
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 11, NOVEMBER 1993 1655

Synthesis of Multilevel Multiplexer Circuits for
Incompletely Specified Multioutput Boolean

Functions with Mapping to Multiplexer
Based FPGA's

Ingo Schafer and Marek A. Perkowski

Abstract-The introduction of the multiplexer-based Actel
FPGA series ACT'" resulted in an increased interest in multi-
plexer circuits. This paper introduces a level-by-level top-down
minimization algorithm for them. The concept of a local trans-
form is applied for the generalization of the ratio parameter
method for M(1) multiplexer synthesis having one data select
input and a spectral method for M (2) multiplexer synthesis to
determine redundant multiplexer inputs for M (k) multiplexer
circuits. The algorithm developed for multilevel synthesis of
M (k) multiplexer circuits for incompletely specified multiout-
put Boolean functions takes advantage of the combination of
spectral and Boolean methods. The obtained multiplexer cir-
cuit can be directly realized with FPGA's like the Actel ACT
series or the CLi 6000 series from Concurrent Logic. A simple
heuristic is applied to map an M(1) multiplexer circuit to the
Actel ACTl family.

I. INTRODUCTION
EVERAL MULTILEVEL synthesis tools for the min- S imization of logic functions to obtain a low literal

count Boolean network have been developed [1]-[6]. A
drawback of these tools is that they do not take the effi-
cient synthesis for nearly linear functions into considera-
tion. To overcome this drawback, the Portland logic op-
timizer (POLO) is currently under development. POLO is
a system for efficient multilevel minimization, which takes
into account near linearity of logic functions, especially
for FPGA synthesis applications. For logic optimization
purposes, a nearly linear function can be characterized by
having a smaller number of product terms in its minimal
exclusive sum of product (ESOP) form than it its minimal
sum of product (SOP) form.

One approach to the synthesis of logic functions is to
take advantage of the powerful multiplexer gate. It has
been shown [7]-[9] that multiplexers are universal logic
modules, where a multiplexer of k data-select inputs can
realize any function of k + 1 input variables under the
assumption that the complements of the input variables

Manuscript received July 30, 1993. This work was supported by NSF
grant MIP-9110722. This paper was recommended by Associate Editor L.
Trevillyan.

I. Schafer is with the Lattice Semiconductor, Santa Clara, CA 95054.
M. A. Perkowski is with the Department of Electrical and Computer

IEEE Log Number 9212353
Engineering, Portland State University, Portland, OR 97207.

are also available. Thus, they can be used for the synthe-
sis of multilevel logic networks. One can observe that an
n-variable linear function (a linear function is an EXOR
of literals) can be realized by a cascade multiplexer circuit
of multiplexers with k data-select inputs, which are de-
noted by M (k) , where (" i ') multiplexers are necessary.

Many synthesis algorithms for different kinds of mul-
tiplexer circuits have been developed [101-[22]. One syn-
thesis method with multiplexers is to find a single multi-
plexer, if possible of the minimum size, which realizes
the given Boolean function [141-[161, [20]. Algorithms
to find a cascade multiplexer circuit of a Boolean func-
tion, if realizable, have been presented in [lo], [18], and
[21]. The algorithms [15]-[18] are based on graphical
methods that allow only the synthesis for functions with
up to six variables. A third realization, which will be fur-
ther developed in this paper, is known as multiplexer tree
circuit [11]-[13], [16], [17], [22]-[25]. All the previous
algorithms operate on minterms, whereas the method pre-
sented here is based on disjoint cubes [26]. It was shown
[26] that the disjoint cube representation of a Boolean
function respective to the number of product terms is close
to the minimal SOP form obtained by the logic optimizer
Espresso [11. Thus, the disjoint cube representation of a
Boolean function is much more memory efficient than its
minterm representation.

One of the motivations to investigate the synthesis for
multiplexer tree circuits give new FPGA's like the ACT'"
FPGA family from Actel [27], where the basic building
block consists of multiplexers (see Fig. 1).

Each basic building block of the ACT" family allows
the implementation of an M(2) multiplexer (Fig. 2(a))
and, in the case of the ACTl family, implementation of
three hierarchical M(1) multiplexers (Fig. 2(b)), which is
denoted by act0 [28]. The ACT2 family allows only a
restricted realization of three hierarchical M(1) multiplex-
ers, as can be observed from Fig. l(b).

Another motivation for the interest in multiplexer cir-
cuits is that a function realized by multiplexer gates should
have less gates than one constructed with conventional
logic gates (NAND, NOR) [21]. We will compare the results
obtained by technology mappers that support the explicit

0278-0070/93$03.00 0 1993 IEEE

1656 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 1 1 , NOVEMBER 1993

MUXl

' I ' I
I I

(a) (b)
Fig. 1 . Basic building block of the ACT'" family: (a) ACT1 family; (b)

ACT2 family.

(a) (b)
Fig. 2. Realizable multiplexers with ACT" family: (a) M(2) multiplexer;

(b) three M(1) multiplexers, acto.

library of realizable functions of the Actel FPGA's [29],
[30] and the results of special mapping algorithms that
take advantage of the structure of the Actel macrocells
[29], [3 11, [32] with the results of the mapped multiplexer
circuit obtained by the synthesis algorithm presented.

In this paper, we further develop the methods to find
redundant multiplexer modules in a tree circuit [lo], [121,
[20]-[24] for the level-by-level top-down (starting from
the output) minimization of multiplexer tree circuits [121,
[22], [23]. The two methods for single-output completely
specified Boolean functions, where one is based on ratio
parameters for M (1) multiplexer synthesis [lo], [20], [21]
and the second is based on the Rademacher-Walsh spec-
trum [23], [25] for M(2) multiplexer synthesis are here
uniformly generalized to the M (k) multiplexers synthesis
for two-level multioutput incompletely specified Boolean
functions. Such functions occur, for example, in the syn-
thesis of sequential circuits and from high-level language
descriptions [11 or as internal nodes in multilevel network
with satisfiability and observability don't cares [11.

Because computing the complete Rademacher-Walsh
spectrum [23] to determine the redundant next level M(2)
multiplexer gates is complex, we introduce the concept of
a local transform [25], [33] for M (k) multiplexers. This
notion is similar to the ratio parameter developed for the
M(l) synthesis in [lo]. Therefore, contrary to existing
technology mapping tools, the synthesis method devel-
oped here is based on Boolean decomposition methods.

11. GENERAL MULTIPLEXER SYNTHESIS
First, we review the concept of polarity to be able to

give the general formula of a multiplexer M (k) .
Definition I: The polarity of a product term X l X 2 *

Xi X,, where Xi E { xi,Xi} is defined by the binary
string of values being 0 for Xi and 1 for xi, respectively.

The general case of a multiplexer M (k) , where k is the
number of data-select inputs, can be defined as follows.

Definition 2: The output function f (x o , xI , - * x, - 1)

= f(X), where X is the vector of variables (xo, xl, ,
x, -), of a multiplexer M (k) with k data-select inputs
d,(X) is given by

2 - I

i = O
f(x) = U (;t,(x) n - n ;tl(x) n

- n hl(x) n f(x)) (1)

where 4(X) E {d,(X), dj (X)}, being any Boolean func-
tion, with the polarity determined by the binary represen-
tation of i .

For multiplexer synthesis algorithms, the data-select
functions dj (X) are commonly restricted to input vari-
ables [12], [23]. Thus, the functionf(X) can be described
by the sum of cofactors [11 with respect to the data-select
variables.

2 k - 1

i = O
f(x> = U (XI ' * Xk(f(X))ii. . . i k) (2)

where the polarity of the data-select variables XI * xk
is determined by the binary representation of i . This is the
well-known Shannon expansion. It follows that the data-
input functioni is given by

(3)
Example I: An n variable Boolean function f(X) with

i = (f(X))i, ' ' . i k *

the data-select inputs x l , x2 is decomposed to

f (X) = GGl + xIx2f i + X l X 2 h + X l X 2 . h (4)
which is illustrated in Fig. 3 .

The functions fi are the data input functions, and the
variables x l , x2 are the data select variables of the multi-
plexer. Let us observe that the functions fi do not depend
on xI and x2 .

The general problem in multiplexer synthesis is to find
a circuit realization with the minimum number of multi-
plexers for a given multioutput incompletely specified
Boolean function. According to (l) , such a circuit can
have multiplexers with various numbers of data-select in-
puts where each data-select input can be any function
dj (X) [7], [24]. Because finding the optimal data-select
functions that may be one of many possible Boolean func-
tions is very complex, the multiplexer synthesis algo-
rithms find (quasi)optimal realizations according to (2),
where the data-select variables are input variables [1 11-

Such a minimal multiplexer circuit can have different
permutations of data-select variables in any branch of the

~ 4 1 , [161-[211.

SCHAFER AND PERKOWSKI: SYNTHESIS OF MULTILEVEL MULTIPLEXER CIRCUITS 1657

fQ
fl
f 2

f 3

x1 x2
Fig. 3 . Standard multiplexer M (2) according to (4).

I I

f0

Li
C 1 c2 c3

Fig. 4 . Restricted multiplexer tree circuit.

circuit [131, [24]. To decrease the complexity of the min-
imization problem further, most multiplexer synthesis al-
gorithms assume the same data-select variables in any
level of the tree circuit [11]-[13], [23], [24], as shown in
Fig. 4. This restriction is also advantageous for a possible
mapping to the ACT2 family, see (Fig. l(b)), where the
data-select input variables of MUXl and MUX2 are given
by the AND of two variables.

As was stated in [24], the minimal upper bound for the
levels in such a restricted multiplexer tree circuit is given
by

n - 1 L = -
k

and the minimal upper bound for the number of multi-
plexer modules M(k) by

L - 1

M = c 2ik. (6)
i = O

Still, an exhaustive search has to be performed to find
the optimal permutation of the data-select variables [1 11,
[171, [24]. Level-by-level minimization algorithms [121,
[22], [23] decrease the necessary computation and storage
requirements for the implicitly exhaustive algorithms that

find the optimum tree circuit. It was conjectured [12] that
level-by-level minimization is still optimum or near op-
timum. It should be observed that the special case of M(1)
multiplexer synthesis is equivalent of finding the minimal
shared ordered binary decision diagram (SOBDD) repre-
sentation of the Boolean function with attributed edges
[11, [34], [35]. Thus, a multiplexer synthesis algorithm
for M(1) multiplexers can be applied to find a good vari-
able ordering of a SOBDD.

The next section investigates the conditions for which
the next-level multiplexer modules are redundant.

11. REDUNDANCY OF MULTIPLEXER MODULES

Dejinition 4: A spectrum of an n-variable Boolean
function is called local spectrum L if the value of any
spectral coefficient li of the spectrum L does not depend
on all 2" minterms, that is, the transform matrix describ-
ing the transform has at least one entry that is 0.

The Rademacher-Walsh spectrum is not a local trans-
form because any entry of its transform matrix W [25] is
either 1 or - 1 .

Notation: The number of true minterms covered by the
data-input functionJ; will be denoted by a; and the number
of don't care minterms by ci.

The values ai and ci of the function& can be easily cal-
culated from its disjoint representation [26]. It should be
noted that the values ai and ci are independent of the func-
tion representation.

Dejinition 5: A spectral coefficient li of the local spec-
trum L for an incompletely specified Boolean function is
given by the pair of values li E { (a ; , e ;) } , whereas for a
completely specified Boolean function li E { (a i) } . The lo-
cal spectrum L for a M(k) multiplexer consists of a spec-
tral coefficient li for each of its data-input functions J;.

Thus, analogously to the Lloyd method and the ratio
parameter method, each coefficient of the local spectrum
gives the number of true minterms covered by a data-input
function &. For M(2) multiplexer synthesis [23] the
Rademacher-Walsh spectrum was adopted to find the cor-
relation of the Boolean function to the support functions
p i . A further summation [23], [25] of a subset of spectral
coefficients of the Rademacher-Walsh spectrum is nec-
essary to obtain the final spectrum describing the corre-
lation to the support functions p i . This summation is re-
alized by a 4 x 4 Rademacher-Walsh transform on
subsets of the initial Rademacher-Walsh spectrum. In the
general case of an M(k) multiplexer, the summation can
be realized by a 2k X 2k Rademacher-Walsh transform on
the respective subset of the initial Rademacher-Walsh
spectrum for each possible set of k data-select variables.

A local transform for multiplexers can perform, in one
step, both the initial calculation of the complete Rade-
macher-Walsh spectrum of the function and the following
summation of a subset of coefficients. Thus, one avoids
the complexity of computing the whole Rademacher-
Walsh spectrum for a given function. An M(k) multi-
plexer for an n-variable Boolean function can have ($) dif-

1658 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 11, NOVEMBER 1993

variables

n

5
10
20
30

TABLE I
COMPARISON OF THE NUMBER OF COEFFICIENTS

Rademacher-Walsh spectral coefficients for c)
coefficients pairs of data-select variables

2n (;)x4
32 10x4

1024 45 x 4
1048576 190x4

109 435 x 4

ferent possible combinations of k data select variables.
Table I compares the number of coefficients that have to
be calculated for an M(2) multiplexer synthesis by using
the Rademacher-Walsh transform and the local trans-
form.

The first column of Table I gives the number of input
variables of a Boolean function. The second column lists
the number of spectral coefficients of the initial Rade-
macher-Walsh spectrum. Finally, the last column gives
the number of spectral coefficients for all possible pairs
of data-select variables, where a spectrum for a data-se-
lect pair consists of four coefficients. The formulas for the
calculation of the number of coefficients are given in the
second row.

As one can observe from Table I, the computation of
the Rademacher-Walsh spectrum for functions with more
than 20 variables is not feasible with general fast trans-
forms [36]. It can be calculated directly from a disjoint
representation [26], [37], [38] that is faster and much more
memory efficient, but still, the complexity of calculating
all 2" coefficients can be prohibitive. However, for the
decomposition to multiplexer modules given by (2), we
are only interested in the correlation between the support
functions pi and the data-input functions A to the multi-
plexer. Thus, the direct calculation of only the necessary
spectral coefficients for the combinations of k data-select
variables by a local transform is much more efficient.

The basic principle of the level-by-level minimization
algorithm from [12], [23] is to find the minimal number
of next level modules for a given level. This approach
will be also adopted here. A similar principle is used for
the realization of Boolean functions as cascade multi-
plexer circuits or single multiplexer circuits, where only
one next-level module is allowed, or no module is al-
lowed at all [lo], [14]-[16], [18], [20], [21].

There exist three basic conditions for which a next-level
module is redundant.

Condition 1: A data-input function is trivial: fi = 0,

Condition 2: A data-input function is identical to an-
other data-input function to a multiplexer in the same level
of the tree circuit: J; = f / for i # j .

Condition 3: A data-input function is the complement
of another data-input function to a multiplexer in the same
level of the tree circuit:

Most multiplexer synthesis algorithms only take the first
condition into consideration to decrease the number of
next level modules [11]-[13], [16], [20], [24]. The ad-

f = l f = x . f = Z . 1 7 1 J 7 1 J '

= 5 for i # j .

vantage of the presented method is that it verifies all three
conditions. Thus, a linear component determined by an
Exclusive OR gate can be detected.

Example 2: An M(l) multiplexerf(X) = xL + 3& (see
Fig. 5(a)) realizes an Exclusive OR gate iffx = fr

f (X) = xf, + = x tB f x .

A linear component of a function can be detected by find-
ing multiplexers having as data-input functions fx and its
complement f,. Even if no inverters are available (like in
the Actel FPGA's), only one multiplexer is necessary to
realize the complemented function instead of a complete
subtree. The complemented function can be realized by a
control function circuit [24] as shown in Fig. 5(b). Then,
the multiplexer circuit given in Fig. 5(c) is obtained for

In the case that in a particular level of the multiplexer
circuit different combinations of k data-select variables re-
quire the same number of next level multiplexer modules,
a selection should take into account the possible further
minimization in the next lower levels of the multiplexer
circuit. Spectral methods are ideally suited for this case
because they give insights into the global structure of the
underlying Boolean function [lo], [23] , [25].

DeJinition 3: The functions pi represented by the k data-
select variables for an M (k) multiplexer

f(X) = x &.

pi = x, * x k (7)

are called support finctions, where i = (0 , - * , 2k -
l} is the binary representation of the polarity of the k data-
select variables. It follows from (3)

J; = (f(XN,. (8)

The number of all true and false minterms covered by a
support function pi is

pt = 2"-k. (9)
Thus, the multiplexer synthesis can be based on the in-
formation obtained from the correlation between the
Boolean function and the support functions pi. The con-
cept of ratio parameters [lo], [20], [21] has been devel-
oped to determine if data-input functions to an M (1) mul-
tiplexer are trivial. The ratio parameter method is
essentially a spectral method like the method for M(2)
multiplexer synthesis [23]-[25]. Both method are based
on determining the number of true minterms covered by
the data-input function J;.

The spectral method by Lloyd and the ratio parameter
method can be uniformly generalized for the synthesis
with M (k) multiplexers by the introduction of a local
transform [33] for multiplexer gates.

A criterion for the selection of a particular combination
of k data-select variables in the case that more than one
combination leads to the same minimal number of next
level modules has been introduced in [23]. The criterion
is based on the values of the spectral coefficients si for the
Rademacher-Walsh spectrum S,, . . . x k . It was stated in [23]

SCHAFER AND PERKOWSKI: SYNTHESIS OF MULTILEVEL MULTIPLEXER CIRCUITS I659

0 lq 1:

fcx, f (x)=*@1:

Fig. 5 . Linear function realization: (a) Complemented input; (b) inverter;
(c) complete circuit.

that a high value of the sum of absolute values of the spec-
tral coefficients si

2" - I

sum = ,Z (s i \ = Is,, . . . x k l (10)

gives a higher possibility for further minimization of the
number of multiplexer gates in the following levels. This
is based on the assumption that a higher density of false
or true minterms in the data-input functions allows further
minimization in the next levels.

The following property gives the relation of the spectral
coefficients Zi obtained by the local transform for com-
pletely specified Boolean functions given by Definition 5
to the spectral coefficients si of the Rademacher-Walsh
spectrum used in [23].

Property: The spectral coefficients si of the spectrum
S,, . . . for k data-select variables xI . * xk are computed
as follows:

r = O

s; = (pt - 2 x l j) x 4 = (p t - 2 x a ;) x 4 (11)

where pt is the number of all true and false minterms cov-
ered by the support function p i .

For incompletely specified Boolean functions, the value
of Zi E (ai, ai + ci } is chosen whichever leads to the higher
absolute value of si.

Thus, we can formulate a fourth condition for multi-
level realizations.

Condition 4: For different combinations of k data-se-
lect variables with the same minimal number of next-level
multiplexer modules, one chooses the k data-select vari-
ables with the highest value of sum calculated according
to (10) and (11). If several combinations have the same
highest value of sum, one of them is selected randomly.

With the above Definitions and Properties, we are able
to formulate the conditions for the redundancy of next-
level modules by spectral and Boolean means.

Verification of Condition 1: A trivial incompletely
specified data-input function 5 has the following proper-
ties in the spectral domain, f o r i = 0:

and f o r i = 1:
aj = 0

a; + c; = pt

In the Boolean domain for the computation with a cube
representation, (12) can be verified by

f, = f pi = fdc (14)

where f d c consists only of not specified terms. Equation
(13) can be similarly verified by

J ; =f+ 1 n p , = p i (15)

where the notation f --* 1 denotes the specification of the
not-specified terms of the incompletely specified Boolean
function f to true literals. In the cube representation, just
the respective output literals have to be changed from not
specified to true terms to obtain this transformation.

A necessary condition for a completely specified func-
tion that is dependent on only one variable xl is that the
coefficient

s/ = 2"-k (16)

which is equivalent to

(17) a, = 2n-k-1

For an incompletely specified Boolean function, it is nec-
essary that the not-specified terms can be specified in such
a way that (16) is fulfilled. This can be verified in Boolean
domain by

f- 1 n = x l (18)

(19)

and

f n % = fdc

where fdc consists only of not-specified terms.
Verijcation of Condition 2: The assignment of the not-

specified minterms to true or false ones to obtain identical
data-input functions (J; = A), if possible, can be easily
tested in spectral domain for completely specified Bool-
ean functions as:

(20) a . = a .
J '

However, if (20) is true, the identity of the two functions
still has to be verified. For incompletely specified Bool-
ean functions, it has to be computed if the not-specified
parts of the functions and J; can be specified in such a
way that = J;. This can be verified by the complement
of the intersection of the two incompletely specified func-
tions

j n =i n f ; (21)

having no common minterms with the completely speci-
fied part of function J;

i n f i n = f!Ln = ~ i c l (22)

1660 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 11, NOVEMBER 1993

and no common minterms with the completely specified
part of function f /

where # denotes the sharp operation [39], andfdcl andfdc2
consist only of not specified terms. If (22) and (23) are
true, the not-specified part of & and f / can be specified in
such a way that& = f / .

Verijication of Condition 3: A necessary condition for
a data-input function& to be the complement of a com-
pletely specified data-input function f / is

(24)

To find a possible specification of the not-specified part
of the incompletely specified Boolean function such that
two data-input functions are complemented, (25) and (26)
have to be true

ai + a, = pt .

& n f / = f d c (25)
to verify that the specified parts of both functions have no
common minterms. The equivalent of (24) in the Boolean
domain is given by

If both formulas can be fulfilled, the not-specified part of
the data-input functions f; and can be chosen in such a
way that& = Ti.

The above conditions have to be computed for all pos-
sible combinations of data-select variables. In the case
that there is more than one set of data-select variables that
have the minimum number of next-level multiplexer mod-
ules, the one according to Condition 4 is chosen.

The verification of the four conditions allows the de-
termination of the data-select variables for a single level
of multiplexer modules. The algorithm is based on the
bottom-up level-by-level minimization of a multioutput
incompletely specified Boolean function. The primary
output level of the function (which can consist of more
than one multiplexer) is treated like any other level of the
multiplexer tree circuit.

The pseudocode for the complete M (k) multiplexer
synthesis algorithm musynthes is (k) is shown for the il-
lustration of the different steps involved.

The function compute-modules(data-select-vari-
a b l a [1) determines, through the verification of Condi-
tions 1-3, the number of necessary next-level modules
best select[] for the given set of data-select variables.
Condition 4 is applied for tie cases by comparing their
sum obtained by the summation over each sum,,-
computed according to (10). After the set of data-select
variables that leads to the minimum number of next-level
modules has been found, the function decom-
pose (best-select[1) computes the output functions for the
next level for which the process is repeated. The algo-
rithm stops when no further next-level modules are nec-
essary, that is, a multiplexer circuit realization of the cir-
cuit has been found.

The developed methods are illustrated in the next sec-
tion with a complete example.

IV. SYNTHESIS EXAMPLE
The synthesis steps from the previous section will be

illustrated on the example from [23]:

f (X) = XIxqXg + ~ 1 ~ 2 . ~ 4

+ X I X ~ X ~ X ~ + X 3 X 4 ~ 5 + x l j S 4 ~ 5 .

First, the disjoint cube representation of f (X) has to be
computed to be able to compute the local spectra

f (X) = X 1 ~ 4 X g + ~ 1 x 2 ~ 4

+ 2 1 x 2 x 3 Z 4 + X 3 2 4 x 5 + xIx3Xqxg.

The disjoint cubes obtained are illustrated by the circled
areas shown in Fig. 6.

For the initial verification of the redundancy of next
level modules, the local spectrum for each combination
of data-select variables and the sum parameter are calcu-
lated. The calculation of the initial spectra L,,., will be
illustrated for the spectrum of the data-select pair xl , x2 .
The value of the spectral coefficients of the spectrum
S.,., [23] can be obtained by (1 1) . The support functions
p, for the local transform for the chosen data-select pair
arep, = XIX2, pI = X I x 2 , p2 = xIX2, p3 = x I x 2 , where
each trivial function covers p t = 25 - 2 = 8 minterms: see
(9).

To obtain the local spectrum for the chosen data-select
pair, the cofactor of the functionf(X) has to be calculated
with respect to each support function, e.g.

fo = (f(X)),, = (f(X))X,X*.
Because the function f (X) is completely specified, the
spectral coefficients of the local spectrum are given by 1,
E {a,}. They can be directly computed from the disjoint

SCHAFER AND PERKOWSKI: SYNTHESIS OF MULTILEVEL MULTIPLEXER CIRCUITS 1661

01

11

10

Fig. 6 . Disjoint cube representation of synthesis example

- - P o

- - P I

P 2
_ _

- - P 3
x1 x4

Fig. 7. Final multiplexer realization.

cube representation of the data-input functions f: u0 = 3 ,
u1 = 5, u2 = 2 , and u3 = 6. No coefficient Zi E {ui } fulfills
(12), (13), or (17), which verify the possibility of trivial
data-input functions. Similarly, the criterion for the iden-
tity of two data-input functions (see (20)) is not satisfied.
However, the necessary condition for complemented data-
input functions is true for u2 + u3 = 8. Therefore, this
case has to be verified further. Applying (25), we obtain
f i n f3 = X4x5 # 4. Because the intersection is not empty,
f i cannot be the complement off3. Thus, no data input of
the multiplexer is redundant. Therefore, the number of
next level modules Mod for the data-select variables xi
and x2 is Mod = 4. To be able to later check the Condition
4, the sum = 48 is computed by applying (10) and (1 1).

The spectra for the other data-select pairs are calculated
the same way. The results are listed in Table 11. Because
all possible cases of redundant next-level modules can be
verified by conditions (1)-(3), the exact number of next
level modules Mod can be directly calculated, whereas the
method by Lloyd only determines the upper and lower
bound maxMod and minMod.

In Table 11, U* indicates, that the respective data-input
function is either identical to another one or a trivial one.
Because L,,, has the lowest number of next-level modules
(mod = I) , variables x, and x4 are selected for the output
multiplexer, and all other data-select pairs can be dis-
carded. Thus, the best pair of data-select variables has
been found in the first step, whereas, for the pure spectral
method [23], three further verification steps would be
necessary.

The nontrivial data-input functions to the multiplexer
module have to be decomposed further for the calculation
of the next level of the hierarchical multiplexer circuit.
The four data-input functions have already been obtained
by the substitution of the support functions pi for the data-
select pair xI, x4 with the initial function for the calcula-
tion of the spectral coefficients: fa = X3xs + ~2x3, fi =
X5, f i = x s , and f3 = x2. The only nontrivial function is
fo. Therefore, f o has to be decomposed further. Because
the function fa depends on only three variables, it can be
realized by one M(2) multiplexer, and the choice of the
data-select variables does not matter [2 11.

To illustrate the general synthesis procedure, all three
spectra, LXl,, of the remaining variables x2, x3 and xs are
calculated (Table 111).

TABLE I1
FIRST LEVEL SPECTRA OFf

TABLE I11
SECOND-LEVEL SPECTRA FOR&

The expected result that no further multiplexer is nec-
essary for any data-select pair is verified by the result
given in Table 111. The data-select pair x2, x3 is chosen
for the realization of the second-level multiplexer. Thus,
the final hierarchical multiplexer circuit has the form
shown in Fig. 7.

V . MAPPING OF A MULTIPLEXER TREE CIRCUIT TO THE

ACT 1 MACROCELL
To allow an evaluation of the presented method, we

map the result obtained by the multiplexer synthesis al-
gorithm to multiplexer-based FPGA's for which many
synthesis tools exist [28], [3 I], [40], [4 I]. Although the
hierarchical multiplexer circuits obtained for M(1) mul-
tiplexer can be mapped directly to FPGA's like the Actel
ACT series [27], the CLi6000 of Concurrent Logic [42],
or the CAL 1024 of Algotronix [43], a special mapping
algorithm is necessary for the ACT'" family of Actel. The
macrocells provided by the ACT'" FPGA family from Ac-
tel (see Fig. 1) have a restricted connectivity of M (l)
multiplexers. An M (2) multiplexer can be realized with
one macrocell from both the ACT1 and ACT2 families.

1662 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 1 1 , NOVEMBER 1993

TABLE IV
BENCHMARK COMPARISONS

Therefore, a multiplexer circuit based on M (2) multiplex-
ers can be directly mapped to the Actel FPGA's. How-
ever, because of the lack of inverters, for each comple-
mented data-input function, an additional macrocell is
necessary.

For our implementation, we chose the ACTl macro-
cell. The mapping of an M (l) multiplexer circuit to the
ACTl macrocell is restricted by the internal connectivity
of the macrocells. The output functions of the two mul-
tiplexers at the input of the macrocell MUXl and MUX2
are not available as outputs of the macrocell. Therefore,
multiplexers with fanout > 1 have to be realized with the
output level multiplexer MUX3 of a macrocell, or the re-
spective multiplexer has to be duplicated. As a heuristic,
we first map a multiplexer with fanout > 1 to the MUX3
multiplexer of a macrocell. Additionally, input multiplex-
ers to this multiplexer with fanout = 1 are mapped to the
same macrocell.

As a second step, the multiplexers that have a function
g and its complement g as input are taken into consider-
ation. Because of the restricted internal connectivity of a
macrocell, the complementation of a data-input function
realized according to Fig. 1 has only one minimal map-
ping shown in Fig. 5(c). However, if the function jj is an
input to more than two other multiplexers, it is realized

in a separate macrocell. Finally, the remaining multiplex-
ers are mapped level by level to the macrocells.

The next section gives the results obtained by the im-
plementation of the multiplexer synthesis algorithm. The
results of this algorithm followed by mapping to the ACTl
macrocell are also presented.

VI. BENCHMARK RESULTS
As stated in the previous section, the mapping of M (2)

multiplexer circuits to the ACT'" FPGA's from Actel can
be done directly. However, an M (l) multiplexer circuit
has to be matched to the macrocells.

Table IV lists the results for the MCNC benchmarks
for the multiplexer synthesis algorithm. The results are
given in column mu-map. For comparison, we give the
results for misll [2 9] , [40] with the Actel library of real-
izable functions as a representative for general technology
mappers and the result of Actel specific mappers mis-pga
[4 0] , Prosperine [2 8] , [3 2] , Amap [31], and ASYL [41].

The results of the multiplexer synthesis given in the
columns k = 1 and k = 2 assume that inverters are avail-
able to realize complemented data input functions. The
columns modules give the total number of necessary M(1)
or M (2) modules, and the columns depth gives the longest

SCHAFER AND PERKOWSKI: SYNTHESIS OF MULTILEVEL MULTIPLEXER CIRCUITS 1663

path in the circuit. The columns cells give the number of
necessary macrocells. The time ((t i .)) is given in seconds.
The computation times given for mu-map include the
multiplexer synthesis and the mapping step. The results
were obtained on a Sparc 4/370 (12.5 mips). For mis-pga
(new) and Amap, the time was obtained on a DEC5500
(28 mips).

It should be stressed, that mu-map performs the syn-
thesis and mapping for the actO type combination of M (l)
multiplexers (Fig. 2(b)). Additionally, the data-select in-
puts of the multiplexers are restricted to be input variables
except for the realization of an inverter. Nevertheless, re-
sults close or even better than the ones obtained by the
algorithms that take advantage of all the act1 and act2
macrocell possibilities are obtained. Moreover, the exe-
cution times for mu-map are much shorter than for mis-
pga, which gives the closest results compared to m u -
map.

VII. CONCLUSION
The concept of a local transform has been applied to

the synthesis of multiplexer circuits for incompletely
specified multioutput Boolean functions. The program
based on this concept has been implemented. The results
show that the special case of the M (l) multiplexer syn-
thesis with following mapping to the ACT1 family usu-
ally leads to the same number of macrocells and is gen-
erally faster than the conventional multilevel minimization
followed by mapping [29]-[32]. However, contrary to
those algorithms, the presented algorithm has been de-
signed for general multiplexer synthesis and not specifi-
cally for the Actel FPGA’s. By using a more sophisticated
mapping algorithm, the obtained results can be even fur-
ther improved. Moreover, the obtained multiplexer circuit
can be easily converted to a mixed Exclusive OR multi-
plexer circuit, where multiplexers as in Fig. 5(c) are re-
placed by an Exclusive OR. The results of mu-map for
benchmark functions that are known to have a high Ex-
clusive OR component like f51m, rd73, 5xp1, and sa02
are better than the results obtained by any of the other
programs. Our future extensions are to expand the map-
ping algorithm to the ACT2 family. We would also like
to implement the algorithm based on OBDD’s, where we
hope to obtain a significantly improved execution time and
smaller memory requirement.

ACKNOWLEDGMENT
The authors would like to thank the reviewers for their

careful review and their helpful comments.

REFERENCES
[I] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,

“Multilevel logic synthesis,” Proc. IEEE, vol. 78, no. 2, pp. 264-
300, Feb. 1990.

[2] D. Bostick et a l . , “The Boulder optimal logic design system,” in
IEEE Proc. Int. Conf. CAD, Nov. 1987, pp. 62-65.

[3] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. R.
Wang, “MIS: Multilevel interactive logic optimization system,”

IEEE Trans. Comput. Aided Design, vol. 6 , no. 6, pp. 1062-1082,
Nov. 1989.

[4] K.-C. Chen and S. Muroga, “SYLON-DREAM: A Multilevel net-
work synthesizer,” in Proc. IEEE Int. Conf. CAD, 1989, pp. 552-
555.

[5] A. L. Lavagno, S . Malik, R. K. Brayton, and A. Sangiovanni-Vin-
centelli, “MIS-MV: Optimization of multilevel logic with multiple-
valued inputs,” in Proc. IEEE Int. Conf. CAD, (Santa Clara), Nov.

[6] B.-G. Kim and D. L. Dietmeyer, ‘‘Multilevel logic synthesis with
extended arrays,” IEEE Trans. Comput., vol. 41, no. 2 , pp. 142-
157, Feb. 1992.

[7] S. S. Yau, and C. K. Tang, “Universal logic modules and their ap-
plications,” IEEE Trans. Comput., vol. (319, no. 2, pp. 142-149,
Feb. 1970.

[8] S. L. Hurst, The Logical Processing of Digital Signals. Crane Rus-
sak, 1978.

[9] X. Chen, and S. L. Hurst, “A consideration of the minimum number
of input terminals on universal logic gates and their realization,” Int.
J. Electron., vol. 50, pp. 1-13, Jan. 1981.

[lo] S. Bandyopadhyay, A. Pal, and A. K. Choudhury, “Characterization
of unate cascade realizability using parameters,” IEEE Trans. Com-
put. , vol. (324, no. 2, pp. 218-219, Feb. 1975.

[I l l D. G. Whitehead, “Algorithm for logic-circuit synthesis by using
multiplexers,” Electron. Lett., vol. 1977, no. 12, pp. 355-356, June
1977.

1121 E. A. Almaini and M. E. Woodward, “An approach to the control
variable selection problem for universal logic modules,” Digital Pro-
cesses, vol. 3, pp. 189-206, 1977.

[I31 R. P. Voith, “ULM implicants for minimization of universal logic
module circuits,” IEEE Trans. Compur., vol. (326, no. 5, pp. 417-
424, May 1977.

[14] B. Dormido and D. Canto, “Systematic synthesis of combinational
circuits using multiplexers,” Electron. Lett., vol. 14, no. 18, pp.
588-590, Aug. 1978.

[15] G. G. Langdon, “A decomposition chart technique to aid in realiza-
tions with multiplexers,” IEEE Trans. Cornput., vol. G27, no. 2 , pp.

[16] L. A. M. Bennett, “The application of map-entered variables to the
use of multiplexers in the synthesis of logic functions,” Int. J. Elec-
tron., vol. 45, no. 4 , pp. 373-379, 1978.

[17] D. Mange and E. Sanchez, “Synthese des fonctions logiques avec
des multiplexeurs,” Digital Processes, vol. 4 , pp. 29-44, 1978.

1181 A. J . Tosser and D. Aoulad-Syad, “Cascade networks of logic func-
tions built in multiplexer units,” Proc. Inst. Elec. Eng., pt.E, vol.
127, no. 2, pp. 64-68, 1980.

1191 D. H. Green and M. A. Chughtai, “Use of multiplexers in direct
synthesis of ASM-based designs,’’ Proc. Inst. Elec. Eng, pt.E, vol.
133., no. 4 , pp. 194-200, July 1986.

[20] A. Pal, “An algorithm for optimal logic design using multiplexers,”
IEEE Trans. Comput., vol. C-35, no. 8, pp. 755-757, Aug. 1986

[21] R. K. Gorai and A. Pal, “Automated synthesis of combinational cir-
cuits by cascade networks of multiplexers,’’ Proc. Inst. Elec. Eng.,
pt.E, vol. 137, no. 2, pp. 164-170, Mar. 1990.

[22] R. K. Gorai, and A. Pal, “Automated synthesis of combinational cir-
cuits by tree networks of multiplexers,” in Proc. 3rd Int. Conf. VLSI
Design, (Bangalore, India), Jan. 1990, pp. 300-305.

[23] A. M. Lloyd, “Design of multiplexer universal-logic-module net-
works using spectral techniques,” Proc. Inst. Elec. Eng., pt.E., vol.
127, no. 1, pp. 31-36, Jan. 1980.

1241 T. F. Tabloski and F. J . Mowle, “A numerical expansion technique
and its application to minimal multiplexer logic circuits,” IEEE Trans.
Comput., vol. 25, no. 7, pp. 684-702, July 1976.

1251 S. L. Hurst, D. M. Miller, and J . C. Muzio, Spectral Techniques in
Digital Logic.

[26] B. J. Falkowski, I. Schafer, and M. A. Perkowski, “Effective com-
puter methods for the calculation of the Rademacher-Walsh spectrum
for Boolean Functions,”IEEE Trans. Comput-Aided Design, vol. 11,
no. 10, pp. 1207-1226, Oct. 1992.

[27] Actel, ACTFamily Field Programmable Gate Array Data Book, Mar.
1991.

I281 A. Bedarida, S. Ercolani, and G. DeMicheli, “A new technology
mapping algorithm for the design and evaluation of fuselantifuse-
based field-programmable gate arrays,” in Proc. 1st ACM Workshop
FPGA’s, (Berkeley, CA), Feb. 1992, pp. 103-108.

[29] R. Murgai, Y. Nishizaki, N. Shenoy, R. K. Brayton, and A. San-
giovanni-Vincentelli, “Logic synthesis for programmable gate ar-

1990, pp. 560-563.

157-159, 1978.

New York: Academic, 1985.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 12, NO. 11, NOVEMBER 1993

rays,” in Proc. 27th ACMIIEEE Design Automat. Conf., 1990, pp.

F. Mailhot and G. DeMicheli, “Technology mapping using Boolean
matching and don’t care sets,” in Proc. IEEE Eur. Design Automat.
Conf., (Glasgow), Mar. 1990, pp. 212-216.
K. Karplus, “Amap: A technology mapper for selector-based field-
programmable gate arrays,” in Proc. 28th ACM/IEEE Design Auto-
mat. Conf., (San Francisco), June 1991, pp. 244-247.
S. Ercolani and G. DeMicheli, “Technology mapping for electrically
programmable gate arrays,” in Proc. 28th ACM/IEEE Design Auto-
mat. Conf., (San Francisco), June 1991, pp. 234-239.
B. J. Falkowski and M. A. Perkowski, “A family of all essential
radix-2 addition/subtraction multipolarity transforms: Algorithms and
interpretations in Boolean domain,” in Proc. Int. Symp. Circ. Sys-
tems (ISCAS), (New Orleans), May 1990, pp. 2913-2916.
M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable ordering of
binary decision diagrams for the application of multi-level logic syn-
thesis,” in Proc. IEEE Europ. Design Automat. Conf., (Amsterdam),
Feb. 1991, pp. 50-54.
N. Ishiura, H. Sawada, and S. Yajima, “Minimization of binary de-
cision diagrams based on exchanges of variables,” in Proc. IEEE Int.
Con$ CAD, (Santa Clara, CA), Nov. 1991, pp. 472-479.
A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Process-
ing.
S. Punvar and A. K. Susskind, “Computation of Walsh spectrum
from binary decision diagram and binary decision diagram from Walsh
spectrum,” Computers Elect. Eng., vol. 15, no. 2, pp. 59-65, 1989.
D. Varma and E. A. Trachtenberg, “Design automation tools for ef-
ficient implementation of logic functions by decomposition,” IEEE
Trans. Cornput.-Aided Design, vol. 8, pp. 901-916, Aug. 1989.
D. L. Dietmayer, Logic Design ofDigital Systems. New York: Al-
lyn and Bacon, 1978.
R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli, “An im-
proved synthesis algorithm for multiplexor-based PGA’s,” in Proc.
29th ACMIIEEE Design Automat. Conf., (Anaheim, CA), June 1992,

T. Besson, H. Bousouzou, M. Crates, and G. Saucier, “Synthesis on
multiplexer-based programmable devices using (ordered) binary de-
cision diagrams,” in Proc. EUROASIC, (Paris, France), June 1992,
pp. 8-13.

620-625.

Englewood Cliffs, NJ: Prentice Hall, 1990.

pp. 380-386.

[42] Concurrent Logic, CLi6000 Series Field Programmable Gate Array,

[43] Algotronix Ltd., Configurable Array Logic User Manual, Edinburgh,
preliminary information, Dec. 1991.

UK, 1991.

Ingo Schafer received the B.S.E.E. degree from
the University of Stuttgart, Germany, in 1987 and
the Ph.D. degree in electrical and computer en-
gineering from Portland State University in 1992.

From 1989 to 1992, he was a member of the
CAD group at Portland State University. In 1992,
he joined the logic synthesis group at Lattice
Semiconductor. His research interests include
various issues in computer-aided design as well as
in digital signal and image processing.

Marek A. Perkowski (M’84) was born in Warsaw, Poland, on October 6,
1946. He received the M.S. degree in electronics (automatic control) in
1970 and the Ph.D. degree in automatics (digital systems) in 1980 from
Technical University of Warsaw.

He was an Assistant Professor at Technical University of Warsaw from
1980 to 1981, a Visiting Assistant Professor at the University of Minnesota
from 1981 to 1983, and, since 1983, an Associate Professor of Electrical
and Computer Engineering at Poland State University. He had summer pro-
fessor positions with GTE Labs, Intel Scientific Computers, and Sharp Mi-
croelectronics Technology and consulted for various companies, most re-
cently Cypress Semiconductor Northwest. He is the co-author of three
books, seven book chapters, and over 120 technical articles in design au-
tomation, computer architecture, artificial intelligence, image processing,
and robotics. His recent research interests include field programmable gate
arrays, FPGA-based computer architectures, and building a voice-con-
trolled robot-wheelchair.

Dr. Perkowski is a founding member of the Polish Informatics Society.

