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Abstract: The concept of canonical restricted 
mixed polarity (CRMP) exclusive-OR sum of pro- 
ducts forms is introduced. The CRMP forms 
include the inconsistent canonical Reed-Muller 
forms and the fixed-polarity Reed-Muller 
(FPRM) forms as special cases. The set of CRMP 
forms is included in the set of exclusive-OR 
sum-of-product (ESOP) expressions. An attempt 
to characterise minimal CRMP forms for com- 
pletely specified Boolean functions is presented as 
well as an insight into the complexity of computa- 
tion needed to find such a form. Some fundamen- 
tal properties unique to CRMPs are proven. It is 
also proven that the upper bound on the number 
of terms in the CRMP form is smaller than that in 
the conventional normal forms and equal to that 
of the ESOPs. A theorem providing a lower 
bound on the number of CRMP terms is given. 
Finally, based on these theoretical results, a heu- 
ristic algorithm and its implementation to obtain 
a quasiminimal CRMP form for a multioutput 
function are presented. 

1 Introduction 

It has long been the experience of logic designers that 
exclusive-OR sum-of-product (ESOP) expressions, AND- 
EXOR, are more economical than the conventional 
inclusive sum-of-product (SOP), A N B O R ,  expressions. 
This was confirmed practically on many examples, espe- 
cially on arithmetic and telecommunication circuits, [ l ,  2, 
31, and theoretically [4]. New results are also reported in 
References 5, 6, 7. Reference 8 introduces several AND- 
EXOR forms being particular cases of ESOPs and pre- 
sents experimental analysis of their complexity. Although 
the CRMP forms are mentioned, their complexity is not 
discussed. 

The EXOR gate exists in most VLSI cell libraries but 
there are hardly any logic synthesis systems able to find 
optimised netlists that include EXOR gates. Several fam- 
ilies of new PLD devices able to realise EXOR gates have 
been recently marketed: table look-up based field pro- 
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grammable gate arrays (Xilinx LCA 3000) [SI, folded 
NAND (Signetics LHSSOI) [lo], multiplexer-based 
devices (Actel 1020) [ l l ]  and particularly the fine-grain 
(cellular) field programmable gate arrays from Algotronix 
[12] and Concurrent Logic (CLI 6000 series) [13]. Such 
devices either directly include EXOR gates (LHSSOl, CLI 
6000 series) or allow their realisation in ‘universal 
modules’. Since the five-input EXOR gate has the same 
speed and cost as, for instance, a five-input OR gate [14], 
logic synthesis algorithms that will take EXOR gates into 
account on equal terms to AND and OR gates become 
necessary. Particularly for a design implemented in Xilinx 
devices, if a fixed polarity Reed-Muller (FPRM) form has 
less terms than a two-level ANWOR expression, there is 
no reason why it should not be taken as a base of factor- 
isation [IS] since it will very probably produce a circuit 
with smaller number of blocks and connections. Addi- 
tionally, i t  will be more easily [16-201. In the case of CLi 
6000 series, the usage of EXOR gates is a ‘must’, since 
methods based on sum of products give results that are 
very far from the minimum. The fact that the synthesis 
tools for technologies that include EXOR gates do not 
use algorithms for FPRMs, ESOPs or other EXOR- 
based expressions is an anachronism caused by inertia, 
and the fact that high quality algorithms of speed 
comparable to Espresso [21] are only recently becoming 
available. 

The problem of finding the minimal exclusive-OR sum 
of products (ESOP) of a Boolean function is classical in 
logic synthesis theory, but exact approaches to solve this 
problem have been proposed for only very small func- 
tions [22, 231. 

In this paper a canonical form, called canonical 
restricted mixed polarity exclusive-OR sum of product 
(CRMP), being a particular case of an ESOP, is dis- 
cussed. (This form was mentioned in References 8 and 24 
but not studied much). The family of fixed-polarity Reed- 
Muller forms [2, 8,24, 25, 261 and the family of inconsist- 
ent canonic forms introduced in References 27-29 
constitute the family of CRMP forms (also called gener- 
alised Reed-Muller forms in Reference 24). A CRMP 
expression is always not more expensive than fixed 
polarity expressions for the same function. Both these 
forms have very good testability and universal tests [30]. 

There are two reasons why we study the CRMP forms. 
First, they have an interest on their own, and it is inter- 
esting to compare them with other ANBEXOR forms 
discussed by several authors [S, 311. Secondly, and more 
importantly, we used the concept of CRMP forms to 
develop the algorithm for ESOP expressions that, con- 
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trary to all exact algorithms known from the literature 
[22, 231, is not exhaustive. In brief, this is done as 
follows. We introduce the concept of a sparse function. A 
sparse function, represented as an ESOP, is an EXOR of 
clusters (each cluster is an ESOP) of product terms such 
that if terms t ,  and t ,  are in two different clusters, there is 
no EXOR-type operation such as xlink or unlink [32] or 
exorlink [33] that would replace these two terms with 
one or two other terms. Now there are two possibilities. 
Either the original ESOP cannot be decomposed to such 
clusters and a single CRMP is found for it, or it is 
decomposed to clusters, for each cluster the CRMP is 
found, and the EXOR of all those CRMPs is returned as 
the minimal ESOP. We do not know whether this algo- 
rithm always finds the exact solution, although in many 
cases the algorithm can prove the minimality of the solu- 
tion. For many Boolean functions of not more than five 
variables that we checked, the ESOP expressions found 
using this algorithm were actually the exact ESOP 
expressions, which was confirmed using the exact ESOP 
minimiser from Reference 23. Using the last one was, 
however, much more time consuming. Unfortunately, the 
program from Reference 23 can be used for completely 
specified functions of not more than five variables so we 
cannot verify the exactness of larger solutions. Also, one 
can construct functions for which this new method still 
requires much search and is slow. 

The goal of the research reported here has been to 
create an exact synthesis program for CRMPs that would 
allow one to find ESOPs whose quality would be better 
than that of the previous heuristic minimisers [3]. and 
which would be much faster than the exact minimisers 
[22, 231, thus allowing further study of exact and quasi- 
minimum ESOP minimisers. Most of the theoretical 
results of their proofs given here are new. 

2 

First we compare the CRMP form to the FPRM and 
RM forms. 

Definition 2.1: The literal xt is a variable xi in either posi- 
tive (xi = xi)  or complemented (xi = xp)  form. 

Consider the following form: 

Canonical restricted mixed polarity forms 

f(xl, . . . , x,) = go e SIX; e. ' .  g , X ;  
Qg"+,x;x;o"'og,._,x;x; ' ' _  x:, (1) 

where g i  = 0 or 1 ,  and xf = x i  or xi, 

Definition 2.2: By a fixed-polarity Reed-Muller (FPRM) 
form one understands a form of eqn. 1 in which a vari- 
able is complemented (negative) or not complemented 
(positive), but cannot stand in both forms [2,24, 291. 

Definition 2.3: The form of eqn. 1 in which each variable 
is both complemented and not complemented but in 
which there is exactly one coefficient for each subset of 
variables of a term will be called a canonical restricted 
mixed polarity form (CRMP). 

It follows that the CRMP form is either a FPRM or 
an inconsistent canonical form [28]. The CRMP form 
can be represented as binary vector of length 2" whose 
coefficients gi  are calculated respectively to selected pol- 
arities of their corresponding subsets of variables in pro- 
ducts. Observe that a CRMP expression corresponds to 
the CRMP form. This expression is an exclusive sum of 
products in which there exists no more than one term 
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(product) for each possible subset of input variables. 
Denote by g ,  the value of the coefficient that stands near 
product term t in a CRMP. Assuming a function of two 
variables a and b, for example, expression a corresponds 
to forms [gl, go, gb3 gab] = CO, 1, 0, 01 = 0 .  1 0 1 . a 

0 . b 0 0 . ab and [g,, ga, g 6 ,  gas] = CO, 1, 0, 01, while 
expression ii corresponds to forms [ g , ,  g r ,  g a ,  gi5]and 
[g,, g r ,  g 6 ,  gab]  = [l, 1, 0, 01. Observe that there are as 
many different CRMP forms as vectors of length 2' of 
coefficients g,, but many of those forms correspond to the 
same binary vectors. 

It follows from the preceding definitions that the 
FPRM class is properly included in the CRMP class, and 
that the CRMP class is properly included in the class of 
ESOP expressions. Also observe that the CRMPs are 
canonical forms, while it is easy to show that the ESOPs 
are not. This property of CRMPs is useful in many 
respects, including the design for testability. 

Definition 2.4: A product of distinct literals is called a 
term. 

Definition 2.5: A Reed-Muller form (RM) [2] is a CRMP 
form that contains only uncomplemented variables. 

A theorem describing the properties of operator @ 
follows without proof, since they are well known [2,24]. 

Theorem 2.1: The following identities are true: 

X I  o x, = Xl< + K x *  

X I  Q x ,  = 0 

x , @ x , = l  

x 1  0 0  = X I  

x , @ l = X ,  

x1 0 (x2 @ x3) = ( X I  8 x2)@x3 

0 x3) = xlxZ @ x1x3 

Applying the principle of duality to the CRMP form and 
the identities from theorem 2.1, one obtains the dual 
CRMP form and dual identities: the system (0, e )  is 
replaced with the dual system (0, +) (see also Reference 
25). All the results of this paper, after applying the prin- 
ciple of duality, hold in the dual system as well. Circuits 
generated for systems can be implemented using EXOR 
and NOR gates or EXOR and NAND gates. 

The following example illustrates the concepts intro- 
duced. 

Example 2.1: I Q  x1 <QX,x, is a CRMP form 
because there exists only one term for each subset of vari- 
ables. It is not an FPRM form because there exists a 
variable, say x,, that stands both in negated and positive 
form. xl< Q X,xz @ x2 @ x1x2 is an ESOP form that is 
not a CRMP form because it includes more than one 
product with a set of variables {x,, x,}. .2 0 KsI; is an 
FPRM form since both the variables x, and x ,  have con- 
stant polarities in the entire form (FPRM of polarity (0, 
0)). It is called a negative Reed-Muller form. The FPRM 
form of polarity (0, 1) is 1 0 X, Q x2 0 , q x , .  

It can be easily verified by substitutions x = 1 @ X and 
X = 1 0 x that all these forms are equivalent to a FPRM 
form of polarity (1,O) being a single term xlsI;, as well as 
to the RM form x, @ X,X, (which is a FPRM of polarity 
(1, 1)). This example shows also that a selection of a 
proper form can minimise the number of terms. 
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The next example shows that the minimum CRMP 
form is not necessarily the minimum ESOP solution to a 
Boolean function. 

Example 2.2: Given is a function of three variablesf(x,, 
x 2 ,  x3) = X,sI;JT; + x1x2x3.  Since the terms offare dis- 
joint,f(x,, x2,  x3) = GKxJ @ x1x2 x 3 .  It can be shown 
by an exhaustive search that this is the minimal ESOP 
for function 1: The minimal CRMP is: f(xl, x 2 ,  x3) = 
xlx3 @x,X,@x,x,. It has three terms and is not a 
termwise nor literalwise minimal ESOP solution. We are 
interested in minimal CRMP solutions. This means that 
our solutions will be not necessarily the minimum ESOP 
solutions. This is a kind of function, called sparse func- 
tion, for which the costs of the exact FPRM, the exact 
CRMP, and the exact ESOP differ the most. It can be 
separated to two clusters, JF;X,JT; and x1x2x3, and for 
each of them a separate CRMP is found, thus producing 
the exact ESOPf(x,, x2,  x3) = X,GX, @ x1x2 x 3 .  

Theorem 2.2: For a Boolean function of n variables there 
exist 2E'"' various CRMP forms, where 

__ 

i = n  . .. 
E(n) = i(7) 

i = 1  

Proof: Consider all possible CRMP forms for a Boolean 
function of n variables. There exist ( y )  subsets of variables 
with i variables in a subset. For each such subset there 
exist two polarities of each variable, which means 2' pol- 
arities for all the variables of the subset. Therefore the 
number of all possible CRMP forms is 

.=. 

(3) 

It can be proven by mathematical induction that E(n)  = 
n2"-'. U 

Example 2.3: Let f be a function of n = 4 input variables 
a, b, c, d. There are ( y )  = n one-variable sets { a } ,  { b } ,  {c}. 
and { d } .  Each set can be in 2' polarities. There are l4 
forms with various polarities of single literals. There are 
(;) = 6 two-variable sets {a ,  b} ,  {a ,  e} ,  {p,,d}, {b, e}.  {b ,  d } ,  
and {e, d Each set can be in 2' polarities, which makes 
(22)6 = 2 * forms. There are ( z )  = 4 three-variable sets {a ,  
b, c } ,  {a,, !, d } ,  {a ,  c, d } ,  and {b ,  c, d } .  Each set can be in 
23 polarities, which makes (2j)" = 2" forms. There exists 
(:) = 1 four-variable set {a ,  b, c, d } ,  Each variable can be 
in two polarities, which makes 24 forms. The total 
number of forms is therefore 24 . 212 . 2" 24 = 232. Of 
course, theorem 2.2 gives the number of all possible 
forms. The actual number of binary vectors or expres- 
sions of these forms is usually much smaller. The number 
given in eqn. 3 is then the upper bound of the number of 
binary vectors. For instance, for functionf(a, b) = a there 
are_ 16 for_ms bejng ordered 4-tuples of elements l/O, a/& 
blb, ablablciblcib but only two binary vectors, and two 
expressions a and 1 @ a. 

For a function of n variables there exists only a single 
RM form, while there are 2" FPRM forms, and 2"'"-' 
CRMP forms, which is a very large number. Therefore, 
the cost of the minimum ESOP form for functions of few 
variables is usually much closer to the cost of the 
minimum CRMP form that to the cost of the minimum 
FPRM form of this function. This reason causes the 
superiority of the method proposed here over the 

). 

I E E  PROCEEDINGS-E, Vol. 140, No.  I ,  J A N U A R Y  1993 

methods of FPRM minimisation. Moreover, observe that 
the minimal FPRM form is always not better than that 
minimal CRMP form. 

Next, some properties of the CRMP forms are given. 

Definition 2.6: The Boolean difference [24] of functionf 
with respect to variable xi is denoted byf,, and defined as 

- 
f,,=f(x1 , . . . ,  xi , . . . ,  X,)Of(XI,. . . ,Xi,. . . ,X,) 

Definition 2.7: The Boolean difference of function f with 
respect to term t = x: , x; , . . . , x i  is denoted by f, and 
defined as 

f ,  = (. ' ' UA; ' . .)xi 

Definition 2.8: Let t be a term. The term set S(t) of t is 
s(t) = {xi 1 x; appears in t } .  

This is a set of all variables whose literals occur in 
term t .  For instance, S(x1, G, x3) = {x l ,  x,, x3}. 

De$nition 2.9: Term t is a prime term with respect to 
functionf ifff, = 1, where stands for identical equality. 

Lemma 2.1: The following properties hold for a Boolean 
difference : 

f =f 

f,,,, =f,,,, 
(xix,)x, = x, 

XI XI 

Theorem 2.3: Term t is a prime term with respect to func- 
tion f iff in any CRMP form offthere exists exactly one 
term I' such that S( t )  = S(t') and there exists no term t" 
such that S( t )  c S(t"). 

Proof: To prove in a forward direction assume that t is a 
prime term with respect to so f, 1 .  Consider any 
CRMP form of f  and compute f, by computing 1: for 
each term t* of that CRMP form and add the results 
over Galois field (2) together. The following three rules 
follow from lemma 2.1 : 

S( t )  = S(I*) iff I: = 1 

S ( t )  c S(I*) iff t: is a term 

for every other case I: 0 

Function f ,  (when derived this way) itself is a CRMP 
form and thus is canonical, f, = 1 is possible in exactly 
one way, namely that there exists exactly one term t' such 
that S( t )  = S(t') and there exists no term t" such that 
S( t )  c S(t"). To prove the converse choose a CRMP form 
off and find term t'. Computer f,. from that from using 
Lemma 2.1. Clearly f,, = 1. Since S( t )  = S(t') it follows 
from the properties of the Boolean difference that f, 1. 
Therefore, from definition 2.9 term t is a prime term with 
respect to functionf: 0 
Some of the implications of this theorem are given by the 
following properties. 

Property 2.1: The minimal CRMP (and FPRM) forms of 
f will have one term t' such that S( t )  = S(t') and there is 
no term t" such that S(t) c S(t"). 

Property 2.2: For all existing terms < of a CRMP form of 
f there is a prime term t offsuch that S(z) G S(t). 
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Property 2.3: Every function in a CRMP form has at 
least one prime term. 

Definition 2.10: Term t is a nonexisting term with respect 
to functionfifff, = 0. 

Theorem 2.4: Term t is a nonexisting term with respect 
to functionfiff in any CRMP form offthere is no term t' 
such that S( t )  G S(t'). 

Proof: Similar to that of theorem 2.3. 

Definition 2.11: A functionf(x,, . .., x.) is odd ifff,, ,,.., Xn 

is identically 1 .  A functionf(x,, . , . , xn) is even ifff, ,,,,,, Xn 

is identically 0. 
It can be proven that the following properties are true. 

Property 2.4: Every even functionfin a CRMP form has 
at least one nonexisting term. 

Property 2.5: If function f is odd it has no nonexisting 
terms in a CRMP form. For instance,f, = x1xzx3 and 
f, = x,xz x3 8 xlxz are odd functions. Function f 3  = 
xIxz 0 x, x3 Q xIx3 is an even function and xlxz x j  is a 
nonexisting term of this function. 

In the next two Sections an upper and lower bounds 
on the number of existing terms in a CRMP form are 
proven. 

3 

The goal in this Section is to prove that a termwise upper 
bound for the CRMP form is less than that for the con- 
ventional disjunctive (sum of products) or conjunctive 
(product of sums) expressions of a Boolean function. 

We restate here a well-known theorem concerning the 
term upper bound for disjunctive or conjunctive expres- 
sions. 

Upper bound of existing terms in C R M P  form 

Theorem 3.1 : Any Boolean function f of n variables can 
be described by at most 2" terms in disjunctive or con- 
junctive expression. Moreover, the value 2"-' is the least 
upper bound, since there are functions whose description 
needs exactly 2"-' terms. 

The CRMP form can be proven to be more eco- 
nomical in the sense that it has an upper bound with 
lower number of terms. 

Theorem 3.2: Any Boolean function of n variables ( n  3) 
can be described by at most $(2"-') terms in a CRMP 
form. Furthermore, for any function f given in an RM 
form, there is an algorithm to find this CRMP form 
which takes t (2"-  ') steps. 

Proof: See Appendix. 
The same upper bound was obtained for ESOP forms in 
Reference 4, which shows that for difficult functions the 
CRMPs are as good as the ESOPs. An analogous 
theorem can be stated for the dual CRMP form (Q e 0, 

+). 

4 

In this Section a property of the CRMP form is discussed 
which is related to the concept of the prime implicant. 

Definition 4.1: Term t ,  is a proper subcombination of 
term t , ,  iff S ( t , )  c S(t,). 

Lower bound of existing terms in CRMP form 

12 

For instance, in the function/= xlxl x,X@ G x 3  term 
xIx3 is a proper subcombination of term xIx2 x3Xq. 

Theorem 4.1: All terms of a Boolean functionfof n vari- 
ables given in a CRMP form which are not sub- 
combinations of other terms in the same CRMP form 
will exist in any CRMP form off: Before giving the proof 
of this theorem we introduce some necessary definitions 
and lemmas. 

Lemma 4.1: A term is a prime term (definition 2.9) if it is 
not a subcombination of other terms in the same CRMP. 

Lemma 4.2: A Boolean function is odd iff its expanded 
disjunctive normal form (canonic sum of products form) 
contains an odd number of elementary terms (true 
minterms). A Boolean function is even iff its expanded 
disjunctive normal form contains an even number of min- 
terms. 

Lemma 4.3: 

- 

fI,(Xl, ..., x.) +fze(xl, ..., X") = f 3 A X l r  ... 9 x.) 

f&,, . . . ,X. )+fZo(x1,...,X")=f30(X1....,X") 

f&,, . . . . x .  )+fZe(xl> ....x")=/30(x1,....x,) 

f I 0 ( ~ 1 >  ~ ~ ~ ~ X ~ ) + f 2 0 ( X 1 ~ " ~ ~ X ~ ) = / 3 e ( X l ~ " ' r X ~ )  

where subscript e means an even function, and subscript 
o means an odd function. 

Proof: Consider the expanded disjunctive normal form of 
the preceding functions. In such a form + can be 
replaced by 0 without changing the function. Thus, 
using lemma 4.2, the number of the remaining terms on 
the left sides will be (number of terms off,) + (number of 
terms off2) - 2(number of common terms). Therefore the 
rules concerning the parity of ring sums of Boolean func- 
tions are identical to those of the natural numbers. 0 

Lemma 4.4: Assume that the Boolean functionfof n vari- 
ables in CRMP form has one term consisting of k literals 
and no other terms. Then 

f(xl ,  . . . , x.) if even iff k < n 

f (x l ,  . . . , x,) is odd iff k = n 

Proof: Consider the expanded normal disjunctive form of 
the function. The number of minterms will be 2'-', which 
is always even, unless n = k. 0 

Lemma 4.5: A Boolean function of n variables is odd iff 
the CRMP form offcontains the term with n literals. 

Proof: *. Iff is odd then its CRMP form must be also 
odd. By lemma 4.3 the CRMP form must contain an odd 
number of terms describing odd functions. By lemma 4.4 
the only such term is one containing n literals. Thus the 
term with n literals must exist in the CRMP form off: 
-. Conversely, if the CRMP form offcontains the term 
of n literals, then by lemma 4.4fis the ring sum of an odd 
function and some even functions. By lemma 4.3 we con- 
clude thatfis odd. 

Now we can give the proof of theorem 4.1. 

Proof of theorem 4.1 
(i) Choose arbitrary prime term containing k < n vari- 

ables in the CRMP form off: From lemma 4.1. It is not a 
subCombination of other terms of this CRMP. 
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(ii) Give constant values to all the n - k variables not 
occurring in the chosen prime term. 

(iii) Since the prime term is not a subcombination of 
other terms by hypothesis, in the resulting k variable 
function the chosen prime term will be the only one term 
containing k literals. So, according to lemma 4.5, this 
segment offis odd. 

(iv) This segment will remain, therefore, odd in every 
polarity, and its terms will never be combinations of 
other terms. 

The following corollaries can be derived from theorem 
4.1. 

(v) Points 1-4 can be repeated for any prime term. 

Corollary 4.1: The prime terms will exist in the minimal 
CRMP form too. 

Corollary 4.2: All existing terms in any CRMP form of a 
Boolean function f of n variables are subcombinations of 
prime terms. 

Proof: Trivial. 

Corollary 4.3: For a given Boolean function f of n vari- 
ables the prime terms are entirely determined by f and 
they do not depend on the CRMP form from which they 
are determined. 

Proof: Let C,,,,, be the class of the term sets S(tJ of the 
prime terms t ,  in CRMPl form offand C,,,, the class 
of the term sets S( t j )  of the prime terms t ,  in CRMP2 
form of 1: For reasons of symmetry it suffices to show 
C,,,,, c C,,,,, . Assume S ( t )  E CCRMP,. Then by 
theorem 4.1 there exists a term t' in CRMPZ form such 
that S ( t )  = S(t'). Assume S(t') $ C,,,,, , i.e. t' not a prime 
term. Then there exists term t" such that S(t ' )  c S(t") and 
S(t") E C,,,,, . By theorem 4.1 there exists term t" in 
CRMPl form such that S(t"') = S(t") so that S(t') c S(t"') 
and S(t') $ C,,,,,. This contradiction establishes corol- 
lary 4.3. 

Corollary 4.4: There exists a Boolean function of n vari- 
ables for which the minimal CRMP form contains as 
many as 

terms if n is even, and 

terms if n is odd 

Proof: If n is even consider the function whose RM form 
contains all terms with n/2 variables and no other terms. 
Since none of those terms is a subcombination of any of 
the other terms all these terms are prime terms. If n is 
odd consider either a function whose RM form contains 
all terms with (n  - 1)/2 variables and no other terms or 
the function whose RM form contains all terms with 
(n + 1)/2 variables and no other terms. It is easy to see 
that in both cases all terms are prime terms. 

This proves that the conjectured upper bound on the 
number of terms in a termwise minimal CRMP form 
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cannot be further decreased. Corollary 4.4 was given 
without proof in Reference 28. 

5 

To explain the CRMP minimising algorithms, we first 
illustrate the fundamental concepts of prime and non- 
existing terms. 

Examples: In the functions below the prime terms are 
underlined and the nonexisting terms are listed. 

Prime terms in CRMP minimisation 

(i) 1 0  x, 0 x2 0 xlx2x3 

There are no nonexisting terms. 

(ii) I O x ,  0x,x ,Ox,x ,Ox,x ,  
Nonexisting terms: xlx2 x3  

(iii) 1 0 5 0 x2 0 a 
Nonexisting terms: xlx2, x1x3, xIx2 x3 

(iv) x ,  0 x2 0 3 0 x4 0 xIx2 x4 

Nonexisting terms: 
xIx3, x2x3 > x3 x4, X I X 2  x3 > xlx3 x4, 
x 2  x 3  x4, x 3  x4 

(v)x1 @x2x3@x1x2x3x4 

Nonexisting terms: none. 

(vi) 5 0 ~ 2 x 3  0 x2xq 8 x3xq 
Nonexisting terms: 

XlX2,X,X3, xlX4, XIXZX3, x1x2x4, XlX3X4, 
x2 x3 X'l, X l X 2  x3 x4. 

If there exist only prime terms in the expression, then this 
expression is a both termwise and literalwise minimal 
CRMP form. If one can merge other terms with prime 
terms so that the resultant form has the same number of 
terms as the number the prime terms, the resultant form 
is miminal. 

Illustration of some of the preceding cases: 
(ii) f= 1 0 x1 @ x1x2 0 x1x3 0 x2 x3 after merging x1 

and x1x2 becomes 1 0 x l g  0 xlx3 @ x2 x 3 .  Now one 
can see that variable x2 occurs in both forms. Also 
adding x2 to the form would permit to merge it with 1 to 
create g, which in turn could be merged with x,sZ;. 
Therefore, the preceding form becomes 1 @ x,JE; 0 x1x3 

0 xIx3 0 x, q. All terms are prime, so the solution is 
an exact minimum CRMP form. (In this case it is an 
exact minimum ESOP as well). Observe that the exhaus- 
tive search of References 22 and 23 to find the exact 
ESOP has been avoided. 

(iii) One expects a form with two terms. By merging 1 
with x, and x2 with x2 x3 one obtains an exact minimum 
form O x2%. 

(vi) All terms are prime, so the exact minimum form is 
X I  0 x*x3 0 x2x4 O x 3 x 4 .  

Similar mergings do not always lead to minimal CRMP 
forms, but usually reduce the number of terms. For 
instance, 1 and x1 can be merged in (i). Moreover, by 
knowing the number of prime terms, which is a lower 
bound of a termwise solution cost, one can evaluate the 
upper bound of the distance of this solution cost from the 
minimal cost. The solution (iv) for instance has in the 
worst case three terms more than the exact minimum 
solution. 

O X , X , O X , O X , =  x , g e x , x 3 0 ~ , x , 0 3 E ; =  ~g 
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The ideas of prime terms are used in a tree-searching 
algorithm to find an exact CRMP. 

Algorithm 5.1: Calculation of exact C R M P  form from 
FPRM form. 

(a)  Find set PT of all prime terms from an arbitrary 
FPRM off: 

(b)  Find set PRT of all product terms corresponding to 
the prime terms from PT. This is done by changing in all 
possible ways polarities of all variables in terms from PT 
(we create for prime term t all such terms t’ that 
S( t )  = S(t‘)) .  

(c)  Find set PRTl of product terms that can be created 
from the product terms of PRT by removing all possible 
subsets of literals. 

(4 Using tree search select the smallest subset of 
groups from PRTl such that the EXOR of all those 
groups equals tof: When in some branch a product term 
t is selected to the solution, all possible product terms t’ 
such that S( t )  = S(t’) are discarded in all branches of the 
tree that starts from t .  

Observe that the exhaustive search algorithm for exact 
ESOPs from Reference 23 can be easily adopted to find 
exact CRMPs. In such a case the algorithm is made 
much more efficient by not using in H-function groups g i  
that correspond to nonexisting terms. During search to 
find products of g i  to satisfy the decision function H, the 
groups gi are selected on the same principles as the 
product terms in (4 of algorithm 5.1 

The concept of the prime term makes it possible to 
define the following ‘generic’ and nondeterministic, 
simple algorithm for the minimisation of CRMP forms. 
The input to the algorithm can be any FPRM form. 

Algorithm 5.2: Calculation of quasiminimum C R  M P  form 
from FPRM form. 

(a)  i : =  l,fl :=A 
(b) decomposef, =f,, @ A + ,  where& is the modulo 2 

(i) terms t and t‘ occurring in f,, imply that S(t‘) $ 
S ( t )  

(ii) U), 1 implies cf,,), 1 
(iii) set { S ( t )  I 

sum of prime terms with respect tof, such that 

= 1) has the minimal cardinality 
i : = i  + 1. 
(c) if&+, # 0, repeat step 2. 
(d )  print solution:f= f , ,  Of2, 0 . . Of,,. 

6 implementation 

Agorithm 5.2 can be implemented in many different ways. 
Our implementation called Cannes (CANonic Nor Exor 
Synthesiser) has been based on a depth-first tree- 
searching algorithm that makes use of the theory intro- 
duced and in particular the properties given in corollary 
4.2 and 4.3. Those corollaries state that all prime terms 
are entirely determined by the Boolean function f and do 
not depend on the CRMP form and that all existing 
terms in a CRMP form off are subcombinations of prime 
terms. Thus, Cannes is based on an algorithm which gen- 
erates the minimal FPRM form for the prime terms and 
their subcombinations. The simplified recursive mini- 
misation procedure of Cannes is as follows. 

Notation: 
List 
NewList 
prime term - prime term of the List 

- complete list of terms describing the function 
- starting List of next recursion 
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subset - subset of terms for a prime term 
minsubset - minimal FPRM form of the subset 

minimise(List) { 
for each prime term of the List { 

// calculate the subset for the prime term 
subset := subset-of (prime term); 

//calculate the minimal FPRM form of the subset 
minsubset := minimal-FPRM (subset); 

// compare number of terms 
if ( minsubset 1 < 1 subset 1 ) { 

NewList := List; 
relace subset in NewList by minsubset; 
minimise( NewList ); } } }  

Currently Cannes checks the FPRM forms for all pos- 
sible polarities of a subset of variables. However, observe 
that although our method requires finding the minimal 
FPRM, and even generates the minimal FPRM several 
times during the CRMP minimisation, the exact FPRM 
generation has to be performed on subfunctions that 
depend only on subsets of variables of the initial function. 
It is only in the worst case of a FPRM form having a 
single prime term that all the polarities of the input vari- 
ables have to searched to find the minimum FPRM. 
With an amount of search that is comparable to that for 
a FPRM, we are able to find a form that is not worse 
than the FPRM. 

Replacing the current FPRM minimiser in Cannes 
with the exact FPRM minimiser from Reference 26 will 
speed it up significantly. Moreover, we will be able to 
study the performance of the new heuristic variant of 
Cannes using the quasiminimal FPRM minimiser from 
Reference 26. We have done it for single-output functions 
[30] and the results are very encouraging, but to use the 
Cannes program presented in this paper, the FPRM 
minimiser from [26] has to be first generalised to multi- 
output case. 

7 Complete example of execution of Cannes 
program 

For the description of the algorithm the function shown 
in Fig. 1 is taken. For comparison, the SOP solution 
given by the well-known minimisation program Espresso 
[21] and the CRMP solution calculated by Cannes are 
shown in Fig. 2. First, all possible FPRMs are generated 
for the input function. A FPRM with the minimal 
number of terms is selected: ----, 0---, --0--, -0--, ---0-, 
00-0-, ---0, -0-00. Fig. 3 illustrates the different steps of 
the minimisation of this FPRM. One prime term is 00-0-. 
Its subset is 00-0-, 0---, ----0-, as shown in Fig. 3a. The 
next step is the calculation of the minimal FPRM form of 
this subset. Because all FPRM forms do not have less 
cubes than the initial subset, the prime term is a final 

cubes 

L l O O l l ~  

Fig. 1 Example function 
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solution term. Therefore it is stored in the solution array 
(first cube in the solution array from Fig. 36). In the 
remaining array the term 0--- is now a prime term 
without subcombinations. Thus it can be removed and 
stored in the solution array. 

00-10 

10011 

- .  
10-11 
11100 
01101 
OlWO 
11001 
0-110 
11010 
00-10 
01011 
1 - 1 1 1  

a b 

Fig. 2 
a Input array 
b Minimisation by Espresso 

Minimisation by Cannes 

Comparison ofEspresso with Cannes 

solution orra) 

... 0- 
... 0. GRM of subset 

[-lo..] d 

C 

Fig. 3 step-by-step minimisation ofarray 
II First loop 
b Second loop 
c Third loop 
d Fourth loop 

The prime term -0-00 with its subcombinations (shown 
as a subset in Fig. 36) also does not lead to a more 
minimal solution. Therefore the prime term is also a final 
solution term and has to be inserted in the solution 
array. Also the prime terms of the remaining array which 
have no subcombinations have to be inserted in the solu- 
tion array (Fig. 3c). Again, the next prime term is taken. 

Table 1 shows the subset (Fig. 3c) of this prime term 
and the minimal FPRM form. 

The final two terms are prime terms and are therefore 
the solution terms (Fig. 34. As one can observe this solu- 
tion is the not the final solution show in Fig. 2c. The 
general minimisation according to the algorithm is now 

Table 1 : Minimal FPRM of subset 

Subset Minimal FPRM 

-00.- -10.- 
..I.. 
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completed. As the last minimisation step it is tried to sub- 
stituted a possible DC term (----). In our example ----@ 0- 
-- = I---. With this last iteration we obtain the result 
shown in Fig. 2c. 

8 Evaluation of results 

For comparison, some two-level examples from the 
MCNC benchmarks have been minimised. Because 
current Cannes has an exhaustive search routine for the 
minimal FPRM form, the computation for functions 
having more than 15 input variables is very time consum- 
ing. 

Table 2: MCNC benchmark comparison 

Input Output SOP FPRM Cannes Prime 
variables variables terms terms terms terms 

5xpl 7 10 65 60 60 l / V  

bw 5 28 22 22 22 114 
9svm 9 1 86 173 131 8 

con1 7 2 9 17 12 4 
inc 7 9 30 47 43 5 
misexl 8 12 12 20 20 3 
rd53 5 3 31 20 20 5 
rd73 7 3 121 63 63 5 
sa02 10 
squar5 5 8 25 23 22 4 
xor5 5 1 1 6 5 5 5  
Z5xpl 7 10 65 60 60 6 

4 58 100 52 118 

The column prime terms lists the number of prime terms 
in the minimised form. A l /m indicates that the form con- 
tains a minterm and apart from that m prime terms. In 
the column FPRM the number of terms of a minimal 
FPRM form, obtained by exhaustive search, is given. The 
number of SOP terms are the results obtains by Espresso. 

9 Discussion of results, conclusion and related 
work 

The concept of CRMP forms and an approach to their 
minimisation have been introduced. We believe the most 
important aspect of the theory introduced and of Cannes 
is that they will be useful to create an exact ESOP mini- 
miser. 

The Cannes algorithm has been tested on many 
example, and on all small functions that can be verified 
(such as all single output functions of three and four 
variables), if the function was not sparse, it produced the 
exact CRMP solution. It is not known whether the 
Cannes algorithm always produces the exact CRMP for 
nonsparse function; we have not found a counter- 
example yet. Cannes was compared with a good quality 
ESOP minimiser Exorcism-mv-2 1333, and we were able 
to find some functions for which Exorcism-mv-2 found 
better solutions than Cannes. However, all those func- 
tions were sparse. Therefore, there are two questions 
open : 

(i) Suppose the original function is sparse, is parti- 
tioned to all its clusters, and the exact CRMP solution 
for each cluster is found. Then, is the EXOR of these 
CRMPs the exact ESOP of the original function? 

(ii) Does the algorithm from Section 6 find the exact 
CFMP form? 

The second hypothesis can be easily verified, since we 
developed the exact CRMP minimising algorithm 5.1 
(which is more efficient than the exact ESOP minimiser 
form Reference 23), and which will be programmed and 
used in the comparison. 
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Another property that is useful in the exact algorithm 
is the concept of prime terms introduced previously. It 
allows one to decompose a function to disjoint subsets of 
input variables for which minimisation can be done 
separately. Also, it allows one to find the upper bound of 
the distance of the solution found from the exact 
minimum solution (the lower bound is given by the initial 
number of prime terms). The concepts of disjoint decom- 
position and upper bound are both new in the EXOR 
theory. They have been extended and are used to design 
a better exact ESOP minimiser. For instance, these con- 
cepts aid in fast clustering of a sparse function to non- 
sparse clusters for which CRMPs are found. 

Unfortunately, although we can create whole classes of 
functions for which the proposed approach will lead to 
minimum solutions without much search, the MCNC 
benchmark examples show that on the real-life examples 
the number of prime terms is much smaller than the 
number of terms in the minimal solution, which causes 
these variable-based decompositions to occur rarely, and 
the upper bound distance evaluations to be too pessi- 
mistic. 

It is surprising that for many practical examples of 
multioutput functions of many variables the optimal 
solution found was an FPRM form. This means that, 
because of only a few prime terms in such functions, 
either our algorithm does not produce the exact CRMP 
solution, or that those functions the exact CRMP is the 
exact FPRM, which would be a rather unexpected result 
since the class of CRMPs is much larger than the class of 
FPRMs. 

These interesting questions give motivation to invest- 
igate further the exact CRMP and sparse function 
decomposition algorithms. This gives also an additional 
motivation to the generalisation of the efficient exact and 
quasi-minimum FPRM algorithms from Reference 26 for 
multioutput and incompletely specified functions. 

Moreover, use of CRMPs and FPRMs is important 
with respect to the logic design methods for the field 
programmable gate arrays [9, 131 and other programm- 
able devices [lo, 141. Our results show that a FPRM 
[26] or a CRMP form can be not only more easily test- 
able but also smaller than the two-level inclusive form. 
Similary to SOPS, they can be factorised 1151, which 
further reduces their areas. Since the cost and speed of an 
EXOR gate and OR gate in such technologies are the 
same, there is no reason to assume that PLA minimisers 
such as Espresso will always produce better results. 
However, Espresso can be still applied to larger functions 
and is still faster than Cannes. 

Since for some functions the results of Cannes and 
Espresso can vary significantly (see the rd73 function), 
and until software becomes available to automatically 
find the best ANDjORjEXOR mixture, we suggest that 
the CAD user will run both the SOP minimiser and the 
ESOP minimiser for any particular function he mini- 
mises, and will make his final implementation decision 
based on the comparison of their results. 
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11 Appendix 
To prove theorem 3.2 we first prove the following 
lemmas. 
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Lemma 3.1 : Any Boolean function f of n variables can be 
given in the form 

f(X1, ..., x.) = SI(X1, ..., x.-I)ox"9,(xl, ... 1 x"- l )  

where g1 and g, are Boolean functions of n ~ 1 variables. 

Proof:  Consider functionf(x,, . . . ,  x.) in the RM form. 
From the Shannon expansion theorem one obtains f(xl, 
..., X") =X,f(x,, ..., X,-I, O ) +  x,f(x,, ..., X.-I. 1). 
Since the functions gf(x l ,  . . . , x,- 1 ,  0) and xnf(xl, . . . , 
x,- ,, 1) are disjoint, f(xl, . . . , x.) = % f ( x l ,  . . . , x,- 1, 0) 
0 x1f(x1, . . ., x,_ 1 one 
obtains: 

1). Substituting X, by x, 

f(x1, , . . > x.) 

= (x. 0 l ) f ( X l ,  . . ., x,- 1,O) 

0 X"f(X1, , , . > x,- I .  1) 

= X"lf(X1, . . . , x,- 1,O) Of(X1, . , , > x, ~ I ,  1)) 

o f~x l> . . . , x " - l , o )  

= SI(X1,. .., x,- I )  0 x"gZ(x1,~ ( . >  x,- I )  

Lemma 3.2: Any Boolean functionfof n variables can be 
given in the form: 

f(x1,. , . , x.) 
dxl, . . . 1 Xk) @ x k +  1g2(x1> . . . > xk) 

@ ' . ' @ x, 9. -k + 1(xI? , , . ?  Xk) 
0' ' '  

X k + l X k + Z  ' .  ' xny2k(x1, . . . > xk) 

Proof:  Apply Lemma 3.1 (n ~ k) times. 

Lemma 3.3: Considering term xlxz with all polarity com- 
binations, terms x, and x, occur in all possible com- 
binations of existence, which means: none of them, any 
one of them, or both of them. 

Proof:  

XIXZ = g x ,  0 x, 
= XI% @ x1 

= XI x2 o x2 o XI 0 1 
_ _  

Lemma 3.4: Considering term xlxz x, will all polarity 
combinations, terms xlxz, xIx3 and x2x3  occur in all 
possible combinations of existence. 

Proof:  Changing the polarity of variables xI, x, only and 
applying lemma 3.3 we obtain 

O; x 2 x 3 ;  xlx,; xlX3,xZx3; 

Changing the polarity of variable x3 as well, one obtains 

xlxzx, = X , X , ~ @ X , X ,  

= XI.,.,@ XlX, 8 XIX j  o XI 

= q x ,  % @ xlxz @ x, x3 @ x* 

= x1 x, x3 @ x1x2 o x1x3 

o x ,  o x ,  o x ,  0 1 

___ 
x, x, 

U 

Lemma 3.5: Any Boolean functionfof three variables can 
be given in a CRMP form with at most three terms. 

Proof:  It takes at most three steps to find that CRMP 
form. 

Case (i): Term x1x2x3 exists in function$ 
Step # 1 : Choose polarities for variables x,, x, , x ,  

so that out of the two-variable terms only term xlxz 
will exist (possible by lemma 3.4). 

Step # 2 :  Choose polarities of variables x,, x2 so 
that terms 1 and/or x, exist (possible by lemma 3.3). 

Step #3: If both 1 and x, exist, merge and get <. 
Case (ii): The existing terms containing the most liter- 

als are x,x,; xlx3; x 2 x 3 .  
Step # 1: Choose polarities: x,x,; x,x,; x2<. 
Step #2:  Choose polarities for variables x,, x2 so 

that neither term xI nor term x2 exists (possible by 
lemma 3.3). 

Step #3 :  If only x, exists merge x3 into xIx, and 
get z x 3 .  If only 1 exists, merge 1 into x,x,; x2G 
to get Kx,; X,< (it means, use the transforma- 
- tion: 0 xIx3 0 x2xJ = 
xIx, 0 X,X,). If both 1 and x, exist, merge them into 
x,x,; x2X,  to get x , x , ; ~ G .  
Case (iii): The existing terms containing the most liter- 

als are either x,x2; xlx3 or xlx,; x, x3 or xlx,; x, x3.  
For reason of symmetry it suffices to show only one of 
those three cases. Let this be x,x,; xIx,. 

Step # 1: Choose polarities for variables x,, x2 so 
that neither term x, nor term x, will exist (possible by 
lemma 3.3). May be 1 0  1 has been added to permit 
mergings. 

Step # 2 :  There are still four terms, if both terms 1 
and x, exist. Merge 1 @ x3, and get j r ; .  
Case (iu): The existing terms containing the most liter- 

als are either xlxz or x1x3 or x, x3.  For reasons of sym- 
metry it suffices to show only one of those three cases. 
Let this be xlxz. 

Step # 1 : Choose polarities for variables xl, x, so 
that neither x, nor x, will exist (possible by lemma 
3.3) .  
Case (U): The existing terms containing the most liter- 

Step # 1 : If 1 exists merge and get K; x,; x3.  

1 0 xIx3 0 x2jr; = x3 0 

als are x1 ; x,; xg . 

0 
Now we can prove theorem 3.2. 

Proof( theorem 3.2): Given a Boolean functionfof n vari- 
ables in RM form, according to lemma 3.2 write it in the 
form 

f(xl,"'>X,) = g l ( X 1 , X 2 , X , ) o X 4 ~ Z ( X l r X 2 , X 3 )  

0 x5 93(X1> x2 > x3) 0 x4 x5 d X 1 .  x2 3 x3) 

O ' . ' @ X 4 X 5 X 6  _ ' '  x.g2.-3(x,,x2,x3) 

Minimise each gi by lemma 3.5 to obtain their CRMP 
forms containing at most three terms. This process takes 
3 x 2 " - 3  steps. The resulting CRMP form for f will 
contain 3 x 2 " - ,  = 3 2 " - ' )  terms. 
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