified terms of the incompletely specified Boolean 
function f to true literals. In the cube representation, just 
the respective output literals have to be changed from not 
specified to true terms to obtain this transformation. 

A necessary condition for a completely specified func- 
tion that is dependent on only one variable xl  is that the 
coefficient 

s/ = 2"-k (16) 

which is equivalent to 

(17) a, = 2n-k-1 

For an incompletely specified Boolean function, it is nec- 
essary that the not-specified terms can be specified in such 
a way that (16) is fulfilled. This can be verified in Boolean 
domain by 

f- 1 n = x l  (18) 

(19) 

and 

f n % = fdc 

where fdc consists only of not-specified terms. 
Verijcation of Condition 2: The assignment of the not- 

specified minterms to true or false ones to obtain identical 
data-input functions (J;  = A),  if possible, can be easily 
tested in spectral domain for completely specified Bool- 
ean functions as: 

(20) a .  = a .  
J '  

However, if (20) is true, the identity of the two functions 
still has to be verified. For incompletely specified Bool- 
ean functions, it has to be computed if the not-specified 
parts of the functions and J;  can be specified in such a 
way that = J;. This can be verified by the complement 
of the intersection of the two incompletely specified func- 
tions 

j n  =i n f ;  (21) 

having no common minterms with the completely speci- 
fied part of function J; 

i n f i n  = f!Ln = ~ i c l  (22) 
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and no common minterms with the completely specified 
part of function f /  

where # denotes the sharp operation [39], andfdcl andfdc2 
consist only of not specified terms. If (22) and (23) are 
true, the not-specified part of & and f /  can be specified in 
such a way that& = f / .  

Verijication of Condition 3: A necessary condition for 
a data-input function& to be the complement of a com- 
pletely specified data-input function f /  is 

(24) 

To find a possible specification of the not-specified part 
of the incompletely specified Boolean function such that 
two data-input functions are complemented, (25) and (26) 
have to be true 

ai + a, = pt .  

& n f /  = f d c  (25) 
to verify that the specified parts of both functions have no 
common minterms. The equivalent of (24) in the Boolean 
domain is given by 

If both formulas can be fulfilled, the not-specified part of 
the data-input functions f; and can be chosen in such a 
way that& = Ti. 

The above conditions have to be computed for all pos- 
sible combinations of data-select variables. In the case 
that there is more than one set of data-select variables that 
have the minimum number of next-level multiplexer mod- 
ules, the one according to Condition 4 is chosen. 

The verification of the four conditions allows the de- 
termination of the data-select variables for a single level 
of multiplexer modules. The algorithm is based on the 
bottom-up level-by-level minimization of a multioutput 
incompletely specified Boolean function. The primary 
output level of the function (which can consist of more 
than one multiplexer) is treated like any other level of the 
multiplexer tree circuit. 

The pseudocode for the complete M ( k )  multiplexer 
synthesis algorithm musynthes is  (k) is shown for the il- 
lustration of the different steps involved. 

The function compute-modules(data-select-vari- 
a b l a [  1 )  determines, through the verification of Condi- 
tions 1-3, the number of necessary next-level modules 
best select[ ] for the given set of data-select variables. 
Condition 4 is applied for tie cases by comparing their 
sum obtained by the summation over each sum,,- 
computed according to (10). After the set of data-select 
variables that leads to the minimum number of next-level 
modules has been found, the function decom- 
pose (best-select[ 1) computes the output functions for the 
next level for which the process is repeated. The algo- 
rithm stops when no further next-level modules are nec- 
essary, that is, a multiplexer circuit realization of the cir- 
cuit has been found. 

The developed methods are illustrated in the next sec- 
tion with a complete example. 

IV. SYNTHESIS EXAMPLE 
The synthesis steps from the previous section will be 

illustrated on the example from [23]: 

f ( X )  = XIxqXg + ~ 1 ~ 2 . ~ 4  

+ X I X ~ X ~ X ~  + X 3 X 4 ~ 5  + x l j S 4 ~ 5 .  

First, the disjoint cube representation of f ( X )  has to be 
computed to be able to compute the local spectra 

f ( X )  = X 1 ~ 4 X g  + ~ 1 x 2 ~ 4  

+ 2 1 x 2 x 3 Z 4  + X 3 2 4 x 5  + xIx3Xqxg. 

The disjoint cubes obtained are illustrated by the circled 
areas shown in Fig. 6. 

For the initial verification of the redundancy of next 
level modules, the local spectrum for each combination 
of data-select variables and the sum parameter are calcu- 
lated. The calculation of the initial spectra L,,., will be 
illustrated for the spectrum of the data-select pair xl , x2 .  
The value of the spectral coefficients of the spectrum 
S.,., [23] can be obtained by (1 1) .  The support functions 
p, for the local transform for the chosen data-select pair 
arep, = XIX2,  pI  = X I x 2 ,  p2 = xIX2, p3 = x I x 2 ,  where 
each trivial function covers p t  = 25 - 2  = 8 minterms: see 
(9). 

To obtain the local spectrum for the chosen data-select 
pair, the cofactor of the functionf(X) has to be calculated 
with respect to each support function, e.g. 

fo = (f(X)),, = (f(X))X,X*. 
Because the function f ( X )  is completely specified, the 
spectral coefficients of the local spectrum are given by 1, 
E {a,}. They can be directly computed from the disjoint 
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Fig. 6 .  Disjoint cube representation of synthesis example 
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Fig. 7. Final multiplexer realization. 

cube representation of the data-input functions f: u0 = 3 , 
u1 = 5, u2 = 2 ,  and u3 = 6. No coefficient Zi E {ui } fulfills 
(12), (13), or (17), which verify the possibility of trivial 
data-input functions. Similarly, the criterion for the iden- 
tity of two data-input functions (see (20)) is not satisfied. 
However, the necessary condition for complemented data- 
input functions is true for u2 + u3 = 8.  Therefore, this 
case has to be verified further. Applying (25),  we obtain 
f i  n f3 = X4x5 # 4. Because the intersection is not empty, 
f i  cannot be the complement off3. Thus, no data input of 
the multiplexer is redundant. Therefore, the number of 
next level modules Mod for the data-select variables xi 
and x2 is Mod = 4. To be able to later check the Condition 
4,  the sum = 48 is computed by applying (10) and (1 1). 

The spectra for the other data-select pairs are calculated 
the same way. The results are listed in Table 11. Because 
all possible cases of redundant next-level modules can be 
verified by conditions (1)-(3), the exact number of next 
level modules Mod can be directly calculated, whereas the 
method by Lloyd only determines the upper and lower 
bound maxMod and minMod. 

In Table 11, U* indicates, that the respective data-input 
function is either identical to another one or a trivial one. 
Because L,,, has the lowest number of next-level modules 
(mod = I ) ,  variables x, and x4 are selected for the output 
multiplexer, and all other data-select pairs can be dis- 
carded. Thus, the best pair of data-select variables has 
been found in the first step, whereas, for the pure spectral 
method [23], three further verification steps would be 
necessary. 

The nontrivial data-input functions to the multiplexer 
module have to be decomposed further for the calculation 
of the next level of the hierarchical multiplexer circuit. 
The four data-input functions have already been obtained 
by the substitution of the support functions pi for the data- 
select pair xI, x4 with the initial function for the calcula- 
tion of the spectral coefficients: fa = X3xs + ~2x3, fi = 
X5, f i  = x s ,  and f3 = x2. The only nontrivial function is 
fo. Therefore, f o  has to be decomposed further. Because 
the function fa depends on only three variables, it can be 
realized by one M(2) multiplexer, and the choice of the 
data-select variables does not matter [2  11. 

To illustrate the general synthesis procedure, all three 
spectra, LXl,, of the remaining variables x2, x3 and xs  are 
calculated (Table 111). 

TABLE I1 
FIRST LEVEL SPECTRA OFf 

TABLE I11 
SECOND-LEVEL SPECTRA FOR& 

The expected result that no further multiplexer is nec- 
essary for any data-select pair is verified by the result 
given in Table 111. The data-select pair x2, x3 is chosen 
for the realization of the second-level multiplexer. Thus, 
the final hierarchical multiplexer circuit has the form 
shown in Fig. 7. 

V .  MAPPING OF A MULTIPLEXER TREE CIRCUIT TO THE 

ACT 1 MACROCELL 
To allow an evaluation of the presented method, we 

map the result obtained by the multiplexer synthesis al- 
gorithm to multiplexer-based FPGA's for which many 
synthesis tools exist [28], [3 I], [40], [4 I]. Although the 
hierarchical multiplexer circuits obtained for M( 1) mul- 
tiplexer can be mapped directly to FPGA's like the Actel 
ACT series [27], the CLi6000 of Concurrent Logic [42], 
or the CAL 1024 of Algotronix [43], a special mapping 
algorithm is necessary for the ACT'" family of Actel. The 
macrocells provided by the ACT'" FPGA family from Ac- 
tel (see Fig. 1) have a restricted connectivity of M ( l )  
multiplexers. An M ( 2 )  multiplexer can be realized with 
one macrocell from both the ACT1 and ACT2 families. 
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TABLE IV 
BENCHMARK COMPARISONS 

Therefore, a multiplexer circuit based on M ( 2 )  multiplex- 
ers can be directly mapped to the Actel FPGA's. How- 
ever, because of the lack of inverters, for each comple- 
mented data-input function, an additional macrocell is 
necessary. 

For our implementation, we chose the ACTl macro- 
cell. The mapping of an M ( l )  multiplexer circuit to the 
ACTl macrocell is restricted by the internal connectivity 
of the macrocells. The output functions of the two mul- 
tiplexers at the input of the macrocell MUXl and MUX2 
are not available as outputs of the macrocell. Therefore, 
multiplexers with fanout > 1 have to be realized with the 
output level multiplexer MUX3 of a macrocell, or the re- 
spective multiplexer has to be duplicated. As a heuristic, 
we first map a multiplexer with fanout > 1 to the MUX3 
multiplexer of a macrocell. Additionally, input multiplex- 
ers to this multiplexer with fanout = 1 are mapped to the 
same macrocell. 

As a second step, the multiplexers that have a function 
g and its complement g as input are taken into consider- 
ation. Because of the restricted internal connectivity of a 
macrocell, the complementation of a data-input function 
realized according to Fig. 1 has only one minimal map- 
ping shown in Fig. 5(c). However, if the function jj is an 
input to more than two other multiplexers, it is realized 

in a separate macrocell. Finally, the remaining multiplex- 
ers are mapped level by level to the macrocells. 

The next section gives the results obtained by the im- 
plementation of the multiplexer synthesis algorithm. The 
results of this algorithm followed by mapping to the ACTl 
macrocell are also presented. 

VI. BENCHMARK RESULTS 
As stated in the previous section, the mapping of M ( 2 )  

multiplexer circuits to the ACT'" FPGA's from Actel can 
be done directly. However, an M ( l )  multiplexer circuit 
has to be matched to the macrocells. 

Table IV lists the results for the MCNC benchmarks 
for the multiplexer synthesis algorithm. The results are 
given in column mu-map. For comparison, we give the 
results for misll [ 2 9 ] ,  [40] with the Actel library of real- 
izable functions as a representative for general technology 
mappers and the result of Actel specific mappers mis-pga 
[ 4 0 ] ,  Prosperine [ 2 8 ] ,  [ 3 2 ] ,  Amap [31], and ASYL [41]. 

The results of the multiplexer synthesis given in the 
columns k = 1 and k = 2 assume that inverters are avail- 
able to realize complemented data input functions. The 
columns modules give the total number of necessary M( 1) 
or M ( 2 )  modules, and the columns depth gives the longest 
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path in the circuit. The columns cells give the number of 
necessary macrocells. The time ( ( t i . ) )  is given in seconds. 
The computation times given for mu-map include the 
multiplexer synthesis and the mapping step. The results 
were obtained on a Sparc 4/370 (12.5 mips). For mis-pga 
(new) and Amap, the time was obtained on a DEC5500 
(28 mips). 

It should be stressed, that mu-map performs the syn- 
thesis and mapping for the actO type combination of M ( l )  
multiplexers (Fig. 2(b)). Additionally, the data-select in- 
puts of the multiplexers are restricted to be input variables 
except for the realization of an inverter. Nevertheless, re- 
sults close or even better than the ones obtained by the 
algorithms that take advantage of all the act1 and act2 
macrocell possibilities are obtained. Moreover, the exe- 
cution times for mu-map are much shorter than for mis- 
pga,  which gives the closest results compared to m u -  
map. 

VII. CONCLUSION 
The concept of a local transform has been applied to 

the synthesis of multiplexer circuits for incompletely 
specified multioutput Boolean functions. The program 
based on this concept has been implemented. The results 
show that the special case of the M ( l )  multiplexer syn- 
thesis with following mapping to the ACT1 family usu- 
ally leads to the same number of macrocells and is gen- 
erally faster than the conventional multilevel minimization 
followed by mapping [29]-[32]. However, contrary to 
those algorithms, the presented algorithm has been de- 
signed for general multiplexer synthesis and not specifi- 
cally for the Actel FPGA’s. By using a more sophisticated 
mapping algorithm, the obtained results can be even fur- 
ther improved. Moreover, the obtained multiplexer circuit 
can be easily converted to a mixed Exclusive OR multi- 
plexer circuit, where multiplexers as in Fig. 5(c) are re- 
placed by an Exclusive OR. The results of mu-map for 
benchmark functions that are known to have a high Ex- 
clusive OR component like f51m, rd73, 5xp1, and sa02 
are better than the results obtained by any of the other 
programs. Our future extensions are to expand the map- 
ping algorithm to the ACT2 family. We would also like 
to implement the algorithm based on OBDD’s, where we 
hope to obtain a significantly improved execution time and 
smaller memory requirement. 
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